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Abstract

How common and how persistent are turbulent periods? Wesagddhese ques-
tions by developing and applying a dynamic dependence freame In order to an-
swer the first question we estimate an unconditional mixtuwseel of normal copulas,
based on both economic and econometric justification. |eramanswer the second
guestion, we develop and estimate a hidden markov modelmflas, which allows
for dynamic clustering of correlations. These models peame to infer the relative
importance of turbulent and quiescent periods in inteomati markets. Empirically,
the three most striking findings are as follows. First, fa& tinconditional model, tur-
bulent regimes are more common. Second, the conditionall@opodel dominates
the unconditional model. Third, turbulent regimes tendearore persistent.
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1 Introduction

This research aims to formalize and quantify the obsemati@t economic activity in
general, and financial returns in particular, alternatesutph periods of turbulence and
quiesciencg. A key distinction that | focus on is the tendency of returnretations to
increase during turbulent periods. Understanding thisreisee comovement is critical,
since the very hub of portfolio allocation theory is the asption that not all returns move
together at the same time. Consequently, in the interrgtmntext, an understanding of
this phenomenon could be important in resolving the homs piezle. In the domestic
context, it could help explain the equity premium puzzlestdcks display such comove-
ment, then their riskiness relative to bonds may be evertalgan presumed. Therefore,
guantitative information regarding the importance of tuemce may enable us to glean in-
sight into the underlying structure of financial markets.phwase the question precisely, |
am interested in "How frequent and how persistent is turrzee”

| address this question using a dynamic copula approach.twWienain reasons for
using this approach are as follows. First, use of the copulatfon allows for robust es-
timation of dependen&.Unlike correlation-based inference, the copula extrdetsia
in which variables comove, regardless of the scale with vthie variables are measuiéd.
Second, the use of a mixture model is a convenient comprdoeiseeen parametric and
nonparametric estimation approaches, combining the basires of both. Like the non-
parametric approach, a mixture model can, in principler@amate many distributional
shapes and is therefore less restrictive than a single;, patametric model. Like the
parametric approach, the mixture model approach allowsmhkeep the dimension of the
parameter space small.

In this paper | estimate a mixture of normal copulas, charaztd by different correla-
tion structures. In related research ( Hu (2004) and Rodead@004) ) the mixed copula
approach is also used. However, those papers utilize n@anashsymmetric distributions
in the mixture. This has the advantage of extracting diffetail dependence measures,

1See Ang and Chen (2002), Bollerslev, Chou, and Kroner (1,99%)gin and Solnik (2001) and Schwert
(2002).

2See Dias and Embrechts (2004), De la Pena, lbragimov, andi8imaetov (2003), and Embrechts,
McNeil, and Straumann (2001)

SFurthermore, in the estimation | avoid mis-specificatiorihaf marginal distribution by computing the
rank-based empirical distributions, before estimatiregdbpula.

“Moreover, the dynamic model employed herein is akin to aptadamixture model, which has attractive
approximation properties. See McLachlan and Peel (200@) fbscussion of mixture models.



that is, to assess the relative mass of joint observatiotiiteft tail of the return distribu-
tion. In the current paper, by contrast, the use of only nbropulas delivers a flexible
copula, while preserving a familiar framework. In parteulthe current paper uses one
dependence concept, the familiar linear correlation. Tilg iotuitive leap is that the cor-
relation is indexed by different copulas which reflect, mi&gively, turbulent and quiescent
marketﬁ My framework therefore retains normality in a robust wayotigh the copula,
while permitting some generality via distinct correlasdn the mixture densities.

The remainder of the paper is organized as follows. Sectidetails information on
the copula. Section 3 motivates the use of the normal depeedsructure and dynamic
copulas. Sections 4 and 5 discuss the representation anthsh of the unconditional
and conditional mixture models, respecti»@l;&ection 6 presents the data and results.
Section 7 concludes. The Appendix contains more detail orstiynation methodology.

2 Background and Terminology

2.1 Copulas and Dependence

A copula is a distribution function with uniform marginalsin general (Sklar (1959))
any continuous bivariate joint distributidfiy y (x, y) can be represented by a copula as a
function of the marginal distribution$,y (z) andFy (y). Thatis,

Fyy(v,y) = C(Fx(z), Fy(y)) = C(u,v), 1)

5Specifically, | estimate two correlations, correspondmghie two copulas in the mixture. In the initial
specification, the two correlations are restricted to sifidt different initial values, one larger than the other.
Empirically, this restriction is unnecessary, since thealations end up with very different final values, even
when started at similar initial values.

6 The sections on unconditional mixture models and hidderkavamodels follow the exposition of
McLachlan and Peel (2000), and McLachlan and Krishnan (,2@lapted to accommodate the mixed copula
context.




where and. = Fx(z), andv = Fy(y). Furthermore, application of the chain rule shows
that the corresponding density functigg (x, y) can be decomposed as

Fev(rny) = PFxy(z,y)  0*C(Fx(z),Fy(y)  0*C(u,v) 0Fx(z) 0Fy(y)
XyAB Y = ordy 0z0y ~ Oudv oz dy
= C(“? U)fX('T)fY(y)? (2)

Intuitively, the joint density is the product of the mardiaad copula densities.

Why is the above formulation important and useful? One irtgodrreason is that it
allows researchers to avoid misspecification of the makgimsributions, and to focus
directly on the dependence structure. Another reasonicpkatly relevant for financial
research, is that copula-based dependence measures asé tiimonotonic transforms.
This permits empirical researchers to work with returnogrreturns, for example, at their
conveniencé.

3 The Importance of Normality and Dynamic Copulas

3.1 Econometric and Financial Relevance of Normal Copulas

It is valuable to address the issue of functional forms ofutag. A major advantage of
using mixed copulas is that it allows one to nest various deéeece shapes. In addition,
use of mixed copulas also improves model selection, sinperinits the data to choose
which copula family is most appropriate. However, a potmtisadvantage is the increase
in the number and type of parameters to estimate. For exaegiienating a four compo-
nent mixed copula would involve at least four dependencarpaters and three weights.
Moreover, if the copulas are from different families, fomexple normal and Gumbel, it is
not easy to compare the strength of dependEnce.

"By contrast, traditional correlation based measures aéddence are not necessarily robust to monotonic
transforms. SeeEmbrechts, McNeil, and Straumann (2001).

8For example, the normal copula’s dependence is bounded byl 21a while the Gumbel copula’s de-
pendence has no upper bound, in some formulations.



An alternative route is to use a mixture of two normal copulasich | do in this paper.
This approach delivers at least three advantEgEsi;r.st, since both copulas are normal, this
formulation allows us to work with a single dependence patamthe familiar correlation.
Moreover, since this parameter has the same range in bothasypt facilitates explicit
comparisons of the strength of dependence. This is notlgessgith copulas from different
families.

Second, the econometric relevance of the two component Ingarsimony, since
it reduces the number of parameters to be estimated. Thisasimportant in terms
of required computer power. Third, the financial insighthattthis formulation permits
discussion of a fundamental, yet little understood, aspe@ihancial markets. That is,
the importance of turbulent and quiescent periods, whiaghespond to periods of high
dependence and low dependence, respectively. In partiduddlows one to address such
important questions as, hdwequent are turbulent periods relative to quiescent periods? To
the best of my knowledge, these questions have never beeesadd before in the copula
context.

3.2 The Importance of Dynamic Copulas

Dependence has cross section and time series properties.réddearch on copulas utilize
static copulas. However, in the case of financial markegsetls a clear dynamic element.
An important question is, how much emphasis do we want toeptat dynamics in the
dependence parameters versus dynamics ieritiee dependence structure? In this paper
| choose to focus on the entire dependence structure, $irgcis imore gener

In order to incorporate dynamics, | utilize a hidden markade (HMM), as discussed
in Section 5. It is important to realize that the HMM framewdras to be applied with
care. In the current application, the HMM structure is naltdior at least two reasons.
First, there is a reason to use normal copulas, because @lieein working with a single,
familiar dependence measure. This permits an immediateprdtation of the estimated
parameters. Second, the two component model is also nagivah the economic obser-
vation that there are two basic types of dependence stag;taorresponding to turbulent

9Note that use of a mixture of normals prevents one from adirgsssues of tail dependence. In the
current setting, however, the research question relatesrtelations, and for that purpose the normal copula
is appropriate.

OMoreover, there appear to be differences in the dependéemictise (especially in terms of the estimated
weights) in different parts of the sample.



and quiescent periods. This justifies the parsimoniousttre, which is attractive for

separate econometric and computational reasons. Othkcajgms may or may not have
this natural suitedness to the HMM structure. It should Bspointed out that the estima-
tion of parameters and standard errors in this context regjsignificant computation and
derivation, as well as theoretical justification, some ofalihs provided in the Append

The HMM framework delivers two important advantages. Fitsallows one to dis-
cern the dynamic structure of dependence. Second, it abbm&so answer another im-
portant question related to turbulence and quiescenceglgdraw persistent are turbulent
periods4 To preview the results, it appears that turbulence might beerfrequent and
persistent than quiescence, a finding which may have useddiesnic and practical impli-
cations.

3.3 Alternative Approaches

Two recent papers have also developed dynamic copulast iallaedifferent context. One
uses a change-point approach, and the other uses an ARMA pesdictive modelling
strategy. We discuss each in turn.

Let us discuss the change-point approach. This approaolves/testing for a change
in the dependence parameters of a fixed copula family, antlized by Dias and Em-
brechts (2004). A simple example could be to test the congtahthe correlation param-
eters in a family of bivariate normal copul@$,(u, v; p). For a sample of observations
one can test the null hypothesis of structurally constardrpaters as

Hy:p1r=ps=..=pr

Versus
Hy:py=..=pp #ppry1=..=pr.

1For example, the estimation of parameters is simplified bydgcomposition of the density into copula
and marginals, where the latter are not included into theilibod. Furthermore, the provision of standard
errors requires application of both knowledge that a mixwircopulas is a copula, and that the asymptotic
covariance matrix can be consistently estimated with therimplete data Fisher Information matrix.

12Frequency of turbulent periods is assessed by the size efefght on the high correlation copula, and
persistence is assessed by the size of the markov trangrtdability.



A rejection of the null hypothesis indicates that a changeavdmeter occurred at tinié
The test statistic is based on a likelihood ratio test, whokieal values can be evaluated
via simulation.

The second approach is related to the first, and involves afgredictive time-series
modelling and copula estimation. This approach is used p®#2004), who builds a
copula model for portfolio choice between large and small sicks, allowing the cop-
ula parameters to evolve, depending on certain conditipaariables. In particular, he
models the dependence parameters in nine different copalasfunction of lagged risk-
free rate, default spread, dividend yield and conditionebhmforecasts for the different
stock Patton finds that knowledge of the dependence structure teagnificant gains
for unconstrained investors.

Both of the above papers utilize a single underlying copUlalike Patton (2004) and
Dias and Embrechts (2004), the hidden markov approach #raploy focuses on cluster-
ing, and allows the underlying copula to vary from period éoipd. | will return to this in
Section 5.

4 Unconditional Model

In order to develop my benchmark mixed copula model, it isessary to clarify some
background material on mixture models. Therefore, in tleistion | present a general
mixture model, which | specialize to a mixture of copulas. éhgralj-component mixture

model for dataY; observed at timé may be expressed as

[y ¥) = Zﬂz‘fz‘(}%; 0;), (3

13patton (2004) uses copulas from the following families pmal; student;, Clayton, Gumbel, Joe-Clayton
and Placket. Except for the normal and Plackett, each oktfesilies features unique tail dependence
properties. This allows Patton (2004) to infer the dependeatructure of the data at extremes.



wherer; are the component weights, add={6, ..., 0,; 1, ..., 7, } is the set of unknown

T g
parameters. The likelihood function g > =, f;(y:; 6;), and the log-likelihood is
t=11i=1

T g
L(‘I’) = Zlﬂzﬂifi(}’ﬁ@i) (4)
t=1 i=1

The main challenge with estimating parameters udihg (4jasit involves a log of sums,
for which it is often difficult to compute derivatives. Monegr, when we observe data
y; we do not know which component densify() generated it. A standard way to solve
this is to treat our estimation as a missing data problemrevtiee missing data comprises
the indicator variable$z;}. Specifically, we assume that themplete data also contains a
labelz; ; = (z:);, which indicates the relevant component density for eackmbsiony;,

2z = Lify € fi) (5)
0, otherwise

It is assumed in this context that thgs are independently and identically distributed, and
that they,’s are independent, conditional an Therefore we can write the conditional
distribution of f as

T g
F1 e yr |21, 20:0) = [T filvns 097, (6)

t=1 i=1
where® denotes the set of distinct, unknown paramet@rs;{6,, ..., 6, }. 1 will relax the
1id assumption in Section 5. Consequently we can defioenalete-data likelihood as

L g Zit Zit . :
I[T1Im" fi(y:; 6;) ", andcomplete-data log-likelihood.. as
t=11i=1

T g T
L.(¥)= Zzzi,t In ; +Zzzi,t In f;(y:; 0:)}, (7)
i=1 t=1

g
=1 =1 t=1

where the second component does not depend on the weightSor a mixed copula
application, one may replace the last term[n (7) with theut@pensity representation in
@). This is detailed below.

What does introduction of the complete-data likelihoodieat? The quick answer is
that it allows maximum likelihood estimation of the paraerstusing the EM algorithm, a



well developed methodology from the statistics literatmmencomplete data. Another an-
swer is that expressing the log-likelihood as a functiorhef:ts permits easy introduction
of interesting cross-sectional and dynamic behavior, Bitopgeneralizing the structure.

| will exploit this flexibility in Section 5.

4.1 Mixed Copula and 2-Component Example

In my application of the mixture model, | specialize the ftioas in (3) to include copulas.
That is, the densitieg; are copulas, and as such represent the joint dependenctustru
of the pertinent variables. Other variabledih (3) have thedard mixture model interpre-
tation. Using the density decomposition i (2) permits tbputa log-likelihood function
for (@) to be written in the following form,

L(plz,y) = lan(%,yﬁ@):Zhlf(xz‘,yi;@)
= > Inc(uw,vi0) + Y [n fx(a) +In fr(v)], ®)

where § represents the set of parameters in the copilas (0,,6,). The last term,
Sor o [In fo(x:) + In fy(y;)] , is not affected by the dependence parameter§ herefore,
our maximum likelihood estimator is

0 = argmax L(p|z, y) = arg malen c(ug, v;;6) 9)
i=1

| now show an example using the above approach for a paranmeitxed copula. In
particular, | utilize two normal copulas, therefore thedtional form of the mixed copula
is
H(z,y) = Cpiz(u,v) = w1 C1(u, v; p1) + weCa(u, v; pa), (10)

where(C; andC’, are both normal copulas, indexed by correlation coeffisieptand ps,
respectively. The normal copula and its density are presentthe Appendix. Follow-
ing the exact steps outlined above, | use the density repasen from [2) to obtain the
following expression for the mixed copula model,



h(z,y) = [wici(u, v; pr) + waca(u, v; p2)] fx (B () frr (7 (v))

The corresponding log-likelihood function can therefoeeritten as

[M] =

Lis(p) = In [wye (ug, vg; p1) + wace(u, vi; p2)] +

t=1

I F(@ () + In S (871 00)]

[M] =

t=1

The second component of the likelihood is irrelevant fortteximization since it does not
containp.

5 Dynamic Copula Model

The dependence structure of financial markets is dynamiosfand regions alternatively
flourish or decline, come into existence or die. Consequeatimovement patterns of
financial returns are ever-evolving. It is important for aligtic copula model to account
for such dynamic behavior.

5.1 Hidden Markov Model

Hidden markov models (HMMs) are extensions of the mixturelet®described in Section

4. HMMs provide a straightforward means of allowing dynatéhavior in the copula.
Formally, a hidden markov model is a set of states, each wgtobability distribution.
The transition probabilities;,; determine movement between the different states. The true
states and transition probabilities are unobservablettar@fore have to be estimat@.
This adds an extra set of parameters to our unconditionaunexmodel in the preceding
section. Why would we be interested in doing this? The sinapkewer is that it allows

us to be more flexible about the form of dependence. At a morddinental level, we

14The HMM has five components, the number of states (2 in this)ceise number of observations (T), the
transition probabilities = {m,;}), a probability distribution in each state, and the inigtdte distribution
;. Therefore HMMs generalize mixture models to account fatestransition dynamics.



would like to predict dependence and risk, for academic dsasgoractical finance ques-
tions. This framework is developed in greater detail in thgp@ndix, and to the best of
my knowledge, this is the first paper to utilize this framekviorthe mixed copula context.
Here | give the most important insights.

Why is the HMM structure appropriate for this enquiry? Thasen is that it is a
flexible way to allow for time dynamics in multivariate datzat is cross-sectionally de-
pendent. This is precisely what we require in this contextesiour data and estimated
parameters may cluster in certain periods. The main distima the HMM is that, unlike
the unconditional model of Section 4, thg's are not independently distributed, because of
temporal correlation between observati@lSSince the weights; depend or;, the mix-
ture density no longer has the simple form[df (3). Therefatareation of the parameters
is less straightforward. In this context, the HMM approashery useful, since it embeds
the dependent; ;’s in the likelihood in a natural way. Specifically, the HMMass the
z's to follow a stationary Markov chain with transition matfir,;| , whereh = 1, ...g, and
i =1,..9. We can therefore summarize the conditional dynamics oft/i®at each period
tas

Thi = pT{Zi,t—i-l =1 ‘ Znt = 1}7 (11)
where the initial distribution is denoted,, i = 1, ...g.

Estimation of a general HMM is a slightly more involved versiof the unconditional
mixture model. One can use Newton-type maximum likelihamégtimate the relevant
conditional expectation. The standard approach uses mr@fthe EM algorithm, known
as the Baum-Welch algorithm. This procedure augments theBngth forward and back-
ward recursions through the data in order to estimate timsitran probabilities. Asymp-
totic results and computation of standard errors for HMMsdescribed in the Appendix.
What follows is a brief outline of the estimation procedure.

Let the set of initial and transition probabilities be destbt = {7, 7}, and let
p(z; A) represent the unconditional initial distribution. Usifidf one knows that at time

SFor example, in the financial time series context, this teralmorrelation can exist in the mean (ARMA
models) or in the variance (GARCH models) of the observatioh avoid those approaches in this paper
since | wish to place no parametric restrictions on the nmaglistributions.

10



t, thez;,’'s depend only ort — 1, and can represent the distributionfin the following
manneﬁ‘_‘q

T g9 g
p(a8) = [T = TTTT T (12)

The likelihood function now contains an additional termeefing the distribution of/,

and is written ap(z; A) H H fi(ys; 0;)%t. The corresponding complete log- Ilkellh@ds

g T

IHLC(\I]) = lnp +ZZzZt lnfz yt7pl

=1 t=1
T—1

g g g
= E ZinInmo + E E 2t Zig1 DTy 4

i=

Q@

1

T

Zzzt In f;(ye; 0 (13)
It is instructive to compare this to the unconditional cas8extion 4. The main difference
between this HMM log-likelihood and(7) is the additionalddie term, reflecting the
entire sequence of transition states over time. In Sectitime4dmodel did not require
this term, since it was assumed that wasiid and therefore had no relevant information
in its dynamic structure.

5.2 Mixed Copula Application

For a mixed copula application, one may replace the last témnfI3) with the copula
density representation ifl(2). This yields

g T-1

I YRIEINS 3) 9) SRFTRITENS 9 SR RAROTIE:

h=1 i=1 t=1 i=1 t=1
g

ZZZztlan Nup)) fy (Fy ' (wr)).

i=1 t=1

16The first term is the initial probability of z, and is based ba tnitial distribution of the Markov chain.
The subsequent probabilities of z depend on all the tramsftrobabilities for the Markov chain.

n this case, the parameter vectbrcontains not only the weights and density parameters batthés
transition probabilitiesP = {©, A}.

11



We can ignore the last term, in the maximization since it amst no parameters relevant
to the copula. The log likelihood therefore becomes

!

g T-1 g T

In LeoPle (@) = Z zipInm; o+ Z ZhtZig1 I Ty 4 Z Z Zi In ¢ (ug, vg; pi).

g g
i=1 h=1 i=1 t=1 i=1 t=1

The estimation of the copula HMM is discussed in the Appendix

5.3 Model Selection

The various copula models are compared using both infoomatiteria and empirical dis-
tance measures. | discuss each in turn. First, let us cartkidénformation criteria. The
Akaike Information Criterion (AIC) is used because of itdiomlity properties, and also
since it can be used to compare nested or non-nested madelsnirast to tests based
on likelihood ratios, for example. The AIC is used in otherltimariate model selection
research, for example in Burnham and Anderson (2002), Dids€anbrechts (2004), and
Rodriguez (2004@ We also use the Bayes Information Criterion (BIC). While BI€
does not share the same optimality properties as AIC, itl&asamore strictly for over-
fitting a model, which is sometimes a desirable property. Jtamdard expressions for
AIC and BIC are as follows. Consider a sample with size equdl, tand the number of
estimated parameterg)(equal tog. Then the AIC and BIC are defined as

AIC(q) = —2In[L(0)] + 2¢
BIC(q) = —2W[L(H)] + ¢In(T).
The best model is selected as the one that minimizes AIC or BIC

Second, let us consider the empirical distance measureselypathe Kolmogorov-
Smirnov (KS) and Andersen-Darling (AD) distances. Thesasuee the distance be-

18)f we denote the true density f, then the standard informmakiased measure for choosing the best ap-
proximate model g is the Kullback-Leibler Information (K):

f@) .
g(x|0)
Mathematically speaking, K(f,g) is a directed distancerfroandidate models to the true model. The AIC

(and its small sample adjusted counterparts) is genenaliyndiased estimator of K, hence its desirability in
model selection. For more discussion of these considastsee Burnham and Anderson (2002), Chapter 2.

K(f.g) = / f(z)In

12



tween the empirical distribution and the estimated diatidn corresponding to the maxi-
mized likelihood. Specifically, consider a data §&t;, ... X'+ } with associated parameters
0 ={64,...,0r}, and a parametrically estimated distribution funct}B(ré). If we write the
empirical distribution function ag(¢), then the Kolmogorov-Smirnov distanééS may
be expressed as

KS =max | F(0) - Fr(6) |,

and the Anderson-Darling distangeD is

| F(0) — Fr(6) |
AD = max R0 o @)

The averagé(S andAD are computed by integrating with respect to the empiricabidg.
In the current application, with uniform densities, thesgntal reduces to a simple arithmetic
mean.

6 Data and Results

The data used in this paper comprises weekly observatiorguity indices for five coun-
tries, France, Germany, Japan, the United Kingdom, and tiited)States. These data are
available from the MSCI data base. The sample period is fr20/20 to 5/29/02, for a
total of 646 observations.

The results from the estimation methodology of Sectionssaare presented in Tables
1 through 7. In addition to estimated parameters, | alsogmtethe Akaike and Bayesian
Information Criteria (AIC and BIC) for assessing goodnefs#t.0As mentioned previously,
the unconditional model has two component densitiesjttheomponent being a normal
copula with correlation,. Standard errors are computed using the methods developed i
the Appendix. | now discuss each table, in turn.

Table 1 reports estimates of the unconditional model. Stheeresearch question
concerns the relative importance of high- and low-corretategimes, | focus on the pa-
rametersv; andw;. These parameters represent the frequency of low and higélaion
regimes, respectively. In all cases except for the Fraapa+d and Germany—Japan pairs,
the greater weight is on the component with the larger catioel. That isw, exceedsv,
in all but two country pairs. The largest correlation is G8fr p, in the France-Germany

13



pair. The smallest (absolute value) correlation is -0.8@8p; in the Japan-UK pair. The
largest spread between andp, is for the UK-US pair, a value of 0.758. This indicates
that there is a huge difference between the correlatiomdurormal and turbulent times.

Tables 2 and 3 report results from dividing the weekly datavimequal-sized samples.
Table 2’s results are for the first half of the sample. Theewg# on weights is weaker in
this sample. Specifically, greater weight is on the compbngth the larger correlation
in six of the pairs, all except France-Japan, Germany-Jdpamany-US and Japan-UK.
The largest correlation is 0.862, fps in the Japan-UK pair. The smallest correlation is
-0.055, forp; in the Germany-Japan pair. The largest spread betweandp, is for the
France-Germany pair, a value of 1.177.

Table 3 presents results from the second half of the weekhyplka These results
are more similar to those for the full sample. In all pairseptcfor France-Japan and
France-US the greater weight is on the component with tigetagorrelation. That is,
wo exceedsw, for all but two country pairs. The largest correlation is@9for p, in
the France-US pair. The smallest correlation is -0.129pfan the Germany-Japan pair.
The largest spread betwegnandp, is for the Japan-UK pair, 1.334. Taken together, the
results in Tables 2 and 3 indicate that there may be someestieg dynamic behavior in
the data. This dynamic behavior is explored in the hidderkmmamodel, whose results |
now discuss.

Table 4 presents results for the hidden markov model. Simeeesearch question re-
lates to persistence of high-correlation regimes, | focuthe parameters;; andr,, These
parameters represent the probability of remaining in a lamd high-correlation regime,
respectively. The most striking finding is that in all coynprairs except France-Japan,
oo €Xxceeds 1/2. That is, the likelihood of staying in a highrelation regime is very
compelling. Howevery,, is not always the largest transition probability. The latgsor-
relation is 0.836, which ig, for the France-Germany pair. The smallest correlation is
equal to -0.076, for the Japan-UK pair, and the largest spie8.776, for the Japan-US
pair. Moreover, the AIC and BIC indicate that the hidden nearknodel fits much better
for each country pair, relative to the unconditional moderlable 1.

Table 5 demonstrates additional estimation results fronddem markov model com-
prising a normal and rotated gumbel mixture. | denote thidehthe "normal-RG model”
for brevity. This mixture model is a reasonable alternativéhe double normal hidden
markov model, since it can represent financial returns tieesabject to alternating periods
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of normality and downside ri& The dependence parameters are all significantly differ-
ent from zero. It is not, however, easy to compare the depmedearameters, since they
belong to different copula families. The largest transitppobabilities arery; or my in
eight of the ten country pairs, with the exception of Jap&hddd UK-US. This indicates
that there is persistence in both periods of normality antbge of downside risk.

Table 6 presents results of the Kolmogorov-Smirnov and Asale Darling statistics,
as well as their corresponding averages. The models | campealude the 2-component
normal copula, No(2), the mixture of normal and Rotated Gelnsbpulas, NoRG(2), and
the best of a set of other unconditional copulas, Best@dt should be noted that the
hidden markov models are not included in this table becawesedo not indicate a specific
density for each observation, and therefore cannot bettyiraempared with the empirical
density. In all cases the best fit comes from the "best untimmail model”, which includes
a set of single and mixeabn-normal copulas. In other words, the mixed normal copulas
from Section 4 are dominated by other unconditional copulas

Table 7 shows a comprehensive comparison of the variouslaopodels, based on
the AIC and BIC, in Panels A and B, respectively. We discushem turn. Panel A
presents the AIC results. The striking result is that thel@idmarkov models consistently
dominate all other models, with a rank of 1 or 2 for each coupéir. The normal hidden
markov model does the best, with an average rank of 1.2. Tkebsst model is the
normal-RG hidden markov model, which in most cases is vargecto the normal hidden
markov model The poorest performance is the single nornmallegwith an average rank
of 4.6.

Panel B displays the BIC results. The best models are agaimtyelmingly the nor-
mal and normal-RG hidden markov models, with ranks of 1.2 aAdrespectively. The
poorest performance is the unconditional double normallegpvith an average rank of
4.4. In sum, the two main findings in Table 7 are as follows. sti-ithe double normal
copula improves on a single normal copula according to th@ Bt not according to the
BIC, which favors parsimony. Second, and more strikingtg hidden markov models
overwhelmingly dominate other models, including the nansmal models (Best uncondi-
tional) that outperformed thenconditional normal mixtures in Table 6. This dominance of
the HMM suggests that a dynamic normal copula can capture sspects of dependence

19This intuitive formulation and interpretation was suggesty Bob Hodrick.
20To clarify further, BestUnc refers to the best fitting copfrtam a broad set of Archimedean, extreme-
value, and elliptical copulas. These include the familieBrank, student-t, and Gumbel.
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behavior better than copulas with explicit tail depend@cﬁ should of course be borne
in mind that a mixture of normal copulas will have limited lgigito capture asymptotic tail

behavio@ Therefore the choice of which copula formulation to use dédpend heavily

on the application of interest.

7 Conclusions

In this research, | investigate the structure of dependrfegancial markets using a mixed
copula approach. This methodology is closely related tae¢hgene-switching methodol-
ogy in the time series Iiteratur@ This paper presents three technical contributions, two
conceptual contributions, and three empirical contridmgi The first technical contribu-
tion is the introduction of an econometrically parsimorsaependence structure, namely,
a mixture of normal copulas, that still delivers valuablemamic insights. The second
technical contribution is the implementation of a hidderrkoa structure to account for
time variation in the structure of dependence. Third, inAlppendix | extend previous
results to obtain standard errors for dynamic mixed copuliss important to note that,
within the relevant mixture component, the correlation i®bust dependence measure,
since the component is a copula and therefore rank-basedhislmvay, | use a familiar
correlation measure, but "robustify” it by allowing it to @ from one of several copulas
at any point in time, and allow for persistence in the choiceopula.

The two conceptual contributions are first, relating theutapechnology to character-
ization of turbulent and quiescent periods, and secondeadihg the specific questions,
how frequent and how persistent are turbulent periods? Hitee tmost striking empiri-
cal findings are as follows. First, for the unconditional relbdhe weights are generally
greater for the copula indexed with a large correlation. sThdicates the interesting re-
sult that turbulent periods are more common. Moreover,Herunconditional model, the
weights and parameter estimates differ greatly betweeiwtbesub-samples. Second, the
hidden markov model provides a much better fit than the unitondl model. Third,

21This is consistent with evidence on improved goodness ajffilynamic copulas, in Dias and Embrechts
(2004).

2|t can be shown that at least one component density must hiveependence for an unconditional
mixture to have tail dependence. This holds for stationgnathic models, where for example, we calculate
the weightr, from its stationary distribution as, = (1 —m22)/(2—m11 —m22). | am grateful for discussions
with Jonas Andersson, Jostein Lillestol and Ching-Chih huhas point.

23See, for example, Chapter 22 of Hamilton (1994).

16



the estimated transition probabilities for the dynamicudapndicate turbulent periods are
often persistent.

Why should we care about these findings? There are at leastipartant reasons.
First, when taken together, these results indicate thatnational financial markets might
be prone to episodes of persistent instability. This pad#silhas clear implications for
theory and practice of finance, which typically assume theege existence of stable
economies. Second, on a practical level, a major implioatichis paper is that the gaus-
sian assumption might still be utilized in financial modajliand asset allocation, once one
generalizes in a suitable manner for correlation clusgeaind dynamic behavior. Future
work could extend this framework to account for more gendyalamics, both in theoreti-
cal and empirical applications, and formalize the linksasearch on financial contagion.
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8 Appendix

8.1 Distribution and Density of the Normal Copula

Let ®,(x,y) denote the standard bivariate normal cumulative disiobutIn other words,

Ty 1 1 _
s = [ [ srsrentglens @) yduds

p

whereY = . From this one may obtain the following distribution functitor the normal

P
copula, denoted’ (.) :

On(u,v;p) = @p(@7" (u), @7 (v)).

The corresponding copula density for the preceding copiglailslition is represented below,
and denoted,(.) . In both the density and distribution case, the dependeacameter lies be-
tween—1 and+1.

B 1 —[@ tu)? + o L(v)? =200 L ()DL (v)] @ L(u)?+ &L (v)?
co(.) = exp ) + 5

8.2 Estimation of Unconditional Copula Model

I now return to the general formulation fd (7). The estimatinethod for parameters il (7) is based
on the EM algorithm of Dempster, Laird, and Rubin (1977). sljmocedure comprises two steps.
At each iterationk, the first (E) step takes the conditional expectatiorbf Q’O\If(’f)), given the
data. Then the second (M) step maximizg&¥(*)) to obtain the updated parameter estimates,
which are substituted into the E step to obtain updated estsnof the posterior probabilit@s
This iterative procedure continues until the estimatedlikaglihood function reaches a maximum.
The details are now discussed.

24The posterior probability; (;; ¥(*)) denotes the expectation that observatiphelongs to théth com-
ponent density. Intuitively, the posterior probabilitee® updated every iteration using Bayes’ rule.
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8.2.1 E-Step

The initial iteration(k = 0) takes the conditional expectatigp( ¥ (?)) using the initial parameter
values® (). Then, on thek + 1)th iteration, one computes the posterior probabilitigs,; ¥ (¥))
as

7 iy 0

iy ¥W) = — : (14)
> v 0)
h=1
which are used to compute the conditional expectation ofatpdikelihood,
g T
=3 nilys W) {Inm + In filye: 6:))- (15)

i=1 t=1
8.2.2 M-Step

The M-step chooses parametdr$§:+1) to maximize [Ib), which yields an updated set of parame-
ters. Specifically, on iteratioh + 1 one choose® (*+1) as

g T
Pkt — argmaXZZTz (ve; ) {lnmi + In fiye: 6:)}- (16)
i=1 t=1

It should be noted that the weights are calculated as the ofee posterior probabilities, that is,

(k:-i—l)

reflects the best current estimate of being.in

=% Z Ti(ye; \Il(’“)) This is intuitive, since the estimated weight on componemtsity

8.3 Estimation of Dynamic Copula Model

I now describe the estimation of a general HMM, derived frooojpula mixture mod@ As in the
unconditional mixture model, we use Newton-type maximualihood to estimate the conditional
expectation oﬂZZI]3)Q(). The standard approach uses a version of the EM algorithnwyikas the

25| feel this explication is necessary since this is the firgt osthe HMM approach in this context—there
seems to be no other literature that estimates dynamic depea using copulas and the hidden markov
framework. Although the derivation is the same as that inesafithe HMM literature, e.g. Hamilton
(1994) and McLachlan and Peel (2000), it is necessary t@septt all the details, since this permits easy and
clear understanding of the steps in the mixed copula agjgita Moreover, this development allows other
researchers involved in dynamic dependence to have a ¢erstegting point with detailed steps. Readers
familiar with the estimation of hidden markov mixture moslelay proceed directly to the next section.
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Baum-Welch algorithm. This procedure augments the E stépfaiward and backward recursions
through the data in order to estimate the transition prditials

8.3.1 E-Step

In this step one calculat&g(), the conditional expectation di{fL3) from the observed sam@ne
iterates on the expectation recursively until the improgeta in the log-likelihood function fall
below our criterion. Because of the middle term[inl (13), thst&p itself has three steps, defining
the probabilities, computing auxiliary probabilities desubstituting into thcé?() function.

The first step, one sets up the conditional probabilitiesdeithe forward and backward proba-
bilities. Letr,glf’)t andr(’;”) represent the following conditional probabilities at time

2y
Thit =pr{iZnts =1,Z;441 =1|y} (17)

and

Tit =priZis = 1]y}
Furthermore, one can calculate the probability of beingtéttes today as the sum of all yester-
day’s probabilities of moving to statg from any state,r;; = i Thit—1- 1he initial proba-
bility of being in statei, 7; ; is estimated using the initial valtile:s1 for the Markov chaipy, =

Wi,Ofi(Yl)/hZi:l Th0fn(y1)-

However, the values ofy, ; are still unknown. In order to obtain them, re-exprdss (Bigi
Bayes’ rule,

pr{Zhi = 1>Zi,t+1 = 1}
pr{Y =y}

This simplifies the expression fey,; ; because one can evaluate the ratio on the right hand side in
(I3) using two auxiliary probabilities. These variables tire "forward” probabilities:; ; and the
"backward” probabilities; ;, defined in the following manner,

Thit =0{Zps =1, Zip1 =1y} = (18)

aie = priVi=vy,..Yi=uy, Zpu=1}, t=1,..T (19)

)

bi,t = pr{}/;f-i-l = Yt+1, ---7YT =yr ‘ Zit = 1}7 t=T-— 17T - 27 1

26The addition of forward and backward recursions is moreiefitdfor computing the middle term iB{L3)
than summing over all possible state sequences frenl : T', since it calculates and stores results for later
use, instead of recomputing at each node. The logic is baselymamic programming, as discussed in
Rabiner (1989).
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Combining the[(T9) and{18) one obtains the following equafor 7, ;,

an i fi(Yer1)bie1

g g
Yo D anmhi fi(Yie1)bi1
=

(20)

Thit =

The second step involves computation[afl (20). To do thisydod and backward recursions are
computed at each iteration to estimate valueSafég)r and b;’?, which are then substituted ii{20)
before proceeding to the M step.

Forward Recursions The forward recursions consist of two steps, induction @nchination.
The initial value is set t@(k) wékl)fz( )(yl), i =1,...,g. The induction step at iteratioh+ 1
involves searching forward through the data from period\lards. Specifically, at iteratioh+ 1,
the forward probabilitya; ;41 is computed as

g
(k ) _
ol =D w1 ), t=1,,T -1,
h=1

The termination step is determined as

g
pT\Ij(k)(Yl = Y1, -"7YT = yTa) - Zaz(f)ﬁ

Backward Recursions The backward recursion has only an induction step. Thealnitilue
is set to unity,b(kf)p =1, h = 1,...,¢9. The induction step at iteratioh + 1 involves searching

backward through the data starting at peri@d— 1. Specifically,

k
Zwm By, t=T—1,.,1; h=1,...4.

As mentioned before, the estimatigds anda; ;s are substituted ili.{20) before proceeding to the M
step. Specifically, on the—th iteration one computes,; ; as

k) k)
(k) _ agm Thi fz( (Yt+1 )bg t)+1

Thit = k) "
hZIZahmn i (Ye+ )bz 41

2'The operator pg) denotes probability conditional on information availaatehe kth iteration.
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In the third step, one estimatéy ¥ %)) on iterationk + 1 as
g T—

g
\Il(k ZT 1 lnmo—l—zz Thltlnﬂ'hl—l—ZZth In fi(y; 6;)- (21)
h=11i=

1
1 t=1 i=1 t=1

8.3.2 M-Step

In the M step the updated estimates are computed usihg (21particular, on iteratio: + 1 one
has

(k4+1) (k)
To; = Tits
and
T—1

T(k)
hi,t
hi ToT-1 )

T(k)

it

At this stage thf@parameter estimaieare obtained recursively using Newton-type maximum like-
lihood approac

8.4 Standard Errors for Dynamic Copula Models

In this subsection | present and build on existing resultdHwIM standard error@ Unlike pre-
vious research, we apply this methodology to the case ofdrorpulas. For clarity, | express the
computational aspects of the standard errors since thesgibzed in my empirical applications.
The paper of Bickel, Ritov, and Ryden (1998) establishesistancy and asymptotic normality of
the MLEs, &, for HMMs, and shows that the asymptotic covariance magigstimated consis-
tently by the observed Fisher information%af—ga,L(olT). The main two results in that research
obtain under standard regularity conditions, and are destin their Lemma 2 and Theorem 1
below.

Lemma 2. Let & beany sequence in © such that limy_. ., &7 = o*, amost surely. Then

1 02
T Dado!
28This is done applying a modification of the EM algorithm, kmoas the conditional EM (ECM) algo-
rithm. See McLachlan and Krishnan (1997).

29t should be noted that the standard error computationepted here are in some cases lower bounds,
in instances where there is a large divergence between thplete and incomplete information.

L(é7) — —F in Py — probability as T — oo (22)
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This result establishes consistency of the Hessian of thdikelihood. The next result es-
tablishes asymptotic normality of the MLE, where the asyatiptvariance is the inverse Fisher
information matrix.

Theorem 1. Assume that the information matrix isnonsingular. Then

VT(ar — o*) =4 N(0,F ) (23)

In order to obtain standard errors for our mixed copula aggibn, we may implement equation
@23), for which it is necessary to compute the Fisher infdiomafrom the likelihood function. Let
us now discuss how to compute the Fisher information for achbopula.

As mentioned in Section 4, the likelihood function for a twamponent mixed copula is

L) =p(z M) T TT filye 007

t=11i=1
Let the likelihood function bé (V) = [] f(y:; ¥), and the score function B(Y; ¥) = 91n L(V)/0V.
In general, the Fisher information is

I(V) = Eu{S(Y;¥)S"(Y; 9)}.

Under regularity conditions, the Fisher information carelkpressed as

(24)

I(Wy)=E [%} :

where the ratio on the right hand side is the negative of thesida of the log likelihood function.

The challenge in implementing the Fisher information is tha log likelihood involves missing
data. In order to overcome this, it is possible to use an @gbreuggested by Louis (1982), which
we adapt in the foIIowin@ Note that this approach was originally used to obtain thermtion
matrix for a mixture model. In the current context, we adagbithe case of a hidden markov
model, where the components are mixed copulas. Furthermeretilize [Z3), which establishes
that using the Fisher information is justified in the presaritext.

We now extend the above results and outline how to calcuteteasymptotic variance for a
mixed copula application. We use the complete data gradi€kt, V) to compute the observed
information. The likelihood for our mixed copula model isfakows:

301 am grateful to Ching-Chih Lu for discussions on the follagiresults.
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2 T
lnLC(\Il) = lnp(z)‘FZZZZtIHCZ ytapz

i=1 t=1
2 2 2 T- 2 T
= Z zin Inm; g + Z Z Z 2%t I TR + Z Z zit Inc;(ye; pi)
i=1 h=1i=1 t=1 =1 t=1
whereX includes observed dagaand missing data. Therefore the gradient vector can be repre-
sented as
dln L.(¥) thalnci(ytﬂi)
. (2 .
S(Xtvllj) = ( alnaLecz(\Il) ) = ( z;L,tziafil > . (25)
T Omh T

We can define the matri®(.) as

9 InL.(V) 0
962
B(X, V) = 0 L) |- (26)
B aﬂ%i

where 52 ) 52 ( )

In L.(¥ In ¢; (ye; pi
~ Y _ el p) 27
dp? o @0

is a 2-by-2 matrix with zeros as off-diagonal elements a@%ﬁ”’” as diagonals; = 1, 2.
The second derivative matrix is

B 0%In L.()  ZhtZitel

2 = 2
omy,; Thi

; (28)

which is a 2-by-2 matrix with zeros as all off-diagonal elerse

Sincemy1 + w2 = 1, w91 4+ o2 = 1, we have two free parameters. Therefore, the bottom half
of equatiori(Zb) may be rewriten as

P Z1,t21,t41  R1,t22.t+1
h,t<i,t4+1 _ Tl 1T—711 (29)
Thi 22,621, 41 Z2,t22t+1 :
v T21 1—m21

Consequently, equatidn{28) may be re-expressed as

_9%In Lc( ) 21,621,141 21,622,141
on3, o 2 (1—m11)2

02 lnLC(\II) - 22,121,141 22,622,141 : (30)
onZ, 72, (1—m21)2
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It follows that

Titalnfi(yt;ei)
S* (yt7 \Il) = Th??i (31)
Thi
S*(y,¥) = Ep[S(X, V)| X € R] (32)

whereR = {z : y(x) = y}. Then the complete data information matrix can be expreased
Iy () = Eg[B(X,9)|X € R] — Eg[S(X,¥)ST(X,)|X € R+ 5*(y, 0)S*" (y,¥). (33)

The result in[[3B) can be substituted into the asymptoticaton [2Z3) in order to compute the
asymptotic covariance matrix. That is, one estimatesith Iy ().
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Table 1: Unconditional Model

FR-DE FR-JP FR-UK FR-US DE-JP DE-UK DE-US JP-UK JP-US

pl 0.446  0.186 0.371 0.445 0.111  0.098  0.428 -0.028 -0.211
(0.090) (0.055)  (0.078)  (0.153) (0.061)  (0.137)  (0.128) .088) (0.111)

p2 0.826  0.799 0.792 0583 0.754 0751  0.607 0.632  0.544
(0.018) (0.058)  (0.023)  (0.109) (0.055)  (0.024)  (0.083) .04B) (0.048)

wil 0.193 0.739 0298  0.429  0.657 0.205 0.405  0.408  0.341

w2 0.807 0.261  0.702 0571  0.343 0.795 0595 0.592  0.659

L 276.940 45.642 194.750 101.360 44.614 165.120 106.550 57%1. 35.404 110.980

AIC -547.880 -85.284 -383.500 -196.720 -83.228 -324.24007-P00 -97.142 -64.808 -215.960

BIC -534.468 -71.872 -370.088 -183.308 -69.816 -310.82893488 -83.730 -51.396 -202.548

Table[l presents parameter estimates from the two-comporieed copula. Standard errors are in parentheses.
The data frequency is weekly. The sample period is Januar{2dD to May 29, 2002, containing 646 observations.
pl,p2 and wl, w2 are the correlation parameters and weights inladpand 2, respectively. L represents the log

likelihood function evaluated at the estimated parametene AIC and BIC are as defined in the paper.
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Table 2: Unconditional Model, Sample A

FR-DE FR-JP FR-UK FR-US DE-JP DE-UK DE-US JP-UK JP-US UK-US
pl  -0420 0121  0.424 0379 -0.055 -0.167 0.260 0.282  -0.220.1540
(0.459) (0.099)  (0.080) (0.322) (0.122) (0.210) (0.104) .06¥) (0.155) (0.187)
02 0.757 0.704  0.825 0.483 0.690 0745 0.668 0.862 0.547  0.649
(0.029) (0.092) (0.035) (0.235) (0.076) (0.034) (0.132) .0§9) (0.080) (0.050)
wl 0066 0622 0447 0418 0536 0219 0.657 0768 0.406 30.25
w2 0934 0378 0553 0582 0464 0781 0.343 0232 0594 70.74
L 109.180 22.684  89.407 33.726 19.966  68.959 28.530 33.098.923 40.612
AIC -212.360 -39.368 -172.814 -61.452 -33.932 -131.918 .060 -60.182 -21.846 -75.224
BIC -200.945 -27.953 -161.399 -50.037 -22.517 -120.503 .649 -48.767 -10.431 -63.809

Table[2 presents parameter estimates from the two-comporesd copula
parentheses. The data frequency is weekly. The sampledgsrdanuary 10, 1990 to March 20, 1996,
for a total of 323 observationgl,p2 and wl, w2 are the correlation parameters and weights inlaopu

1 and 2, respectively. L represents the log likelihood fiomcévaluated at the estimated parameters
while AIC and BIC are as defined in the paper.

. Standard errors are in
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FR-DE

FR-JP

Table 3: Unconditional Model, Sample B

FR-UK FR-US DE-JP DE-UK DE-US JP-UK JP-US UK-US
ol 0.708  0.205  0.356 0520 -0.129  0.396 0521 -0.893 -0.251 180.6
(0.045) (0.074) (0.153) (0.045) (0.155) (0.131) (0.144) .080) (0.158)  (1.096)
2 0883 0867 0780 0905 0573 0770 0674 0441 0598  0.636
(0.027) (0.055) (0.031) (0.053) (0.057) (0.035) (0.082) .048) (0.057)  (0.650)
wl 0433 0756 0193 0812 0286 0245 0358 0076 0312 40.37
w2 0567 0245 0807 0188 0715 0755 0642 00924 0.688  60.62
L 169.320 26.085 108.080 69.310 26.154 98.868 75544 22.698.204  78.631
AIC -332.640 -46.170 -210.160 -132.620 -46.308 -191.73645:88 -39.392 -42.408 -151.262
BIC -321.225 -34.755 -198.745 -121.205 -34.893 -180.32133473 -27.977 -30.993 -139.847

Table[3 presents parameter estimates from the two-comporwatel. Standard errors are in parentheses.

The frequency is weekly. The sample period is March 20, 169day 29, 2002, for a total of 332 observations.
pl,p2 and wl, w2 are the correlation parameters and weights inladpand 2, respectively. L represents the
log likelihood function evaluated at the estimated paramsetvhile AIC and BIC are as defined in the paper.
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Table 4: Hidden Markov Model

FR-DE FR-JP FR-UK FR-US DE-JP  DE-UK DE-US JP-UK JP-US  UK-US

pl 0.508 0.169 0.175 0.364 0.104  0.215  0.369  -0.076  -0.248 69%.1
(0.238)  (0.100)  (0.152)  (0.097) (0.122) (0.143) (0.120) .109) (0.091)  (0.175)

p2 0.836 0.789 0.766 0.671 0733 0771 0685 0612 0528  0.601
(0.030) (0.026)  (0.031) (0.043) (0.031) (0.026) (0.042) .040) (0.050) (0.052)

T 0712  0.688 0870  0.738 0777 0802 0975 0206  0.255  0.237
(0.047)  (0.026)  (0.035) (0.027) (0.024)  (0.034) (0.009) .0P8) (0.033) (0.063)

T 0.287 0.310  0.129 0.261 0.221  0.197  0.025 0790  0.743  0.762
(0.047)  (0.026)  (0.035) (0.027) (0.024) (0.034) (0.009) .0P8) (0.033) (0.063)

o1 0.099 0.784  0.026 0.236 0.369 0071  0.020 0449  0.335  0.064
(0.019)  (0.032)  (0.008) (0.024) (0.035) (0.013) (0.008) .0P9) (0.026) (0.012)

Ta 0.899  0.216  0.972 0.762  0.631 0927 0977 0551 0664  0.935
(0.019)  (0.032)  (0.008)  (0.024) (0.035) (0.013) (0.008) .029) (0.026) (0.012)

L 311.910 95.581 235.450 120.050 93.553 213.530 127.120 3495. 77.947 130.930
AIC -615.820 -183.162 -462.900 -232.100 -179.106 -419.06P46.240 -182.686 -147.894 -253.860
BIC -597.937 -165.279 -445.017 -214.217 -161.223 -401.17228.357 -164.803 -130.011 -235.977

Table[3 presents estimated parameters for a hidden markdelwith two normal copulas. Standard errors are
reported in parentheses. The frequency is weekly. The sapgplod is January 10, 1990 to May 29, 2002, for a
total of 646 observationg1,p2 are the correlation parameters in copula 1 and 2, and thengtess

™1, T12, T21, Moo Are transition probabilities. L is the log likelihood

evaluated at the estimated parameters.
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Table 5: Hidden Markov Model, Normal-RG

FRDE FR-JP FR-UK FRUS DE-JP DE-UK DE-US JP-UK JP-US UK-US

p  0.861 0.202 0.773 0439  -0.152 0791 0457  0.666 0717  0.633
(0.027)  (0.144) (0.032) (0.076) (0.197) (0.023) (0.088) .042) (0.038)  (0.064)

b 1.976 1.437 1.292 2.474 1.334 1.341 2.166 1.099 1.081 1.257
(0.359)  (0.148)  (0.149)  (0.208)  (0.145) (0.122) (0.183) .0§1) (0.077)  (0.180)

o 0.706 0.453 0.968 0.959 0913  0.896 0940 0248 0425  0.695
(0.035)  (0.031) (0.009) (0.009) (0.042) (0.017) (0.011) .0P8)  (0.040)  (0.025)

o 0.292 0.545 0.030 0.039 0.086  0.102  0.059 0752 0574  0.303
(0.035)  (0.031) (0.009) (0.009) (0.042) (0.017) (0.011) .0P8) (0.040)  (0.025)

o1 0.144  0.431 0.095 0.125 0.005  0.149 0164 0582 0237 0726
(0.019)  (0.028)  (0.025) (0.028)  (0.003)  (0.024)  (0.029) .0P9) (0.023)  (0.035)

T2 0.855  0.568 0.905 0.873 0993  0.850 0833 0415 0761 0273
(0.019)  (0.028)  (0.025) (0.028)  (0.003)  (0.024)  (0.029) .0P9) (0.023)  (0.035)
L 302.690 54.142 231.270 134760 54.892 209.410 129.950 0286. 73.436 125.680
AIC -597.380 -100.284 -454.540 -261.520 -101.784 -410.8251.900 -164.052 -138.872 -243.360
BIC -579.497 -82.401 -436.657 -243.637 -83.901 -392.93734.217 -146.169 -120.989 -225.477

Tablel® presents estimated parameters for a hidden markdelmith normal and Rotated Gumbel components.

The frequency is weekly. The sample period is January 100 1®®ay 29, 2002, for a total of 646 observations.

p and b are the dependence parameters in the normal and rgtatduk| copulas and the parameters

™1, T12, T21 @ndmes are transition probabilities. L is the log likelihood fuitst evaluated at the estimated parameters.
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Table 6: Kolmogorov-Smirnov and Anderson-Darling Statsst

Panel A: Kolmogorov-Smirnov
FR-DE FR-JP FR-UK FR-US DE-JP DE-UK DE-US JP-UK JP-US UK-USverage

No(2) 0.36514 0.093576 0.23595 0.017811 0.07916 0.1775924082 0.03235 0.016276 0.032291
rank 3 3 3 3 3 3 3 2 2 2 2.7

NoRG(2) 0.15403 0.01913 0.19251 0.01241 0.01700 0.1558501601 0.04064 0.05140 0.03328
rank 2 2 2 2 1 2 2 3 3 3 2.2

BestUnc. 0.01902 0.01696 0.01663 0.01070 0.01700 0.0154201587 0.01440 0.01286 0.01519
rank 1 1 1 1 1 1 1 1 1 1 1.0

Table[® presents estimates of the Kolmogorov-Smirnov ardefgon-Darling statistics, as described in the text. Na()

NoRG(2) denote the two component models with two normal E@and one normal plus one Rotated Gumbel copula, respect-
ively. Best Unc. Denotes the best unconditional model frosataof mixed and single copulas. Rank is the relative perémce

of the model within a specific country pair. The number 1 digaithe best performance, that is, the smallest statistic.
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Panel B: Average Kolmogorov-Smirnov
FR-DE FR-JP FR-UK FR-US DE-JP DE-UK DE-US JP-UK JP-US UK-USverage

No(2) 0.015641 0.004974 0.008055 0.003 0.006178 0.00666805827 0.003817 0.004475 0.004232
rank 3 3 3 3 3 2 3 3 3 3 29

NoRG(2) 0.00991 0.00399 0.00745 0.00286 0.00436 0.00700004@1 0.00370 0.00408 0.00363
rank 2 2 2 1 2 3 2 2 2 2 2.0

BestUnc. 0.00456 0.00350 0.00343 0.00286 0.00421  0.0049000440 0.00369 0.00370 0.00359
rank 1 1 1 1 1 1 1 1 1 1 1.0
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Panel C: Anderson-Darling

FR-DE FR-JP FR-UK FR-US

DE-JP DE-UK DE-US JP-UK JP-US UK-USverage
No(2) 3.83870 0.81805 1.16560 0.74597 0.79508 0.82077 7Q@&2 0.78887 0.55847  0.59283
rank 3 3 3 3 3 3 3 3 3 1 2.8
NoRG(2) 1.59880 0.62199 0.95104 0.59039 0.45903 0.6610650825 0.64064 0.49037 0.77410
rank 2 2 2 2 1 2 2 2 2 3 2.0
BestUnc. 0.31842 0.50966  0.45454 0.58997 0.45903 0.51524503®8 0.50982  0.46294 0.61069
rank 1 1 1 1 1 1 1 1 1 2 11
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Panel D: Average Anderson-Darling
FR-DE FR-JP FR-UK FR-US DE-JP DE-UK DE-US JP-UK JP-US UK-USverage

No(2) 0.084555 0.047941 0.044693 0.029937 0.059486 091010.041506 0.04412 0.044064 0.034433
rank 3 3 3 3 3 3 3 3 3 3 3.0

NoRG(2) 0.04371 0.03344 0.03562 0.02474 0.03758 0.0375503563 0.03589 0.03548 0.02878

rank 2 2 2 1 1 2 2 2 2 2 1.8

BestUnc. 0.02553 0.03226  0.02520 0.02474  0.03758  0.0320403562 0.03589  0.03325 0.02848

rank 1 1 1 1 1 1 1 1 1 1 1.0
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Table 7: Model Comparison

Panel A: AIC
FR-DE FR-JP FR-UK FR-US DE-JP DE-UK DE-US JP-UK JP-US UK-USverage
No(1) -537.800 -79.986 -371.820 -200.640 -75.174 -305.96P10.860 -87.646 -55.394 -213.880
rank 5 5 5 3 5 5 3 5 5 5 4.6
No(2) -547.880 -85.284 -383.500 -196.720 -83.228 -324.24P07.100 -97.142 -64.808 -215.960
rank 4 4 4 5 4 4 5 4 4 4 4.2
HMM-No -615.820 -183.162 -462.900 -232.100 -179.106 -0840. -246.240 -182.686 -147.894 -253.860
rank 1 1 1 2 1 1 2 1 1 1 1.2
HMM-NoRG -597.380 -100.284 -454.540 -261.520 -101.784 0-820 -251.900 -164.052 -138.872 -243.360
rank 2 2 2 1 2 2 1 2 2 2 1.8
BestUnc. -565.120 -85.706 -386.720 -200.640 -89.242 &®B. -211.240 -99.344 -68.646 -216.840
rank 3 3 3 3 3 3 3 3 3 3 3.0

Table[T compares model performance within each country gsimg AIC and BIC. No(1) and No(2) denote results from the
single and two-component normal copula models, respégtiddIM-No and HMM-NORG denote results from the hidden marko
models with two normal copulas and with a normal and rotatedligl copula, respectively. Best Unc. denotes the bestinco
ditional model from a set of mixed and single copulas. Rartkeésperformance of each model within the specific country. pai
The Number 1 denotes the best performance, that is, the ié@sr BIC.
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Panel B: BIC

FR-DE FR-JP FR-UK FR-US DE-JP  DE-UK DE-US JP-UK JP-US  UK-USverage
No(1) -533.329 -75.515 -367.349 -196.169 -70.703 -301.48206.389 -83.175 -50.923 -209.409
rank 5 4 5 3 4 5 4 5 5 3 4.3
No(2) -534.468 -71.872 -370.088 -183.308 -69.816 -310.82B93.688 -83.730 -51.396 -202.548
rank 4 5 4 5 5 4 5 4 4 4 4.4
HMM-No -597.937 -165.279 -445.017 -214.217 -161.223 -40I. -228.357 -164.803 -130.011 -235.977
rank 1 1 1 2 1 1 2 1 1 1 1.2
HMM-NoRG -579.497 -82.401 -436.657 -243.637 -83.901 -992. -234.017 -146.169 -120.989 -225.477
rank 2 2 2 1 3 2 1 2 2 2 1.9
BestUnc. -560.649 -81.235 -375.218 -196.169 -84.771 4&®. -206.389 -92.369 -59.704 -209.409
rank 3 3 3 3 2 3 3 3 3 3 2.9
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