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Abstract

How common and how persistent are turbulent periods? We address these ques-

tions by developing and applying a dynamic dependence framework. In order to an-

swer the first question we estimate an unconditional mixturemodel of normal copulas,

based on both economic and econometric justification. In order to answer the second

question, we develop and estimate a hidden markov model of copulas, which allows

for dynamic clustering of correlations. These models permit one to infer the relative

importance of turbulent and quiescent periods in international markets. Empirically,

the three most striking findings are as follows. First, for the unconditional model, tur-

bulent regimes are more common. Second, the conditional copula model dominates

the unconditional model. Third, turbulent regimes tend to be more persistent.
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1 Introduction

This research aims to formalize and quantify the observation that economic activity in

general, and financial returns in particular, alternates through periods of turbulence and

quiescience.1 A key distinction that I focus on is the tendency of return correlations to

increase during turbulent periods. Understanding this downside comovement is critical,

since the very hub of portfolio allocation theory is the assumption that not all returns move

together at the same time. Consequently, in the international context, an understanding of

this phenomenon could be important in resolving the home bias puzzle. In the domestic

context, it could help explain the equity premium puzzle–ifstocks display such comove-

ment, then their riskiness relative to bonds may be even larger than presumed. Therefore,

quantitative information regarding the importance of turbulence may enable us to glean in-

sight into the underlying structure of financial markets. Tophrase the question precisely, I

am interested in ”How frequent and how persistent is turbulence?”

I address this question using a dynamic copula approach. Thetwo main reasons for

using this approach are as follows. First, use of the copula function allows for robust es-

timation of dependence.2 Unlike correlation-based inference, the copula extracts the way

in which variables comove, regardless of the scale with which the variables are measured.3

Second, the use of a mixture model is a convenient compromisebetween parametric and

nonparametric estimation approaches, combining the best features of both. Like the non-

parametric approach, a mixture model can, in principle, approximate many distributional

shapes and is therefore less restrictive than a single, fully parametric model. Like the

parametric approach, the mixture model approach allows oneto keep the dimension of the

parameter space small.4

In this paper I estimate a mixture of normal copulas, characterized by different correla-

tion structures. In related research ( Hu (2004) and Rodriguez (2004) ) the mixed copula

approach is also used. However, those papers utilize normaland asymmetric distributions

in the mixture. This has the advantage of extracting different tail dependence measures,

1See Ang and Chen (2002), Bollerslev, Chou, and Kroner (1992), Longin and Solnik (2001) and Schwert
(2002).

2See Dias and Embrechts (2004), De la Pena, Ibragimov, and Sharakhmetov (2003), and Embrechts,
McNeil, and Straumann (2001)

3Furthermore, in the estimation I avoid mis-specification ofthe marginal distribution by computing the
rank-based empirical distributions, before estimating the copula.

4Moreover, the dynamic model employed herein is akin to an adaptive mixture model, which has attractive
approximation properties. See McLachlan and Peel (2000) for a discussion of mixture models.
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that is, to assess the relative mass of joint observations inthe left tail of the return distribu-

tion. In the current paper, by contrast, the use of only normal copulas delivers a flexible

copula, while preserving a familiar framework. In particular, the current paper uses one

dependence concept, the familiar linear correlation. The only intuitive leap is that the cor-

relation is indexed by different copulas which reflect, alternatively, turbulent and quiescent

markets.5 My framework therefore retains normality in a robust way through the copula,

while permitting some generality via distinct correlations in the mixture densities.

The remainder of the paper is organized as follows. Section 2details information on

the copula. Section 3 motivates the use of the normal dependence structure and dynamic

copulas. Sections 4 and 5 discuss the representation and estimation of the unconditional

and conditional mixture models, respectively.6 Section 6 presents the data and results.

Section 7 concludes. The Appendix contains more detail on myestimation methodology.

2 Background and Terminology

2.1 Copulas and Dependence

A copula is a distribution function with uniform marginals.In general (Sklar (1959))

any continuous bivariate joint distributionFX,Y (x, y) can be represented by a copula as a

function of the marginal distributions,FX(x) andFY (y). That is,

FX,Y (x, y) = C(FX(x), FY (y)) = C(u, v), (1)

5Specifically, I estimate two correlations, corresponding to the two copulas in the mixture. In the initial
specification, the two correlations are restricted to startoff at different initial values, one larger than the other.
Empirically, this restriction is unnecessary, since the correlations end up with very different final values, even
when started at similar initial values.

6 The sections on unconditional mixture models and hidden markov models follow the exposition of
McLachlan and Peel (2000), and McLachlan and Krishnan (1997), adapted to accommodate the mixed copula
context.
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where andu = FX(x), andv = FY (y). Furthermore, application of the chain rule shows

that the corresponding density functionfX,Y (x, y) can be decomposed as

fX,Y (x, y) =
∂2FX,Y (x, y)

∂x∂y
=

∂2C(FX(x), FY (y))

∂x∂y
=

∂2C(u, v)

∂u∂v

∂FX(x)

∂x

∂FY (y)

∂y

= c(u, v)fX(x)fY (y), (2)

Intuitively, the joint density is the product of the marginal and copula densities.

Why is the above formulation important and useful? One important reason is that it

allows researchers to avoid misspecification of the marginal distributions, and to focus

directly on the dependence structure. Another reason, particularly relevant for financial

research, is that copula-based dependence measures are robust to monotonic transforms.

This permits empirical researchers to work with returns or log returns, for example, at their

convenience.7

3 The Importance of Normality and Dynamic Copulas

3.1 Econometric and Financial Relevance of Normal Copulas

It is valuable to address the issue of functional forms of copulas. A major advantage of

using mixed copulas is that it allows one to nest various dependence shapes. In addition,

use of mixed copulas also improves model selection, since itpermits the data to choose

which copula family is most appropriate. However, a potential disadvantage is the increase

in the number and type of parameters to estimate. For example, estimating a four compo-

nent mixed copula would involve at least four dependence parameters and three weights.

Moreover, if the copulas are from different families, for example normal and Gumbel, it is

not easy to compare the strength of dependence.8

7By contrast, traditional correlation based measures of dependence are not necessarily robust to monotonic
transforms. SeeEmbrechts, McNeil, and Straumann (2001).

8For example, the normal copula’s dependence is bounded by 1 and -1, while the Gumbel copula’s de-
pendence has no upper bound, in some formulations.
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An alternative route is to use a mixture of two normal copulas, which I do in this paper.

This approach delivers at least three advantages.9 First, since both copulas are normal, this

formulation allows us to work with a single dependence parameter, the familiar correlation.

Moreover, since this parameter has the same range in both copulas, it facilitates explicit

comparisons of the strength of dependence. This is not possible with copulas from different

families.

Second, the econometric relevance of the two component model is parsimony, since

it reduces the number of parameters to be estimated. This is also important in terms

of required computer power. Third, the financial insight is that this formulation permits

discussion of a fundamental, yet little understood, aspectof financial markets. That is,

the importance of turbulent and quiescent periods, which correspond to periods of high

dependence and low dependence, respectively. In particular, it allows one to address such

important questions as, howfrequent are turbulent periods relative to quiescent periods? To

the best of my knowledge, these questions have never been addressed before in the copula

context.

3.2 The Importance of Dynamic Copulas

Dependence has cross section and time series properties. Most research on copulas utilize

static copulas. However, in the case of financial markets, there is a clear dynamic element.

An important question is, how much emphasis do we want to place on dynamics in the

dependence parameters versus dynamics in theentire dependence structure? In this paper

I choose to focus on the entire dependence structure, since this is more general.10

In order to incorporate dynamics, I utilize a hidden markov model (HMM), as discussed

in Section 5. It is important to realize that the HMM framework has to be applied with

care. In the current application, the HMM structure is natural for at least two reasons.

First, there is a reason to use normal copulas, because of thevalue in working with a single,

familiar dependence measure. This permits an immediate interpretation of the estimated

parameters. Second, the two component model is also natural, given the economic obser-

vation that there are two basic types of dependence structures, corresponding to turbulent

9Note that use of a mixture of normals prevents one from addressing issues of tail dependence. In the
current setting, however, the research question relates tocorrelations, and for that purpose the normal copula
is appropriate.

10Moreover, there appear to be differences in the dependence structure (especially in terms of the estimated
weights) in different parts of the sample.
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and quiescent periods. This justifies the parsimonious structure, which is attractive for

separate econometric and computational reasons. Other applications may or may not have

this natural suitedness to the HMM structure. It should alsobe pointed out that the estima-

tion of parameters and standard errors in this context requires significant computation and

derivation, as well as theoretical justification, some of which is provided in the Appendix.11

The HMM framework delivers two important advantages. First, it allows one to dis-

cern the dynamic structure of dependence. Second, it allowsone to answer another im-

portant question related to turbulence and quiescence, namely howpersistent are turbulent

periods?12 To preview the results, it appears that turbulence might be more frequent and

persistent than quiescence, a finding which may have useful academic and practical impli-

cations.

3.3 Alternative Approaches

Two recent papers have also developed dynamic copulas, albeit in a different context. One

uses a change-point approach, and the other uses an ARMA based predictive modelling

strategy. We discuss each in turn.

Let us discuss the change-point approach. This approach involves testing for a change

in the dependence parameters of a fixed copula family, and is utilized by Dias and Em-

brechts (2004). A simple example could be to test the constancy of the correlation param-

eters in a family of bivariate normal copulasCN(u, v; ρ). For a sample ofT observations

one can test the null hypothesis of structurally constant parameters as

H0 : ρ1 = ρ2 = ... = ρT

versus

HA : ρ1 = ... = ρt∗ 6= ρt∗+1 = ... = ρT .

11For example, the estimation of parameters is simplified by the decomposition of the density into copula
and marginals, where the latter are not included into the likelihood. Furthermore, the provision of standard
errors requires application of both knowledge that a mixture of copulas is a copula, and that the asymptotic
covariance matrix can be consistently estimated with the incomplete data Fisher Information matrix.

12Frequency of turbulent periods is assessed by the size of theweight on the high correlation copula, and
persistence is assessed by the size of the markov transitionprobability.
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A rejection of the null hypothesis indicates that a change ofparameter occurred at timet∗.

The test statistic is based on a likelihood ratio test, whosecritical values can be evaluated

via simulation.

The second approach is related to the first, and involves a mixof predictive time-series

modelling and copula estimation. This approach is used by Patton (2004), who builds a

copula model for portfolio choice between large and small cap stocks, allowing the cop-

ula parameters to evolve, depending on certain conditioning variables. In particular, he

models the dependence parameters in nine different copulasas a function of lagged risk-

free rate, default spread, dividend yield and conditional mean forecasts for the different

stocks.13 Patton finds that knowledge of the dependence structure leads to significant gains

for unconstrained investors.

Both of the above papers utilize a single underlying copula.Unlike Patton (2004) and

Dias and Embrechts (2004), the hidden markov approach that Iemploy focuses on cluster-

ing, and allows the underlying copula to vary from period to period. I will return to this in

Section 5.

4 Unconditional Model

In order to develop my benchmark mixed copula model, it is necessary to clarify some

background material on mixture models. Therefore, in this section I present a general

mixture model, which I specialize to a mixture of copulas. A generalg-component mixture

model for dataYt observed at timet may be expressed as

f(yt;Ψ) =

g
∑

i=1

πifi(yt; θi), (3)

13Patton (2004) uses copulas from the following families, normal, student-t, Clayton, Gumbel, Joe-Clayton
and Placket. Except for the normal and Plackett, each of these families features unique tail dependence
properties. This allows Patton (2004) to infer the dependence structure of the data at extremes.
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whereπi are the component weights, andΨ ={θ1, ..., θg; π1, ..., πg} is the set of unknown

parameters. The likelihood function is
T
∏

t=1

g
∑

i=1

πifi(yt; θi), and the log-likelihood is

L(Ψ) =
T
∑

t=1

ln

g
∑

i=1

πifi(yt; θi) (4)

The main challenge with estimating parameters using (4) is that it involves a log of sums,

for which it is often difficult to compute derivatives. Moreover, when we observe data

yt we do not know which component densityfi() generated it. A standard way to solve

this is to treat our estimation as a missing data problem, where the missing data comprises

the indicator variables{zi}. Specifically, we assume that thecomplete data also contains a

labelzi,t ≡ (zt)i, which indicates the relevant component density for each observationyt,

zi,t = 1, if yt ∈ fi() (5)

0, otherwise

It is assumed in this context that thezi’s are independently and identically distributed, and

that theyt’s are independent, conditional onz. Therefore we can write the conditional

distribution off as

f(y1, ...,yT | z1, ...zT ;Θ) =

T
∏

t=1

g
∏

i=1

fi(yt; θi)
zi,t , (6)

whereΘ denotes the set of distinct, unknown parameters,Θ ={θ1, ..., θg}. I will relax the

iid assumption in Section 5. Consequently we can define acomplete-data likelihood as
T
∏

t=1

g
∏

i=1

π
zi,t

i fi(yt; θi)
zi,t

, andcomplete-data log-likelihoodLc as

Lc(Ψ) =

g
∑

i=1

T
∑

t=1

zi,t ln πi +

g
∑

i=1

T
∑

t=1

zi,t ln fi(yt; θi)}, (7)

where the second component does not depend on the weightsπi. For a mixed copula

application, one may replace the last term in (7) with the copula density representation in

(2). This is detailed below.

What does introduction of the complete-data likelihood achieve? The quick answer is

that it allows maximum likelihood estimation of the parameters using the EM algorithm, a
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well developed methodology from the statistics literatureon incomplete data. Another an-

swer is that expressing the log-likelihood as a function of thezis permits easy introduction

of interesting cross-sectional and dynamic behavior, simply by generalizing thez structure.

I will exploit this flexibility in Section 5.

4.1 Mixed Copula and 2-Component Example

In my application of the mixture model, I specialize the functions in (3) to include copulas.

That is, the densitiesfi are copulas, and as such represent the joint dependence structure

of the pertinent variables. Other variables in (3) have the standard mixture model interpre-

tation. Using the density decomposition in (2) permits the copula log-likelihood function

for (3) to be written in the following form,

L(ρ|x, y) = ln

n
∏

i=1

f(xi, yi; θ) =

n
∑

i=1

ln f(xi, yi; θ)

=
n
∑

i=1

ln c(ui, vi; θ) +
n
∑

i=1

[ln fX(xi) + ln fY (yi)] , (8)

whereθ represents the set of parameters in the copula,θ = (θ1, θ2). The last term,
∑n

i=1 [ln fx(xi) + ln fy(yi)] , is not affected by the dependence parametersθ. Therefore,

our maximum likelihood estimator is

θ̂ = arg maxL(ρ|x, y) = arg max

n
∑

i=1

ln c(ui, vi; θ) (9)

I now show an example using the above approach for a parametric mixed copula. In

particular, I utilize two normal copulas, therefore the functional form of the mixed copula

is

H(x, y) = Cmix(u, v) = w1C1(u, v; ρ1) + w2C2(u, v; ρ2), (10)

whereC1 andC2 are both normal copulas, indexed by correlation coefficients ρ1 andρ2,

respectively. The normal copula and its density are presented in the Appendix. Follow-

ing the exact steps outlined above, I use the density representation from (2) to obtain the

following expression for the mixed copula model,

8



h(x, y) = [w1c1(u, v; ρ1) + w2c2(u, v; ρ2)] fX(Φ−1(u))fY (Φ−1(v))

The corresponding log-likelihood function can therefore be written as

Lmix(ρ) =

T
∑

t=1

ln [w1c1(ut, vt; ρ1) + w2c2(ut, vt; ρ2)] +

T
∑

t=1

[

ln fX(Φ−1(ut)) + ln fY (Φ−1(vt))
]

The second component of the likelihood is irrelevant for themaximization since it does not

containρ.

5 Dynamic Copula Model

The dependence structure of financial markets is dynamic: firms and regions alternatively

flourish or decline, come into existence or die. Consequently, comovement patterns of

financial returns are ever-evolving. It is important for a realistic copula model to account

for such dynamic behavior.

5.1 Hidden Markov Model

Hidden markov models (HMMs) are extensions of the mixture models described in Section

4. HMMs provide a straightforward means of allowing dynamicbehavior in the copula.

Formally, a hidden markov model is a set of states, each with aprobability distribution.

The transition probabilitiesπhi determine movement between the different states. The true

states and transition probabilities are unobservable, andtherefore have to be estimated.14

This adds an extra set of parameters to our unconditional mixture model in the preceding

section. Why would we be interested in doing this? The simpleanswer is that it allows

us to be more flexible about the form of dependence. At a more fundamental level, we

14The HMM has five components, the number of states (2 in this case), the number of observations (T), the
transition probabilities (Λ = {πhi}), a probability distribution in each state, and the initialstate distribution
π0i. Therefore HMMs generalize mixture models to account for state transition dynamics.
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would like to predict dependence and risk, for academic as well as practical finance ques-

tions. This framework is developed in greater detail in the Appendix, and to the best of

my knowledge, this is the first paper to utilize this framework in the mixed copula context.

Here I give the most important insights.

Why is the HMM structure appropriate for this enquiry? The reason is that it is a

flexible way to allow for time dynamics in multivariate data that is cross-sectionally de-

pendent. This is precisely what we require in this context since our data and estimated

parameters may cluster in certain periods. The main distinction in the HMM is that, unlike

the unconditional model of Section 4, thezit’s are not independently distributed, because of

temporal correlation between observations.15 Since the weightsπi depend onzi, the mix-

ture density no longer has the simple form of (3). Therefore estimation of the parameters

is less straightforward. In this context, the HMM approach is very useful, since it embeds

the dependentzi,t’s in the likelihood in a natural way. Specifically, the HMM allows the

z’s to follow a stationary Markov chain with transition matrix [πhi] , whereh = 1, ...g, and

i = 1, ..g. We can therefore summarize the conditional dynamics of thezi,t’s at each period

t as

πhi = pr{Zi,t+1 = 1 | Zh,t = 1}, (11)

where the initial distribution is denotedπi,0,, i = 1, ...g.

Estimation of a general HMM is a slightly more involved version of the unconditional

mixture model. One can use Newton-type maximum likelihood to estimate the relevant

conditional expectation. The standard approach uses a version of the EM algorithm, known

as the Baum-Welch algorithm. This procedure augments the E step with forward and back-

ward recursions through the data in order to estimate the transition probabilities. Asymp-

totic results and computation of standard errors for HMMs are described in the Appendix.

What follows is a brief outline of the estimation procedure.

Let the set of initial and transition probabilities be denoted Λ = {πi,0, πit}, and let

p(z; Λ) represent the unconditional initial distribution. Using (11) one knows that at time

15For example, in the financial time series context, this temporal correlation can exist in the mean (ARMA
models) or in the variance (GARCH models) of the observations. I avoid those approaches in this paper
since I wish to place no parametric restrictions on the marginal distributions.
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t, thezi,t’s depend only ont − 1, and can represent the distribution ofZ in the following

manner16,

p(z; Λ) =

g
∏

i=1

πzi1
i,0

T
∏

t=2

g
∏

h=1

g
∏

i=1

π
zh,t−1zi,t

hi . (12)

The likelihood function now contains an additional term reflecting the distribution ofZ,

and is written asp(z; Λ)
T
∏

t=1

g
∏

i=1

fi(yt; θi)
zit . The corresponding complete log-likelihood17 is

ln Lc(Ψ) = ln p(z) +

g
∑

i=1

T
∑

t=1

zit ln fi(yt; ρi)

=

g
∑

i=1

zi1 ln πi,0 +

g
∑

h=1

g
∑

i=1

T−1
∑

t=1

zh,tzi,t+1 ln πhi +

g
∑

i=1

T
∑

t=1

zit ln fi(yt; θi) (13)

It is instructive to compare this to the unconditional case of Section 4. The main difference

between this HMM log-likelihood and (7) is the additional middle term, reflecting the

entire sequence of transition states over time. In Section 4the model did not require

this term, since it was assumed thatzi,t wasiid and therefore had no relevant information

in its dynamic structure.

5.2 Mixed Copula Application

For a mixed copula application, one may replace the last termin (13) with the copula

density representation in (2). This yields

ln Lcopula
c (Ψ) =

g
∑

i=1

zi1 ln πi,0 +

g
∑

h=1

g
∑

i=1

T−1
∑

t=1

zh,tzi,t+1 ln πhi +

g
∑

i=1

T
∑

t=1

zit ln ci(ut, vt; θi) +

g
∑

i=1

T
∑

t=1

zit ln fX(F−1
X (ut))fY (F−1

Y (vt)).

16The first term is the initial probability of z, and is based on the initial distribution of the Markov chain.
The subsequent probabilities of z depend on all the transition probabilities for the Markov chain.

17In this case, the parameter vectorΨ contains not only the weights and density parameters but also the
transition probabilities,Ψ = {Θ, Λ}.
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We can ignore the last term, in the maximization since it contains no parameters relevant

to the copula. The log likelihood therefore becomes

ln L̄copula
c (Ψ) =

g
∑

i=1

zi1 ln πi,0 +

g
∑

h=1

g
∑

i=1

T−1
∑

t=1

zh,tzi,t+1 ln πhi +

g
∑

i=1

T
∑

t=1

zit ln ci(ut, vt; ρi).

The estimation of the copula HMM is discussed in the Appendix.

5.3 Model Selection

The various copula models are compared using both information criteria and empirical dis-

tance measures. I discuss each in turn. First, let us consider the information criteria. The

Akaike Information Criterion (AIC) is used because of its optimality properties, and also

since it can be used to compare nested or non-nested models, in contrast to tests based

on likelihood ratios, for example. The AIC is used in other multivariate model selection

research, for example in Burnham and Anderson (2002), Dias and Embrechts (2004), and

Rodriguez (2004).18 We also use the Bayes Information Criterion (BIC). While theBIC

does not share the same optimality properties as AIC, it penalizes more strictly for over-

fitting a model, which is sometimes a desirable property. Thestandard expressions for

AIC and BIC are as follows. Consider a sample with size equal to T, and the number of

estimated parameters (θ) equal toq. Then the AIC and BIC are defined as

AIC(q) = −2 ln[L̂(θ)] + 2q

BIC(q) = −2 ln[L̂(θ)] + q ln(T ).

The best model is selected as the one that minimizes AIC or BIC.

Second, let us consider the empirical distance measures, namely, the Kolmogorov-

Smirnov (KS) and Andersen-Darling (AD) distances. These measure the distance be-

18If we denote the true density f, then the standard information-based measure for choosing the best ap-
proximate model g is the Kullback-Leibler Information (K):

K(f, g) =

∫

f(x) ln
f(x)

g(x|θ)dx.

Mathematically speaking, K(f,g) is a directed distance from candidate models to the true model. The AIC
(and its small sample adjusted counterparts) is generally an unbiased estimator of K, hence its desirability in
model selection. For more discussion of these considerations, see Burnham and Anderson (2002), Chapter 2.
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tween the empirical distribution and the estimated distribution corresponding to the maxi-

mized likelihood. Specifically, consider a data set{X1, ...XT} with associated parameters

θ = {θ1, ..., θT}, and a parametrically estimated distribution functionF̂ (θ̂). If we write the

empirical distribution function asFT (θ), then the Kolmogorov-Smirnov distanceKS may

be expressed as

KS = max
X

| F̂ (θ̂) − FT (θ) |,

and the Anderson-Darling distanceAD is

AD = max
X

| F̂ (θ̂) − FT (θ) |
√

FT (θ) ∗ [1 − FT (θ)]
.

The averageKS andAD are computed by integrating with respect to the empirical density.

In the current application, with uniform densities, the integral reduces to a simple arithmetic

mean.

6 Data and Results

The data used in this paper comprises weekly observations onequity indices for five coun-

tries, France, Germany, Japan, the United Kingdom, and the United States. These data are

available from the MSCI data base. The sample period is from 1/20/90 to 5/29/02, for a

total of 646 observations.

The results from the estimation methodology of Sections 4 and 5 are presented in Tables

1 through 7. In addition to estimated parameters, I also present the Akaike and Bayesian

Information Criteria (AIC and BIC) for assessing goodness of fit. As mentioned previously,

the unconditional model has two component densities, theith component being a normal

copula with correlationρi. Standard errors are computed using the methods developed in

the Appendix. I now discuss each table, in turn.

Table 1 reports estimates of the unconditional model. Sincethe research question

concerns the relative importance of high- and low-correlation regimes, I focus on the pa-

rametersw1 andw1. These parameters represent the frequency of low and high correlation

regimes, respectively. In all cases except for the France-Japan and Germany–Japan pairs,

the greater weight is on the component with the larger correlation. That is,w2 exceedsw1

in all but two country pairs. The largest correlation is 0.826, for ρ2 in the France-Germany
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pair. The smallest (absolute value) correlation is -0.028,for ρ1 in the Japan-UK pair. The

largest spread betweenρ1 andρ2 is for the UK-US pair, a value of 0.758. This indicates

that there is a huge difference between the correlation during normal and turbulent times.

Tables 2 and 3 report results from dividing the weekly data intwo equal-sized samples.

Table 2’s results are for the first half of the sample. The evidence on weights is weaker in

this sample. Specifically, greater weight is on the component with the larger correlation

in six of the pairs, all except France-Japan, Germany-Japan, Germany-US and Japan-UK.

The largest correlation is 0.862, forρ2 in the Japan-UK pair. The smallest correlation is

-0.055, forρ1 in the Germany-Japan pair. The largest spread betweenρ1 andρ2 is for the

France-Germany pair, a value of 1.177.

Table 3 presents results from the second half of the weekly sample. These results

are more similar to those for the full sample. In all pairs except for France-Japan and

France-US the greater weight is on the component with the larger correlation. That is,

w2 exceedsw1 for all but two country pairs. The largest correlation is 0.905, for ρ2 in

the France-US pair. The smallest correlation is -0.129, forρ1 in the Germany-Japan pair.

The largest spread betweenρ1 andρ2 is for the Japan-UK pair, 1.334. Taken together, the

results in Tables 2 and 3 indicate that there may be some interesting dynamic behavior in

the data. This dynamic behavior is explored in the hidden markov model, whose results I

now discuss.

Table 4 presents results for the hidden markov model. Since the research question re-

lates to persistence of high-correlation regimes, I focus on the parametersπ11 andπ22Ṫhese

parameters represent the probability of remaining in a low-and high-correlation regime,

respectively. The most striking finding is that in all country pairs except France-Japan,

π22 exceeds 1/2. That is, the likelihood of staying in a high-correlation regime is very

compelling. However,π22 is not always the largest transition probability. The largest cor-

relation is 0.836, which isρ2 for the France-Germany pair. The smallest correlation isρ1

equal to -0.076, for the Japan-UK pair, and the largest spread is 0.776, for the Japan-US

pair. Moreover, the AIC and BIC indicate that the hidden markov model fits much better

for each country pair, relative to the unconditional model in Table 1.

Table 5 demonstrates additional estimation results from a hidden markov model com-

prising a normal and rotated gumbel mixture. I denote this model the ”normal-RG model”

for brevity. This mixture model is a reasonable alternativeto the double normal hidden

markov model, since it can represent financial returns that are subject to alternating periods
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of normality and downside risk.19 The dependence parameters are all significantly differ-

ent from zero. It is not, however, easy to compare the dependence parameters, since they

belong to different copula families. The largest transition probabilities areπ11 or π22 in

eight of the ten country pairs, with the exception of Japan-UK and UK-US. This indicates

that there is persistence in both periods of normality and periods of downside risk.

Table 6 presents results of the Kolmogorov-Smirnov and Anderson-Darling statistics,

as well as their corresponding averages. The models I compare include the 2-component

normal copula, No(2), the mixture of normal and Rotated Gumbel copulas, NoRG(2), and

the best of a set of other unconditional copulas, BestUnc.20 It should be noted that the

hidden markov models are not included in this table because they do not indicate a specific

density for each observation, and therefore cannot be directly compared with the empirical

density. In all cases the best fit comes from the ”best unconditional model”, which includes

a set of single and mixednon-normal copulas. In other words, the mixed normal copulas

from Section 4 are dominated by other unconditional copulas.

Table 7 shows a comprehensive comparison of the various copula models, based on

the AIC and BIC, in Panels A and B, respectively. We discuss each, in turn. Panel A

presents the AIC results. The striking result is that the hidden markov models consistently

dominate all other models, with a rank of 1 or 2 for each country pair. The normal hidden

markov model does the best, with an average rank of 1.2. The next best model is the

normal-RG hidden markov model, which in most cases is very close to the normal hidden

markov model The poorest performance is the single normal copula, with an average rank

of 4.6.

Panel B displays the BIC results. The best models are again overwhelmingly the nor-

mal and normal-RG hidden markov models, with ranks of 1.2 and1.9, respectively. The

poorest performance is the unconditional double normal copula, with an average rank of

4.4. In sum, the two main findings in Table 7 are as follows. First, the double normal

copula improves on a single normal copula according to the AIC but not according to the

BIC, which favors parsimony. Second, and more strikingly, the hidden markov models

overwhelmingly dominate other models, including the non-normal models (Best uncondi-

tional) that outperformed theunconditional normal mixtures in Table 6. This dominance of

the HMM suggests that a dynamic normal copula can capture some aspects of dependence

19This intuitive formulation and interpretation was suggested by Bob Hodrick.
20To clarify further, BestUnc refers to the best fitting copulafrom a broad set of Archimedean, extreme-

value, and elliptical copulas. These include the families of Frank, student-t, and Gumbel.
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behavior better than copulas with explicit tail dependence.21 It should of course be borne

in mind that a mixture of normal copulas will have limited ability to capture asymptotic tail

behavior.22 Therefore the choice of which copula formulation to use willdepend heavily

on the application of interest.

7 Conclusions

In this research, I investigate the structure of dependencein financial markets using a mixed

copula approach. This methodology is closely related to theregime-switching methodol-

ogy in the time series literature.23 This paper presents three technical contributions, two

conceptual contributions, and three empirical contributions. The first technical contribu-

tion is the introduction of an econometrically parsimonious dependence structure, namely,

a mixture of normal copulas, that still delivers valuable economic insights. The second

technical contribution is the implementation of a hidden markov structure to account for

time variation in the structure of dependence. Third, in theAppendix I extend previous

results to obtain standard errors for dynamic mixed copulas. It is important to note that,

within the relevant mixture component, the correlation is arobust dependence measure,

since the component is a copula and therefore rank-based. Inthis way, I use a familiar

correlation measure, but ”robustify” it by allowing it to come from one of several copulas

at any point in time, and allow for persistence in the choice of copula.

The two conceptual contributions are first, relating the copula technology to character-

ization of turbulent and quiescent periods, and second, addressing the specific questions,

how frequent and how persistent are turbulent periods? The three most striking empiri-

cal findings are as follows. First, for the unconditional model, the weights are generally

greater for the copula indexed with a large correlation. This indicates the interesting re-

sult that turbulent periods are more common. Moreover, for the unconditional model, the

weights and parameter estimates differ greatly between thetwo sub-samples. Second, the

hidden markov model provides a much better fit than the unconditional model. Third,

21This is consistent with evidence on improved goodness of fit for dynamic copulas, in Dias and Embrechts
(2004).

22It can be shown that at least one component density must have tail dependence for an unconditional
mixture to have tail dependence. This holds for stationary dynamic models, where for example, we calculate
the weightπ1 from its stationary distribution asπ1 = (1−π22)/(2−π11−π22). I am grateful for discussions
with Jonas Andersson, Jostein Lillestol and Ching-Chih Lu on this point.

23See, for example, Chapter 22 of Hamilton (1994).
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the estimated transition probabilities for the dynamic copula indicate turbulent periods are

often persistent.

Why should we care about these findings? There are at least twoimportant reasons.

First, when taken together, these results indicate that international financial markets might

be prone to episodes of persistent instability. This possibility has clear implications for

theory and practice of finance, which typically assume the generic existence of stable

economies. Second, on a practical level, a major implication of this paper is that the gaus-

sian assumption might still be utilized in financial modelling and asset allocation, once one

generalizes in a suitable manner for correlation clustering and dynamic behavior. Future

work could extend this framework to account for more generaldynamics, both in theoreti-

cal and empirical applications, and formalize the links to research on financial contagion.
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8 Appendix

8.1 Distribution and Density of the Normal Copula

Let Φρ(x, y) denote the standard bivariate normal cumulative distribution. In other words,

Φρ(x, y) =

∫ x

−∞

∫ y

−∞

1

2π | Σ | exp{−1

2
(xy)Σ−1(xy)′}dxdy,

whereΣ =

(

1 ρ

ρ 1

)

. From this one may obtain the following distribution function for the normal

copula, denotedCN (.) :

CN (u, v; ρ) = Φρ(Φ
−1(u),Φ−1(v)).

The corresponding copula density for the preceding copula distribution is represented below,

and denotedcρ(.) . In both the density and distribution case, the dependence parameterρ lies be-

tween−1 and+1.

cρ(.) =
1

√

1 − ρ2
exp

[−[Φ−1(u)2 + Φ−1(v)2 − 2ρΦ−1(u)Φ−1(v)]

2(1 − ρ2)
+

Φ−1(u)2 + Φ−1(v)2

2

]

.

8.2 Estimation of Unconditional Copula Model

I now return to the general formulation in (7). The estimation method for parameters in (7) is based

on the EM algorithm of Dempster, Laird, and Rubin (1977). This procedure comprises two steps.

At each iterationk, the first (E) step takes the conditional expectation of (7),Q(Ψ(k)), given the

data. Then the second (M) step maximizesQ(Ψ(k)) to obtain the updated parameter estimates,

which are substituted into the E step to obtain updated estimates of the posterior probabilities24.

This iterative procedure continues until the estimated log-likelihood function reaches a maximum.

The details are now discussed.

24The posterior probabilityτi(yt; Ψ
(k)) denotes the expectation that observationyt belongs to theith com-

ponent density. Intuitively, the posterior probabilitiesare updated every iteration using Bayes’ rule.
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8.2.1 E-Step

The initial iteration(k = 0) takes the conditional expectationQ(Ψ(0)) using the initial parameter

valuesΨ(0). Then, on the (k + 1)th iteration, one computes the posterior probabilitiesτi(yt;Ψ
(k))

as

τi(yt;Ψ
(k)) =

π
(k)
i fi(yt; θ

(k)
i )

g
∑

h=1

π
(k)
h fh(yt; θ

(k)
h )

, (14)

which are used to compute the conditional expectation of thelog-likelihood,

Q(Ψ(k)) =

g
∑

i=1

T
∑

t=1

τi(yt;Ψ
(k)){ln πi + ln fi(yt; θi)}. (15)

8.2.2 M-Step

The M-step chooses parametersΨ(k+1) to maximize (15), which yields an updated set of parame-

ters. Specifically, on iterationk + 1 one choosesΨ(k+1) as

Ψ(k+1) = arg max

g
∑

i=1

T
∑

t=1

τi(yt;Ψ
(k)){ln πi + ln fi(yt; θi)}. (16)

It should be noted that the weights are calculated as the meanof the posterior probabilities, that is,

π
(k+1)
i = 1

T

T
∑

t=1
τi(yt;Ψ

(k)). This is intuitive, since the estimated weight on component densityi

reflects the best current estimate of being ini.

8.3 Estimation of Dynamic Copula Model

I now describe the estimation of a general HMM, derived from acopula mixture model.25 As in the

unconditional mixture model, we use Newton-type maximum likelihood to estimate the conditional

expectation of (13),̃Q(). The standard approach uses a version of the EM algorithm, known as the

25I feel this explication is necessary since this is the first use of the HMM approach in this context–there
seems to be no other literature that estimates dynamic dependence using copulas and the hidden markov
framework. Although the derivation is the same as that in some of the HMM literature, e.g. Hamilton
(1994) and McLachlan and Peel (2000), it is necessary to represent all the details, since this permits easy and
clear understanding of the steps in the mixed copula application. Moreover, this development allows other
researchers involved in dynamic dependence to have a concrete starting point with detailed steps. Readers
familiar with the estimation of hidden markov mixture models may proceed directly to the next section.
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Baum-Welch algorithm. This procedure augments the E step with forward and backward recursions

through the data in order to estimate the transition probabilities.26

8.3.1 E-Step

In this step one calculates̃Q(), the conditional expectation of (13) from the observed sample. One

iterates on the expectation recursively until the improvements in the log-likelihood function fall

below our criterion. Because of the middle term in (13), the E-step itself has three steps, defining

the probabilities, computing auxiliary probabilities, and substituting into thẽQ() function.

The first step, one sets up the conditional probabilities anddefine forward and backward proba-

bilities. Letτ (k)
hi,t andτ

(k)
i,t represent the following conditional probabilities at timet,

τhi,t = pr{Zh,t = 1, Zi,t+1 = 1 | y} (17)

and

τi,t = pr{Zi,t = 1 | y}.

Furthermore, one can calculate the probability of being in state i today as the sum of all yester-

day’s probabilities of moving to statei, from any state,τi,t =
g
∑

h=1

τhi,t−1. The initial proba-

bility of being in statei, τi,1 is estimated using the initial values for the Markov chain,τi,1 =

πi,0fi(y1)/
g
∑

h=1

πh,0fh(y1).

However, the values ofτhi,t are still unknown. In order to obtain them, re-express (17) using

Bayes’ rule,

τhi,t = pr{Zh,t = 1, Zi,t+1 = 1 | y} =
pr{Zh,t = 1, Zi,t+1 = 1}

pr{Y = y} (18)

This simplifies the expression forτhi,t because one can evaluate the ratio on the right hand side in

(18) using two auxiliary probabilities. These variables are the ”forward” probabilitiesai,t and the

”backward” probabilitiesbi,t, defined in the following manner,

ai,t = pr{Y1 = y1, ..., Yt = yt, Zit = 1}, t = 1, ..., T (19)

bi,t = pr{Yt+1 = yt+1, ..., YT = yT | Zit = 1}, t = T − 1, T − 2..., 1

26The addition of forward and backward recursions is more efficient for computing the middle term in (13)
than summing over all possible state sequences fromt = 1 : T, since it calculates and stores results for later
use, instead of recomputing at each node. The logic is based on dynamic programming, as discussed in
Rabiner (1989).
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Combining the (19) and (18) one obtains the following equation for τhi,t,

τhi,t =
ah,tπhifi(yt+1)bi,t+1

g
∑

h=1

g
∑

i=1
ah,tπhifi(yt+1)bi,t+1

(20)

The second step involves computation of (20). To do this, forward and backward recursions are

computed at each iteration to estimate values fora
(k)
i,t andb

(k)
i,t , which are then substituted in (20)

before proceeding to the M step.

Forward Recursions The forward recursions consist of two steps, induction and termination.

The initial value is set toa(k)
i,t = π

(k)
0,i f

(k)
i (y1), i = 1, ..., g. The induction step at iterationk + 1

involves searching forward through the data from period 1 onwards. Specifically, at iterationk +1,

the forward probabilityai,t+1 is computed as

a
(k)
i,t+1 = [

g
∑

h=1

a
(k)
h,tπ

(k)
hi ]f

(k)
i (yt+1), t = 1, ..., T − 1.

The termination step is determined as

prΨ(k)(Y1 = y1, ..., YT = yT , ) =

g
∑

i=1

a
(k)
it .27

Backward Recursions The backward recursion has only an induction step. The initial value

is set to unity,b(k)
h,T = 1, h = 1, ..., g. The induction step at iterationk + 1 involves searching

backward through the data starting at periodT − 1. Specifically,

b
(k)
h,t =

g
∑

i=1

π
(k)
hi f

(k)
i (yt+1)b

(k)
i,t+1, t = T − 1, ..., 1; h = 1, ..., g.

As mentioned before, the estimatedbi,ts andai,ts are substituted in (20) before proceeding to the M

step. Specifically, on thek−th iteration one computesτhi,t as

τ
(k)
hi,t =

a
(k)
h,tπ

(k)
hi f

(k)
i (yt+1)b

(k)
i,t+1

g
∑

h=1

g
∑

i=1
a

(k)
h,tπ

(k)
hi f

(k)
i (yt+1)b

(k)
i,t+1

, t = 1, ..., T − 1

27The operator prΨ(k) denotes probability conditional on information availableat the kth iteration.
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In the third step, one estimates̃Q(Ψ(k)) on iterationk + 1 as

Q̃(Ψ(k)) =

g
∑

i=1

τ
(k)
i,1 lnπi,0 +

g
∑

h=1

g
∑

i=1

T−1
∑

t=1

τ
(k)
hi,t ln πhi +

g
∑

i=1

T
∑

t=1

τ
(k)
i,t ln fi(yt; θi). (21)

8.3.2 M-Step

In the M step the updated estimates are computed using (21). In particular, on iterationk + 1 one

has

π
(k+1)
0,i = τ

(k)
i,1 ,

and

π
(k+1)
hi =

T−1
∑

m=1
τ

(k)
hi,t

T−1
∑

t=1
τ

(k)
i,t

.

At this stage the parameter estimatesθ̂i are obtained recursively using Newton-type maximum like-

lihood approach.28

8.4 Standard Errors for Dynamic Copula Models

In this subsection I present and build on existing results for HMM standard errors.29 Unlike pre-

vious research, we apply this methodology to the case of mixed copulas. For clarity, I express the

computational aspects of the standard errors since these are utilized in my empirical applications.

The paper of Bickel, Ritov, and Ryden (1998) establishes consistency and asymptotic normality of

the MLEs,α̂T , for HMMs, and shows that the asymptotic covariance matrix is estimated consis-

tently by the observed Fisher information,− 1
T

∂2

∂α∂α′ L(α̂T ). The main two results in that research

obtain under standard regularity conditions, and are described in their Lemma 2 and Theorem 1

below.

Lemma 2. Let α̂T be any sequence in Θ such that limT→∞ α̂T = α∗, almost surely. Then

1

T

∂2

∂α∂α′
L(α̂T ) → −Ḟ in P0 − probability as T → ∞ (22)

28This is done applying a modification of the EM algorithm, known as the conditional EM (ECM) algo-
rithm. See McLachlan and Krishnan (1997).

29It should be noted that the standard error computations presented here are in some cases lower bounds,
in instances where there is a large divergence between the complete and incomplete information.
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This result establishes consistency of the Hessian of the log likelihood. The next result es-

tablishes asymptotic normality of the MLE, where the asymptotic variance is the inverse Fisher

information matrix.

Theorem 1. Assume that the information matrix is nonsingular. Then

√
T (α̂T − α∗) →d N(0, Ḟ

−1
) (23)

In order to obtain standard errors for our mixed copula application, we may implement equation

(23), for which it is necessary to compute the Fisher information from the likelihood function. Let

us now discuss how to compute the Fisher information for a mixed copula.

As mentioned in Section 4, the likelihood function for a two component mixed copula is

L() = p(z; Λ)
T
∏

t=1

2
∏

i=1

fi(yt; θi)
zit .

Let the likelihood function beL(Ψ) =
∏

f(yt; Ψ), and the score function beS(Y ; Ψ) = ∂ ln L(Ψ)/∂Ψ.

In general, the Fisher information is

I(Ψ) = EΨ{S(Y ; Ψ)S′(Y ; Ψ)}.

Under regularity conditions, the Fisher information can beexpressed as

I(Ψ; y) = E

[−∂2 ln L(Ψ)

∂Ψ∂Ψ′

]

, (24)

where the ratio on the right hand side is the negative of the Hessian of the log likelihood function.

The challenge in implementing the Fisher information is that the log likelihood involves missing

data. In order to overcome this, it is possible to use an approach suggested by Louis (1982), which

we adapt in the following.30 Note that this approach was originally used to obtain the information

matrix for a mixture model. In the current context, we adapt it to the case of a hidden markov

model, where the components are mixed copulas. Furthermore, we utilize (23), which establishes

that using the Fisher information is justified in the presentcontext.

We now extend the above results and outline how to calculate the asymptotic variance for a

mixed copula application. We use the complete data gradientS(X,Ψ) to compute the observed

information. The likelihood for our mixed copula model is asfollows:

30I am grateful to Ching-Chih Lu for discussions on the following results.
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ln Lc(Ψ) = ln p(z) +

2
∑

i=1

T
∑

t=1

zit ln ci(yt; ρi)

=
2
∑

i=1

zi1 ln πi,0 +
2
∑

h=1

2
∑

i=1

T−1
∑

t=1

zh,tzi,t+1 ln πhi +
2
∑

i=1

T
∑

t=1

zit ln ci(yt; ρi)

whereX includes observed datay and missing dataz. Therefore the gradient vector can be repre-

sented as

S(Xt; Ψ) =

(

∂ ln Lc(Ψ)
∂θi

∂ ln Lc(Ψ)
∂πhi

)

=

(

zit
∂ ln ci(yt;θi)

∂θi
zh,tzi,t+1

πhi

)

. (25)

We can define the matrixB(.) as

B(Xt,Ψ) =





−∂2 lnLc(Ψ)
∂θ2

i

0

0 −∂2 ln Lc(Ψ)
∂π2

hi



 , (26)

where

−∂2 lnLc(Ψ)

∂ρ2
i

= −zit
∂2 ln ci(yt; ρi)

∂ρ2
i

(27)

is a 2-by-2 matrix with zeros as off-diagonal elements and−zit
∂2 ln ci(yt;ρi)

∂ρ2
i

as diagonals,i = 1, 2.

The second derivative matrix is

−∂2 ln Lc(Ψ)

∂π2
hi

=
zh,tzi,t+1

π2
hi

, (28)

which is a 2-by-2 matrix with zeros as all off-diagonal elements.

Sinceπ11 + π12 = 1, π21 + π22 = 1, we have two free parameters. Therefore, the bottom half

of equation(25) may be rewriten as

zh,tzi,t+1

πhi
=

(

z1,tz1,t+1

π11
− z1,tz2,t+1

1−π11
z2,tz1,t+1

π21
− z2,tz2,t+1

1−π21

)

. (29)

Consequently, equation(28) may be re-expressed as





−∂2 ln Lc(Ψ)
∂π2

11

−∂2 ln Lc(Ψ)
∂π2

21



 =





z1,tz1,t+1

π2
11

+
z1,tz2,t+1

(1−π11)2

z2,tz1,t+1

π2
21

+
z2,tz2,t+1

(1−π21)2



 . (30)
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It follows that

S∗(yt,Ψ) =

(

τit
∂ ln fi(yt;θi)

∂θi
τhi,t

πhi

)

(31)

S∗(y,Ψ) = Eθ[S(X,Ψ)|X ∈ R] (32)

whereR = {x : y(x) = y}. Then the complete data information matrix can be expressedas

IY (Ψ) = Eθ[B(X,Ψ)|X ∈ R] − Eθ[S(X,Ψ)ST (X,Ψ)|X ∈ R] + S∗(y,Ψ)S∗T (y,Ψ). (33)

The result in (33) can be substituted into the asymptotic equation (23) in order to compute the

asymptotic covariance matrix. That is, one estimatesḞ with IY (Ψ).
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Table 1: Unconditional Model

FR-DE FR-JP FR-UK FR-US DE-JP DE-UK DE-US JP-UK JP-US UK-US

ρ1 0.446 0.186 0.371 0.445 0.111 0.098 0.428 -0.028 -0.211 -0.162

(0.090) (0.055) (0.078) (0.153) (0.061) (0.137) (0.128) (0.088) (0.111) (0.265)

ρ2 0.826 0.799 0.792 0.583 0.754 0.751 0.607 0.632 0.544 0.596

(0.018) (0.058) (0.023) (0.109) (0.055) (0.024) (0.083) (0.045) (0.048) (0.030)

w1 0.193 0.739 0.298 0.429 0.657 0.205 0.405 0.408 0.341 0.075

w2 0.807 0.261 0.702 0.571 0.343 0.795 0.595 0.592 0.659 0.925

L 276.940 45.642 194.750 101.360 44.614 165.120 106.550 51.571 35.404 110.980

AIC -547.880 -85.284 -383.500 -196.720 -83.228 -324.240 -207.100 -97.142 -64.808 -215.960

BIC -534.468 -71.872 -370.088 -183.308 -69.816 -310.828 -193.688 -83.730 -51.396 -202.548

Table 1 presents parameter estimates from the two-component mixed copula. Standard errors are in parentheses.

The data frequency is weekly. The sample period is January 10, 1990 to May 29, 2002, containing 646 observations.

ρ1,ρ2 and w1, w2 are the correlation parameters and weights in copula 1 and 2, respectively. L represents the log

likelihood function evaluated at the estimated parameters, while AIC and BIC are as defined in the paper.
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Table 2: Unconditional Model, Sample A

FR-DE FR-JP FR-UK FR-US DE-JP DE-UK DE-US JP-UK JP-US UK-US

ρ1 -0.420 0.121 0.424 0.379 -0.055 -0.167 0.260 0.282 -0.220 -0.154

(0.459) (0.099) (0.080) (0.322) (0.122) (0.210) (0.104) (0.067) (0.155) (0.187)

ρ2 0.757 0.704 0.825 0.488 0.690 0.745 0.668 0.862 0.547 0.649

(0.029) (0.092) (0.035) (0.235) (0.076) (0.034) (0.132) (0.059) (0.080) (0.050)

w1 0.066 0.622 0.447 0.418 0.536 0.219 0.657 0.768 0.406 0.253

w2 0.934 0.378 0.553 0.582 0.464 0.781 0.343 0.232 0.594 0.747

L 109.180 22.684 89.407 33.726 19.966 68.959 28.530 33.091 13.923 40.612

AIC -212.360 -39.368 -172.814 -61.452 -33.932 -131.918 -51.060 -60.182 -21.846 -75.224

BIC -200.945 -27.953 -161.399 -50.037 -22.517 -120.503 -39.645 -48.767 -10.431 -63.809

Table 2 presents parameter estimates from the two-component mixed copula. Standard errors are in

parentheses. The data frequency is weekly. The sample period is January 10, 1990 to March 20, 1996,

for a total of 323 observations.ρ1,ρ2 and w1, w2 are the correlation parameters and weights in copula

1 and 2, respectively. L represents the log likelihood function evaluated at the estimated parameters

while AIC and BIC are as defined in the paper.
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Table 3: Unconditional Model, Sample B

FR-DE FR-JP FR-UK FR-US DE-JP DE-UK DE-US JP-UK JP-US UK-US

ρ1 0.708 0.205 0.356 0.520 -0.129 0.396 0.521 -0.893 -0.251 0.618

(0.045) (0.074) (0.153) (0.045) (0.155) (0.131) (0.144) (0.091) (0.158) (1.096)

ρ2 0.883 0.867 0.780 0.905 0.573 0.770 0.674 0.441 0.598 0.636

(0.027) (0.055) (0.031) (0.053) (0.057) (0.035) (0.082) (0.048) (0.057) (0.650)

w1 0.433 0.756 0.193 0.812 0.286 0.245 0.358 0.076 0.312 0.374

w2 0.567 0.245 0.807 0.188 0.715 0.755 0.642 0.924 0.688 0.626

L 169.320 26.085 108.080 69.310 26.154 98.868 75.544 22.69624.204 78.631

AIC -332.640 -46.170 -210.160 -132.620 -46.308 -191.736 -145.088 -39.392 -42.408 -151.262

BIC -321.225 -34.755 -198.745 -121.205 -34.893 -180.321 -133.673 -27.977 -30.993 -139.847

Table 3 presents parameter estimates from the two-component model. Standard errors are in parentheses.

The frequency is weekly. The sample period is March 20, 1996 to May 29, 2002, for a total of 332 observations.

ρ1,ρ2 and w1, w2 are the correlation parameters and weights in copula 1 and 2, respectively. L represents the

log likelihood function evaluated at the estimated parameters, while AIC and BIC are as defined in the paper.
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Table 4: Hidden Markov Model

FR-DE FR-JP FR-UK FR-US DE-JP DE-UK DE-US JP-UK JP-US UK-US

ρ1 0.508 0.169 0.175 0.364 0.104 0.215 0.369 -0.076 -0.248 -0.169

(0.238) (0.100) (0.152) (0.097) (0.122) (0.143) (0.120) (0.109) (0.091) (0.175)

ρ2 0.836 0.789 0.766 0.671 0.733 0.771 0.685 0.612 0.528 0.601

(0.030) (0.026) (0.031) (0.043) (0.031) (0.026) (0.042) (0.041) (0.050) (0.052)

π11 0.712 0.688 0.870 0.738 0.777 0.802 0.975 0.206 0.255 0.237

(0.047) (0.026) (0.035) (0.027) (0.024) (0.034) (0.009) (0.028) (0.033) (0.063)

π12 0.287 0.310 0.129 0.261 0.221 0.197 0.025 0.790 0.743 0.762

(0.047) (0.026) (0.035) (0.027) (0.024) (0.034) (0.009) (0.028) (0.033) (0.063)

π21 0.099 0.784 0.026 0.236 0.369 0.071 0.020 0.449 0.335 0.064

(0.019) (0.032) (0.008) (0.024) (0.035) (0.013) (0.008) (0.029) (0.026) (0.012)

π22 0.899 0.216 0.972 0.762 0.631 0.927 0.977 0.551 0.664 0.935

(0.019) (0.032) (0.008) (0.024) (0.035) (0.013) (0.008) (0.029) (0.026) (0.012)

L 311.910 95.581 235.450 120.050 93.553 213.530 127.120 95.343 77.947 130.930

AIC -615.820 -183.162 -462.900 -232.100 -179.106 -419.060-246.240 -182.686 -147.894 -253.860

BIC -597.937 -165.279 -445.017 -214.217 -161.223 -401.177-228.357 -164.803 -130.011 -235.977

Table 4 presents estimated parameters for a hidden markov model with two normal copulas. Standard errors are
reported in parentheses. The frequency is weekly. The sample period is January 10, 1990 to May 29, 2002, for a
total of 646 observations.ρ1,ρ2 are the correlation parameters in copula 1 and 2, and the parameters
π11, π12, π21, π22 are transition probabilities. L is the log likelihood
evaluated at the estimated parameters.
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Table 5: Hidden Markov Model, Normal-RG

FR-DE FR-JP FR-UK FR-US DE-JP DE-UK DE-US JP-UK JP-US UK-US

ρ 0.861 0.202 0.773 0.439 -0.152 0.791 0.457 0.666 0.717 0.633

(0.027) (0.144) (0.032) (0.076) (0.197) (0.023) (0.088) (0.042) (0.038) (0.064)

b 1.976 1.437 1.292 2.474 1.334 1.341 2.166 1.099 1.081 1.257

(0.359) (0.148) (0.149) (0.208) (0.145) (0.122) (0.183) (0.081) (0.077) (0.180)

π11 0.706 0.453 0.968 0.959 0.913 0.896 0.940 0.248 0.425 0.695

(0.035) (0.031) (0.009) (0.009) (0.042) (0.017) (0.011) (0.028) (0.040) (0.025)

π12 0.292 0.545 0.030 0.039 0.086 0.102 0.059 0.752 0.574 0.303

(0.035) (0.031) (0.009) (0.009) (0.042) (0.017) (0.011) (0.028) (0.040) (0.025)

π21 0.144 0.431 0.095 0.125 0.005 0.149 0.164 0.582 0.237 0.726

(0.019) (0.028) (0.025) (0.028) (0.003) (0.024) (0.029) (0.029) (0.023) (0.035)

π22 0.855 0.568 0.905 0.873 0.993 0.850 0.833 0.415 0.761 0.273

(0.019) (0.028) (0.025) (0.028) (0.003) (0.024) (0.029) (0.029) (0.023) (0.035)

L 302.690 54.142 231.270 134.760 54.892 209.410 129.950 86.026 73.436 125.680

AIC -597.380 -100.284 -454.540 -261.520 -101.784 -410.820-251.900 -164.052 -138.872 -243.360

BIC -579.497 -82.401 -436.657 -243.637 -83.901 -392.937 -234.017 -146.169 -120.989 -225.477
Table 5 presents estimated parameters for a hidden markov model with normal and Rotated Gumbel components.
The frequency is weekly. The sample period is January 10, 1990 to May 29, 2002, for a total of 646 observations.
ρ and b are the dependence parameters in the normal and rotatedgumbel copulas and the parameters
π11, π12, π21 andπ22 are transition probabilities. L is the log likelihood function evaluated at the estimated parameters.
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Table 6: Kolmogorov-Smirnov and Anderson-Darling Statistics

Panel A: Kolmogorov-Smirnov

FR-DE FR-JP FR-UK FR-US DE-JP DE-UK DE-US JP-UK JP-US UK-US Average

No(2) 0.36514 0.093576 0.23595 0.017811 0.07916 0.17759 0.024982 0.03235 0.016276 0.032291

rank 3 3 3 3 3 3 3 2 2 2 2.7

NoRG(2) 0.15403 0.01913 0.19251 0.01241 0.01700 0.15585 0.01601 0.04064 0.05140 0.03328

rank 2 2 2 2 1 2 2 3 3 3 2.2

Best Unc. 0.01902 0.01696 0.01663 0.01070 0.01700 0.01542 0.01587 0.01440 0.01286 0.01519

rank 1 1 1 1 1 1 1 1 1 1 1.0

Table 6 presents estimates of the Kolmogorov-Smirnov and Anderson-Darling statistics, as described in the text. No(2)and

NoRG(2) denote the two component models with two normal copulas, and one normal plus one Rotated Gumbel copula, respect-

ively. Best Unc. Denotes the best unconditional model from aset of mixed and single copulas. Rank is the relative performance

of the model within a specific country pair. The number 1 signifies the best performance, that is, the smallest statistic.
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Panel B: Average Kolmogorov-Smirnov
FR-DE FR-JP FR-UK FR-US DE-JP DE-UK DE-US JP-UK JP-US UK-US Average

No(2) 0.015641 0.004974 0.008055 0.003 0.006178 0.006668 0.005327 0.003817 0.004475 0.004232

rank 3 3 3 3 3 2 3 3 3 3 2.9

NoRG(2) 0.00991 0.00399 0.00745 0.00286 0.00436 0.00700 0.00441 0.00370 0.00408 0.00363

rank 2 2 2 1 2 3 2 2 2 2 2.0

Best Unc. 0.00456 0.00350 0.00343 0.00286 0.00421 0.00490 0.00440 0.00369 0.00370 0.00359

rank 1 1 1 1 1 1 1 1 1 1 1.0
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Panel C: Anderson-Darling
FR-DE FR-JP FR-UK FR-US DE-JP DE-UK DE-US JP-UK JP-US UK-US Average

No(2) 3.83870 0.81805 1.16560 0.74597 0.79508 0.82077 0.72728 0.78887 0.55847 0.59283

rank 3 3 3 3 3 3 3 3 3 1 2.8

NoRG(2) 1.59880 0.62199 0.95104 0.59039 0.45903 0.66106 0.50825 0.64064 0.49037 0.77410

rank 2 2 2 2 1 2 2 2 2 3 2.0

Best Unc. 0.31842 0.50966 0.45454 0.58997 0.45903 0.51524 0.50378 0.50982 0.46294 0.61069

rank 1 1 1 1 1 1 1 1 1 2 1.1
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Panel D: Average Anderson-Darling

FR-DE FR-JP FR-UK FR-US DE-JP DE-UK DE-US JP-UK JP-US UK-US Average

No(2) 0.084555 0.047941 0.044693 0.029937 0.059486 0.050191 0.041506 0.04412 0.044064 0.034433

rank 3 3 3 3 3 3 3 3 3 3 3.0

NoRG(2) 0.04371 0.03344 0.03562 0.02474 0.03758 0.03755 0.03563 0.03589 0.03548 0.02878

rank 2 2 2 1 1 2 2 2 2 2 1.8

Best Unc. 0.02553 0.03226 0.02520 0.02474 0.03758 0.03204 0.03562 0.03589 0.03325 0.02848

rank 1 1 1 1 1 1 1 1 1 1 1.0
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Table 7: Model Comparison

Panel A: AIC

FR-DE FR-JP FR-UK FR-US DE-JP DE-UK DE-US JP-UK JP-US UK-US Average

No(1) -537.800 -79.986 -371.820 -200.640 -75.174 -305.960-210.860 -87.646 -55.394 -213.880

rank 5 5 5 3 5 5 3 5 5 5 4.6

No(2) -547.880 -85.284 -383.500 -196.720 -83.228 -324.240-207.100 -97.142 -64.808 -215.960

rank 4 4 4 5 4 4 5 4 4 4 4.2

HMM-No -615.820 -183.162 -462.900 -232.100 -179.106 -419.060 -246.240 -182.686 -147.894 -253.860

rank 1 1 1 2 1 1 2 1 1 1 1.2

HMM-NoRG -597.380 -100.284 -454.540 -261.520 -101.784 -410.820 -251.900 -164.052 -138.872 -243.360

rank 2 2 2 1 2 2 1 2 2 2 1.8

Best Unc. -565.120 -85.706 -386.720 -200.640 -89.242 -333.380 -211.240 -99.344 -68.646 -216.840

rank 3 3 3 3 3 3 3 3 3 3 3.0

Table 7 compares model performance within each country pair, using AIC and BIC. No(1) and No(2) denote results from the

single and two-component normal copula models, respectively. HMM-No and HMM-NoRG denote results from the hidden markov

models with two normal copulas and with a normal and rotated gumbel copula, respectively. Best Unc. denotes the best uncon-

ditional model from a set of mixed and single copulas. Rank isthe performance of each model within the specific country pair.

The Number 1 denotes the best performance, that is, the lowest AIC or BIC.
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Panel B: BIC
FR-DE FR-JP FR-UK FR-US DE-JP DE-UK DE-US JP-UK JP-US UK-US Average

No(1) -533.329 -75.515 -367.349 -196.169 -70.703 -301.489-206.389 -83.175 -50.923 -209.409

rank 5 4 5 3 4 5 4 5 5 3 4.3

No(2) -534.468 -71.872 -370.088 -183.308 -69.816 -310.828-193.688 -83.730 -51.396 -202.548

rank 4 5 4 5 5 4 5 4 4 4 4.4

HMM-No -597.937 -165.279 -445.017 -214.217 -161.223 -401.177 -228.357 -164.803 -130.011 -235.977

rank 1 1 1 2 1 1 2 1 1 1 1.2

HMM-NoRG -579.497 -82.401 -436.657 -243.637 -83.901 -392.937 -234.017 -146.169 -120.989 -225.477

rank 2 2 2 1 3 2 1 2 2 2 1.9

Best Unc. -560.649 -81.235 -375.218 -196.169 -84.771 -322.409 -206.389 -92.369 -59.704 -209.409

rank 3 3 3 3 2 3 3 3 3 3 2.9
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