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Some new bivariate IG- and NIG-distributions

for modelling covariate financial returns

Abstract

The univariate Normal Inverse Gaussian (NIG) distribution is found useful for mod-

elling financial return data exhibiting skewness and fat tails. Multivariate versions exists,

but may be impractical to implement in finance. This work explores some possibilities

with links to the mixing representation of the NIG distribution by the IG-distribution.

We present two approaches for constructing bivariate NIG distribution that take ad-

vantage of the correlation between the univariate latent IG-variables that characterizes

the marginal NIG-distribution. These are readily available from the marginal estima-

tion, either by maximum likelihood via the EM-algorithm or by Bayesian estimation via

Markov chain Monte Carlo methods. A context for implementation in finance is given.
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Introduction

Classical financial theory is heavily dependent on mean-variance criteria and normal

assumptions. Despite the arguments against, it may still be preferred by many prac-

titioners due to its beauty and ease of implementation. However, in the last decades

both theorists and practitioners have explored alternatives that face the empirical facts

that return distributions are mostly heavy tailed and often skewed. Among classes

of distributions explored are the stable, elliptic and (generalized) hyperbolic classes.

The non-parametric path is also explored. The choice between them or whether to

go non-parametric is not easy. Among desirable features are: ease of aggregation over

space (portfolios) and time, ease of estimation and implementation. The classical the-

ory did well on this, and provided also parameters with meaningful interpretation for

both economists and practitioners. So far, the alternative theories do not match this

in all respects, but progress is being made, both with respect to improvement of each

alternative and the knowledge base for making choices among them.

This author has some affinity towards the Normal Inverse Gaussian distribution

(NIG), see Barndorff-Nielsen (1997) and Lillestøl (2000). This is a four parameter sub-

class of the five-parameter generalized hyperbolic family, which is advocated by many

authors, see Eberlein and Keller (1995), Rydberg (2000). The NIG-distribution fits well

observed (marginal) returns and has some nice theoretical properties. So much for the

univariate case.

In recent years extreme losses due to correlated returns are brought to the forefront.

In order to model this, various approaches may be taken: Pick a class of multivariate

distributions, say multivariate stable, elliptic or hyperbolic, or construct a multivariate

distribution from given marginals using copulas. Although natural multivariate versions

of distributions that fits well univariate data are available, they are not necessarily viable

alternatives for risk estimation in practice, see, however, Aas et.al (2006). For instance,
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the multivariate NIG of Barndorff-Nielsen (1997) has the defect that the key parameter

of each univariate marginal depends on the joint skewness parameter vector. Moreover

the estimation has to be done jointly. In many cases one has reasonably good knowledge

of the marginals and just want to embed this in a joint setting, without having to

reestimate all parameters jointly. Moreover, by separating the marginal-modelling from

dependence-modelling one can look at the issues separately, e.g. the character of the

tail dependence. In both respects the copula approach may be preferred, see Cherubini

et.al. (2004) and McNeil et.al. (2005).

In this paper we explore the possibility of modelling joint distributions with NIG-

marginals based on the mixture representation of Normals with the Inverse Gaussian dis-

tribution. We will follow two different approaches, both departs from classes of bivariate

Inverse Gaussian distributions (IG). Each approach has its own merits and drawbacks.

Various definitions of bivariate IG-distribution exist in the literature. A ”natural” one

is given by Kocherlakota (1986), who dismisses a previous suggestion by Al-Hussain and

Abd-El-Hakim (1981), since it is not ”as natural” and not easily simulated. We shall

see that this is easily overcome.

Our first approach is based on defining bivariate IG-distributions in terms of their

moment generating function. Our second approach departs from a suggested new scheme

for bivariate simulation, based on the idea of Michael et.al. (1976). In judging the merits

of the two approaches one may look for its ease of deriving moments, handling joint tail

events and provide expressions for (transforms of) the distribution of linear combinations

e.g. portfolios of returns. Another criterion would be the ease of bivariate simulation.

Since each approach offers classes of models, we also have the problem of identifying

a suitable one for the data at hand. Given our limited objective, it may be sufficient

to pick one as an ”all purpose” bivariate distribution. So far, we regard the second

approach as the most promising, and this is explored more extensively in this paper.
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The main objective of the paper is to provide approaches to the multivariate case

that does not go far beyond the univariate case in estimation complexity, and is easily

implemented as a bi-product from the univariate estimation. Implicitly we hope that

the argument in favor of the NIG-distribution is strengthened.

The paper deals mainly with the case of independent identically distributed variables.

Of course this may seem as a serious limitation when modelling financial return data,

which are mostly time series exhibiting volatility clustering. In practice this can be dealt

with in different ways: (1) ignore it (2) extend the model (3) estimate the devolatilized

series followed by revolatilation. The first possibility may be preferred in the cases

where correlation and heavy tails are the key issues and the objective is to improve

upon even more simplistic methods based on independence and normality. As for the

second possibility, extending the model may be done in a variety of ways. See Barndorff-

Nielsen (1998) for NIG theory in the process context and Barndorff-Nielsen (1999) and

Andersson (2001) for theory in the volatility clustering time series context. Given our

objective, the natural one is to restrict ourselves to models where the time dependence

parameters are determined by the marginal series. Such an extension of this work is also

fairly straightforward. In practice one may prefer the very pragmatic approach, when

the alternative is to neglect either the heavy tails and/or the correlations altogether.

This may rule out the second possibility. The third possibility is in fact preferred by

many risk analysts.

1 The NIG distribution and its extension

The distribution of a NIG-variate X is characterized by four parameters: µ, δ, α, β which

relates mainly to location, scale, peakedness/heavy tail and skewness respectively. The

density function of X is fairly complicated involving Bessel functions. However, the
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distribution has a simple moment generating function given by

MX(t) = E exp(tX) = exp(µt + δ(
√

α2 − β2 −
√

α2 − (β + t)2))

Here δ > 0 and 0 ≤| β |< α. We will find it useful to write γ =
√

α2 − β2 and φ = δ · γ,

and different parameterizations of the distribution using these and/or other parameters

are available. From the moment generating function it is easily derived that

EX = µ + δ · β

γ
varX = δ

α2

γ3

and simple formulas are available for skewness and kurtosis as well. The distribution

also has a convenient mixture representation as the X-marginal of (X, Z) where

X | Z = z ∼ N(µ + βz, z)

Z ∼ IG(δ, γ)

Here IG(δ, γ) is the well known Inverse Gaussian distribution (also named Wald dis-

tribution), see Johnson, Kotz and Balakrishnan (1995) or Seshadri (1993). This means

that we can write

X = µ + β · Z +
√

Z ·W

where W is standard normal independent of Z. Various interpretations of Z may be

given: As just a latent unobservable variable, or as a variable for data augmentation

in the context of estimation. In modelling financial data it may represent volatility,

although it also affects the skewness in cases of β 6= 0.

The estimation of NIG-parameters can be done by maximum likelihood methods
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directly, or via the EM-algorithm, see Karlis (2002), or by Bayesian estimation via

Markov chain Monte Carlo, see Karlis and Lillestøl (2004). The latter two produce a

Z-series as a bi-product of the estimation process. Our approach to the bivariate case

is to choose models having simple links between joint distribution and the correlation

between the marginal latent variables. This correlation may be estimated as a bi-product

of the marginal estimation by the methods mentioned. This procedure is akin to the

method of inference functions for margins (IFM), see McLeish and Small (1988). For

the bivariate case (X1, X2) we will have in mind the representation where

Xi = µi + βi · Zi +
√

Zi ·Wi

with standard normal Wi’s, but where both pairs (Z1, Z2) and (W1,W2) may be cor-

related, with (Z1, Z2) being some kind of bivariate IG. This may be contrasted to the

of construction of Barndorff-Nielsen (1997), based on the representation formula where

Zi ≡ Z and the Wi’s multivariate normal. This leads to a model with some attrac-

tive features and some drawbacks. One attractive feature is that Z may be viewed as

a single latent variable, and that linear combinations are univariate NIG. A drawback

is the complicated relationship between marginal and joint parameters, and that joint

re-estimation is required when adding variables. Our construction gives rise to a wider

range of opportunities, but admittedly also to some challenges, among them identifica-

tion issues.

For the given model specification we have in general

cov(X1, X2) = β1 · β2 · cov(Z1, Z2) + E(Z1Z2)
1/2 · cov(W1,W2)

where the first term disappears if at least one of the marginals are symmetric, and the

second term disappears when the Wi’s are uncorrelated. For the correlation we may
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write

ρ(X1, X2) =
β1β2

α1α2

ρ(Z1, Z2) + κ · γ1γ2

α1α2

ρ(W1,W2)

where κ = E(Z1Z2)
1/2/(EZ1 ·EZ2)

1/2 with 0 ≤ κ ≤ 1 and equal to one for independence.

This formula reveals how the correlation of the observable variables are affected by the

correlation of the unobservables. It also gives some insight to limiting cases. If the

α’s tends to infinity while the β’s stay fixed, corresponding to the marginals tending to

normality, we see that the first term vanishes leaving the second term as κ · ρ(W1,W2).

Note also the case when W1 = W2 = W and their correlation is one. To distinguish

the correlations involved, we will, when needed, use the notation τ1 = ρ(Z1, Z2), τ2 =

ρ(W1,W2) and ρ = ρ(X1, X2).

Useful expressions for the conditional expectation E(X2|X1 = x1) and conditional

variance var(X2|X1 = x1) are not readily available in general.

2 A context for applications

The following is a possible context for application of such modelling: Suppose we want

to establish an online system, where we store relevant information on return series, raw

data and derived distributional parameter estimates of each series, in order to estimate

correlation parameters according to our model, without having to re-estimate everything

as new series come along. Suppose we use a simulation-based estimation process and

keep the Z-series for later use. Instead of keeping all of them for every asset, it may

be sufficient to keep a representative one for each asset, say by averaging the generated

series. Each pair of such series (Ẑ1, Ẑ2) may then be correlated based on the joint stretch

of available instants.
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Example: Ford vs. GM

Consider the weekly logarithmic returns for Ford and GM equities for 20 years from mid

1983 to mid 2003, see the scatterplot in Figure 1. The computed correlation between

the returns is ρ(XF , XGM) = 0.6657.

-0.3 -0.2 -0.1 0.0 0.1 0.2

X-Ford

-0.3

-0.2

-0.1

0.0

0.1

0.2

X-
G

M

Figure 1: Scatterplot weekly log-returns GM vs. Ford 1983-2003

The parameter estimates of the marginal NIG-distributions turned out to be as in

Table 1. The estimation is Bayesian using a fairly uninformative prior and sampling

from the posterior by a Markov chain Monte Carlo scheme as described in Karlis and

Lillestøl (2004). The estimates are based on 1000 sample repeats.

µ β γ δ φ

Ford 0.0001 0.6963 27.4502 0.0550 1.5037

GM 0.0019 -0.9241 33.3621 0.0550 1.8347

Table 1: NIG parameter estimates Ford and GM

Figure 2 shows a stretch of the two retained representative Z-series. The correlation

between the two Z-series is ρ(ẐF , ẐGM) = 0.5223. From the observed series (XF , XGM)

and retained Z-series we can compute estimates (ŴF , ŴGM) of the innovation series
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Figure 2: Z-series Ford and GM

(WF ,WGM). The correlation of these series is ρ(ŴF , ŴGM) = 0.6110. Figure 3 shows

scatterplots of the pair of Z-series and W-series respectively.

The data is analyzed as if the consecutive returns are independent and identically

distributed. In fact, the data show no autocorrelation, but has some weak volatility

clustering. The estimated innovation series have distributions that look normal, however

with somewhat shorter tail than expected. In a sense the Z-series may have picked up

too much of the tail variation.

3 Bivariate IG from moment generating functions

A number of different multivariate extensions of the IG-distribution have been suggested

through the years. However, most of them have marginals that are not univariate IG.
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Figure 3: Scatterplots Z2 vs Z1 and W1 vs. W2 GM vs Ford

One exception is discussed by Barndorff-Nielsen et.al. (1992), where references to some

of the others may be found.

Our first approach to the bivariate case is to define the distribution of Z = (Z1, Z2)

in terms of its moment generating function (mgf)

M(t1, t2) = Eet1Z1+t2Z2

with IG-marginals Mi(t) corresponding to Zi ∼ IG(δi, γi) for i=1,2. The moment gen-

erating function of the IG-distribution is (letting φ = δ · γ)

MZ(t) = EetZ = eφ(1−(1−2γ−2t)1/2)

The clue is now to define M(t1, t2) with a parameter directly related to its correlation,

with as few restrictions as possible. This leads to easy joint parameter estimation from

data generated when estimating the marginal parameters. Note that our approach is not

margin-free, since the Zi’s are estimated from IG-assumptions. For short let Mi(t) =

exp(φigi(t)), where gi(t) = 1 − (1− 2γ−2
i t)

1/2
. In Table 2 we give three examples of

generating functions of bivariate IG-distributions with the desired features, together
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with a correlation structure that fits the suggested estimation scheme.

Moment generating function M(t1, t2) ρ(Z1, Z2)

1. exp(φ1g1(t1) + φ2g2(t2))(1 + θ · (1− exp(φ1g1(t1)) · (1− exp(φ2g2(t2))) θ · (φ1 · φ2)
1/2

2. exp(φ1g1(t1) + φ2g2(t2))/(1− θ · (1− exp(φ1g1(t1)) · (1− exp(φ2g2(t2))) θ · (φ1 · φ2)
1/2

3. exp(1− [(1− φ1 · g1(t1))1−θ + (1− φ2 · g2(t2))1−θ − 1]1/(1−θ)) −θ · (φ1 · φ2)
1/2

Table 2: Moment generating functions and correlations for bivariate IG

Here θ is a positive covariate parameter with θ = 0 corresponding to independence.

The first two examples give positive correlation, the last one negative correlation. The

bivariate densities may be obtained by numerical Laplace inversion. Various bivariate

possibilities for Laplace inversion are described in Abate and Whitt (2006). In Figure

4 we illustrate the densities of Example 2 and Example 3 with correlation 0.5 and -0.5

respectively, with all marginal parameters equal to one. The inversion method used is

an Euler-Euler algorithm.
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Figure 4: Bivariate IG-distributions: Example 2 (left), Example 3 (right)

Several families of both kinds exist, and it easy to identify the distribution within

each family, but of course are left with the problem of which one to choose. This and

the question on how to simulate from these distributions are under investigation.

12



This approach can be extended readily beyond the bivariate case in different ways:

The simplest is to take the γ-parameter to be common to all pairs of variables. Then it

can be chosen from experience or by averaging over pairs of correlations. On the other

hand we can model the bivariate relationship separately, at the risk of some inconsisten-

cies. Finally one may have a full multivariate scheme with correlation parameters for

each pair.

Before we go on to our second approach it may be worthwhile to take a side view to

copulas. Having expressions for moment generating functions it is possible to construct

copulas which are derived from mixture representations. Following Marshall & Olkin

(1988) we may obtain a joint cumulative distribution of X = (X1, X2) having the desired

marginal cumulative NIG-distributions F1(x) and F2(x) by

F (x1, x2) = L(L−1
1 (F1(x1), L

−1
2 (F2(x2)))

where L(t1, t2) = M(−t1,−t2) is the joint Laplace-transform and L−1
i is the inverse of

the marginal Laplace-transform Li(ti) = Mi(−ti) i=1,2. In our case we have L−1
i (u) =

1
2
((1−φ−1

i ln(ui))
2−1)γ2

i . It is easily checked that this leads to well known Archimedian

copula functions C(u1, u2), so that F (x1, x2) = C(F1(x1), F2(x2)). See Nelsen (1999)

for the general theory of copulas and Genest and Rivest (1993) on the identification of

Archimedian copulas. This construction is, however, derived from a mixture represen-

tation of the distribution of (X1, X2) on (Z1, Z2) of frailty type, different from the one

we take as point of departure. More specifically

F (x1, x2) =
∫ ∫

F1(x1)
z1F2(x2)

z2dG(z1, z2)

where G denotes a bivariate IG-distribution.

An advantage of the copula approach is of course that we have explicit expressions
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for the probabilities of joint tail events. On the other hand, the handling of linear

combinations like portfolios is not that easy.

4 Bivariate IG defined by simulation scheme

Our second approach defines a bivariate NIG-distribution from new classes of bivariate

IG-distributions which are easily simulated. Different parameterizations exist for the

univariate IG-distribution, and are used depending on the context. Here we use IG(ζ, φ)

with parameters ζ = δ/γ and φ = δ · γ. The density is then given by

f(z) = (
φζ

2π
)1/2z−3/2e−

1
2

φ(z−ζ)2

ζz

where

EZ = ζ varZ = σ2 =
ζ2

φ

The ”natural” definition of bivariate IG-distribution by Kocherlakota (1986) gives

rise to a fairly complex density, involving an infinite series. However the moment and the

conditional structures are transparent, with links to the bivariate chisquare distribution

with one degree of freedom. Based on the idea of Michael et.al. (1976) this also gives

the opportunity to simulate (Z1, Z2) from a bivariate IG-distibution IG(ζ1, ζ2, φ1, φ2, ρ)

from the two roots of each of the equations

Vi =
φi(Zi − ζi)

2

ζiZi

where (V1, V2) is bivariate central chisquare with one degree of freedom, obtained from

the standard bivariate normal with correlation ρ. By letting Z−
i and Z+

i be the minus
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and plus roots respectively, we take

Zi = Z−
i with probability p−i =

1

1 + Z−
i /ζi

= Z+
i with probability p+

i =
1

1 + Z+
i /ζi

=
Z−

i /ζi

1 + Z−
i /ζi

The ease of simulation is taken as an argument in favor of this definition of the bivari-

ate IG-distribution over an earlier suggestion by Al-Hussain and Abd-El-Hakim (1981).

However, the idea of generating variables from equations with multiple roots suggested

by Michael et.al. (1976) may be extended to cover a variety of bivariate cases by sim-

ulating (Z1, Z2) from independent univariate chisquare variates. We may simply use a

scheme for the joint probabilities pij
12 for ij ∈ {−−,−+, +−, ++} of the form given in

Table 3.

Z−
2 Z+

2

Z−
1 : p−1 · p−2 · (1 + θ · g(Z)) p−1 · p+

2 · (1− θ · g(Z))

Z+
1 : p+

1 · p−2 · (1− θ · g(Z)) p+
1 · p+

2 · (1 + θ · g(Z))

Table 3: Simulation scheme for bivariate IG

In this simulation scheme g(Z) is a suitable function of Z = (Z−
1 , Z+

1 , Z−
2 , Z+

2 ) and θ

is a correlation measure, with natural restrictions to ensure probability values between

zero and one, and where θ = 0 corresponds to independence. A convenient choice is

pij
12 = pi

1 · pj
2 · [1 + θ · sign(Zi

1 − ζ1) · sign(Zj
2 − ζ2) · (Z

i
1

ζ1

· Zj
2

ζ2

)1/2 · h1(V1) · h2(V2)]

where h(V ) indicates a function that depends on just the corresponding chisquare-variate

and not on the root chosen. Note that this means positive or negative product of signs

according to whether the conforming or opposing roots are chosen. Using the fact that

Z−
i · Z+

i = ζ2
i it is easy to check that this fits the scheme above with correct marginals.
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The joint density will now have form

f(z1, z2) = f1(z1) · f2(z2)(1 + θ · k1(z1) · k2(z2))

with

ki(zi) = sign(zi − ζi) · (zi

ζi

)1/2 · hi(vi(zi))

and where vi(zi) = φi(zi−ζi)
2

ζizi
. We see that we necessarily have

∫ ∞

0
ki(zi)f(zi)dzi = Eki(Zi) = 0

and that

cov(Z1, Z2) = θ · A1 · A2

where Ai is given by

Ai =
∫ ∞

0
ziki(zi)f(zi)dzi = E(Ziki(Zi))

Choices of form hi(v) = vai−1 ·exp(−bi ·v/2) for suitable ai ≥ 1 and bi ≥ 0 are convenient

in theory. This also provides modelling flexibility that goes beyond a common fallacy in

risk management, that marginal distributions and the correlations uniquely determine

the joint distribution, which is true for elliptic families, but wrong in general. However,

the interpretation of the a− and b−parameters may not be transparent, for two reasons:

They affect both the dependency of the zi’ via vi(zi) for i = 1, 2 and the constant θ. We

return to this later.

With the above choice of h-functions we are able to express the integral in terms of

the Gamma-function. We have (omitting subscripts)

A =
ζ

φ1/2
· c(a, b) = σ · c(a, b)
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where

c(a, b) =
Γ(2a)

Γ(a + 1/2) · 2a−1/2 · (1 + b)a

This may be simplified in two cases:

c(a, b) =
(a− 1)!√

2π
· ( 2

1 + b
)a for a integer

=
1 · 3 · 5 · · · (2a− 1)

(1 + b)a
for a = n + 1/2 with n integer

The correlation may now be written as

τ1 = ρ(Z1, Z2) = c(a1, b1) · c(a2, b2) · θ

The cases with ai = ni + 1/2 for n = 1, 2, . . . will be of particular interest. We will refer

to this as the ”half-integer case”, where we have

ki(zi) = (
zi − ζi

σi

)vi(zi)
ni−1e−

1
2
bivi(zi)

For the case of common n = 1 and b = 1, i.e. h(v) = v1/2exp(−v/2), we get the

distribution of Al-Hussain and Abd-El-Hakim (1981) where θ = 8ρ.

It is also interesting to note that if we take h ≡ 1, for which ρ(Z1, Z2) = θ · 2
π
, we get

a density decreasing from the origin towards the means, and then having a temporary

bump.

The moment generating function is in general

M(t1, t2) = M1(t1) ·M2(t2) + θ ·K1(t1) ·K2(t2)

where the Mi(t)’s are the univariate moment generating functions given, and the Ki(t)’s
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are similar integrals using the ki(t)’s as weights, i.e. (omitting subscripts) M(t) =
∫

exp(tz)f(z)dz and K(t) =
∫

exp(tz)k(z)f(z)dz. For the half-integer case we have

K(t) =
∫ ∞

0
(
z − ζ

σ
)v(z)n−1e−

1
2
bv(z)+tzf(z)dz

which in the case n = 1 may be simplified to

K(t) = φ(a(t)−1/2 − a(0)−1/2) · e−((a(t)a(0))1/2−a(0))

where a(t) = φ(1 + b)− 2ζt.

Since the Zi’s may be interpreted as volatilities (at least in the symmetric case), it

may be of interest to look more closely at their conditional expectations. The conditional

expectation of Z2 given Z1 = z1 is in general

E(Z2|Z1 = z1) = ζ2 + θ · A2 · sign(z1 − ζ1) · (z1

ζ1

)1/2 · h1(v1(z1))

For the choice of h-functions of the type above, we get for the half-integer case

E(Z2|Z1 = z1) = ζ2 + c(n1 + 1/2, b1)
−1 · τ1

σ2

σ1

· (z1 − ζ1) · v1(z1)
n1−1e−

1
2
b1v1(z1)

where the case of n1 = 1 is notably simpler, and with b = 1 is reduced to

E(Z2|Z1 = z1) = ζ2 + 23/2 · τ1
σ2

σ1

· (z1 − ζ1) · e− 1
2
v1(z1)

By series expansion we get the following approximate expression when z1 is close to ζ1:

E(Z2|Z1 = z1) ≈ ζ2 + 23/2 · τ1
σ2

σ1

· [(z1 − ζ1)− 1

6
· φ1

ζ1

(z1 − ζ1)
3]
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In comparison with the linear minimum squared loss predictor, the overshoot of the first

order term by the factor 23/2 is compensated by a third order term. This term is, in a

sense, related to the skewness of the distribution, but due to a relationship between the

second and third moment of the IG-distribution, it has expectation σ2
1/2.

Example: Simulation

We have simulated 100 observations from a bivariate IG-distribuion corresponding to

n = 1 and b = 1, i.e. the distribution of Al-Hussain and Abd-El-Hakim. The scatterplot

in Figure 5 shows the case for marginal IG-distribution with φ = 2 and δ = 1 and

(Z1, Z2)-correlation equal to τ1 = 0.5. In Figure 6 we show the corresponding (X1, X2)-

plots for the cases of NIG-parameters µ = 0 and β = 0 and (W1, W2)-correlations equal

τ2 = 0 and 0.5 respectively.
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Figure 5: Scatterplot Z2 vs Z1 simulated data

We now return to the question of covariate model choice by determining the param-

eters ai and bi, either by informed calibration or direct estimation from data. We can

get some insight to their interpretation by studying the the excess probability mass in

the dominant covariate direction compared to the independent case. This can be done

by plots of the ”mass transfer” function D(z) = θ · k1(z) · k2(z) · f1(z) · f2(z) for given
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Figure 6: Scatterplots X2 vs X1 for W -correlations 0 and 0.5

choices of τ1 and marginal parameters. Assuming positive τ1 the most striking features

are as follows: For a = 1, probability mass is added in the region where both variables

are in the neighborhood of their expectations, and more is added for increasing b’s. For

a > 1, the probability mass close to their joint expectation is not affected. The main

difference is for joint values less than the expectation and to a minor degree above.

Again the addition of mass in this region is increasing with the b’s. As the a’s increase

the addition moves further away from the joint expectation. In none of the cases there

are a major transfer of mass to the extreme tails in the covariate direction. Plots of

D(z) for some choices of (a, b) is given in Figure 7.

The identification from data of a model within our class may be done via empirical

counterparts of the conditions Eki(Zi) = 0 and E(Ziki(Zi)) for i = 1, 2 that relates to

cov(Z1, Z2). The empirical equations for i = 1, 2

Ei(a, b) =
1

n

n∑

j=1

sign(Zij − ζi)(
Zij

ζi

)1/2v(Zij)
a−1e−bv(Zi)/2 = 0

may have several solutions in terms of a and b, and has to be supplied by some other

moment restriction. Often one may have a rough idea of these parameters as a starting

point to find a solution in the neighborhood.
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Figure 7: Examples of ”mass transfer” functions D(z)

Example: Calibration

For our car maker equity return data, we looked for a solution with small a, and obtained

the parameter fit given in Table 4. From this we see that it will make sense to choose a

common structure by taking ai = 2 and bi = 3 for i = 1, 2, as compared to the choice of

the model of Al-Hussain taking ai = 3/2 and bi = 1. This means that we have calibrated

a model with θ = 2π · τ1 = 3.28.

ai bi Ei

Ford 2.06 3.01 −5.50 · 10−6

GM 1.98 3.00 −9.47 · 10−6

Table 4: Parameter fit Ford - GM

The corresponding NIG-density may be obtained by straightforward integration. We

write symbolically, noting that all unsubscripted quantities are essentially bivariate, and

operations understood to be element-wise:

21



NIG2[a, b](x; µ, β, δ, γ, τ) =
∫

N2(x; µ + βz, z, τ2)) · IG2[a, b](z; δ/γ, δγ, τ1)dz

where IG2[a, b](z; ζ, φ, τ1) denotes the bivariate IG-distribution described above. A

graph of a bivariate NIG density is given in Figure 8 for the case (µ, β, δ, γ) = (0, 0, 1, 1)

for both series and (τ1, τ2) = (0.5, 0.5).
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Figure 8: Bivariate NIG-density

A number of expressions for expectations, variances and covariances for the observ-

able variables may be given in terms of marginal and covariate parameters, dependent

on the parametrization used. In some applications it may be convenient to express a

relationship in terms of κ = E(Z1Z2)
1/2/(EZ1 · EZ2)

1/2. Recalling the results obtained

from the representation in section 1, we have for the symmetric case:

E(Xi) = µi, var(Xi) = ζi, cov(X1, X2) = (ζ1 · ζ2)
1/2 · τ1 · κ

The modifications needed for the asymmetric case are straightforward.
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Although κ may be seen as an alternative measure of (Z1, Z2)-covariation, it varies

for given τ1 with the choice of (a, b). To give an impression of this dependence, which

affects the X-correlation (ρ = κ · τ2 in the symmetric case), we provide Table 5 with

the κ-factor for the cases b = 1, 2, 3 and some choices of a in steps of 0.5. As example

is taken Z-correlation τ1 = 0.5 and identical univariate parameters (δ, γ) = (1, 1), i.e.

(ζ, φ) = (1, 1).

a 1.0 1.5 2.0 2.5 3.0 3.5 4.0

b = 0 0.9226 0.9108 0.9015 0.8941 0.8881 0.8831 0.8789

b = 1 0.9363 0.9276 0.9202 0.9139 0.9083 0.9034 0.8991

b = 2 0.9424 0.9356 0.9295 0.9241 0.9193 0.9149 0.9109

b = 3 0.9459 0.9403 0.9352 0.9306 0.9263 0.9224 0.9188

Table 5: κ-factor

Above we got some insight to how the choice of (a, b) affected the joint distribution

of (Z1, Z2). The question how it affects the distribution of (X1, X2) is a more subtle one.

Clearly it affects the joint volatility in the way described above for (Z1, Z2), but it also

affects the joint skewness. These issues are probably best explored by computational

examples, here limited to the symmetric case.

Example: Bivariate NIG and tail probabilities

It is of interest to compare tail probabilities of the defined NIG-distributions to the

bivariate normal with the same expectation, variance and correlation. For this pur-

pose we look at Q(x) = P [(X1 ≥ x) ∩ (X2 ≥ x)]. Table 6 shows the cases (n, b) =

(1, 0), (1, 1), (1, 2), (1, 3) and (n, b) = (2, 1) for both series (i.e. the half-integer cases cor-

responding to a = 3/2 and a = 5/2 respectively), and otherwise the parameters of the

density in Figure 8 i.e. (µ, β, δ, γ) = (0, 0, 1, 1) for both series and (τ1, τ2) = (0.5, 0.5).

The cases are indicated by appropriate subscripts and may be compared with the case
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of bivariate normal Q0 = (x) with ρ = 0.5. To get the correct comparison, we should

have chosen its X-correlation ρ = κ · 0.5, with κ given in Table 5. This gives ρ = 0.4554,

0.4638, 0.4678, 0.4702, 0.4570 respectively for the five cases shown, and only slightly

smaller binormal tail probabilities than the conservative ones given.

As expected, we see that the NIG-probabilities are somewhat higher in the tails than

the binormal ones. In the context of extreme risk the probability of both variables being

greater than 3.0 is typically about one in thousand for our NIG2, while it is one in

ten thousand for the binormal. We also notice the differences between the NIG in the

moderate tail, which disappears in the extreme tail.

x 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Q10(x) 0.3338 0.1285 0.0416 0.0139 0.0051 0.0021 0.0009 0.0004 0.0001

Q11(x) 0.3338 0.1300 0.0449 0.0169 0.0068 0.0028 0.0012 0.0005 0.0002

Q12(x) 0.3338 0.1306 0.0462 0.0182 0.0075 0.0030 0.0012 0.0005 0.0002

Q13(x) 0.3338 0.1308 0.0469 0.0189 0.0079 0.0031 0.0012 0.0005 0.0002

Q21(x) 0.3338 0.1290 0.0425 0.0146 0.0056 0.0024 0.0011 0.0005 0.0003

Q0(x) 0.3333 0.1633 0.0625 0.0183 0.0040 0.0007 0.0001 0.0000 0.0000

Table 6: Joint tail probabilities

The model specifications above may also be used to illustrate the tail of the return

(or loss) distribution for a portfolio of returns. Let us consider the equal weighted case

Y = 1
2
X1+

1
2
X2 and let R(y) = P (Y ≥ y). Table 7 displays the tail probabilities R(y) for

the same parameter choices as above, where the cases (n, b) = (1, 0), (1, 1), (1, 2), (1, 3)

and (n, b) = (2, 1) are indicated by appropriate subscripts, and where we may compare

with the corresponding binormal probabilities R0(y) for ρ = 0.5. In the context of

extreme risk the probability of portfolio loss being greater than 3.0 is about four in

thousand for our NIG2, while just two in ten thousand for the binormal with correlation
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ρ = 0.5. Again the correct individual correlations for each separate case lead to minor

differences.

y 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

R10(y) 0.5000 0.2454 0.0987 0.0380 0.0155 0.0070 0.0038 0.0023 0.0015

R11(y) 0.5000 0.2431 0.0975 0.0388 0.0169 0.0080 0.0043 0.0025 0.0016

R12(y) 0.5000 0.2420 0.0967 0.0392 0.0175 0.0083 0.0043 0.0025 0.0016

R13(y) 0.5000 0.2415 0.0966 0.0398 0.0182 0.0088 0.0044 0.0025 0.0016

R21(y) 0.5000 0.2450 0.0985 0.0380 0.0157 0.0073 0.0040 0.0025 0.0016

R0(y) 0.5000 0.2819 0.1241 0.0416 0.0105 0.0019 0.0002 0.0000 0.0000

Table 7: Tail probabilities: Portfolio

5 Further research

We have presented two possible approaches that may adapt to our general idea of using

the latent Z’s as basis for covariate estimation and computation. We have explored the

second approach more thoroughly than the first, mainly because it looks more promising,

and some reasons are given below. Further research may include the following:

• Studies to provide a better basis for recommendation of model choice for various

types of financial data, mainly by further study of the joint tail properties of each

model, and providing tools for discriminating among models from data.

• Provide (approximate) expressions for conditional expectations and variances for

specific models.

• Provide more sound theory behind the use of ”estimated” Z-series.
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• Study consequences of possible inconsistencies by pairwise modelling in the true

multivariate context.

Important criteria for a viable risk management approach are of course

- the handling joint extreme tail events, and

- the handling of portfolios.

Our second approach has the advantage of providing expressions for the joint density

and pairs of variables are easily simulated. Concerning the handling of portfolios, the

moment generating function may be useful. By double expectation and conditioning on

Z = (Z1, Z2) it follows that the moment generating function of X = (X1, X2) is (with

τ2 = ρ(W1,W2)):

M(X1,X2)(t1, t2) = Eet1X1+t2X2

= eµ1t1+µ2t2E[e(β1t1+ 1
2
t21)Z1+(β2t2+ 1

2
t22)Z2+τ2t1t2(Z1Z2)1/2

]

Then the moment generating function of any linear combination Y = w1X1 + w2X2 is

MY (t) = EetY = M(X1,X2)(w1t, w2t)

The question is therefore how easy it is to evaluate bivariate integrals of exponentials

with terms linear in z1, z2 and (z1z2)
1/2.

In finance this can be applied to the return on a portfolio of correlated NIG-returns in

several ways. Tail probabilities can be computed by numerical inversion as an alternative

to bivariate integration of the density. A pragmatic alternative may be to approximate

the distribution of Y by an appropriate NIG-distribution using the approach of Erickson

et.al (2004). The general expression of the moment generating function in terms of the
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Z’s may also be used for identification, estimation and/or ”nonparametric” numerical

inversion, in the sense that we do not have to be specific about the underlying bivariate

IG. In the case of exponential utility, the formula can be used directly to rank portfolios,

by appropriate choice of negative t. An advantage of the above formula is that it extends

easily beyond the bivariate case.
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