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Abstract

The problem of estimating an unknown density function has been

widely studied. In this paper we present a convolution estimator for

the density of the responses in a nonlinear regression model. The

rate of convergence for the variance of the convolution estimator

is of order n−1. This is faster than the rate for the kernel density

method. The intuition behind this result is that the convolution

estimator uses model information, and thus an improvement can be

expected. We also derive the bias of the new estimator and conduct

simulation experiments to check the finite sample properties. The

proposed estimator performs substantially better than the kernel

density estimator for well-behaved noise densities.

KEY WORDS: Convergence rate, Convolution estimator, Kernel function, Mean

squared error, Nonparametric density estimation.

1. Introduction

There exists a vast literature on the problem of estimating an unknown density func-

tion f (x) from a given sample X1, X2, ..., Xn of independent and identically distributed

random variables, see e.g.; the books by Härdle (1990), Wand & Jones (1995) and

Simonoff (1996). The most used method is kernel density estimation where f (x) is

estimated by

f ∗(x) =
1

nh

n

∑
i=1

K
( x − Xi

h

)

,

with K being a kernel function and h the bandwidth. It is well known that the asymp-

totic bias and variance of this estimator are of the order h2 and (nh)−1, respectively.
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In this paper we consider the standard nonlinear regression model,

Yi = g(Xi) + ei, (1)

where g is unknown and where {Xi} and {ei} consist of independent and identically

distributed random variables with {ei} independent of {Xi}. Denote the density of Yi

by fY(·). This is the density of interest. The densities of Xi and ei are denoted by fX(·)

and fe(·), respectively. For given observations of (Xi, Yi) one method of estimating the

density of Yi is using the already mentioned kernel density estimator on {Yi}. This

estimator does not require the relationship (1) to hold, and if one is able to construct

an estimator of fY by convolution taking this relationship into account, one would

think that it should be possible to make an improvement. This idea was used in Støve

& Tjøstheim (2007b) for nonparametric estimation of g. For that case, the asymptotic

bias and variance were of the same order as the standard nonparametric regression

estimators, but an asymptotic bias improvement was obtained. However, in the case

of density estimation in equation (1), we are able to obtain a better convergence rate for

the variance. Moreover, often the bias properties are better, although asymptotically

the order of the bias is the same as for the kernel density estimator.

Other authors have also studied this convolution idea; Frees (1994) introduced den-

sity estimation for a symmetric function Y = g(X1, ..., Xm), with g known, of m > 1

independent and identically distributed variables. The density can be estimated at the

rate n−1/2 for certain functions g. This result generalizes to non-identically distributed

random variables, and in particular to convoluted densities f ∗ l(y) =
∫

f (y− x)l(x)dx.

Saavedra & Cao (2000) introduced the convolution-kernel estimator for the marginal

density of a moving average process Yi = Xi − θXi−1 when θ is known, and proved

that this estimator is n1/2-consistent. The case when θ is unknown is examined in

Saavedra & Cao (1999b), and an analogous result is obtained; in this case both θ and

the innovations Xi have to be estimated. Further, Schick & Wefelmeyer (2004a) intro-
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duced a slightly simplified variant of this estimator and proved a stronger result of

asymptotic normality. In Schick & Wefelmeyer (2004b) it is shown that the density of

a sum of independent random variables can be estimated by the convolution of kernel

estimators for the marginal densities, and that this estimator is n1/2-consistent as well.

In Schick & Wefelmeyer (2007) they establish such a result for a general linear process.

A rather different way of taking extra information into account is presented in

Gelfand & Smith (1990), who use Markov Chain Monte Carlo methods when there

is information available on conditional densities.

Note that we allow a nonlinear model where both the function g(·) and the error

terms ei are unknown, and thus have to be estimated. This is in contrast to the models

examined by Frees, Saavedra & Cao and Schick & Wefelmeyer, where the authors

assume that the function describing the nonlinearity is known or that the model is

linear.

Our proposed estimator is presented in section 2, its asymptotic behaviour is exam-

ined in section 3, and some simulation results and a real data example are given in

section 4. Conclusions are in section 5. Proofs are deferred to the appendix.

2. The estimator

From equation (1), because g(Xi) and ei are independent, we have

fY(y) =
∫

fe

(

y − g(u)
)

fX(u)du = E
[

fe

(

y − g(X)
)]

, (2)

where fe is the density of the residuals. Assume we have observations (X1, Y1, ), ..., (Xn, Yn)

of (X, Y). We introduce an estimator based on (2) as

f̂Y(y) = Ê
[

f ∗ẽ
(

y − g̃(X)
)]

. (3)
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Here, g̃ is the Nadaraya-Watson estimator, see e.g. Härdle (1990), with bandwidth hR,

and kernel function KNW
x,hR

(Xi) = (1/hR)KNW
(

(x − Xi)/hR

)

, i.e.

g̃(x) =
∑

n
i=1 KNW

x,hR
(Xi)Yi

∑
n
i=1 KNW

x,hR
(Xi)

. (4)

The estimator for ei is

ẽi = Yi − g̃(Xi),

whereas the estimator f ∗ẽ of the density of ei is the kernel estimator

f ∗ẽ (y) =
1

nhD

n

∑
i=1

K
(y − ẽi

hD

)

,

with bandwidth hD and kernel function K(·), not necessarily equal to the kernel

KNW(·). Thus, using (3),

f̂Y(y) =
1

n

n

∑
i=1

f ∗ẽ
(

y − g̃(Xi)
)

=
1

n

n

∑
i=1

[ 1

nhD

n

∑
j=1

K
(y − g̃(Xi) − ẽj

hD

)]

. (5)

For better understanding of the estimator in (5), we give a simple algorithm for its

numerical calculation. Assume we want to estimate the density of Y in the gridpoints

tk, k = 1, ..., M.

Step 1: Estimate g̃(Xi), for all i = 1, ..., n, with bandwidth hR and kernel KNW .

Step 2: Calculate the error terms ẽi = Yi − g̃(Xi) for all i.

Step 3: For each estimate g̃(Xi) (i = 1, ..., n) calculate the density estimate f ∗ẽ
(

tk −

g̃(Xi)
)

in all gridpoints tk, with bandwidth hD and kernel K.

Step 4: For each gridpoint tk, k = 1, ..., M, average across the n estimates from step 3.

This produces the final estimates f̂Y(tk).

Note that the bandwidths hR and hD need not to be the same. Further, observe that

other nonparametric estimates for g̃ are possible, e.g. the local polynomial estimator,

see Fan (1992). We also believe standard modifications, see e.g. Wand & Jones (1995),

of the kernel density estimator in step 3, could lead to improved estimation of f̂Y.
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3. Asymptotic properties

The following assumptions are made,

A1: The kernel function K is a non-negative symmetric function that integrates

to 1, moreover it is two times differentiable with a bounded second order deriva-

tive.

A2: The function g is differentiable and its inverse exists.

A3: The density fX has compact support S(X), is continous and two times dif-

ferentiable on its support.

A4: limn→∞hD = 0 and limn→∞nhD = ∞.

Condition A1 is standard in nonparametric estimation. If the kernel function is the

standard normal distribution, this condition is automatically fulfilled. It implies that

∫

K′(z)dz = 0 and
∫

z2K′(z)dz = 0.

Condition A2 is introduced to obtain simple expressions. It can be relaxed. The

compact support in condition A3 is also introduced for the sake of simplicity. It can

be removed at the cost of lengthier arguments. An alternative would be to just look at

the X-observations falling within a compact set and do the analysis on that compact

set. Condition A4 is standard. Other assumptions will be imposed when needed.

To study the mean squared error (MSE) of the estimator, it is useful to decompose

the difference between the estimator and the true density in the following manner,

f̂Y(x)− fY(x) = f̂Y(x) − f̃Y(x) + f̃Y(x) − fY(x), (6)

where

f̃Y(x) =
1

n

n

∑
i=1

[ 1

nhD

n

∑
j=1

K
( x − g(Xi) − ej

hD

)]

,
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that is, the proposed estimator (5) with g(·) and ej for j = 1, ..., n, known. We first

consider this “estimator”. To ease notation, we set hD = h.

Theorem 1. If conditions A1-A4 are fulfilled, the bias of f̃Y is

E
(

f̃Y(x)
)

− fY(x) =
h2

2
f ′′Y (x)

∫

w2K(w)dw + O(h4), (7)

and the variance is

var
(

f̃Y(x)
)

=
1

n

∫

fX(v) f 2
e

(

x − g(v)
)

dv

+
1

n

∫ f 2
X(v) fe

(

x − g(v)
)

g′(v)
dv − 2

n
f 2
Y(x)

+
1

n2h
fY(x)

∫

K2(z)dz + O
(

n−1h2
)

. (8)

We note that the bias is equal to the bias of the standard kernel density estimator,

see e.g. Wand & Jones (1995) page 20, but that var
(

f̃Y(x)
)

= O(n−1).

Thus the MSE for f̃Y(x) becomes,

MSE
(

f̃Y(x)
)

=
1

4
h4 f ′′Y (x)2

[

∫

w2K(w)dw
]2

+
1

n

∫

fX(v) f 2
e

(

x − g(v)
)

dv

+
1

n

∫ f 2
X(v) fe

(

x − g(v)
)

g′(v)
dv − 2

n
f 2
Y(x)

+
1

n2h
fY(x)

∫

K2(z)dz + O
(

n−1h2
)

+ O(h6). (9)

If h is of order n−1/4 it follows trivially that the MSE is of order O(n−1).

Note that there are bias reducing techniques, using e.g. a higher order kernel, see

Wand & Jones (1995) page 32, so that the squared bias can be reduced to O(h6) or

O(h8), say, while still keeping the variance at O(n−1). This means that there would be

a wider choice of bandwidths for which the MSE is of order n−1.

We next study the properties of the other term in equation (6), that is, f̂Y(x)− f̃Y(x).

At this point some additional assumptions are introduced. Let f (x, y) = fX,Y(x, y)

denote the joint distribution of (X, Y) and define m(x) =
∫

y f (x, y)dy. We assume
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A5: E|Y|s < ∞ and supx

∫

|y|s f (x, y)dy < ∞, for some s > 2.

A6: m is continous on the support S(X) of X.

A7:
(

nhRh3
)−1

= O(h2−ǫ) for some ǫ > 0, where h = hD.

A8: Infx∈S(X) fX(x) > 0.

A9: The kernel KNW is uniformly continous and of bounded variation. KNW is

absolutely integrable w.r.t. Lebesgue measure on the line. Further, KNW(x) → 0

as |x| → ∞, and
∫

|x log |x|| 1
2 dKNW(x) < ∞.

A10: n2η−1hR → ∞ for some η < 1 − s−1, and h2
R = o

(

[

1
nhR

log 1
hR

]1/2
)

.

These conditions are essentially introduced to secure the uniform convergence of

g̃(x) to g(x). They are taken from Mack & Silverman (1982), and are discussed there.

Note that the condition A8 secures the existence of E
(

g̃(x) − g(x)
)

for x ∈ S(X).

Theorem 2. If conditions A1-A10 are fulfilled, then

E
(

f̂Y(x) − f̃Y(x)
)

∼ − f ′Y(x)
∫

z1K′(z1)dz1

∫

(

E(g̃(x2)) − g(x2)
)

fX(x2)dx2

+
∫

z2K′(z2)dz2

∫

(

E(g̃(x1)) − g(x1)
)

f ′e
(

x − g(x1)
)

fX(x1)dx1 + O(h4) (10)

where the leading term is of order h2, and

var
(

f̂Y(x) − f̃Y(x)
)

∼ O(h4/n).

Using theorem 1 and 2; the total bias of f̂Y(x) will consists of the terms (7) and

(10). This is of order h2, through the dependence on E
(

g̃(x2) − g(x2)
)

, as for the

kernel density estimator, but as we will see in the next section, a bias improvement

may actually occur in some cases. If the bandwidth condition (38) is fulfilled, the total

variance of f̂Y(x) has a leading term given by equation (8), i.e. O(n−1); it is in fact the

rate of the variance for a parametric estimation problem. This result may seem striking.
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However, observe that the density of Y is expressed in (2) as a smooth functional of

the densities of X and e. This suggests that the density of Y can be estimated by

plugging in estimators of the unknown densities and the unknown function g, in the

functional. By the plug-in principle we can expect that this estimator converges at

the parametric rate, even though the estimators being plugged in have a slower rate

of convergence. Some references for smooth functionals of densities are e.g; Hall

& Marron (1987), Birgè & Massart (1995) and Efromovich & Samarov (2000). In these

cases the parametric convergence rate n−1/2 for the estimated functionals are obtained.

4. Evaluating the convolution estimator

To evaluate the finite sample properties of the proposed estimator, (5), we carry out

simulation experiments to compare the convolution estimator with the classic kernel

estimator in (1).

To avoid looking at separate sets of points, the comparisons are based on the mean

integrated squared error (MISE) of the two estimators. The MISE for a density estima-

tor is

MISE( f̂ ) = E
[

∫ ∞

−∞
( f̂ − f )2(x)dx

]

.

We have used 500 simulated realizations with sample sizes from 100 to 5000 for the

model (1), with different choices of the function g(·) and distributions of X and e. The

value of the MISE is approximated as an average of the ISE (integrated squared error)

of the 500 realizations, and the ISE is estimated by numerical integration. If the true

density fY is not known analytically, we have based our comparisons on a numerically

calculated true density from the convolution integral (2). For models 4, 8 and 9, given

below, only 100 realizations have been used, and here the "true" density is taken as the

estimated kernel density computed from 1 000 000 generated observations of (Xi, Yi).
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The choice of bandwidth has a considerable impact on the accuracy of an estimator.

The bandwidth, hD, used in the kernel density estimation in our simulation study, is

the Solve-the-Equation Plug-in estimator proposed in Sheather & Jones (1991). This is

the same for all of the (n − 1) density estimations in equation (5), and this estimator

is also used for the classic kernel estimator. For ease of computation the bandwidth

for the kernel smoothing of g is the rule-of-thumb, see e.g. Härdle (1990) page 91,

1.06 min(σ̂, R/1.34)n−1/5, where R is the interquartile range, σ̂2 is the empirical vari-

ance of all of the observations X1, ..., Xn. We might have obtained better results using a

more optimal bandwidth for the non-parametric regression. Some of the simulations

have also been performed with other bandwidths, but without large changes in the

results. It would be interesting to find the MISE for both estimators as a function of

a general bandwidth, as this would isolate the effect of the estimator used from the

effect of the quality of the bandwidth selector. We leave this for future research.

For both the kernel K of the density estimation, and the kernel KNW of the non-

parameteric smoothing estimation, we have used the Gaussian kernel. Further, the

Gaussian kernel has also been used in the classic kernel density estimator.

The following models are considered:

1. g(x) = x, X ∼ N(1, 1), e ∼ N(0, 0.1).

2. g(x) = x, X ∼ N(1, 1), e ∼ N(0, 1).

3. g(x) = 3x, X ∼ N(1, 1), e ∼ N(0, 1).

4. g(x) = x, X ∼ χ2(3), e ∼ (χ2(3) − 3).

5. g(x) = x2, X ∼ U[0, 2], e ∼ N(0, 1).

6. g(x) = (0.5 + 4e−x2
)x, X ∼ U[−2, 2], e ∼ N(0, 1).

7. g(x) = x, X ∼ N(1, 1), e ∼ Double exponential(0, 1).
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8. g(x) = x, X ∼ N(1, 1), e ∼ ∑
2
l=0

2
7 N( 12l−15

7 , 2
7) + ∑

10
l=8

1
21 N( 2l

7 , 1
21).

9. g(x) = x2, X ∼ U[0, 2], e ∼ (exp(1) − 1).

10. g(x) = x2, X ∼ U[0, 2], e ∼ ( 1
2 N(−3/2, 1/2) + 1

2 N(3/2, 1/2)).

11. g(x) = x3, X ∼ U[−2, 2], e ∼ N(0, 1).

12. g(x) = x, X ∼ N(1, 1), e ∼ t-distributed with 4 degrees of freedom

The second parameter given for the normal distributions is the standard deviation.

Models 1-4 are linear models, with error terms that can be encountered in practice,

and models 5 and 6 are non-linear with normally distributed error terms. Models 7-10

are rather unusual and difficult, and seldom met in practice, but we wanted to see how

the estimator performs in some extreme cases. Models 11 and 12 give a rather heavy-

tailed distribution fY. In most cases of the examples the compactness assumption A3

on fX is not fulfilled. Actually, we do not believe that this assumption is necessary,

and we wanted to check performances in cases where it is violated. In figures 1 and 2

the densities fY are given for all of the models used, except for model 1 and 3, which

are similar to model 2.

The simulation results are given in table 1. The table shows the percentage change

by using the convolution estimator f̂ compared with the kernel density estimator f ∗.

For the MISE, this change is calculated by

MISE( f ∗Y) − MISE( f̂Y)

MISE( f ∗Y)
· 100. (11)

It is composed from the squared bias change and the variance change. The former is

given by

[Ave( f ∗Y − fY)]2 − [Ave( f̂Y − fY)]2

[Ave( f ∗Y − fY)]2
· 100, (12)

where

[Ave( f ∗Y − fY)]2 =
1

k

k

∑
j=1

[( 1

500

500

∑
i=1

f ∗i
Y (xj)

)

− fY(xj)
]2

, (13)
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and similarly for the convolution estimator. In (13) k denotes the number of gridpoints

for which the estimators are calculated, usually k = 500. Thus f ∗i
Y (xj) is the calculated

kernel estimate for the ith realization in gridpoint xj. Further, fY(xj) denotes the true

density in gridpoint xj.

The variance change is calculated as

ˆvar( f ∗Y) − ˆvar( f̂Y)

ˆvar( f ∗Y)
· 100, (14)

where

ˆvar( f ∗Y) =
1

k

k

∑
j=1

[ 1

499

( 500

∑
i=1

(

f ∗i
Y (xj) − Ave{ f ∗Y(xj)}

)2
)]

and similarly for the convolution estimator. Here Ave{ f ∗Y(xj)} denotes the average of

all of the 500 (or 100) kernel estimates in gridpoint xj.

A minus sign in the table, thus indicates that the kernel density estimator performs

better than the convolution estimator.

With the exception of model 1 and the unusual models 8-10 the MISE is smallest for

the convolution estimator. For model 1 the variance of the error terms is very small,

and the kernel density estimator is best. This is not unexpected, since the convolu-

tion effect will not be large here. In fact, the estimates obtained by the convolution

estimator in this model are extremely wiggly and almost useless.

In the non-linear models 5 and 6 with normally distributed error terms, the convo-

lution estimator is much better. Also, for model 11 and 12 the results are good. But

introducing asymmetric and multimodal distributions for the error terms, as in model

8, 9 and 10, the convolution estimator deteriorates. In model 8, the error distribution is

difficult to estimate, but the distributions fY and fX is of much smoother form. Hence

the kernel density estimator could be expected to be better. Figure 3 shows one simula-

tion of sample size 500 from this model. In the upper plot, the simulated values Xi and

Yi are given as points, and the estimated g̃ is depicted as the solid curve. Three bands
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can be discerned in the scatter diagram and the regression estimator is poor. The plot

in the middle shows the estimated error terms, ẽi. There are clear indications of mul-

timodality. In the lower plot, the “true” density is given as the thick solid curve, the

kernel density estimate is given as the solid curve and the convolution estimate as the

dashed curve. The convolution estimator have several modes and thus behaves worse

than the kernel density estimator. Similar problems occurs for model 9. These results

corresponds to analogous results found in Saavedra & Cao (1999a) for the estimation

of the marginal density in a moving average process.

The variance for the convolution estimator is smaller for the majorities of the sim-

ulated examples, and when the sample size increases, the improvements are also in-

creasing. This is consistent with the asymptotic analysis of Section 3, but note that

there are several terms of similar order in the asymptotic expansion, and n has to be

quite large for the leading term to dominate.

The squared bias is smallest in almost all cases for the convolution estimator. This

comes as a somewhat unexpected bonus of our method, since from the asymptotic

analysis the bias is of the same order as for the kernel estimator. Figure 4 shows the

estimated variance and bias for the two estimators from the simulations for model

2 with sample size 100. The upper plot shows that the variance for the convolution

estimator is smallest, as expected. The bias for the kernel density estimator is,

E
(

f ∗Y(x)
)

− fY(x) =
h2

2
f ′′Y (x)

∫

w2K(w)dw + o(h2), (15)

and the plot in figure 4 is as expected, since the bias is proportional to the second

derivative of the density in question, here a normal distribution with mean equal to

one. The bias for the convolution estimator behaves quite differently, and overall it is

considerably smaller. This difference can be explained by the following reasoning.

Since fX and fe are normal distributions, it also means that the true fY will be normal

with mean equal to one and variance equal to two. From this information it is possible
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to calculate the expressions for the bias of the convolution estimator and compare it to

the observed bias in figure 4. The bias of the convolution estimator consists of three

terms, as seen from (7) and (10). Ignoring higher order terms, equation (7) is now

E
(

f̃Y(x)
)

− fY(x) =
h2

2
f ′′Y (x)

∫

w2K(w)dw

=
h2

2

∫

w2K(w)dw
[

− 1

4
√

π
exp{−1/4(x − 1)2}(1 − (x − 1)2

16
√

π
)
]

. (16)

This expression is identical to the bias for the kernel density estimator.

In equation (10) the bias of the Nadaraya-Watson estimator of g(x) is a part of the

expression. This bias is well-known and its leading term is

E
(

g̃(x)
)

− g(x) = h2
(1

2
g′′(x) +

g′(x) f ′X(x)

fX(x)

)

∫

u2K(u)du.

Since
∫

u2K(u)du = 1, g(x) = x and fX is a normal distribution, this expression equals

−2(x − 1)h2. Inserting this in the first term of the right hand side of (10) and again

using the fact that fX is normal with mean and variance equal to one, gives for the

leading term,

− f ′Y(x)
∫

z1K′(z1)dz1

∫

(

− 2(x2 − 1)h2 1√
2π

exp(−(x2 − 1)2/2)
)

dx2.

Observe that the last integral in this expression equals zero.

Further, the second term on the right hand side of (10) yields,

h2
∫

z2K′(z2)dz2

∫

(

(−2(x1 − 1)(
−(x − x1)√

2π
exp(−(x − x1)

2/2))

× 1√
2π

exp(−(x1 − 1)2/2)
)

dx1.

If we choose to use a Gaussian kernel function with mean zero and variance one,

then
∫

z2K′(z2)dz2 is equal to minus one. Thus, the leading term of the bias of the

convolution estimator in this case is

E
(

f̂Y(x)
)

− fY(x) =
h2

2

[

− 1

4
√

π
exp{−1/4(x − 1)2}(1 − (x − 1)2

16
√

π
)
]

−h2
∫

(

(−2(x1 − 1)(
−(x − x1)√

2π
exp(−(x − x1)

2/2))
1√
2π

exp(−(x1 − 1)2/2)
)

dx1.
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This expression is plotted in figure 5, with a reasonable choice for the bandwidth,

h = 0.3. And taking the different scaling into account, this graph compares well to the

empirical bias from figure 4. Similar explanations are possible for the other models,

although problems arise in the computation in the cases where the true density is not

known.

Other nonparametric regression estimators may be used to estimate g(x). In table 2,

results from simulations from model 2, using the local linear estimator for estimating

g(x) are given. For smaller sample sizes these results are better than the corresponding

results using the Nadaraya-Watson estimator, given in table 1.

A real data set has been considered as well. It is the motorcycle data, from Härdle

(1990) page 70. The X-values represent time after a simulated impact with motorcycles

and the response variable Y is the head acceleration of a post human test object. The

density of the response Y has been estimated by the kernel density estimator, where

the bandwidth is the rule-of-thumb given in Härdle (1990), and the convolution estima-

tor. The estimated densities are given in figure 6. The convolution estimator smooths

more than the kernel density estimator, but both estimators seem to give reasonable

results.

5. Conclusions

The proposed convolution density estimator substantially outperforms the usual ker-

nel estimator in the majority of cases examined by us, especially if the error term

density function is smooth and has a relatively large variance. We believe that the

situations where it does not perform so well are of less practical importance.

One should expect that if the g-function is more correctly estimated, then a bet-

ter density estimate will be obtained. Thus using e.g. local polynomial regression
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may improve the density estimation, as is indicated by table 2. Also, by selecting the

bandwidth parameters in the convolution estimator in a more optimal way, by e.g. a

cross-validation technique, one could possibly improve the estimates even more. We

also believe that this estimator can be used in a more general time-series setting where

Xt = g(Xt−1) + et, and the marginal density of the process Xt is of interest. Some

simulation experiments indicate that the convolution estimator will outperform the

kernel density estimator and preliminary theoretical derivations show that the order

of the variance of the convolution estimator will again be n−1, cf. Støve & Tjøstheim

(2007a).

Appendix A: Proofs

Proof of theorem 1. Consider the bias term first. Since Xi and ej are independent for all

i and j,

E
(

f̃Y(x)
)

=
1

n2h
E
[ n

∑
i=1

n

∑
j=1

K
( x − g(Xi) − ej

h

)

]

=
1

h
E
[

K
( x − g(X) − e

h

)

]

.

Further, by a change of variable, the convolution property and Taylor expansion, we

obtain

1

h
E
[

K
( x − g(X) − e

h

)]

=
1

h

∫∫

K
( x − g(v) − u

h

)

fX(v) fe(u)dv du

=
∫∫

K(w) fX(v) fe(x − g(v) − hw)dvdw

=
∫

K(w) fY(x − hw)dw = fY(x) +
h2

2
f ′′Y (x)

∫

w2K(w)dw + O(h4),

and (7) is proved.

The variance term can be decomposed into several covariance terms; see a similar
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argument in Saavedra & Cao (2000),

var
(

f̃Y(x)
)

=
1

n4h2
var

[ n

∑
i=1

n

∑
j=1

K
( x − g(Xi) − ej

h

)]

=
1

n4h2

n

∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

cov
(

K
( x − g(Xi) − ej

h

)

, K
( x − g(Xk) − el

h

)

)

=
1

n4h2

[

nvar
(

K
( x − g(X1) − e1

h

)

)

(17)

+n(n − 1)var
(

K
( x − g(X1) − e2

h

)

)

(18)

+n(n − 1)(n − 2)cov
(

K
( x − g(X1) − e2

h

)

, K
( x − g(X1) − e3

h

)

)

(19)

+2n(n − 1)(n − 2)cov
(

K
( x − g(X1) − e2

h

)

, K
( x − g(X3) − e1

h

)

)

(20)

+n(n − 1)(n − 2)cov
(

K
( x − g(X1) − e2

h

)

, K
( x − g(X3) − e2

h

)

)

(21)

+n(n − 1)cov
(

K
( x − g(X1) − e2

h

)

, K
( x − g(X2) − e1

h

)

)

(22)

+2n(n − 1)cov
(

K
( x − g(X1) − e1

h

)

, K
( x − g(X1) − e2

h

)

)

(23)

+2n(n − 1)cov
(

K
( x − g(X1) − e1

h

)

, K
( x − g(X2) − e1

h

)

)

(24)

+n(n − 1)(n − 2)(n − 3)cov
(

K
( x − g(X1) − e2

h

)

, K
( x − g(X3) − e4

h

)

)

(25)

+n(n − 1)cov
(

K
( x − g(X1) − e1

h

)

, K
( x − g(X2) − e2

h

)

)

(26)

+n(n − 1)(n − 2)cov
(

K
( x − g(X1) − e1

h

)

, K
( x − g(X2) − e3

h

)

)

(27)

+n(n − 1)(n − 2)cov
(

K
( x − g(X2) − e1

h

)

, K
( x − g(X1) − e3

h

)

)]

. (28)

By independence the terms (20), (22), (25), (26), (27) and (28) are equal to zero, and

we just have to examine the remaining terms. In the following the derivations for

the contributing terms, (19) and (21), are shown. One example of a non-contributing

term, (17), is also included. The derivations of the other terms are similar, see Støve &

Tjøstheim (2007c).
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We start by examining the expression (19),

cov
(

K
( x − g(X1) − e2

h

)

, K
( x − g(X1) − e3

h

)

)

= E
(

K
( x − g(X1) − e2

h

)

K
( x − g(X1) − e3

h

)

)

−E
(

K
( x − g(X1) − e2

h

)

)

E
(

K
( x − g(X1) − e3

h

)

)

.

By change of variables and Taylor expansion,

E
(

K
( x − g(X1) − e2

h

)

K
( x − g(X1) − e3

h

)

)

=
∫∫∫

K
( x − g(v) − u1

h

)

K
( x − g(v) − u2

h

)

fX(v) fe(u1) fe(u2)dvdu1du2

= h2
∫∫∫

K(z1)K(z2) fX(v) fe(x − g(v) − z1h) fe(x − g(v) − z2h)dvdz1dz2

= h2
[

∫

fX(v) f 2
e

(

x − g(v)
)

dv + O(h2)
]

.

The second term in the covariance expression is, using exactly the same techniques,

E
(

K
( x − g(X1) − e2

h

)

)

E
(

K
( x − g(X1) − e3

h

)

)

=
[

h
[

fY(x) +
h2

2
f ′′Y (x)

∫

z2K(z)dz + o(h2)
]

]2
= h2 f 2

Y(x) + O(h4).

In total this gives,

n(n − 1)(n − 2)cov
(

K
( x − g(X1) − e2

h

)

, K
( x − g(X1) − e3

h

)

)

= n(n − 1)(n − 2)
[

h2
∫

fX(v) f 2
e

(

x − g(v)
)

dv − h2 f 2
Y(x) + O(h4)

]

. (29)

For (21), using the assumption that the inverse of g(·) exists we obtain

E
(

K
( x − g(X1) − e2

h

)

K
( x − g(X3) − e2

h

)

)

=
∫∫∫

K
( x − g(v) − u

h

)

K
( x − g(w) − u

h

)

fe(u) fX(v) fX(w)dudvdw

= h2
∫∫∫

K(z1)K(z2) fX(v)lX(g(v) + h(z1 − z2)) fe(x − g(v) − hz1)

×r
(

g(v) + h(z1 − z2)
)

dvdz1dz2

= h2
∫

r
(

g(v)
)

fX(v) fe

(

x − g(v)
)

lX

(

g(v)
)

dv + O(h4),
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where (g−1)′ = r and fX(g−1) = lX. Note that

r(v) =
d

dv

(

g−1(v)
)

=
1

g′
(

g−1(v)
) ,

and g−1
(

g(v)
)

= v. Thus

r
(

g(v)
)

=
1

g′(v)

and

lX

(

g(v)
)

= fX

(

g−1(g(v))
)

= fX(v).

As before,

E
(

K
( x − g(X1) − e2

h

)

)

E
(

K
( x − g(X3) − e1

h

)

)

= h2 f 2
Y(x) + O(h4),

and hence

n(n − 1)(n − 2)cov
(

K
( x − g(X1) − e2

h

)

, K
( x − g(X3) − e2

h

)

)

= n(n − 1)(n − 2)
[

h2
∫ f 2

X(v) fe

(

x − g(v)
)

g′(v)
dv − h2 f 2

Y(x) + O(h4)
]

. (30)

The expressions (29) and (30) give the three leading terms in the theorem.

To consider one example of a non-contributing term, we turn to the expression (17),

var
(

K
( x − g(X1) − e1

h

)

)

= E
(

K2
( x − g(X1) − e1

h

)

)

−
[

E
(

K
( x − g(X1) − e1

h

)

)]2
.

By change of variables, convolution and Taylor expansion,

E
(

K2
( x − g(X1) − e1

h

)

)

=
∫∫

K2
( x − g(v) − u

h

)

fX(v) fe(u)dvdu

= h
∫∫

K2(z) fX(v) fe(x − g(v) − hz)dvdz = h
∫

K2(z) fY(x − zh)dz

= h
∫

K2(z)
[

fY(x) − hz f ′Y(x) +
h2z2

2
f ′′Y (x)

]

dz + O(h4)

= h fY(x)
∫

K2(z)dz +
h3

2
f ′′Y (x)

∫

z2K2(z)dz + O(h4).

Using exactly the same techniques,

[

E
(

K
( x − g(X1) − e1

h

)

)]2
=

[

h
[

fY(x) +
h2

2
f ′′Y (x)

∫

z2K(z)dz + o(h2)
]

]2
,
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and hence

nvar
(

K
( x − g(X1) − e1

h

)

)

= n
[

h fY(x)
∫

K2(z)dz − h2 f 2
Y(x) + O(h2)

]

.

The other non-contributing terms is derived similarly, see Støve & Tjøstheim (2007c).

Adding all the expressions stemming from (17)-(28), we get the variance expression (8)

in the theorem.

Proof of Theorem 2. Consider the estimator f̂Y(x) in (5). By substituting for ẽj, Taylor

expanding K(·) around (x − g(Xi) − ej)/h and using the mean value theorem, we

obtain,

f̂Y(x) =
1

n

n

∑
i=1

[ 1

nh

n

∑
j=1

K
( x − g̃(Xi) − ẽj

h

)

]

=
1

n

n

∑
i=1

[ 1

nh

n

∑
j=1

K
( x − g(Xi) − ej + g̃(Xj) − g(Xj) − (g̃(Xi) − g(Xi))

h

)

]

=
1

n

n

∑
i=1

[ 1

nh

[

n

∑
j=1

K
( x − g(Xi) − ej

h

)

+ K′( x − g(Xi) − ej

h

)

×
( g̃(Xj) − g(Xj) − (g̃(Xi) − g(Xi))

h

)

+ An(ξ)
]

]

,

where for some ξ determined by the mean value theorem

An(ξ) = K′′(ξ)
( g̃(Xj) − g(Xj) − (g̃(Xi) − g(Xi))

h

)2

≤ M ·
( g̃(Xj) − g(Xj) − (g̃(Xi) − g(Xi))

h

)2
. (31)

Here M is a constant determined by condition A1. Thus,

f̂Y(x) − f̃Y(x) =

1

n

n

∑
i=1

[ 1

nh

n

∑
j=1

[

K′( x − g(Xi) − ej

h

)

· g̃(Xj) − g(Xj)

h

+K′( x − g(Xi) − ej

h

)

· g(Xi) − g̃(Xi)

h

]

]

+
1

n

n

∑
i=1

[ 1

nh

(

n

∑
j=1

K′′(ξ)(
g̃(Xj) − g(Xj) − (g̃(Xi) − g(Xi))

h
)2

)

]

. (32)
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Let us first examine the last term of (32). We observe that for i = j it is zero. For i 6= j,

if we denote by Fn the joint empirical distribution function of Xi and Xj. We have

1

h3

∣

∣

∣

1

n

n

∑
i=1

[ 1

n

n

∑
j=1

(

g̃(Xj) − g(Xj) − (g̃(Xi) − g(Xi))
)]2

∣

∣

∣

≤ 1

h3

∫∫

supx1∈S(X),x2∈S(X)

(

g̃(x2) − g(x2) − (g̃(x1) − g(x1))
)2

dFn(x1)dFn(x2)

≤ 1

h3
supx1∈S(X),x2∈S(X)

(

g̃(x2) − g(x2) − (g̃(x1) − g(x1))
)2

∫∫

dFn(x1)dFn(x2)

≤ 1

h3
supx1∈S(X)

(

g(x1) − g̃(x1)
)2

+ supx1∈S(X),x2∈S(X)

∣

∣

∣
2
(

g(x1) − g̃(x1)
)

×
(

g̃(x2) − g(x2)
)

∣

∣

∣
+ supx2∈S(X)

(

g̃(x2) − g(x2)
)2

. (33)

Using a uniform convergence result for the Nadaraya-Watson estimator and making

use of assumptions A5, A6, A9 and A10; see Mack & Silverman (1982),

supx∈S(X)|g̃(x) − g(x)| = OP

(

[ 1

nhR
log

( 1

hR

)]1/2
)

,

and hence the order in probability of the expression in (33) is

OP

( 1

nhR · h3
log

( 1

hR

)

)

, (34)

where hR is defined in (4). Using the same argument as when evaluating (33) it will

also be seen that the mean of the absolute value and the standard deviation of this

term is of the order given in (34). (See below for the existence of these quantities

under the assumption infx∈S(X) fX(x) > 0.)

Next, we examine the first order term of (32). We start by looking at the expectation

of this term. For the expectation to exist we need the existence of E(g̃(Xi) − g(Xi)),

but using the definition of the Nadaraya-Watson estimator, this follows from condition

A8. We again note that the expectation disappears for i = j, and for i 6= j we have,

using independence, for the first part of the first order term

E
( 1

n2h

n

∑
i=1

n

∑
j=1

K′( x − g(Xi) − ej

h

)

·
( g̃(Xj) − g(Xj)

h

)

)

∼ 1

h2

∫∫∫

K′( x − g(x1) − u

h

)(

E(g̃(x2)) − g(x2)
)

fe(u) fX(x1) fX(x2)dudx1dx2.
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Now Taylor expanding and using a convolution argument, we obtain

1

h

∫∫∫

K′(z1)
(

E(g̃(x2)) − g(x2)
)

fe(x − g(x1) − z1h) fX(x1) fX(x2)dz1dx1dx2

=
1

h

∫∫

K′(z1)
(

E(g̃(x2)) − g(x2)
)

fY(x − z1h) fX(x2)dz1dx2 =

− f ′Y(x)
∫

z1K′(z1)dz1

∫

(

E(g̃(x2)) − g(x2)
)

fX(x2)dx2

+
h

2
f ′′Y (x)

∫

z2
1K′(z1)dz1

∫

(

E(g̃(x2)) − g(x2)
)

fX(x2)dx2 + O(h4). (35)

Observe that since the kernel is symmetric,
∫

z2
1K′(z1)dz1 = 0, so there is no term of

order O(h3). The whole term is of order O(h2) through the dependence on E
(

g̃(x2) −

g(x2)
)

.

Examining the second part of the first order term in (32), by similar arguments

−E
( 1

n2h

n

∑
i=1

n

∑
j=1

K′( x − g(Xi) − ej

h

)

·
( g̃(Xi) − g(Xi)

h

)

)

∼
∫

z2K′(z2)dz2

∫

(

E(g̃(x1)) − g(x1)
)

f ′e
(

x − g(x1)
)

fX(x1)dx1 + O(h4). (36)

In total, the terms (35) and (36) are of order h2, but can be reduced by higher order

kernels.

Further, we examine the variance of the first order term in (32). The condition A8

again guarantees the existence of this variance. The calculations are similar to the

calculations where we found the variance of f̃Y(x). The variance in question is

var
( 1

n2h2

n

∑
i=1

n

∑
j=1

[

K′( x − g(Xi) − ej

h

)

×
(

g(Xi) − g̃(Xi) + g̃(Xj) − g(Xj)
)

])

=
1

n4h4

n

∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

cov
[

K′( x − g(Xi) − ej

h

)(

g(Xi) − g̃(Xi) + g̃(Xj) − g(Xj)
)

,

K′( x − g(Xk) − el

h

)(

g(Xk) − g̃(Xk) + g̃(Xl) − g(Xl)
)

]

. (37)

The evaluation of these terms can be found in Støve & Tjøstheim (2007c). It turns out

that they are of order O(h4/n), thus they will only contribute higher order effects to
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the overall variance of f̂Y(x). It follows that under condition A7 the first order term of

the Taylor expansion in (32) dominates the second order term.

Remark. There is a potential to improve on (34), since the evalution in (33)-(34) is

quite crude. An alternative would be to try to evaluate the second order term directly,

as was done for the first order term in the Taylor expansion (32), using the convolution

property, and then include a third order term which can be evaluated (crudely) as

above, resulting in a term Op

(

[

1
nhRh3 log 1

hR

]3/2
)

. For the crude estimate (34) to be of

order O( 1√
n
), we must have

hRh3 = O(n−1/2−ǫ) for some ǫ > 0. (38)
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Model Sample size Squared bias Variance MISE

1 100 85.4 % -706.8 % -582.1 %

1 500 89.9 % -498.1 % -385.8 %

1 5000 -225.9 % -278.0 % -267.7 %

2 100 85.7 % 30.8 % 38.0 %

2 500 99.2 % 50.6 % 59.8 %

2 5000 95.6 % 71.0 % 75.9 %

3 100 90.2 % -96.3 % -68.6 %

3 500 94.0 % -41.7 % -14.7 %

3 5000 94.2 % 16.7 % 32.8 %

4 100 62.1 % 19.7% 27.5 %

4 500 68.2 % 1.6 % 17.7 %

4 5000 80.3 % 21.9 % 32.5 %

5 100 89.7 % 24.9 % 34.7 %

5 500 85.7 % 44.3 % 52.5 %

5 5000 80.7 % 62.6 % 66.4 %

6 100 84.6 % 0.4 % 19.6 %

6 500 82.6 % 33.9 % 44.4 %

6 5000 77.4 % 57.2 % 62.1 %

7 100 99.4 % 19.2 % 29.4 %

7 500 98.5 % 25.9 % 42.5 %

7 5000 86.8 % 47.5 % 56.4 %
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Model Sample size Squared bias Variance MISE

8 100 -18.5 % 1.7 % -3.1 %

8 500 13.6 % -130.3 % -96.9 %

8 5000 54.5 % -319.4 % -259.6 %

9 100 49.1 % -37.9 % -9.1 %

9 500 58.1 % -33.2 % -0.8 %

9 5000 57.5 % -38.5 % -20.1 %

10 100 -57.4 % -0.5 % -18.9 %

10 500 9.3 % -21.7 % -11.7 %

10 5000 57.7 % -3.5 % 11.8 %

11 100 19.6 % -3.5% 1.5 %

11 500 9.0 % 23.7 % 20.3 %

11 5000 -25.1 % 53.8 % 37.2 %

12 100 96.2 % 22.4% 34.9 %

12 500 98.3 % 38.0 % 49.5 %

12 5000 97.7 % 63.4 % 69.8%

Table 1: Percentage improvements in estimations using the convolution den-

sity estimator compared with the kernel density estimator. The MISE,

squared bias and variance are explained in formula (11), (12), (14). A

minus sign indicates that the kernel density estimator performs best.
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Sample size Squared bias Variance MISE

100 92.6 % 36.7 % 49.8 %

500 89.2 % 58.9 % 66.2 %

5000 85.8 % 70.9 % 74.3 %

Table 2: Percentage improvements in estimations using convolution density es-

timator with local linear estimator, compared with kernel density esti-

mator. Model 2.
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Figure 1: The densities fY for models (from top left to bottom right) 5, 6, 7, 10,

11 and 12.
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Figure 2: The densities fY for models 2, 4, 8 and 9.
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Figure 3: Upper plot: The estimated g function (solid curve) and the simulated

points (Xi, Yi) from one simulation of sample size 500 from model 8.

Middle plot: The corresponding estimated ei. Lower plot: The “true”

density fY (thick solid curve) and the estimated densities (dashed

curve - convolution estimator, solid curve - kernel density estimator).
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Figure 4: The estimated variance (top) and bias for model 2 (dashed curve -

convolution estimator, solid curve - kernel density estimator).
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Figure 5: The theoretical bias of the convolution estimator in model 2.
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Figure 6: The estimated densities of a real data set (solid line - kernel and

dashed line - convolution)
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