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1. Introduction

In the “Norwegian patient list system in general practice” the patients can be assigned to a doctor
that agrees to have the main responsibility for his or hers patients. As there are limited numbers
of doctors of each type, however, it may happen that a significant number of patients are assigned
to doctors of the “wrong type”, i.e., a type of doctor that they really do not want.

Ubøe & Lillestøl (2007) suggested a new statistical framework for this scenario. It turned out,
however, that to apply this model to real world data, a number of rather delicate mathematical
problems had to be solved. In this paper we are able to present complete solutions to these
problems. As an illustration of the theory we will consider a special case using patient list data
from the Norwegian patient list system in general practice. These data describe the allocation of
male and female patients to male and female doctors. Assuming that the system is cost efficient
(see below for a definition of cost efficiency), we can use the allocations to infer strength of
preferences among patients in each group.

The Norwegian patient list system in general practice is described in some detail in Ubøe &
Lillestøl (2007), and we refer to that paper for a review of the system. In this paper we want to
infer strength of preferences from observed allocations. We believe that our basic approach to
this problem is novel, and it is to our knowledge the only known approach to the type of problem
we consider here. Hence we will not enter into a discussion of related/alternative models.

The paper is organized as follows: In Section 2 we briefly recall the construction in Ubøe &
Lillestøl (2007), and show how we can obtain unique representations of preferences. In Section
3 we consider cases with partial information, i.e., cases where parts of the data are missing,
and demonstrate how we can infer strength of preferences in such cases. In Section 4 we
use the constructions from Section 2 and 3 to infer strength of preferences from real world
data. These data were collected from an official panel survey of Norwegian living conditions
(“Levekårsundersøkelsen2003”). The responses to preferencequestionswerevery low, however,
and more so for males than females. Hence the empirical part of the paper must be considered
more as an illustration of the theory, and not so much as an empirical survey in its own right. In
Section 5 we offer some concluding remarks.

To enhance readability of the paper, a few proofs have been placed in Appendix 1. The models
we use in this paper are strongly non-linear involving a sometimes large number of parameters.
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We have developed some new numerical methods that are able to handle systems with several
hundred parameters. We expect that few readers are interested in numerical remarks, however,
so a survey of these numerical methods has been placed in Appendix 2.

2. Identification of utilities in the patient list model

The model in Ubøe & Lillestøl (2007) can be described briefly as follows: Assume that there
are S groups of patients, T types of doctors, and let Pts denote the number of patients in group
s that has a doctor of type t, s = 1, . . . , S, t = 1, . . . , T .

• Patients: We assume that there is a total ofEs patients belonging to group s, s = 1, . . . , S.
A patient belonging to group s is assumed to have a utility Uts of having a doctor of type
t, s = 1, . . . , S. In may sometimes happen, however, that a patient prefer to wait for a
vacancy of a suitable doctor rather than being assigned to a doctor of a type that the patient
dislikes. We let Pt(s+S) denote the number of patients waiting on a doctor of type t (not
being assigned to any doctor), and let Ut(s+S) denote the utility of these patients.

• Doctors: Every doctor working within the system is assumed to have a certain list length,
i.e., a maximum number of patients that he or she can serve. We assume that there areDt

doctors of type t, and that these doctors can serve a total of Lt patients, i.e., Lt is the sum
of the list lengths of all doctors of type t. Some doctors may have vacancies, and we let
Ut(2S+1) denote the disutility per vacancy incurred by a doctor of type t.

Utilities may of course be negative, in which case we refer to these numbers as disutilities.

Clearly the (E1, . . . , ES) patients can be allocated to the (D1, . . . ,DT ) doctors in many different
ways. The basic hypothesis in Ubøe & Lillestøl (2007), however, is to assume that the system is
cost efficient in the sense that states with large total utility (sum of the utility of all patients and
doctors) are more probable than states with smaller total utility. If the system is cost efficient
with a large number of patients in every group, it is possible to prove, see Ubøe & Lillestøl
(2007), that the allocation will settle at a statistical equilibrium given by the following explicit
formula:
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Pts =






AtBs exp[Uts] if s = 1, . . . , S
DtBs−S exp[Uts] if s = S + 1, . . . , 2S
At exp[Uts] if s = 2S + 1

SX

s=1

Pts + Pt(2S+1) = Lt t = 1, . . . , T

TX

t=1

°
Pts + Pt(s+S)

¢
= Es s = 1, . . . , S

(1)

See Appendix 2 on how to compute the balancing factors A1, . . . , AT , B1, . . . , BS .

The basic problem we want to address in this paper can be formulated as follows: Assume that

the system is cost efficient and that we observe

• The total number of patients in each group. i.e., Es, s = 1, . . . , S

• The total number of doctors of each type, i.e., Dt, t = 1, . . . , T

• The total list length of doctors of each type, i.e., Lt, t = 1, . . . , T

• The final allocation of patients to doctors, i.e., Pts, s = 1, . . . , 2S + 1, t=1,. . . ,T

To what extent do these observations reveal the strength of the preferences

Uts, s = 1, . . . , 2S + 1, t = 1, . . . , T?

It is easy to observe, however, that there are always an infinite number of utility matrices leading
to the same final allocation. To obtain uniqueness we hence have to impose some additional
restrictions. More precisely we can prove the following:

THEOREM 2.1

Assume that an observed patient list distribution P can be replicated by a model that satisfies

(1). Then we can find a unique utility matrix U on the form





0 0 0 . . . 0 v11 v12 . . . v1S 0
0 u11 u12 . . . u1(S−1) v21 v22 . . . v2S w1

0 u21 u22 . . . u2(S−1)

...
... . . .

... w2

...
...

...
...

...
...

... . . .
...

...
0 u(T−1)1 u(T−1)2 . . . u(T−1)(S−1) vT1 vT2 . . . vTS wT−1




(2)

that replicates P.
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PROOF

See Appendix 1.

The zeros in (2) can be interpreted as reference points and the corresponding groups as reference
groups. Uniqueness is obtained when we specify how much more/less utility the other groups
have in comparison to these reference groups. Clearly, reference groups can be chosen in
many different ways, hence there are many alternative ways to obtain uniqueness. While the
representation given by (2) has several favorable properties, results given on this form are quite
hard to interpret. Hence it might be profitable to look for other representations offering more
transparent interpretations.

We can obtain alternative unique representations by assuming a utility structure with sufficient
identities and/or symmetries. Nevertheless, it is convenient to use (2) as a canonical form,
both for algorithmic programming and for resolving theoretical issues. One important issue
is that of identification, i.e., recovering the parameters of an assumed utility structure from its
established canonical form. Equivalent structures are obtained by transformations of U that
leave P invariant. These are:

• Add/subtract a fixed T -dimensional column vector a to all columns of s = 1, . . . , S and
s = 2S + 1 (i.e. except s = S + 1, . . . , 2S).

• Add/subtract a fixed 2S +1-dimensional row vector of form (b,b,0) with b S-dimensional
to all rows.

• Add/subtract a constant c to column s = 2S +1 and at the same time subtract/add the same
constant from all columns s = S + 1, . . . , 2S.

However, the easiest way to check identifiability may be to use the transform given by formula
(8) in Appendix 1 and check the uniqueness of the parameter recovery.

3. Inference under partial information

Assume that we know the number of patients on the patient lists and the number of vacancies,
but do not know how many patients that are waiting for a vacancy. Is it then possible to infer
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the strength of preferences of the patients on the patient lists? The answer is yes, and this can
be demonstrated as follows:

Assume that P (0)
ts s = 1, . . . , S, t = 1, . . . , T is given, and let for s = S+1, . . . , 2S+1, t = 1, . . . , T

P (1)
ts and P (2)

ts be arbitrary numbers.

Define the following aggregated quantities

L(0)
t =

SX

s=1

P (0)
ts , E(0)

s =
TX

t=1

P (0)
ts , L(i)

t =
2S+1X

s=S+1

P (i)
ts , E(i)

s =
TX

t=1

P (i)
ts i = 1, 2

THEOREM 3.1

For i = 1, 2 put Lt = L(0)
t + L(i)

t , Es = E(0)
s + E(i)

s , and find a unique matrix U(i) of the form

(2) such that the system given by (1) replicates the numbers

Pts =

(
P (0)

ts if s = 1, . . . , S, t = 1, . . . , T
P (i)

ts if s = S + 1, . . . , 2S + 1, t = 1, . . . , T
(3)

If K =
P (2)

1(2S+1)

P (1)
1(2S+1)

, then the two utility matrices U(1) and U(2) are connected through the formula

U(2)
ts =






U(1)
ts if s = 1, . . . , S, t = 1, . . . , T

U(1)
ts + ln[P (2)

ts /P (1)
ts ] + lnK if s = S + 1, . . . , 2S, t = 1, . . . , T

U(1)
ts + ln[P (2)

ts /P (1)
ts ]− lnK if s = 2S + 1, t = 1, . . . , T

(4)

PROOF

See Appendix 1.

As we can see from Theorem 3.1, the utilities Uts, s = 1, . . . , S, t = 1, . . . , T do not depend on
the values of Pts for s = S + 1, . . . , 2S + 1, t = 1, . . . , T . Hence we have the following corollary:

COROLLARY 3.2

Assume that Pts s = 1, . . . , S, t = 1, . . . , T are known, while data on Pts for s = S+1, . . . , 2S+1,

t = 1, . . . , T are missing. If we choose Pts > 0 for s = S +1, . . . , 2S +1, t = 1, . . . , T arbitrarily,

we can still infer the correct values on Uts, s = 1, . . . , S, t = 1, . . . , T .
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In the next section we will apply this theory to some real world data. The data we were able
to obtain did not contain any information on the number of patients waiting for vacancies.
Nevertheless we can appeal to Corollary 3.2 and infer preferences of the various patient groups
that are registered with a doctor. Moreover, we see from the bottom line in formula (4) that we
can also obtain strength of preferences for vacancies in cases where information on the number
of patients waiting for vacancies are missing. Clearly, however, it is impossible to infer strength
of preferences for groups of patients waiting for vacancies unless we have data for these groups.

4. Application to patient list data

Suppose that patients and doctors are grouped by gender and the issue is whether the patients
want a doctor of the same gender or not. In this case T = 2, with groups denoted M (male) and
F (female), and S = 4with groups denoted mm, mf, fm and ff, where the first letter is the gender
of the patient and the second letter is the preferred gender of doctor. The utility matrix is then

U =
∑

U11 · · · U14 U15 · · · U18 U19

U21 · · · U24 U25 · · · U28 U29

∏
(5)

with the row order is M, F and the column order is mm, mf, fm, ff, mm-w, mf-w, fm-w, ff-w,
vacancy, where w indicates a waiting list state. See Table 1-6 below for a more reader friendly
format. Consider the following assumptions

(i) all utilities for correct patient/doctor matching are equal and (without loss of generality)
taken to be zero

(ii) all disutilities of being on a waiting list are the same
(iii) the disutilities of vacancy are the same for both gender of doctors.

To facilitate discussion consider the more general case

U =
∑

0 a2 0 a4 b11 b12 b13 b14 c1

a1 0 a3 0 b21 b22 b23 b24 c2

∏
(6)

where bts = bt, t = 1, 2 corresponds to equal waiting list disutilities within each gender of
patients. Then assumption (ii) corresponds to b1 = b2 = b and assumption (iii) corresponds to
c1 = c2 = c.

For a given observed P-matrix suppose we have computed the unique canonicalU-matrix. The
question now is whether and how we can recover each element of the assumed matrix structure.
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We will briefly explore this identification issue. TransformingU by formula (8) in Appendix 1
to its canonical form gives

U =

"
0 0 0 0
0 −a2 − a1 a3 − a1 −a4 − a1

b11 + c1 b12 + c1 − a2 b13 + c1 b14 + c1 − a4 0
b21 + c1 b22 + c1 − a2 b23 + c1 b24 + c1 − a4 c2 − c1 − a1

# (7)

We see that we do not have identifiability, unless we add restrictions. Assume first c1 6= c2. To
identify the a’s individually, we may fix one of them, say take a4 = −1, which is just a matter of
choice of scale. Now the identified a’s may be used in the identification of b’s and c’s if needed.
Since bts and c1 occur as a sum they are not individually identified, unless we add an assumption
that relates them, say each bts is a multiple or fraction of c1. With the assumption of equal b’s,
either within each gender or for both gender, i.e. assumption (ii), we have over-identification,
and we may lump the identified bts’s together by averaging. This may not give exact replication,
but a good fit in the statistical sense. The element c2 − c1 − a1 in the south-east corner of the
matrix now automatically identifies c2. With assumption (iii), we see that this element is reduced
to−a1, and thereby does not contribute to the identification of the common c, but in fact identifies
a1 directly. This means that for exact identification of the others, we have to leave out the scaling
assumption on a4. On the other hand we may look at this as over-identification providing added
information on a1, and thereby also on a2 and a3. Numerically this case is degenerate. The limits
limc1→c2 Uts s = 1, . . . , S, t = 1, . . . , T exist, however, and coincide with the values reported in
Table 2 below.

The Norwegian patient list system was introduced in year 2001 and is monitored by the authori-
ties. Data on availability of doctors aremade readily available to the public, and some aggregated
data on list composition and vacancies are also available for research purposes. Reliable data on
doctor preference are not readily available. However, somequestions on the combination (gender
of respondent, gender of assigned doctor, preferred gender of doctor) were included the official
panel survey of Norwegian living conditions (“Levekårsundersøkelsen 2003”). Unfortunately
the responses to the preference question were very low, and more so for males than females.
This also affects the distribution of doctors among gender in the data base. We have therefore
scaled the data to get the marginal frequencies in accordance with the approximately known
distribution of doctors at the time, namely 70%males and 30% females. The result is then given
in Table 1 per 1 000 respondents. A survey made by the Norwegian Ministry of Health and Care
Services (2004) reports a total of 2 026 doctors with vacancies, the average number of vacancies
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being 223. With the reported 4 563 751 patients served, this gives 99 vacancies per 1 000 patients.
For illustrative purposes we round this in Table 1 to 100 patients per 1 000 served. We have no
information on how this is distributed among the gender of doctors, and will look into how this
affects the solution. If they are distributed evenly among the genders, the number will be as
given in the parentheses. Officially there are no waiting lists, and data on this are hard to get,
and not really needed for our illustrative purpose. Note that the number of patients who want a
doctor of the same gender is higher for males than for females.

Patient group mm mf fm ff mm-w mf-w fm-w ff-w vac

M-doctor 455 12 69 164 − − − − (70)
F-doctor 19 14 2 265 − − − − (30)

Totalling 474 26 71 429 − − − − 100

Table 1: Observed counts in each group per 1000 patients served

From the data in Table 1 we get the uniquely defined disutilities of Table 2, where the data in
parenthesis affect the computed disutility in the parenthesis only. Identification according to the
assumed structure (7) gives Table 3. Note that our model provides perfect fit to data, and that
traditional statistical estimation and sampling error analysis do not apply. Hence it makes no
sense to report standard errors in these cases.

Patient group mm mf fm ff mm-w mf-w fm-w ff-w vac

M-doctor 0 0 0 0 − − − − 0
F-doctor 0 3.33 −0.37 3.66 − − − − (2.33)

Table 2: Canonical utilities using the representation in (2)

Patient group mm mf fm ff mm-w mf-w fm-w ff-w vac

M-doctor 0 −0.67 0 −1 − − − − (c1)
F-doctor −2.66 0 −3.03 0 − − − − (c1 − 0.33)

Table 3: Alternative utilities using the condition a4 = −1 in (7)

We see that this reveals a structure where the felt nuisance of a mismatched male patient who
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wants a female doctor is less than the corresponding mismatch for female patients wanting a
female doctor. Furthermore we see that, for both male and female patients, the felt nuisance
of getting a female doctor when wanting a male in considerably higher, and highest for female
patients.

Moreover we see that c1 > c2 for the given data, i.e., the disutility for a vacant entry appears
larger for male doctors than for female doctors. We may study how the solution depends on the
assumed vacancy counts (x, 100− x). It turns out that c2 − c1 is a decreasing function of x and
is zero for the added datum x = 63. Thus when the costs of vacancy are equal for both gender
of doctors, we expect less than proportionate vacancy at male doctors. This is so because more
males patients prefer a doctor of the same gender than female patients, and despite the expected
harder pressure on doctors of the scarce gender, which may come as a surprise.

For the data given in Table 1 the identification of utilities under the condition (iii) c1 = c2 = c is
given in Table 4.

Patient group mm mf fm ff mm− w mf − w fm− w ff − w vac

M-doctor 0 −1.00 0 −1.32 − − − − (c)
F-doctor −2.33 0 −2.70 0 − − − − (c)

Table 4: Identified utilities using the conditions c1 = c2 = c and the vacancies (70, 30)

If we compare the numbers in Table 3 and 4, we see that the two representations are not very
different, and that the remarks below Table 3 also apply to the numbers reported in Table 4.

For illustrative purposes we now add the artificial data for persons on waiting lists as given in
Table 5. This gives the complete set of canonical utilities given in Table 6.

Patient group mm mf fm ff mm-w mf-w fm-w ff-w vac

M-doctor 455 12 69 164 8 4 9 1 70
F-doctor 19 14 2 265 2 6 4 6 30

Totalling 474 26 71 429 10 10 13 7 100

Table 5: Observed counts with added artificial waiting list data
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Patient group mm mf fm ff mm-w mf-w fm-w ff-w vac

M-doctor 0 0 0 0 −7.66 −4.71 −5.65 −8.71 0
F-doctor 0 3.33 −0.37 3.66 −8.19 −3.46 −5.61 −6.08 2.33

Table 6: Canonical utilities using representation (2) together with data from Table 5

Assuming (ii) and (iii) with all bts = b = c, we get b = −3.42 by the proposed averaging. The
nuisance of being on a waiting list without being assigned to a doctor is therefore somewhat
higher than being assigned to a doctor of wrong gender, as we would expect it to be. If we
instead assume all bts = b = 2c, we get the somewhat stronger felt nuisance b = −4.56.

5. Concluding remarks

Ubøe and Lillestøl (2007) proposed a new type of statistical model to study allocation of groups
of patients to different types of doctors. The problem of non-uniqueness of preferences was
mentioned briefly in the concluding remarks of that paper. Only later we realized the seriousness
of this problem, i.e., that special methods had to be developed to classify and interpret the results.
In this paper we have made the model operational in the sense that it can now be used to infer
strength of preferences from observed patient list data, and the problem of non-uniqueness has
been solved completely by Theorem 2.1.

As an illustration of this theorywe have applied themodel to patient list data from theNorwegian
patient list system in general practice. It is quite clear, however, that this type of model can be
used to infer preferences from much more refined systems than the one we have studied in the
empirical part of this paper. Here we only made use of two types of doctors and 4 groups
of patients. Our model allows arbitrary many types of doctors and arbitrary many groups of
patients. The numerical methods developed in Appendix 2 are very powerful, and a systemwith,
e.g., 10 types of doctors and 10 different patient groups can be computed without problems.

The revealed preferences from the Norwegian patient list data turned out to be very reasonable,
and mostly in accordance with prior beliefs. Despite the weakness of such data, they may give
some backing for the health authorities, e.g., when asking questions like: What changes are
likely to happen when the fraction of female doctors are on the rise? This may be answered
by using the model in the forward manner, as described in Ubøe and Lillestøl (2007), and in
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more detail in Lillestøl et.al. (2007). Revealed disutilities are then used as input, representing
the current preference status. It would clearly be of interest to have periodic updates on patient
allocations and preferences to investigate the stability of disutilities.

6. Appendix 1: Proofs

Consider the following matrix transformation

Ũts =






Uts − Ut1 − U1s + U11 if s = 1, . . . , S
Uts − U1(s−S) + U1(2S+1) if s = S + 1, . . . , 2S
Uts − Ut1 − U1(2S+1) + U11 if s = 2S + 1

(8)

LEMMA 6.1

Let U = {Uts}M,N
s,t=1 be given, let Ũ be defined by (8) and let P and P̃ denote the corresponding

distributions of patients in (1) when we use U and Ũ, respectively. Then P = P̃.

PROOF

Let A1, . . . , AT , B1, . . . , BS denote the balancing factors solving (1) when we use U, and define

Ãt = At exp[Ut1 + U1(2S+1) − U11] t = 1, . . . , T
B̃s = Bs exp[U1s − U1(2S+1)] s = 1, . . . , S

(9)

If s = 1, . . . , S, we get

ÃtB̃s exp[Ũts] = AtBs exp[Uts] (10)

If s = S + 1, . . . , 2S, we get

DtB̃s−S exp[Ũts] = DtBs−S exp[U1(s−S) − U1(2S+1)] exp[Uts − U1(s−S) + U1(2S+1)]

= DtBs−S exp[Uts]
(11)

If s = 2S + 1, we get

Ãt exp[Ũts] = At exp[Ut1 + U1(2S+1) − U11] exp[Uts − Ut1 − Ut(2S+1) + U11]

= At exp[Uts]
(12)

which proves the lemma.
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PROPOSITION 6.2

Let U(1) and U(2) denote two utility matrices, and assume that P(1) = P(2) in (1). Using the

transformation in (8) we have Ũ(1) = Ũ(2).

PROOF

It follows from Lemma 2.1 that P̃(1) = P̃(2). Let s = 2S + 1, t = 1, and observe from (8) that
Ũ (1)

(2S+1)1 = Ũ (2)
(2S+1)1 = 0 by definition. Since

Ã(1)
1 exp[Ũ (1)

(2S+1)1] = Ã(1)
2 exp[Ũ (2)

(2S+1)1] (13)

it follows that Ã(1)
1 = Ã(2)

1 . Now put t = 1 and s = 1, . . . , S, and observe from (8) that
Ũ (1)

s1 = Ũ (2)
s1 = 0 by definition. Hence from (1) we get

Ã(1)
1 B̃(1)

s exp[Ũ (1)
s1 ] = Ã(2)

1 B̃(2)
s exp[Ũ (2)

s1 ] (14)

It then follows from (14) that B̃(1)
s = B̃(2)

s for all s = 1, . . . , S. We then put s = 1 and t = 1, . . . , T ,
and observe from (8) that Ũ (1)

1t = Ũ (2)
1t = 0 by definition. From (1) again we get

Ã(1)
t B̃(1)

1 exp[Ũ (1)
st ] = Ã(2)

t B̃(2)
1 exp[Ũ (2)

st ] (15)

Since B̃(1)
1 = B̃(2)

1 , it follows that Ã(1)
t = Ã(2)

t for all t = 1, . . . , T . We have hence proved that
all the balancing factors must be equal, and then it follows from (1) that all the utilities must be
equal as well.

Proof of Theorem 2.1

By assumption we can find a matrix U that replicates P. According to Lemma 6.1 Ũ also
replicates P. Note that by construction Ũ is on the special format given by (2). Hence there
exist a matrix on the form (2) that replicates P. Conversely if a matrix is of the form given by
(2), it does not change when we apply the transformation given by (8). Uniqueness then follows
from Proposition 6.2.
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Proof of Theorem 3.1

Define a new utility matrix Ũ

Ũts =






U(1)
ts if s = 1, . . . , S, t = 1, . . . , T

U(1)
ts + ln[P (2)

ts /P (1)
ts ] + lnK if s = S + 1, . . . , 2S, t = 1, . . . , T

U(1)
ts + ln[P (2)

ts /P (1)
ts ]− lnK if s = 2S + 1, t = 1, . . . , T

(16)

and let A(1)
t , t = 1, . . . , T and B(1)

s , s = 1, . . . , S denote the balancing factors solving (1) using
the replicating utilities U(1). Now put A(2)

t = A(1)
t · K and B(2)

s = B(1)
s /K. If s = 1, . . . , S,

t = 1, . . . , T , we get

A(2)
t B(2)

s exp[Ũts] = A(1)
t · K · B(1)

s /K exp[U(1)
ts ] = A(1)

t B(1)
s exp[U(1)

ts ] = P (0)
ts

If s = S + 1, . . . , 2S, t = 1, . . . , T , we get

DtB
(2)
s−S exp[Ũts] = DtB

(1)
s−S/K exp[U(1)

ts + ln[P (2)
ts /P (1)

ts ] + lnK] = P (1)
ts · P (2)

ts

P (1)
ts

= P (2)
ts

If s = 2S + 1, t = 1, . . . , T , we get

A(2)
t exp[Ũts] = A(1)

t · K exp[U(1)
ts + ln[P (2)

ts /P (1)
ts ]− lnK] = P (1)

ts · P (2)
ts

P (1)
st

= P (2)
ts

The marginal constraints are automatically satisfied when the model replicates each entry in the
matrix. Note that

Ũ1(2S+1) = U(1)
1s + ln[P (2)

1(2S+1)/P (1)
1(2S+1)]− lnK = U(1)

ts = 0

and that if s = 1, . . . , S, then Ũts = Uts. This proves that Ũ is of the form (2). Hence if we put
U(2) = Ũ, this matrix is the unique matrix on the form (2) that replicates the system in (3) when
i = 2.
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7. Appendix 2: Numerical methods

In this appendix we describe the main algorithms we used to compute the models in this
paper. The problems we solve are strongly non-linear, and uses a sometimes large set of
parameters. Taking this into account, the algorithms below are surprisingly simple. They
are easily implemented on a standard computer, and no special software is needed.

I How to find a numerical solution to (1) when utilitiesU and marginal constraints L and E are
given:

We need to find numerical values for the S + T balancing factors A1, . . . , AT , B1, . . . , BS . This
is done as follows: Initially we put all the balancing factors equal to 1. Then for t = 1, . . . , T we
update At using

At =
Lt≥PS

s=1 Bs exp[Uts]
¥

+ Pt(2S+1)

(17)

Once these are updated, then for s = 1, . . . , S we update Bs using

Bs =
EsPT

t=1 At exp[Uts] + Dt exp[Ut(s+S)]
(18)

We then repeat the updates in (17) and (18) until the system settles. The algorithm is a variant of
the Bregman balancing algorithm, see Bregman (1967). Like the standard Bregman algorithm
this algorithm is surpricingly efficient, and solves large systems in a very short time.

II How to infer utilities when allocation data P is given:

From the allocation data we can quickly compute the marginal constraints L and E. To solve
the problem we must construct numerical values for the u, v and w’s in (2). Note that if S and T

are fairly large, this system has a large number of parameters. Even in the small case covered in
this paper, i.e., T = 2, S = 4, we are left with 12 unknown parameters, and standard replication
software can hardly cover that case. A tailor made algorithm solves these problems very quickly,
however. The construction can be described as follows:

Initially we put all the parameters in (2) equal to zero. Then we fix all parameters except u11, and
find a value for u11 such that P22 from (1) is equal to P (observed)

22 . Note that we only make a match
in one particular entry, the other entries may of course be very different. We update u11 to the
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value above. Then we fix all parameters except u12, and find u12 such that P23 from (1) is equal
to P (observed)

23 . We continue like that until all the non-zero entries in (2) has been updated. Note
that this construction only involves one variable at the time, and due to the extreme speed of the
Bregman type algorithm above, these updates can be made very quickly. Once all parameters
have been updated, we repeat the process until the system settles at a replicating state. In the case
reported in this paper, we obtain perfect replication within a few minutes. We have tested this
algorithm on much larger systems, however, and cases with more than one hundred parameters
can be solved within reasonable time (i.e. a few days) on a standard computer. A supercomputer
using parallel processing would probably be able to handle extremely large systems of this kind.
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