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Abstract

This paper presents a management model for the Barents Sea capelin and cod fish-
eries including juvenile herring in the biological model as the young herring influences
the cod-capelin system. The objective of the study is to balance model-complexity
of biology and economics when investigating possible optimal catch strategies given
that one aims to maximize economic rent in the fishery. The three species constitute
a highly dynamic system, also because prey-predation relations are functions of ages
within each stock. A top-down approach is employed and the biological growth equa-
tions relate to stock biomass estimates. Economic relations are based on empirical
data and previous studies. Optimal fishing strategies are identified by employing
a numerical feedback rule for optimal fishing through dynamic programming. The
feedback rule suggests that previous TAC (total allowable catch) levels on average
have been too large for both capelin and cod over the past 30 years, according to the
management objectives assumed in the study. Moreover, presence of some herring in
the system is important for the economic yield although the herring fishery is closed.
This indicates that a focus only on the capelin-predator role of herring is too narrow,
as herring is also an important prey for cod.
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1 Introduction

The Barents Sea is one of the most productive ocean areas in the world [5]. It represents
a highly diverse arctic ecosystem [25], whereof three fish species are of major commercial
importance. The key species are the plankton feeders capelin (Mallotus villosus) and
herring (Clupea harengus), as well as their main fish predator, Northeast Arctic Cod (Gadus
morhua)1. The relationships between the three species are highly dynamic, and the cod-
capelin relationship is particularly essential in the Barents Sea ecosystem [2]. Therefore we
choose a growth model consisting of capelin, cod and herring as foundation for the decision
making of total allowable catches (TACs) for capelin and cod.

The herring stock has shown substantial natural fluctuations during the last century
[20],[21], and a high harvest pressure and unfavorable climatic conditions led to stock
depletion around the 1970s [7], [22]. Although herring is mainly a Norwegian Sea species,
the juvenile part of the stock occasionally enters the Barents Sea area. This inflow of young
herring into the Barents Sea basin has a substantial impact on the system; the cod-capelin
relation is particularly affected. Strong year classes of herring moves into the Barents Sea
by larvae drift and feeds in that area until it moves back into the Norwegian Sea at age
3-4 years [6]. There is no herring fishery during this period.

The presence of herring in the Barents Sea causes mass death of capelin fry,which has
major impacts on other capelin dependent species, as in the end of the 1980s when there
was a rather large cod stock [19] and herring had recovered from the collapse around 1970.
A strong year class of herring occurred in the south of the Barents Sea 1983-1986, causing a
capelin stock collapse in 1985-1986. This collapse led to cod starvation and had a negative
impact also on other fish predators like sea birds and marine mammals [12]. The capelin
stock is the largest pelagic fish stock in the Barents Sea and also potentially the largest
capelin stock in the world [8] and [9], and is of crucial importance for the growth of juvenile
cod [4].

The strong dependence between the biomasses of the three species in our model calls
out for a management regime aware of it. However, it is not an easy task to include
capelin, cod and Barents Sea herring in a limited multispecies growth model and get good
statistical results. The picture is complicated by other factors such as primary production
and predators not included in our model. Especially when it comes to herring, stock size
and catch of the mature population further south is of great importance for the extent
of new recruits in the Barents Sea. Nevertheless, limitation is essential for solvability of
the bioeconomic model within the frames of numerical dynamic programming, which is
the instrument of use in this work. It is very computer demanding, and we have therefore
limited ourselves to work with a three-dimensional state space (capelin, cod and herring).
Although higher dimensions are possible according to theory [18], such a rise will result in
a dramatic growth of troughput, and is therefore beyond the scope of this work. However,

1From now on Northeast Arctic Cod will be denoted cod.
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it would be interesting as a future extension to include time dependence as a cyclic driving
force. The time dependence could be represented by a fourth dimension of the growth
model. (Capelin, cod, herring and time).

The results of this work indicates that moderate presence of herring has a clear positive
effect on the sum of yield from the capelin and cod fishery of the Barents Sea, and this
finding contradicts the one-track interpretation of herring as juvenile capelin predator and
a tragedy to the capelin-cod system.

2 Model description and parameter estimation

2.1 Management model

Our bioeconomic management model is based on a biologic multi-species growth model
created for this work and on an economic profit model used in a previous work [23]. The
system of the two models constitutes an optimal control problem, where the objective is to
find optimal total Norwegian and Russian harvest levels from a Norwegian point of view
when the Norwegian and Russian fraction of total harvest is pre-decided. If we assume x
is stock biomasses and u is corresponding harvest, the continuous time Hamilton-Jacobi-
Bellman equation with discount rate δ can be written (see Kushner [10])

δV (x) = max
u

{

Π(x, u) + ∇V (x)(F (x) − u)
}

, (1)

where the optimal value function V (x) represents total future discounted profit from opti-
mal harvest. This equation describes the optimal balance between immediate harvest and
saving of stocks for future exploitation, and gives sufficient conditions for optimum (See
Kamien and Schwarz [16] or Bertsekas [1]). Π(x, u) represents immediate profit (economic
model) and (F (x)− u) represents biologic growth of the stocks. From equation (1) we see
that as far as optimality is concerned, equal emphasis should be placed on the economic
and the biologic sub-models. In other words, it is not worthwhile to be extremely detailed
and accurate in one of the sub-models if it is not followed up in the other.

2.2 Biologic growth model

The complexity of the real nature can not be fully covered in a model used for management
purposes, but a good model should be consistent with some of the main features of the real
marine life. In this work predation and multi-species interaction are given most priority.

The three stocks in our growth model; namely capelin, cod and juvenile herring age one-
three, have historically shown a cyclic behavior, which includes several collapses in the
capelin stock due to high inflow of herring and good growth conditions for both cod and
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herring [12]. It is reasonable to assume that there exists for all the stocks a saturation
level affected by food supply, predation pressure and other external effects like marine
temperatures and ocean currents. We focus on saturation and predation, and choose
logistic growth modified by predation as functional form. Furthermore, the predation
reflects the well-documented fact that cod seems to prefer capelin as prey, but turns over
to herring and cannibalism in years of capelin scarcity [13].

Since only juvenile herring is found overlapping capelin and cod in the Barents Sea, it is
somewhat difficult to implement herring growth in a closed model for the Barents Sea.
Historical stock sizes of the Barents Sea fraction of the population are not available. How-
ever, there are assessment estimates available for each year class of herring, and it is known
that the three to four first year classes are sometimes found in the Barents Sea, and that
age one to age three predate heavily on capelin when overlapping between the two species
takes place [3]. Therefore, in the growth of capelin and cod, these age classes represent
herring influences, and the growth of juvenile herring itself is explained by its own stock
size, external inflow and predation relationships with capelin and cod.

Assume stock biomasses are given by the vector x = [x1, x2, x3] and harvest by u =
[u1, u2, u3], where the indexes 1, 2 and 3 represent capelin, cod and herring respectively.
Assuming a closed herring fishery in the Barents Sea we could in principle remove herring
from the model and instead let ẋ3 = 1, which means that instead of being herring, x3 is a
direct measure of time. Another possibility is to let ẋ3 = F3(x3) be cyclic and measure time
dependent inflow of herring. These are good alternative forms if cyclic time dependence is
more important to the model results than predation-prey relationships with herring, and a
lot of literature claims that long term biomass cycles play an important role in the Barents
Sea ecosystem (See e.g. [26] and [11]). Unfortunately we did not succeed in finding such
forms that fitted well with our data.

The forms of the growth functions were selected based on assumptions about the overall
structure of the growth dynamics and on numerous statistical fitness-testing with relative
growth for stock data ((x(t+1)−x(t))+u(t))/x(t) = F (x(t))/x+Rt, where Rt is a vector
of error terms). The growth functions are

F1(x) = r1x1

(

1 −
x1

k1

+ b1g(x2, x3) − b2

(

1 + x2

)

(1 + x2
3)

)

F2(x) = r2x2

(

1 −
x2

k2

+ b3(1 + x2
1)(1 + x3)

)

(2)

F3(x) = r̃3(x1, x2)(1 + x3)
(

1 −
x3

k̃3(x1, x2)
+ b4

x1(1 + x1x2)

1 + x3
3

)

, where
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g(x2, x3) = min
{1 + x3

1 + x4
2

,
0.95

b1

}

(3)

r̃3(x1, x2) = min
{ r3

1 + x1x2

, 0.23
}

, (4)

k̃3(x1, x2) = k3
1 + x1

1 + x1x2

(5)

ri, bi, ki > 0 for all i.

Notice that the growth of herring is somewhat different from that of capelin and cod.
Whereas r1 and r2 represent intrinsic growth-rate of respectively capelin and herring, the
interpretation of r̃3 is more double-faced, as it also represents positive inflow of biomass
when the stock-size is zero. In fact

F3

(

[x1, x2, 0]
)

= r̃3(x1, x2) + r3 b4 x1 > 0 for all x1 and x2. (6)

This reflects the positive inflow of herring from the Norwegian Sea to the Barents Sea,
which in this model only depends on year class 1-3. There are two main reasons for this.
First of all we want to focus on the joint Norwegian and Russian resources of the Barents
Sea, and in such a perspective management of the herring stock in the North Sea limits
the possibility of a closed model since the herring resource is shared with other partners
than Russia. Secondly, it is difficult to find the connection between the size of the mature
fraction in the south and the juvenile fraction in the north. Biomass of spawners is only a
weak indicator of egg production in some populations. ([24] and [27]).

When we subtract harvest from growth, the state equations are summarized with

ẋi = Fi(x) − ui, i = 1, 2, 3, (7)

but herring is not exploited in the Barents Sea, so u3 = 0.

All the growth functions are concave with respect to the species. Notice that b1 > 0 to
some extent yields positive influence from herring on capelin. Yet, this term is only meant
as an adjustment to weaken the negative influence from herring when both the cod and
herring stock are high. Negative influence on capelin from herring is already accounted
for in the last term with the coefficient b2. Therefore we set an upper limit to b1g(x2, x3).
(See eq. (3)). We also adjust the intrinsic growth rate of herring to lower growth when
small biomasses of capelin interfere with small biomasses of cod. Without this limitation,
the herring growth would become too extreme in such cases.

2.3 Economic model

The optimal value function represents the maximum discounted future profit from the
fishery. If U is the set of admissible controls, the optimal value function is given by

V (x) ≡ max
u∈U

∫

∞

0

Π
(

x, u, αu
)

e−δ t dt, (8)
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under the conditions in (7) with u3 = 0.

Here δ is the discount rate, u is total landings, α is the Norwegian fraction of total landings
and Π is the current profit of the fishery.

It is assumed that there are no interactions in the market of fish, meaning that profit from
cod and capelin can be added together. Further, it is assumed that there is no economic
protection on capelin; that is: Landing costs are considered so little density-dependent
that we neglect finding costs. Beyond that, capelin is not price elastic, but Russian and
Norwegian landings of cod are large enough to influence the price level, P2(u2). The
Norwegian profit function can be written

Π(x, u, αu) = CaP (α1u1) + CoP (x2, u2, α2u2), where (9)

CaP (α1u1) = p1α1u1 − C1(α1u1) = p1α1u1 − c1(α1u1)
c2 ,

CoP (x2, u2, α2u2) = P2(u2)α2u2 − C2(x2, α2u2) = (p2 − p3u2)α2u2 −
c3

x2

(α2u2)
c4 ,

and all the coeffisients α, p1, p2, p3, c1, c2, c3 > 0.

2.4 Solution procedure

The optimal control problem defined in eq. (7) and (8) is solved by numerical dynamic
programming. The solution is found on feedback-form, which implies that optimal catches
of capelin and cod are functions of stock sizes only, and we can write the optimal harvest
policy as u⋆ ≡ ũ⋆(x). The problem, however, is not algebraically solvable, and the solution
must be obtained by numerical techniques.

The main procedure used to find the optimal policy is described in Grüne and Semmler [18],
but our approach differs a bit. A discrete representation of the continuous-time problem
in (7) and (8) could be expressed by a discrete first order approximation given by

Vh(x) ≈ max
u

h
∞

∑

i=0

βiΠ(xh(i), ui) (10)

xh(0) = x, xh(i + 1) = ϕ(x, u) ≡ xh(i) +
(

F
(

xh(i)) − ui

)

h, (11)

where h is the discrete time step and β = 1 − δh is the discrete discount rate.

By inserting (11) into (10) and extracting profit of the first period from the summation
sign, we get the discrete version Hamilton-Jacobi-Bellman equation

Vh(x) = max
u

{

hΠ(x, u) + βVh

(

ϕ(x, u)
)

}

. (12)

Optimal value is obtained by solving this equation for every possible stock combinations
on a selected stock-grid.
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Now we define the linear operator

L(u)(Vh) ≡ hΠ(x, u) + βVh

(

ϕ(x, u)
)

, (13)

and the dynamic programming operator

Th(Vh)(x) ≡ max
u∈

{

L(u)(Vh)
}

. (14)

Vh being the solution to the fixed point equation

Vh(x) = Th(Vh)(x). (15)

We use the dynamic programming operator (14) to solve the Hamilton-Jacobi-Bellman
equation (12) with fixed point iteration starting with the initial value V (x0) = 0, where
x0 is the x−grid chosen. To speed up convergence we switch from this policy-iteration to
less numeric expensive value-iterations. In the value-iterations we fix the policy, uf (x),
and therefore also the profit Π(x, uf ) when using the linear value-iteration operator (13).
When the value-iterations

V n+1
h = L(uf )V n

h (16)

stabilize, we shift to policy-iterations in accordance with equation (14), before returning
again to value-iteration. The alternating between value- and policy-iteration continues
until convergence.

2.4.1 Utilization of first order conditions

The Hamilton-Jacobi-Belmann equation (12) can be solved in various ways, but in three
dimensional space through-put and computer-time becomes a critical point. When going
through the iterative process there is only two limitations in policy-space. The feasible
policy, that is the harvest on each species, is non-negative and not higher than the size
available. Instead of working with a discrete control space, ũ = (ũ0, ũ2, · · · , ũn) and for
each fix-point iteration do a crude search for the ”argmax” to (14) among all of the ũi’s, we
check only boundary values and the inner point solution to equation (14) when Vhϕ(x, u)
is replaced by its first order Taylor approximation to reduce number of terms.

Vh

(

ϕ(x, u)
)

≈ Vh(x) + (∇Vh)
T (x)(F (x) − u)h. (17)

That is; inserting (17) into (14) reduces the problem to

Vh(x) =
h

1 − β
max

u

{

Π(x, u) + β(∇Vh)
T (x)(F (x) − u)

}

, (18)

which may be tested for three control values only, namely the lower bound u = 0, the
upper bound and the interior solution solving

∂Π(x, u)

∂u
− β∇V = 0 (19)

with respect to u. Optimal u-value in each fixed point iteration step will be the one that
gives the highest value to (14).
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2.5 Parameter Estimation

The econometrics software Eviews is used to fit the parameters of functions (2-4) to the
discrete relative growt

(

x(t+1)−x(t)−u(t)
)

/x(t) for the years 1973-2004. The statistical
results for each of the species are listed in tab. 2 and the final parameter values found in
tab. 3. However, the growth functions in equation (2) are factorized versions of the growth
used in the regression analysis. The value of the growth function coefficients and their
connections with the regression analysis coefficients are listed in tab. 1, where C(i), i ∈
[1, 10], refers to the coefficients in tab. 2.

All coefficients, except from b1, have signs corresponding with the fact that cod predates
on both capelin and herring whereas herring predates on capelin. The coefficient b1 should,
as already mentioned in sec. 2.2, be looked upon as a correctional term preventing under-
estimation of capelin growth when the cod stock is low. We can therefore deduce that
predation between these species is probably a more important factor for the total biomass
than exogenous factors working in other directions, e.g. primary production.

It is rather surprising that the fit for herring is quite good although catch of herring is not
a part of the model and mature herring, in best case, could be said to be involved only
indirectly through new mature recruitment from the surviving fraction of juvenile herring.

Table 1: Coefficients for the growth functions. C(·) is found in the regression analysis
results summarized in tab. 2 and 3.

r1 r2 r3 k1 k2 k3

Formula r1 = C(1) r2 = C(5) r3 = C(9) k1 = −r1

C(2)
k2 = −r2

C(6)
k3 = −

C(9)
C(10)

Value 0.7962 0.1448 4.97 · 105 3419.6 984.11 4.31 · 106

b1 b2 b3 b4

Formula b1 = C(3)
r1

b2 = −C(4)
r1

b3 = C(7)
r2

b4 = C(8)
C(9)

Value 2.51 · 109 4.88 · 10−11 7.01 · 10−11 3.01 · 10−7

All the economic parameters apart from the discount rate δ = 0.05 are collected from [23].
They are summarized in tab. 4, but for further information about the economic model we
refer to the original source [23].

3 Results

3.1 The optimal value function

The optimal value function, V (x), is a theoretical function used to deduce optimal TAC-
levels in the management model. However, the estimated size of the function being a
measure of the total future value of the fishery as a function of stock sizes, also gives some
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Table 2: Regression analysis of relative growth for capelin, cod and herring. The analysis
is based on official stock and catch data from ices.
Estimation Method: Weighted Least Squares
Sample: 1974 2004
Included observations: 31
Total system (balanced) observations 93
Linear estimation after one-step weighting matrix

Determinant residual covariance 0.008417

Eq.: x1(t+1)−x1(t)−u1

x1(t)
= C(1) + C(2)x1(t) + C(3)x3(t)+1

1+x4

2

+ C(4)x2(x3(t)
2 + 1)

Obs.: 31

R-squared 0.585491 Mean dependent var 0.320644
Adjusted R-squared 0.539434 S.D. dependent var 1.303849
S.E. of regression 0.884857 Sum squared resid 21.14026
Durbin-Watson stat 2.328894

Eq.: x2(t+1)−x2(t)−u2

x2(t)
= C(5) + C(6)x2(t) + C(7)x1(t)

2(x3(t) + 1)

Obs.: 31

R-squared 0.570388 Mean dependent var 0.004749
Adjusted R-squared 0.539702 S.D. dependent var 0.190148
S.E. of regression 0.129006 Sum squared resid 0.465993
Durbin-Watson stat 1.508753

Eq.: x3(t+1)−x3(t)
x3(t)

=
(

1 + 1
x3(t)

)(

C(8) x1(t)
1+x3(t)3

+ C(9) 1
1+x1(t)x2(t)

+ C(10) x3(t)
1+x1(t)

)

Obs.: 31

R-squared 0.914086 Mean dependent var 1.050224
Adjusted R-squared 0.907949 S.D. dependent var 3.456490
S.E. of regression 1.048695 Sum squared resid 30.79331
Durbin-Watson stat 1.859404
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Figure 1: The optimal value function (a) in absence of herring, (b) with 800 thousands
tons of juvenile herring, (c) with 1.5 million tons of cod and (d) with 3 million tons of
capelin present.
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Table 3: Coefficients from regression analysis. These coefficients are used to determine the
coefficients in the growth function according to the rules in tab: 1

Coefficient Std. Error t-Statistic Prob.

C(1) 0.796199 0.293846 2.709582 0.0082
C(2) -0.000233 6.62E-05 -3.518541 0.0007
C(3) 2.00E+09 3.87E+08 5.168128 0.0000
C(4) -3.88E-11 1.02E-11 -3.803060 0.0003
C(5) 0.144812 0.070738 2.047168 0.0438
C(6) -0.000147 4.44E-05 -3.317194 0.0014
C(7) 1.01E-11 1.75E-12 5.784812 0.0000
C(8) 0.149400 0.008308 17.98239 0.0000
C(9) 4.97E+05 88086.94 5.643437 0.0000
C(10) -0.115302 0.048778 -2.363823 0.0204

Table 4: Economic parameters.
demand parameters cost parameters

capelin p1 = 1 c1 = 0.07, c2 = 1.4
cod p2 = 12.65, p3 = 0.00839 c3 = 5848.1, c4 = 1.1

interesting interpretations. Since a simultaneous graphical presentation of this function
on the whole capelin, cod and herring stock range would imply a four-dimensional figure,
which is hard to depict, it is presented with one of the stocks fixed in fig. (1(a)- 1(d)). The
shapes of the figures verify rather intuitive results. Absence of both the harvested stocks
capelin and cod means zero profit, and a rise in one or both of them means a rise in future
profit and therefore also rises in the value function. However, the value function flattens
out for extreme values of the stocks.

If either capelin or cod is depleted, there is a dramatic fall in the value function. On the
surfaces in fig. 1(a) and 1(b) we observe this clearly as the edges are very steep from zero
stock value to the first non-zero value along both the capelin-axis and the cod-axis. It
is also interesting to observe that absence of juvenile herring (see fig. 1(a)) yields lower
profit than presence (fig. 1(b)). In fact, in fig. (1(c)) and (1(d)) we see that for fixed
cod and capelin stocks of respectively 1.5 million and 3 million tons, moderate presence
of herring adds value to the optimal value function. Actually, a small rise in the herring
biomass seems to be very positive when the biomass is low, but for large stocks the influence
becomes negative.
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Figure 2: Optimal TACs (thousand tons) of capelin. The stock of juvenile herring is fixed
in fig. (a)-(c) and in fig. (e)-(f) cod is fixed. (a) absence of herring, (b) 800 thousands tons
of juvenile herring present, (c) 1.5 million tons of juvenile herring present. (d) absence of
cod, (e) 1.5 million tons of cod present and (f) 2.5 million tons of cod present.
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3.2 Optimal Catches

In this section we focus on total Norwegian and Russian landings of capelin and cod.
The optimality condition maximizes discounted Norwegian profit from the fishery when
the Norwegian fraction of the total quota is α1 = 0.6 and α2 = 0.5 for capelin and cod
respectively. New TACs are decided once a year.

Optimal TAC levels for capelin are presented for several different initial conditions in Fig.
2(a)-2(f). The main trend is that optimal TAC of capelin grows with the capelin stock,
but the surfaces also show clear dependence on the levels of cod and juvenile herring. In
fig. 2(a) we observe that TACs of capelin fall slightly with growing cod stock. There is
even a small discontinuity between zero-level of cod and the first non-zero level. This is a
discontinuity between ”bliss”, which is the TAC level that maximizes current profit, and
lower TAC-levels in presence of cod. The discontinuity becomes more explicit with more
herring present as in fig. 2(b) and 2(c). The trend that more cod means lower capelin
TACs is also confirmed in these figures, but for high levels of capelin there is a bump in
the TACs interrupting this trend. Presence of herring has a similar impact as presence of
cod; it reduces the capelin TACs, though not as much as the cod. Fig. 2(d)) shows capelin
TACs on ”bliss-level” for all stock of herring in absence of cod.

With some cod and herring present (fig. 2(e) and 2(f)), optimal TACs of capelin are very
different. Their presence leads to lower TACs. We can however observe some interesting
disturbances for high stocks of both capelin and juvenile herring (fig. 2(e) and 2(f)). In fig.
2(e) it seems like optimal catch of capelin grows with the herring levels when the herring
stock is between three and 4.5 million tons and there is much capelin present. In addition
there is a peak in the optimal catch of capelin for extreme levels of herring (7 million tons)
when the capelin stock is moderate (see (2(e)).

In fig. 2(e) and 2(f) we can see that there is a peak in the optimal TACs of capelin for low
biomasses of herring. In a specific area (0-0.5 million tons) and moderate capelin biomasses
(0-1.9 million tons) optimal capelin TACs grows with the herring biomass. Also, for capelin
biomasses between 1.5 and 1.9 million tons, optimal TACs of capelin fall with the capelin
stock. This behavior is unexpected and counterintuitive. (See section 4.3)

Optimal catch of cod can be viewed in fig. 3(a)-3(d). The surfaces mainly visualize the
intuitive positive correlation between the size of the cod stock and the optimal catch of it.
The sizes of the capelin and herring stocks do not seem to be very important for optimal
catch of cod. Only in absence of capelin do we notice interesting changes as this yields
lower optimal harvest of cod (see fig. 3(b)).

3.3 Paths towards equilibrium

Our deterministic growth model with optimal management implicates that the stocks will
move towards equilibrium levels. These theoretical levels have not been observed in the
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Figure 3: Optimal TACs (thousand tons) of cod as a function of capelin and cod under
(a) absence of herring, with (b) 1.5 million tons of juvenile herring present, and optimal
catch of cod as a function of cod and herring under (c) absence of capelin and with (d) 6
million tons of capelin present.
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Figure 4: Paths towards the biologic equilibriums (red rings) resulting from a total closure
of the capelin and cod fishery. (a) Initial absence of herring, (b) absence of capelin and (c)
absence of cod.

15



real marine ecosystem, and there are several reasons for this discrepancy. A lot of varying
factors and stochasticity cause huge fluctuations in the stocks. Moreover, the management
system in place has not managed the stocks according to our model and hence it has created
a different path. Yet, paths towards equilibrium may be interesting from a theoretical point
of view, and it is possible that the real biomasses would have fluctuated around these paths
with a management governed by our prescribed harvest policy.

The paths towards equilibrium resulting from a total closure of the capelin and cod fishery
may tell us much about the biologic growth model used. In the 2D-curves of fig. 4(a) - 4(c),
where in each figure one of the stocks is suppressed, we can see the three equilibriums of the
biologic model. Notice that the external inflow of young herring from the Norwegian Sea
means that there is no equilibrium with absence of herring. Therefore, with initial absence
of herring as in fig. 4(a), the phase-plot shows evolution towards an interior equilibrium
(all model stocks present) of (2.832, 2.113, 2.040). With initial absence of capelin (fig. 4(b))
or cod (fig. 4(c)) these species will never return.

Capelin seems to be a key-species as its absence leads to a very poor equilibrium of
(0, 984.1, 1.7) hundred thousand tons. In absence of cod the biologic equilibrium is
(7.472, 0, 12.962) million tons.
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Figure 5: Paths towards equilibrium in the 3D capelin-cod-herring plane for different initial
stock sizes of capelin, cod and herring. Equilibrium marked with a red ring, and initial
positions marked with ”∗”.

The management optimizing the model gives of course different equilibriums and different
paths towards them. Fig. 5 is a 3D phase-plot showing paths towards equilibrium from
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different initial conditions when new TACs are set ones each year according to the optimal
management strategy. Although all the initial stock sizes in fig. 5 are at the edge, and also
outside the edge, of a stock space that is reasonable based on historical biomass estimates,
they all end up in the same equilibrium. The single equilibrium marked with a red ring,
(3.564, 1.728, 2.492) million tons, appears to be the only interior equilibrium point resulting
from optimal policy in the management model. In addition we know there are equilibriums
when either capelin, cod or both of these stocks are depleted, but seemingly none of these
equilibriums will ever be reached when optimal management is followed.
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Figure 6: Paths towards equilibrium stock sizes on the capelin-cod plane for different initial
conditions of capelin, cod and herring. (a) Absence of herring and initial herring stock of
(b) 1.5 million tons and (c) 6 million tons.

In fig. 5 we also observe over- and under-shooting for both capelin and cod before set-
tlement in equilibrium, whereas the herring stock is monotonic increasing or decreasing
depending on the size of the initial stock. Fig. 6(a)-6(c), 7(a)-7(c), and 8(a)-8(d) illustrate
more detailed phase plots in two dimensions. In each of these plots one of the stocks are
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Figure 7: Paths towards equilibrium on the herring/cod plane for different initial stock
sizes of capelin, cod and herring. (a) Absence of capelin, (b) initial capelin stock of 2.5
million tons and (c) initial capelin stock of 6 million tons.
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Figure 8: Paths towards equilibrium on the capelin/herring plane for different initial stock
sizes of capelin, cod and herring. (a) Absence of cod, initial cod stock of (b) 1 million tons,
(c) 2 million tons and (d) 4 million tons.
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suppressed from the figure because of the dimension reduction. However, in each picture
this stock works indirectly in the development of the other two stocks.

Other equilibriums than the interior one can be viewed in fig. 7(a) and 8(a). Here respec-
tively capelin and cod are absent, which leads to totally different stock behavior as balance
between the three stocks are destroyed. The equilibriums and the paths towards them are
dramatically changed. With absence of capelin, both cod and herring suffer from poor
growth conditions leading to an equilibrium of (0, 769.2, 1.7) thousand tons. In absence of
cod, on the other hand, the growth is really good for both capelin and herring, and the
equilibrium is (7.100, 0, 12.318) million tons.

Fig. 6(b)-6(c) confirm the over- and under-shooting of both capelin and cod observed in
fig. 5, and for capelin the under-shooting rises with high initial levels of herring as do
also the over-shooting of cod. This is also confirmed for cod in fig. 7(b) and 7(c) and for
capelin in fig. 8(b)-8(d).

The spiraling behavior of the paths towards the interior equilibrium (see e.g. fig. 5),
means that the stocks are fluctuating before settlement in equilibrium. This fluctuation
is confirmed in fig. 9(a)-9(f). These figures show evolution towards equilibrium on the
time-stock plane. The figures to the left, (a) (c) and (e), show the first ten years before
settlement close to the equilibrium, and the figures to the right, (b), (d) and (f), show the
evolution towards equilibrium over a 110 years period.

Fig. 10(a)-10(d) show optimal catch scenarios for four different initial stock sizes. These
initial sizes are (a) (500, 1000, 200), (b) (500, 1000, 2000), (c) (6000, 1000, 200) and (d)
(6000, 1000, 2000) thousand tons of capelin, cod and herring, respectively. Notice that
TACs according to all these figs. leads to an equilibrium stock size of (3.564, 1.729, 2.492)
million tons, and the entire catch curves yield catches substantially lower for both capelin
and cod than official average yearly catches the last 30 years (906 thousand tons for capelin
and 549 thousand tons for cod). In addition the interior equilibrium of all the stocks is
substantially higher than average stocks the last 30 years; especially for capelin and herring
they are substantially bigger.

Finally fig. 11(a) and 11(b) shows optimal TACs when respectively the capelin and cod
stock are fully depleted. Notice that the optimal catch of cod is very low and that the
constant capelin TAC coincides with the ”bliss-level” in accordance with fig. 2(d).

4 Discussions

4.1 Biologic model

A limitation in our model is the fact that we have to choose between an autonomous
(time independent) growth model with three species (capelin, cod and herring) or a time
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Figure 9: Stocks of capelin, herring and cod approaching equilibrium from several different
initial conditions. Fig. (a), (c) and (d) show the first 10 years with fluctuating behavior,
whereas (b), (d) and (f) have a time span of 85 years and illustrates the evolution towards
equilibrium.
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Figure 10: TACs (thousand tons) approaching equilibrium. Initial capelin stock: 500
thousand tons in (a) and (b), and 6 million tons in (c) and (d). Initial cod stock is 1
million tons in all the figures, and initial levels of herring is 200 thousand tons in (a) and
(c), and 2 million tons in (b) and (d).
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Figure 11: TACs (thousand tons) in (a) absence of capelin and (b) absence of cod. In both
figures initial herring stock is 2 million tons.

dependent growth model with only two species (capelin and cod). A series of testing with
regression analysis for a number of different growth functions, indicated that the data were
best represented when herring was included instead of cyclic time dependent fluctuations.
Still, it will be interesting to further investigate time dependent fluctuations in future
works, but then it ought to be done in a more general stochastic setting.

If we have a look at the predation terms in the capelin growth function, we see that there
is both a term with positive coefficient (b1) and a term with negative coefficient (b2). This
does not contradict the fact that capelin serves as prey for cod as well as for herring. The
positive term is just a correction of the strong influence from the negative term. All in
all the influence on capelin from both cod and herring is mainly negative, and this is also
obvious from the data. Nevertheless, we shall have in mind that the parameter estimation
and the functional forms chosen are based on real data. The growth functions may not
give a good match for extrapolation of growth for stock sizes very different from historical
ones, especially not for cod stocks close to zero. With this in mind we modified the growth
functions in equation (2) slightly for such stock levels before doing the economic optimizing.
(See eq. (2) and (3)). Also, the upper limit on the intrinsic growth rate for herring in eq.
(4) prevents extreme changes in the herring biomass when there is little of both capelin
and cod. Such a biomass situation is extremely rare in historical data, and we choose to
damp down extrapolated growth effects we do not trust. However, we should not totally
reject the idea that growth of capelin and herring, which are both plankton feeders, could
be positively correlated in some periods due to effects beyond the borders of our model,
e.g. in periods with very high primary production.

The choice of the specific growth has some model-technical basis as a closed system is
essential for optimizing when sizes of external factors beyond control are unknown. (Catch
quotas of mature capelin, ocean currents determining inflow of herring fry to the Barents
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area etc...). Such factors are very difficult to quantify and recognize, and are for the
time being not ready for use in this model. However, the growth used in this work is
consistent with expected predation relationships and gives a better representation than a
pure stochastic inflow, which cannot explain the forces of importance. At least our model
aims to explain some of the variability in the herring stock, and independently of the
relevance of the predation terms, the growth functions should cover for some of the stock
dynamics. Specifically, for herring growth, the regression analysis performed indicates that
the stock of capelin and cod to some extent is a proxy for the stock size of juvenile herring.
As far as the growth of capelin and cod are concerned, herring could be interpreted to
play the role of a time-dependency in the capelin-cod system representing effects of both
herring and other non-autonomities.

One might argue that the growth function for herring is not satisfactory from a biological
point of view, as the growth is only passed for and based on the immature part of the stock
in addition to predation relationships. It may be a little too much to claim that these factors
are the most important for growth of juvenile herring in the marine ecosystem, but it is
very difficult to quantify others.

Although we include inflow of juvenile herring in the herring growth, we disregard depen-
dency between the size of this inflow and the size of the mature fraction of herring in the
North Sea and the Norwegian Sea. Such dependency must be expected to be important
to herring recruitment [14] in spite the fact that biomass of spawners has turned out to be
only a weak indicator of egg production in some populations. ([24] and [27]). However, we
use a growth model, not a recruitment model. That is, the aim is not to describe ”bottom
up” factors in recruitment and mortality, but rather to explain some of the ”top down”
stock dynamics which is relevant for optimizing. Moreover, the statistical results are quite
good although herring growth is fitted with only three parameters. The Durbin-Watson
statistics of just about 1.86 shows little signs of auto-correlation, the significance is con-
vincing for all the parameters with an acceptable level of the standard error. Moreover,
the R2 of 0.91 is good. The residues are a little high, but we should remember that herring
has shown very large fluctuation and faced a collapse in the beginning of the period our
data are built upon. Therefore we cannot expect them to be lower.

As far as the biologic equilibriums are concerned, the interior equilibrium of
(2.832, 2.113, 2.040) million tons is the most interesting since this is the only equilibrium
resulting from initial stock sizes above zero for all the stocks. One might argue that the cod
levels in this equilibrium is too low compared to historical gigantically cod levels reported,
but extreme cod levels do not agree very well with the data this analysis is built upon. Also,
since the cod stock has a fluctuating nature, the highest sizes reported should probably
not be regarded to be close to a natural no-fishing equilibrium level.
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4.2 The optimal value function

If we keep in mind that our value function represents the total future discounted profit
from harvest of capelin and cod, it is clear that the surfaces must go through the origin
between the capelin and cod axes. Absence of both capelin and cod means zero profit.
Further on, absence of capelin or cod in one moment of time implies that the stock is
exterminated for all future, whereas small positive initial level leads to higher future levels
under optimal policy. The difference in economic rent between these two situations explains
the discontinuity between zero-levels of capelin and cod and the first non-zero levels.

Generally a rise in one or both stocks means a rise in future profit and therefore also
rises in the value function. However, extreme values are not sustainable, and if the stocks
get very high, they will fall soon independently of the fishing policy and leave little extra
profit. Remember also that the profit function (see eq. (9)) is concave related to harvest.
Consequently, extreme harvest in a limited moment of time will not result in extreme
profit.

It is interesting to see that presence of some herring has a positive influence on the eco-
nomics of the model (see fig. 1(c) and 1(d)). This might be a little surprising since the
economic model does not include profit from herring catch, but in the biologic model herring
is an important growth factor for cod, and this seems to be more crucial for the economics
than the negative effect from herring predation on capelin. A moderate presence of herring
(800 thousand tons) gives a much higher value function than absence of herring. This does
not mean that herring is more important for the cod growth than capelin. Neither does it
mean that herring is some kind of catalyzator in the cod predation on capelin, as it does
not make sense to say that capelin-herring-cod is more effective for cod growth than the
direct linkage capelin-cod. However, there are other species of importance. Herring does
not only feed on capelin fry, and for periods of time capelin and herring might be positively
correlated. Specifically, in the growth model for low biomasses of both capelin and cod and
high biomasses of herring, capelin growth is positively correlated with herring although the
impact from the correctional term with coefficient b1 mentioned earlier in this section is
pulled down.

Helstad [15] also concludes that the rebuilding of the herring stock after its collapse in the
late 1960s has been optimal from an economic point of view, when considering the three
species of relevance in our work.

4.3 Optimal catch policy

In absence of cod and herring there is no pressure on the capelin stock. This explains the
discontinuities visible in fig. 2(a)-2(d). Actually, absence of cod alone results in capelin
TACs on ”bliss-level” for all levels of herring when the capelin stock is above a certain
lower limit(fig. 2(d)). If there is some capelin and no herring in the Barents Sea, the
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capelin stock will soon grow, but it takes some time before the herring grows. (See e.g. fig.
9(a)-9(b) and 9(e)-9(f)). This results in rather high optimal catch of capelin in absence of
herring. TACs on ”bliss-level” is only reached when cod is absent as well, but the TACs
in presence of cod is not very much lower. (see fig. 2(a)).

The main trend in fig. 2(a)-2(c), that optimal capelin-TACs falls with the number of cod
is very intuitive since capelin is more valuable as food for cod than as harvest for humans.
The bumps in the optimal catch of capelin for high levels of herring is more difficult to
explain (Se fig. (2(e)) and (2(f))). Higher levels of herring puts higher pressure on the
capelin stock, so why should it be optimal with higher capelin-TACs when the levels of
herring shifts from high to very high? The explanation for this must be that it is better to
fish the capelin stock and earn profit on it than letting the herring stock have it for dinner.
Without capelin harvest, according to the growth model, the herring stock would have
stabilized on a very high level eating greedily from the dinner-table of the cod (capelin)
and ”stealing” our profit from both capelin and cod. With larger cod stocks, as in fig.
2(f)), cod predation is more important and the profit-damage from high herring stocks
is reduced. Therefore the bumps are smoother. For extreme values of herring, however,
capelin harvest should be reduced to prevent a collapse. The little bump for low levels
of capelin and very high levels of herring tells another story. That is the story about a
capelin stock getting totally diminished, regardless of the harvest pressure. Since there is
no density dependent costs for the capelin harvest, the stock is not protected from a purely
economic point of view. Moreover, the cod stock is held up by the herring abundance. In
such circumstances fishing of some capelin is worthwhile. According to the biologic model
extinction of capelin is impossible when optimal management is followed. Also, the time
of a capelin-rebuilding after a collapse is probably little dependent on the stock size when
there are very high levels of herring. The rebuilding will take some time in any cases.

A surprising behavior with the TACs of capelin is that they grow with the stock of herring
and fall with the stock of capelin for low levels of capelin (1.5−1.9 million tons) and herring
(0 − 0.5 million tons). (See fig. 2(e)). This counterintuitive behavior could probably be
explained by unexpected characteristics of the growth function. For combinations of low
biomasses of both capelin and cod, the intrinsic herring growth rate, r̃(x, y), grows rapidly
with lower biomasses of capelin and cod until it reaches its maximum level of 0.23. (See
eq. (2)). When such capelin and cod levels coincide with low herring levels, the herring
growth is large, and a growth of herring increases the value of the optimal value function in
that case, and this explains the counterintuitive optimal TACs. (See fig. 1(c)). Whether
this is credible or not depends on the credibility of the growth functions for capelin, cod
and herring for very low biomasses. Since such a combination of biomasses is not found
in the data the biologic regression analysis is built upon, one should be careful putting to
much trust into this counterintuitive result.

Cod is the economically most important species and the top-predator of this model. More-
over, profit from cod is concave as a function of harvest. One should thus expect stable
high, but sustainable, optimal TACs of cod. Furthermore, a rather weak dependence of
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the other two species should be expected. All of these expectations are confirmed in fig.
3(a)-3(d). The only disturbance to these main findings is that TACs of cod falls clearly
in absence of capelin. This can be observed along the cod-axis in fig. 3(b). Harvest of
cod should be considerably lower than in presence of capelin. The reason is that growth
conditions for cod are poorer in absence of capelin and the situation demands a lower cod
harvest.

The sizes of the optimal equilibrium catch curves for capelin and cod is respectively about
40% and 65% of actual average catches the last thirty years. At the same time equilibrium
level yields stock sizes considerably larger than average stock sizes, especially for capelin
and herring. Average stock size of capelin, cod and juvenile herring year one-three in
the period from 1973-2005 is respectively 3.017, 1.522 and 1.084 (million tons), which
are considerably lower than the equilibrium of 3.564, 1.729 and 2.492 million tons. This
suggests that catches of both capelin and cod should be considerably reduced. However
catches of mature capelin after spawning may not harm the capelin stock too much since
a high fraction of the capelin population spawns only ones [11]. Nevertheless, the gap
between optimal catch of capelin in equilibrium an average actual catch is very big.

Optimal TACs of cod seems to be in agreement with Kugarajh et. al. [17], who claim that
cod fishing curves historically are too high, and fits very well with the infinite discounting
tracks, i.e., the static optimal solution. Optimal TACs of cod is considerably lower than
this solution on most of the possible state-space. The high stocks of capelin and herring
in equilibrium have a positive influence on cod growth, but does not affect optimal TAC
of cod very much. (See fig. 3(a)-3(d).

Although the equilibrium solution is interesting and may be a good indicator for a sustain-
able potential of the fishery, we must remember that real growth is by nature fluctuating.
In reality, therefore, optimal catch will vary each year and an equilibrium level will never
be reached. This calls out for an introduction of stochastic in the growth model. Such an
extension is absolutely attainable.

5 Conclusions

This work is a demonstration of optimal dynamic programming as a useful technique in
multi-species management modeling. So far multi-species management has been mostly
concerned with stock goals, and less with economics and other important objectives utiliz-
ing information outside the biological sphere. We have tried to balance model-complexity
of biology and economics in the finding of optimal feedback catch-curves for capelin and
cod.

Our biologic model is three dimensional in state space (three species), and in spite of rather
high through-put, it should be possible to solve similar models in higher dimensions with
the techniques we have used. This means that dynamic programming could be used to a
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greater extent in multi species management modeling. Involving stochastic in the growth
model and/or the economic model is both a natural and an attainable extension of this
work.

As far as the concrete results are concerned, the principals of the findings are rather intu-
itive and easy to rely upon. They show that optimal catch of capelin is very dependent on
the size of both the cod and herring stock as well as of the capelin stock itself. Furthermore,
optimal catch of cod is less dependent on capelin and herring, but a fully depleted capelin
stock will result in less cod growth and should therefore also lead to lower cod landings.

When we studied equilibrium points resulting from optimal policy, we found that there
was strong attraction to an equilibrium point with larger stocks of all the three species
covered by the model than average levels the last 30 years. Moreover, looking at catches,
we found that this equilibrium level yields both capelin and cod catches substantially lower
than average catches for the same period. This suggests that lower TACs would give higher
discounted profit. Another important finding is that presence of some herring in the Barent
Sea system apperently gives higher economical yield from capelin and cod than absence of
herring would have done.

Our work should not be considered to be the correct answer to what is the best management
of the Norwegian and Russian resource of capelin and cod. Rather, it is a first trial of
combining complicated biology with economics and giving a clear cut answer to what is
the optimal response to the biologic model and the economic model relied upon.
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Nomenclature

Variables

x Stock levels
u Catch levels
δ Discount rate
[α1, α2] Norwegian share of TAC for capelin and cod

Functions

V (x) The optimal value function
Π(x, u) Current profit
Fi(x) Biological growth function for species i
CaP (u1) Capelin profit
CoP (x2, u2) Cod profit
P2(u2) Price for a unit of cod
C1(u1) Cost function for catch of capelin
C2(x2, u2) Cost function for catch of cod

Parameters

p1, p2 and p3 Income parameters
c1, c2, c3 and c4 Cost parameters
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