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Abstract
In his classical article in The American Economic Review, Arthur

Raviv (1979) examines Pareto optimal insurance contracts when there
are ex-post insurance costs c induced by the indemnity I for loss x.
Raviv’s main result is that a necessary and sufficient condition for the
Pareto optimal deductible to be equal to zero is c′(I) = 0 for all I ≥ 0.

We claim that another type of cost function is called for in house-
hold insurance, caused by frequent but relatively small claims. If a
fixed cost is incurred each time a claim is made, we obtain a non-trivial
Pareto optimal deductible even if the cost function does not vary with
the indemnity. This implies that when the claims are relatively small,
it is not optimal for the insured to get a compensation since the costs
outweighs the benefits, and a deductible will naturally occur.

We also discuss policies with an upper limit, and show that the
insurer prefers such contracts, but the insured does not. In Raviv’s
paper it was also shown that policies with upper limits are dominated
by policies with no upper limit, when there are ex-post costs to insur-
ance. We show that the result is right, but the proof is wrong.

KEYWORDS: Pareto optimal risk sharing, administrative costs in insur-
ance, household insurance, XL-contracts

∗

1



I Introduction

It seems broadly accepted that deductible policies give the best tradeoff be-
tween risk sharing and economizing on costly claim settlements. The presence
of insurance costs are often considered as the ”best” and most straightfor-
ward explanation of deductibles occurring in insurance contracts. There
are other explanations, usually involving models of asymmetric information,
like moral hazard (Holmstrőm (1979)) or adverse selection (Rothschild and
Stiglitz (1976)). These models are much more complex than simply intro-
ducing ex-post costs in the classical model of risk sharing. In these models
deductibles appear more or less as a by-product of the analysis. When e.g.,
moral hazard is present, it is socially optimal that the insured keeps more
of the risk than when moral hazard is absent in order to get the incentives
right. For example, when the insurer is risk neutral and the classical recipe
is that full insurance is Pareto optimal, with moral hazard this is no longer
the case. When there is adverse selection, the good risks can not be offered
full coverage because of the presence of the bad risks. The latter, on the
other hand, obtains full insurance when this is optimal. In both cases the
insurance customers will end up taking more risk than in the neoclassical
case. Whether this risk-sharing takes the form of a deductible, or as some
other forms of coinsurance is not a central point.

The framework of Pareto optimal risk sharing between an insurer and
an insurance buyer is built on Borch’s classical theory (Borch (1960a-b),
and Moffet (1979) was the first to formulate this problem in the neoclassical
situation. Deductibles have also been analyzed in the framework of pure
demand theory, such as in Arrow (1974), Schlesinger (1981) and Karni (1983).
Raviv’s analysis of Pareto optimal deductibles in the presence of insurance
costs is the classical one, and is the first analysis connecting deductibles
directly to these costs. For example are some of the results of Arrow clarified
through the analysis of Raviv. Aase (2004-08) review various aspects of
Pareto optimal risk sharing that involve deductibles, and Aase (2002) is a
general review of risk sharing in insurance syndicates.

Borch (1990) divides insurance into three categories; life insurance, house-
hold insurance and business insurance. He notes that, for an insurer involved
in household insurance up to one third of the total premium is used for admin-
istrative expenses. If the risk premium is approximately zero, this means that
the loading γ is 50% in the standard premium formula p = (1 + γ)E(I(X)),
which is large.

It should be fairly obvious that if all domestic claims are reported, caused
by the relatively minor, but frequent accidents that occur in everyday life in
the homes of ordinary, insured families, this would be prohibitively expen-
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sive for the insurance industry to handle, let alone the mere logistics of the
problem. This is where deductibles become important. In order to capture
these costs, the cost function is assumed to be on the following form

C(I) = aχ[I>0] + c(I) (1)

where

χB =

{
1, if B

0, otherwise,
(2)

i.e., χ is the indicator function of the event B. Equation (1) means that
whenever a claim is made, no matter how small, a cost a > 0 is incurred,
with further costs determined by the function c(·) satisfying the standard
conditions: c(0) = b ≥ 0, c′(I) ≥ 0, and c′′(I) ≥ 0 for all I ≥ 0. Thus, even
if the fixed costs b = 0, the function C(·) has a discontinuity in I = 0, with
a positive jump size a.

Fixed costs not depending on claims made are measured by b in the above.
The cost a is only triggered when the insurance customer actually makes a
claim against the insurer. We then show that a necessary and sufficient
condition for a Pareto optimal deductible to be equal to zero is that a = 0
and c′(I) = 0 for all I.

In other words, if a > 0, then a non-zero deductible D > 0 occurs even if
c′(I) = 0 for all I. This aspect of cost accounting is accordingly not captured
by the analysis in Raviv (1979). We claim it to be the important one related
to administrative costs in household insurance.

Blazenko (1985) points out that there is an error is Raviv’s proof of his
main theorem cited above, but the result is correct. Section II develops the
setting of the problem and the notation to be subsequently used. In Section
III we analyze the optimality of policies with an upper limit in the pure
supply theory of insurance. In section IV we point out an error made by
Raviv (1979) in his proof that policies with an upper limit are dominated
by policies with no upper limit and no deductibles, and present a corrected
proof of this theorem. In section V we prove our main deductibles-result
using the methodology of Blazenko. Section VI concludes.

II Insurance with Costly Claim Settlement

The insured faces a random loss X with values 0 ≤ x ≤ M , and proba-
bility density f(x) > 0. The indemnity to the insured is I(x) if X = x,
and the contract has premium p. The indemnity function is quite naturally
constrained by

0 ≤ I(x) ≤ x for any x ≥ 0, (3)
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implying that I(0) = 0. Costs of claim settlements are ex post, and given by
(1) and (2). The insurer’s utility function is v, where v′ > 0 and v′′ ≤ 0, and
final wealth is wv − I(x) + p− C(I(x)) where wv represents initial reserves.
The insured’s utility function is u, where u′ > 0, u′′ < 0, so the insured is
strictly risk averse (otherwise he would not demand insurance). The insured’s
final wealth is wu − x + I(x) − p, where wu is the initial, risk-free part of
wealth, and wu and wv are both positive constants.

Pareto optimal contracts (I, p) are generated as solutions of

max
I,p

Eu(wu −X + I(X)− p) s.t. Ev(wv − I(X)− C(I(X)) + p) ≥ k (4)

As the constant k varies, the Pareto optimal frontier is generated. Using
control theory (e.g., Seierstad and Sydsæter (1987)), the Hamiltonian of the
problem is

H(I, λ) =
(
u(wu − x + I(x)− p) + λ(v(wv − I(x)−C(I(x)) + p)− k)

)
f(x),

and the Lagrangian is

L(I, λ, µ1(x), µ2(x)) = H(I, λ) + µ1(x)I(x) + µ2(x)(x− I(x)).

If I∗(x) denotes the optimal indemnity function, then

µi(x) ≥ 0 for all x, i = 1, 2,

µ1(x) = 0 if I∗(x) > 0,

µ2(x) = 0 if I∗(x) < x, and

µ1(x)I∗(x) = 0 for all x, and µ2(x)(x− I∗(x)) = 0 for all x.

From this it follows that necessary conditions for a maximum with respect
to the indemnity are

u′(wu−x+I∗(x)−p)−λv′
(
wv−I∗(x)−C(I∗(x))+p

)(
1+c′(I∗(x))

)
= 0 (5)

for all x such that 0 < I∗(x) < x,

J(x) := u′(wu − x− p)− λv′
(
wv − b + p

)(
1 + c′(0)

)
≤ 0 (6)

when I∗(x) = 0 for x > 0, and

K(x) := u′(wu − p)− λv′(wv − x− a− c(x) + p)
(
1 + c′(x)

)
≥ 0 (7)

when I∗(x) = x > 0. These conditions are also sufficient for a maximum
when u + λv is concave in I. Due to the discontinuity of C(I) in I = 0,
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H is only concave in I if zero is excluded. However, in the language of
Lagrange’s method, the ”instantaneous kink” at zero is not enough to create
a ”duality gap” as long as a is not so large that the insurance costs outweigh
the benefits of risk sharing. If this is not so, sufficiency of the above conditions
are preserved for an inner solution.

The function J(x) is continuous and increasing in x, while the function
K(x) is continuous and decreasing in x, meaning that either (6) or (7) holds,
both can not hold for the same x > 0. If the quantity L ≥ 0, where L is
defined by

L := u′(wu − p)− λv′(wv − b + p)
(
1 + c′(0)

)
,

then (6) can not hold for any x > 0, and if L ≤ 0, then (7) can not hold for
any x > 0. Therefore the optimal solution is one with a deductible, or one
with an upper limit. The deductible D and the upper limit B are defined by

u′(wu − p−D)− λv′(wv − b + p)
(
1 + c′(0)

)
= 0, (8)

and
u′(wu − p)− λv′(wv −B − a− c(B) + p)

(
1 + c′(B)

)
= 0, (9)

respectively. If we have a policy with a deductible, the optimal indemnity
function depends on the deductible D through (8), and we denote I∗ by
by ID(x). If the policy is one with an upper limit, the optimal indemnity
function depends on this limit B through (9), and we denote I∗ by IB(x). If
both D = B = 0, we call the optimal indemnity function IP (x). In the latter
case it is determined from (5) for all x ≥ 0 via a differential equation, with
boundary condition IP (0) = 0.

III Insurance Policies with an Upper Limit

In the pure demand theory of insurance, Arrow (1974) has shown that when
the insurance customer’s utility function u satisfies u′ > 0 and u′′ < 0, the
solution to the problem

max
I(x)≥0

Eu(w −X + I(X)− p) subject to p = (1 + γ)E(I(X))

is a contract ID(x) with a deductible:

ID(x) =

{
0, if x ≤ D

x−D, if x > D,
(10)

and D > 0 if and only if the loading γ > 0. Thus, in this framework full
insurance is optimal when the premium is actuarially fair only. One way to
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demonstrate this is to consider non-decreasing contracts I(x) ≥ 0, and to
observe that any deviations from the contract ID satisfying 0 ≤ I(x) ≤ x
represent a mean preserving spread in the wealth of the insured, in the sense
of Stiglitz and Rothschild (1970). To use this line of proof, it is enough to
assume u′′ ≤ 0.

The impression from results of this type is that contracts with a deductible
are somehow ”superior”. However, and still in the absence of ex-post costs,
by also bringing in the supply side, contracts with a deductible can not be
Pareto optimal. Even if the premium p is actuarially unfair, the Pareto
optimal deductible is zero, and if the insurer is risk neutral, full insurance is
Pareto optimal. This follows from the following differential equation for the
Pareto optimal indemnity function

∂I(x)

∂x
=

Au(wu − x + I(x)− p)

Au(wu − x + I(x)− p) + Av(wv − I(x) + p)
, (11)

which, together with the boundary condition I(0) = 0 yields a unique solu-
tion for each p. When the premium p varies through a suitable range, this
generates the Pareto frontier in (Eu,Ev)-space, since p now takes the role
of the Lagrange multiplyer λ of the previous section in this regard. Here the
functions Au and Av are the absolute risk aversions of the insured and the
insurer respectively. From (11) we notice that when v′′ < 0, then

0 < I ′(x) < x for all x ≥ 0, (12)

and together with I(0) = 0 and the mean value theorem, it follows that

0 < I(x) < x for all x > 0,

verifying that full insurance is not Pareto optimal when both parties are
strictly risk averse. Notice that the natural restriction 0 ≤ I(x) ≤ x is not
binding at the optimum for any x > 0. From this it follows that neither
contracts with a deductible, nor contracts with an upper limit are Pareto
optimal, since both these contracts would violate the requirement (12) for
some x. When the insurer is risk neutral, then I(x) = x so full insurance
is optimal, regardless of the value of p, actuarially fair or not1. One would,
however, only expect to observe contracts that are also individually rational
for both parties, i.e., contracts that are in the core.

These normative conclusions are in agreement with the observation that
consumers show a propensity for low or no deductible insurance policies

1If p ≥ (1 + γ)EI(X) is added as a constraint, e.g., Arrow (1970), a deductible will
arise, but this does not really generate Pareto optimal policies.
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against small to moderate risks. Considering auto insurance as a proxy for
insurance against such risks, Pashigian, Schkade and Menefee (1966) find
that out of a sample, from 1962, of more than 0.8 million insured drivers,
53.8 percent chose the lowest deductible and 45.7 percent chose the next low-
est. Cummins and Weisbart (1977) report that a proposal in Pennsylvania to
raise the minimum auto insurance deductible from $ 50 to $ 100 during the
1970s was ultimately withdrawn after massive consumer outcry, even though
such legislation could have saved consumers millions of dollars each year.
Similar attitudes to risk are reported in medical insurance, which is another
proxy for moderate risks (the U.S. Bureau of Labor Statistics (1999)).

Let us turn to the pure supply-side theory of insurance. Here we consider
an insurer with utility function v, where v′ > 0 and v′′ ≤ 0, and risk-free
reserves w, facing the problem

max
I(x)≤x

Ev(w − I(X) + p) subject to p = (1 + γ)E(I(X)). (13)

We can then show

Theorem 1 When the insurer selects to offer insurance contracts (I(x), p),
the contract I∗(x) solving (13) is one with an upper limit B: I∗(x) = IB(x)
where

IB(x) =

{
x, if x ≤ B

B, if x > B.
(14)

If the loading γ = 0 and v′′ < 0, then B = 0.

Proof. Since v′ > 0, the solution to (13) is the same as the solution to the
problem with the inequality constraint p ≤ (1 + γ)E(I(X)), because the
insurer wants more premiums to less. Using control theory, the Hamiltonian
of this latter problem is

H(I; λ) = v(w − I(x) + p) + λ((1 + γ)I(x)− p))f(x),

where λ > 0 is a constant, and the Lagrangian is

L(I; µ, λ) = H(I; λ) + µ(x)(x− I(x)),

where µ(x) ≥ 0, µ(x) = 0 if I∗(x) < x, and µ(x)(x − I∗(x)) = 0 for all
x, where I∗ denotes the optimal contract. From the maximum principle it
follows that the necessary and sufficient first order conditions are found as
follows:

H(I∗; λ) ≥ H(I; λ) for all I such that I(x) < x,
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which leads to

v′(w − I∗(x) + p) = λ(1 + γ) when I∗(x) < x. (15)

Furthermore
∂L(I∗; µ, λ)

∂I
= 0 for all x,

which means that

v′(w − x + p)− λ(1 + γ) = −µ(x)

f(x)
≤ 0 when I∗(x) = x > 0. (16)

Since the function v′(w − x + p) is increasing in x, it is clear that there is
some B ≥ 0 for which v′(w−B +p) = λ(1+γ) and (16) holds true whenever
x ≤ B. From (15) it is clear that when x > B then I∗(x) = B, from which
the contract (14) follows.

If the insurer is strictly risk averse and the premium is actuarially fair,
no contract is offered, or B = 0. �

We may now go on and find the optimal B given that the contact is one
with an upper bound. We limit ourselves to the following:

Theorem 2 In the present framework, the optimal upper bound B > 0 if
and only if γ > 0.

Proof. We use the notation

g(B) := Ev(w − IB(X) + p(B)),

where the premium

p(B) = (1 + γ)EIB(X) = (1 + γ)
( ∫ B

0

xf(x)dx + BP [X > B]
)
,

and P [C] denotes the probability of the event C. From this we get that

∂p(B)

∂B
= (1 + γ)P [X > B] > 0

so the premium p is an increasing function of the upper limit B, as expected.
Moreover

∂g(B)

∂B
= P [X > B]

(
(1+γ)

∫ M

0

v′(w−IB(x)+p(B))f(x)dx−v′(w−B+p(B))
)
.

The integral can be written∫ B

0

v′(w − x + p(B))f(x)dx +

∫ M

B

v′(w −B + p(B))f(x)dx,
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and using the mean value theorem for integrals, it follows that∫ B

0

v′(w−x+p(B))f(x)dx = v′(w−θ+p(B))

∫ B

0

f(x)dx for some θ ∈ [0, B],

while ∫ M

B

v′(w −B + p(B))f(x)dx = v′(w −B + p(B))P [X > B].

From this we have

∂g(B)

∂B
= P [X > B]

{
(1+γ)

(
v′(w−θ+p(B))P [X ≤ B]+v′(w−B+p(B))P [X > B]

)
−v′(w −B + p(B))

}
,

and setting B equal to zero finally gives

∂g(B)

∂B
|B=0 = P [X > 0] γ v′(w + p(0)) > 0 ⇔ γ > 0,

which proves the theorem. �
In the reinsurance business excess of loss (XL) contracts are common.

These are a combination of contracts with a deductible, and contracts with
an upper bound: The ceding company takes part of the risk itself up to a
certain value D, then cedes the remaining risk to a reinsurer, except that
there is some upper bound B beyond which the reinsurer is not responsible.
Consider a simple example:

Example 1. An insurer with reserves w = 3 offers insurance against a loss
X with probability distribution given in Table 1. Consider a contract with
an upper bound B = 1 and loading γ = 0.1. The insurer’s wealth WB is then
(2.73; 2

3
, 3.73; 1

3
). If the insurer instead offers a contract with a deductible D

at the same premium as above, then D = 0.5, and the insurer’s wealth WD

is instead given by the distribution (2.33; 1
3
, 3.23; 1

3
, 3.73; 1

3
). It is easy to see

that the random wealth WD is a mean preserving spread of WB, so all risk
averters will prefer to offer the policy with the upper bound B to the one
with deductible D. Here it is seen that WD = WB + ε in distribution, where
the conditional distribution of ε given WB = 2.73 is (−0.5; 1

2
, 0.5; 1

2
). Since

the insurer prefers the certain outcome 2.73 to the lottery 2.73 + ε, the fact
that WB is preferred to WD actually follows from the substitution axiom.
�

This example indicates that we could have constructed an alternative
proof of Theorem 1 by searching among non-decreasing contracts I, and
verifying that the associated random wealth WI is a mean preserving spread
of WB. It may be noted that we have also included variable costs in the
above example, and the conclusion still holds.
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x 0 1 2
P(X = x) 1

3
1
3

1
3

Table 1: Probability distribution of X

IV Upper Limit Policies and Insurance Costs

In the previous section we have seen that in the pure theory of insurance
supply, policies with an upper limit have a certain optimality property in
that the insurer prefers to offer such contracts to all other contracts having
the same premium. When the insurance customer is also brought into the
model, we have seen that Pareto optimal contracts are not of this type, nor
does Pareto optimal contracts contain a deductible.

In the present section we show that in the presence of insurance costs,
constrained Pareto optimal contracts do not contain an upper bound. In
Theorem 2 of Raviv (1979) this result is proved by comparing the slopes
of the indifference curves for the insured and the insurer in p, B space. In
doing so, Raviv employs two different relations for dp

dB
depending upon which

indifference curve is held constant. While there can be many different con-
nections between p and B, there is only one relation for this derivative for
any given p, B, derived from equation (9). To seek a further relationship for
this derivative is accordingly inappropriate.

First notice that with Pareto optimal contracts with an upper limit B, if
they were to exist, B would not serve as a cap on compensations as in (14)
of Theorem 1. It means that IB(x) := I(x) = x when x ≤ B, and is given as
a solution to the differential equation

dI(x)

dx
=

Au(Wu)

Au(Wu) + Av(Wv)((1 + c′(I)) + c′′(I)/(1 + c′(I))
(17)

when x > B, where Wu = wu − x + IB(x) − p and Wv = wv − IB(x) −
C(IB(x)) + p, which follows from differentiating the first order condition (5)

with respect to x. Since dI(x)
dx

> 0, such policies imply risk sharing for losses
above the upper limit B.

Next notice that from the relationship (9) we obtain

dp(B)

dB
=

Av(wv + p−B − a− c(B))(1 + c′(B)) + c′′(B)/(1 + c′(B))

Au(wu − p) + Av(wv + p−B − a− c(B))
(18)

which shows that p(B) is an increasing function of B under our assumptions
on the variable cost function c.
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The insured’s expected utility with an upper limit is denoted by ũ(B)
and is given by

ũ(B) =

∫ B

0

u(wu − p(B))f(x)dx +

∫ M

B

u(wu − x + IB(x)− p(B))f(x)dx,

and the derivative of this with respect to B is

dũ(B)

dB
= −dp(B)

dB

∫ B

0

u′(wu − p(B))f(x)dx

+

∫ M

B

u(wu − x + IB(x)− p(B))(−dp(B)

dB
+

∂IB(x)

∂B
)f(x)dx.

(19)

The insurer’s expected utility with an upper limit is

ṽ(B) =

∫ B

0

v(wv − x + p(B)− a− c(x))f(x)dx

+

∫ M

B

v(wv − IB(x)−+p(B)− a− c(IB(x)))f(x)dx,

and the derivative with respect to B is

dṽ(B)

dB
=

dp(B)

dB

∫ B

0

v′(wv − x + p(B)− a− c(x))f(x)dx

+

∫ M

B

v(wv − IB(x) + p(B)− a− c(IC(x)))·

(
dp(B)

dB
− ∂IB(x)

∂B
− c′(IB(x))

∂IB(x)

∂B
)f(x)dx.

(20)

Provided contracts are of the upper upper limit type, problem (4) is com-
pleted by solving

max
B

(
ũ(B) + λṽ(B)

)
. (21)

We then have the following

Theorem 3 If the variable costs c satisfy c′(I) > 0 with positive probability,
then the Pareto optimal contracts are not of the upper limit type. If c′(I) = 0
for all I, then B = 0 is the Pareto optimal upper limit.
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Proof. The derivative of the objective function in (21) with respect to B is

− dp

dB

∫ B

0

[
u′(wu − p)− λv′(wv − x + p− a− c(x))

]
f(x)dx

+

∫ M

B

[
u′(wu − x + I(x)− p)

−λv′(wv − I(x) + p− a− c(I(x)))(1 + c′(I(x))
]∂I(x)

∂B
f(x)dx

− dp

dB

∫ M

B

[
u′(wu − x + I(x)− p)

−λv′(wv − I(x) + p− a− c(I(x)))
]
f(x)dx,

which follows from the expressions (19) and (20). Here I(x) is given by (17).
If c′(I) > 0 with positive probability, the second term in square brackets is
zero from (5). The third term in square brackets is then strictly positive with

positive probability, and since dp(B)
dB

> 0, the third term is strictly negative.
The first term in square brackets is greater than or equal to zero from (7),
so the first term is smaller than or equal to zero. As a consequence, the
derivative of the objective function is strictly negative for all B. Therefore
the Pareto optimal contracts can not be of of the upper limit type when
c′(I) > 0 with positive probability.

When c′(I) = 0 for all I both the second and the third term in square
brackets are zero for all B ≥ 0 from (5). The first term is also zero when
B = 0, implying that the Pareto optimal upper limit is B = 0. �

Intuitively, an increase in B from zero has the effect of increasing insur-
ance coverage for all losses which, in turn, increases the dead-weight loss due
to increased insurance costs and therefore is suboptimal.

V Pareto Optimal Deductibles in the Pres-

ence of Costs

When there are no ex-post costs, we know from Section III that Pareto
optimal contracts have no deductibles. From Raviv (1979) and Blazenko
(1985) we know that when there are variable costs c(I), then the Pareo
optimal deductible is zero if and only if c′(I) = 0 for all I.

In this section we show that when the cost function is given by (1), then
we need to add to this that a = 0 as well. So for example, when a > 0
and c′(I) = 0 for all I there is a non-zero deductible D > 0. As we have
argued in the introduction, this term really captures the essence of costs
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in the household insurance business, and it is rather intuitive that optimal
contracts entail deductibles in this situation.

We proceed as follows: First notice that from the relationship (8) we
obtain

dp(D)

dD
= − Au(wu − p−D)

Au(wu − p−D) + Av(wv + p− b)
(22)

which shows that p(D) is a decreasing function of D, as expected. The
insured’s expected utility with deductible D is denoted by ū(D) and is given
by

ū(D) =

∫ D

0

u(wu)−x− p(D)f(x)dx+

∫ M

D

u(wu−x+ ID(x)− p(D))f(x)dx,

and the derivative of this with respect to D is

dū(D)

dD
= −dp(D)

dD

∫ D

0

u′(wu − x− p(D))f(x)dx

+

∫ M

D

u(wu − x + ID(x)− p(D))(−dp(D)

dD
+

∂ID(x)

∂D
)f(x)dx.

(23)

The insurer’s expected utility with a deductible is

v̄(D) =

∫ D

0

v(wv + p(D)− c(0))f(x)dx

+

∫ M

D

v(wv − ID(x) + p(D)− C(ID(x)))f(x)dx,

and the derivative with respect to D is

dv̄(D)

dD
=

dp(D)

dD

∫ D

0

v′(wv + p(D)− c(0))f(x)dx

+

∫ M

D

v(wv − ID(x) + p(D)− a− c(ID(x)))·

(
dp(D)

dD
− ∂ID(x)

∂D
− c′(ID(x))

∂ID(x)

∂D
)f(x)dx

+v(wv + p(D)− c(0))f(D)− v(wv + p(D)− a− c(0))f(D).

(24)

Provided Pareto optimal contracts contain a non-negative deductible, prob-
lem (4) is completed by solving

max
D

(
ū(D) + λv̄(D)

)
. (25)

We then have the following
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Theorem 4 A necessary and sufficient condition for the Pareto optimal de-
ductible D to be equal to zero is c′(I) = 0 for all I and a = 0.

Proof. The derivative of the objective function in (25) evaluated at D = 0 is

−dp(0)

dD

∫ M

0

[
u′(wu − x + ID(x)− p)

−λv′(wv − ID(x) + p− a− c(ID(x)))
]
f(x)dx

+

∫ M

0

[
u′(wu − x + ID(x)− p)

−λv′(wv − ID(x) + p− a− c(ID(x)))(1 + c′(ID(x)))
]∂ID(x)

∂D
f(x)dx

+v(wv + p(0)− c(0))f(0)− v(wv + p(0)− a− c(0))f(0),

which follows from the expressions (23) and (24). Here ID(x) is given by (17).
If c′(I) > 0 with positive probability, the second term in square brackets is
zero from (5). The first term in square brackets is then strictly positive with

positive probability, and since dp(0)
dD

< 0, the first term is strictly positive.
The last term is greater than or equal to zero if a ≥ 0, since v is increasing.
As a consequence, the derivative of the objective function is strictly positive
evaluated at D = 0. Therefore the Pareto optimal deductible is not zero.

When c′(I) = 0 for all I both the first and the second term in square
brackets are zero, from (5), and the last term is zero only if a = 0. In this
case the Pareto optimal deductible is zero. If a > 0 the Pareto optimal
deductible is not zero.

When evaluating the derivative of the objective function at any D, the
additional term to the above expression is

−dp(D)

dD

∫ D

0

[
u′(wu − x− p)− λv′(wv + p− b))

]
f(x)dx

which may be negative from (6) depending on the cost function (e.g., c′(0) >
0). Thus, unlike the situation with an upper limit, this derivative may change
sign. If the objective is maximized at D = M the costs of claim settlement
overwhelm the advantages of risk sharing. �

VI Conclusions

When there are no ex-post costs, the pure theory of insurance demand implies
that contracts with a deductible are preferred by the insured among contracts
with the same premium. In the pure theory of insurance supply we have

14



demonstrated that insurers prefer to offer contracts with an upper bound to
any other contract with the same premium. When Pareto optimal contracts
are considered, on the other hand, neither of these contract forms are optimal.

When there are ex-post costs, it is still the case that policies with an
upper limit are not part of the solution. When there are fixed costs triggered
whenever a claim is made, deductibles appear in the Pareto optimal policies
even if there are no variable costs. When there are no such fixed costs, a
deductible arises whenever the costs are variable.
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