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Abstract

We discuss the ”life cycle model” by first introducing a credit mar-
ket with only biometric risk, and then market risk is introduced via
risky securities. This framework enables us to find optimal pension
plans and life insurance contracts where the benefits are state de-
pendent. We compare these solutions both to the ones of standard
actuarial theory, and to policies offered in practice. Two related port-
folio choice puzzles are discussed in the light of recent research, one
is the horizon problem, the other is related to the aggregate market
data of the last century, where theory and practice diverge. Finally
we present some comments on longevity risk and cohort risk.

KEYWORDS: The life cycle model, pension insurance, optimal life in-
surance, longevity risk, the horizon problem, equity premium puzzle

1 Introduction

Four or five decennials back life and pension insurance seemed less problem-
atic than today, at least from the insurance companies’ point of view. Prices
were set by actuaries using life tables, and a ”fixed calculation” interest rate.
This rate was not directly linked to the spot interest rate of the market, or
any other market linked quantities or indexes. The premium reserves of the
individual and collective policies were invested in various assets, and when
the different contracts were settled, the evolution of the premium reserve
determined the final insurance compensation. If the return on the premium
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reserve had been higher than the ”calculation rate”, this gave rise to a bonus.
For a mutual company ”bonus” need not only involve a payment from the
insurer to the customer, but could also involve a payment in the other di-
rection. For a stock owned corporation the bonus could in principle only
be non-negative. In most cases this did not matter all that much, since the
”calculation rate” was set to the ”safe side”, which meant much lower that
the realized return rate on the premium reserve.

In several countries the nominal interest rate was high during some parts
of this period, often significantly higher than the fixed rate used in determin-
ing premiums .

In Norway, for example, this calculation rate (4%) appeared from some
point in time as a legal guaranteed return rate in the contracts. For current
policies this guarantee is reduced to 3%.

During the last two or three decennials this interest rate guarantee has
become a major issue for many life insurance companies. What initially ap-
peared to be a benefit with almost no value, later turned out to be rather
valuable for the policy holders, and correspondingly problematic for the in-
surers.

In this paper we study optimal demand theory, where, among other
things, we can check if such contracts have any place in the life cycle model.
It turns out to be not much evidence for this. If we were to take into account
also the supply side of the economy, and for example study Pareto optimal
contracts, it is not likely that this would change the picture much. We know
that such contracts are ”smooth” unless there are frictions of some kinds.

Every downturn in the financial market has typically been accompanied
by problems for the life insurance industry. In view of this, life insurance
companies seem to prefer to offer ”defined contribution” type policies to the
more traditional ”defined benefit” ones. For the former type the companies
have considerably less risk than for the latter.

During the financial crisis of 2008 and onwards, casual observations seem
to suggest that many individuals would rather prefer the defined benefit type
to the other. In a particular case, the employees of a life and pension insur-
ance company would rather prefer a collective defined benefit pension plan,
but were voted down by the board. Collective pension plans organized by
firms on behalf of their workers, are almost exclusively defined contribution
plans these days, which appear to be the least costly of the two for the firms,
and also the preferred choice to offer by the insurance companies.

The paper is organized as follows: In Section 2 we introduce consumption
and saving with only a credit market available. Here we introduce some
actuarial concepts related to mortality. Actuarial notation can be rather
demanding at first sight, so we have tried to keep the technical details at a
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minimum. In particular we study the effects from pooling. Next, in Section 3,
we include mortality risk, i.e., an uncertain planning horizon, in the model of
Section 2. In this setting we derive both optimal life insurance, not commonly
studied, and optimal pension insurance, and investigate their properties when
there is only a credit market present. In Section 4 we introduce a market
for risky securities in addition to the credit market. Here we solve both the
optimal portfolio choice and the pension/life insurance problem. We show
that with pension insurance available, the actual consumption rate at each
time is larger than without pension. The optimal portfolio choice problem
is studied in Section 5, where we also point out a solution to time horizon
problem, as well as a solution to a related empirical problem with the optimal
strategy. This latter problem is also related to the celebrated equity premium
puzzle. In Section 6 we discuss our results, and reflect on longevity risk and
cohort risk in relation to the framework presented. Section 7 concludes.

2 Consumption and Saving

We start with the simplest problem in optimal demand theory, when there
is no risk and no uncertainty.

Consider a person having income e(t) and consumption c(t) at time t.
Given income, possible consumption plans must depend on the possibilities
for saving and for borrowing and lending. We want to investigate the possi-
bilities of using income during one period to generate consumption in another
period.

To start, assume the consumer can borrow and lend to the same interest
rate r. Given any e and c, the consumer’s net saving W (t) at time t is

W (t) =

∫ t

0

er(t−s)(es − cs)ds. (1)

Assuming the person wants to consume as much as possible for any e, not
any consumption plan is possible. A constraint of the type W (t) ≥ a(t) may
seem reasonable: If a(t) < 0 for some t, the consumer is allowed a net debt at
time t. Another constraint could be W (T ) ≥ B ≥ 0, where T is the planner’s
horizon. The consumer is then required to be solvent at time T .

The objective is to optimize the utility U(c) of lifetime consumption,
subject to a budget constraint. There could also be a bequest motive, but
this is not the only explanation underlying life insurance.
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2.1 Uncertain planning horizon

In order to formulate the most natural budget constraint of an individual,
which takes into account the advantages of pooling risk, we introduce mor-
tality. Yaari (1965), Hakansson (1969) and Fisher (1973) were of the first to
include an uncertain lifetime into the theory of the consumer.

The remaining lifetime Tx of an x year old consumer at time zero is a
random variable with support (0, τ) and cumulative probability distribution
function F x(t) = P (Tx ≤ t), t ≥ 0. The survival function is denoted by
F̄ x(t) = P (Tx > t). Ignoring possible selection effects, it can be shown that

F̄ x(t) =
l(x+ t)

l(x)
(2)

for some function l(·) of one variable only. The decrement function l(x) can
be interpreted as the expected number alive in age x from a population of
l(0) newborne.

The force of mortality or death intensity is defined as

µx(t) =
fx(t)

1− F x(t)
= − d

dt
ln F̄ x(t), F x(t) < 1, (3)

where fx(t) is the probability density function of Tx. Integrating this expres-
sion yields the survival function in terms of the force of mortality

F̄ x(t) =
l(x+ t)

l(x)
= exp

{
−
∫ t

0

µx(u) du
}
. (4)

Suppose y ≥ 0 a.s. is a non-negative process in L, the set of consumption
processes. Later L will be a set of adapted stochastic processes y satisfying
E(
∫ τ

0
y2
t dt) <∞. If Tx and y are independent, the formula

E
(∫ Tx

0

ytdt
)

=

∫ τ

0

E(yt)
l(x+ t)

l(x)
dt =

∫ τ

0

E(yt)e
−

∫ t
0 µx(u)dudt (5)

follows essentially from integration by parts, the independence assumption
and Fubini’s Theorem. Assuming the interest rate r is a constant, it follows
that the single premium of an annuity paying one unit per unit of time is
given by the actuarial formula

ā(r)
x =

∫ τ

0

e−rt
lx+t

lx
dt, (6)

and the single premium of a ”temporary annuity” which terminates after
time n is

ā
(r)
x:n̄| =

∫ n

0

e−rt
lx+t

lx
dt. (7)
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Under a typical pension plan the insured will pay a constant, or ”level”
premium p up to some time of retirement n, and from then on he will receive
an annuity b as long as he lives. The principle of equivalence gives the
following relationship between premium and benefit:

p

∫ n

0

e−rt
lx+t

lx
dt = b

∫ τ

n

e−rt
lx+t

lx
dt.

In standard actuarial notation this is written

pā
(r)
x:n̄| = b(ā(r)

x − ā
(r)
x:n̄|). (8)

The following formulas are sometimes useful in life insurance computations

µx(t) = − l
′(x+ t)

l(x+ t)
, and fx(t) = − l

′(x+ t)

l(x)
=
l(x+ t)

l(x)
µx+t, (9)

where l′(x+t) is the derivative of l(x+t) with respect to t. The present value
of one unit payable at time of death is denoted Āx. Using (9) and integration
by parts, it can be written

Āx =

∫ τ

0

e−rtfx(t)dt = 1− rā(r)
x . (10)

This insurance contract is called Whole life insurance. If the premium rate p
is paid until the retirement age n for a combined life insurance with z units
payable upon death, and an annuity of rate b per time unit as long as the
insured lives, we have the following relationship between p, b and z:

pā
(r)
x:n̄| = b(ā(r)

x − ā
(r)
x:n̄|) + z(1− rā(r)

x ). (11)

Pension insurance and life insurance can now be integrated in the life cycle
model in a natural way, as we shall see.

2.2 The effect from pooling

Continuing our discussion of consumption and saving the following quantity
plays an important role:

E
(
W (Tx)e

−rTx
)

= expected discounted net savings. (12)

In the absence of a life and pension insurance market, one would as before
consider consumption plans c such that W (Tx) ≥ B, or

W (Tx)e
−rTx ≥ b ≥ 0 almost surely (13)
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e.g., debt must be resolved before the time of death. If, on the other hand,
pension insurance is possible, then one can allow consumption plans where

E
(
W (Tx)e

−rTx
)

= 0 (no life insurance.) (14)

Those individuals who live longer than average are guaranteed a pension
as long as they live via the pension insurance market. The financing of this
benefit comes from those who live shorter that average, which is what pooling
is all about.

The implication is that the individual’s savings possibilities are exhausted,
by allowing gambling on own life length. Clearly the above constraint in
(14) is far less demanding than requiring that the discounted net savings,
the random variable in (13), is larger that some non-negative number b with
certainty. Integration by parts gives the following expression for the expected
discounted net savings

E
(
W (Tx)e

−rTx
)

=

∫ τ

0

(
e(t)− c(t)

)
e−

∫ t
0 (r+µx+u)dudt. (15)

This expression we have interpreted as the present value of the consumer’s
net savings, which is seen from (15) to take place at a ”spot” interest rate

r + µ > r

where the inequality follows since the mortality rate µ > 0. This is a result
of the the pooling effect of (life and) pension insurance. The existence of a
life and pension insurance market allows the individuals to save at a higher
interest rate than the spot rate r. With a pure pension insurance contract, the
policyholder can consume more while alive, since terminal debt is resolved
by pooling. This is illustrated later in an example when all the relevant
uncertainty is taken into account.

Example 1. (A Pension Contract, or an Annuity). Suppose e(t) = 0 for

t > n. The condition E
(
W (Tx)e

−rTx
)

= 0 can be interpreted as the Principle
of Equivalence:∫ n

0

(
e(t)− c(t)

)
P [Tx > t]e−rtdt =

∫ τ

n

c(t)e−rtP [Tx > t]dt. (16)

Here the difference (et− ct) = pt is the premium (intensity) paid while work-
ing, giving rise to the pension ct after the time of retirement n. This rela-
tionship implies that the pension is paid out to the beneficiary as long as
necessary, and only then, i.e., as long as the policy holder is alive. �

Notice the similarity between the actuarial formula in (8) and the above
equation (16). Both equations are, of course, based on the same principle.
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3 The optimal demand theory with only a

credit market

In order to analyze the problem of optimal consumption, we need some as-
sumptions about the preferences of the consumer. We assume the preferences
are represented by a utility function U : L → R given in the additive and
separable form by

U(c) = E
{∫ Tx

0

e−ρtu(ct)dt+ e−κTxv(WTx)
}
. (17)

Here ρ and κ are subjective impatience rates, u is a strictly increasing and
concave utility function, and v is a another utility function. The function v
is connected to life insurance, and may represent a bequest motive, but as I
will argue later, this is not the most natural reason for life insurance. The
functions u and v are sometimes referred to as felicity indexes.

The variable z = W (Tx) is the amount of life insurance. It is often as-
sumed to be a given constant (e.g., 1) in the standard theory of life insurance,
but we will allow it to be a decision variable. First we focus on pensions and
annuities and set v ≡ 0.

The pension problem may be formulated as:

max
c
E
{∫ Tx

0

e−ρtu(ct)dt
}

(18)

subject to (i) E
(
W (Tx)e

−rTx
)

= 0, and (ii) ct ≥ 0 for all t. Ignoring the
positivity constraint (ii) for the moment, we may use Kuhn-Tucker to solve
this problem. The Lagrangian is

L(c;λ) =

∫ τ

0

u(ct)e
−

∫ t
0 (ρ+µx+s)dsdt+ λ

(∫ τ

0

(
e(t)− c(t)

)
e−

∫ t
0 (r+µx+s)dsdt

)
.

If c∗(t) is optimal, there exists a Lagrange multiplier λ such that L(c;λ)
is maximized at c∗(t) and complementary slackness holds. Denoting the
directional derivative of L(c∗;λ) in the direction c by 5L(c∗, λ; c), the first
order condition of this unconstrained problem is

5L(c∗, λ; c) = 0 in all ’directions’ c ∈ L,

which is equivalent to∫ τ

0

(
u′(c∗t )e

−
∫ t
0 (ρ+µx+s)ds − λe−

∫ t
0 (r+µx+sds

)
c(t)dt = 0, ∀c ∈ L.
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This gives the first order condition

u′(c∗t ) = λe−(r−ρ)t, t ≥ 0. (19)

Notice that the force of mortality µ does not enter this expression.
Differentiating this function in t along the optimal path c∗, we deduce

the following differential equation for c∗

dc∗t
dt

= (r − ρ)T (c∗t ), (20)

where T (x) = − u′(x)
u′′(x)

is the risk tolerance function of the consumer, the
reciprocal of the absolute risk aversion function.

Exampel 2. (A Pension Contract for the CRRA Consumer.) Assume that
the income process et is:

et =

{
y, if t ≤ n;

0, if t > n
(21)

where y is a constant, interpreted as the consumer’s salary when working.
The felicity index is assumed to be u(x) = 1

1−γx
1−γ. This index has a constant

relative risk aversion (CRRA) of γ. We may interpret y as the agent’s salary

while working. The optimal consumption and pension is c∗t = ke
1
γ

(r−ρ)t,
where k is an integration constant. Equality in constraint (i) determines
the constant k: The optimal life time consumption (t ∈ [0, n]) and pension
(t ∈ [n, τ)) is

c∗t = y
ā

(r)
x:n̄|

ā
(r0)
x

e
1
γ

(r−ρ) t for all t ≥ 0. (22)

Here r0 = r − r−ρ
γ

and ā
(r)
x:n̄| and ā

(r0)
x are the actuarial formulas explained in

(6) and (7). Although the first order conditions in (19) do not depend on
mortality, the optimal consumption c∗t does, since the Lagrange multiplier λ,
or equivalently, the integration constant k, is determined from the ’average’
budget constraint (i). Also, the positivity constraint (ii) is not binding at
the optimum, due to the form of the felicity index u. �

The differential equation (20) tells us that the value of the interest rate r
is a crucial border value for the subjective impatience rate ρ. When ρ > r the
optimal consumption c∗t is always a decreasing function of time t, but when
ρ < r the optimal consumption increases with time. In the first case, the
’impatient’ one has already consumed so much, that he can only look forward
to a decreasing consumption path. The ’patient’ one can, on the other hand,
look forward to a steadily increasing future consumption path. In Example
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2 we see from (22) that the former has an optimal consumption path that
is a decreasing exponential, while the latter has an increasing exponential
consumption path. This seems to suggest that it may be difficult to compare
consumption paths between different consumers. That this is not so clear-
cut as this example might suggest, will follow when we introduce a securities
market where the consumers are allowed to invest in risky securities as well
as a risk less asset in order to maximize lifetime consumption. In Example
2 we notice that the above effects are dampened as the relative risk aversion
γ increases.

3.1 Including life insurance

We can now iintroduce life insurance, where the goal is to determine the
optimal amount of life insurance for an individual. The problem is then to
solve

max
c(t),z

E
{∫ Tx

0

e−ρtu(ct)dt+ e−κTxv(z)
}

subject to (i) E
(
W (Tx)e

−rTx
)
≥ E

(
ze−rTx

)
, and (ii) ct ≥ 0 for all t and

z ≥ 0.
The Lagrangian for the problem is (ignoring again the non-negativity

constraints (ii)),

L(c, z;λ) =

∫ τ

0

u(ct)e
−

∫ t
0 (ρ+µx+s)dsdt+ v(z)(1− κā(κ)

x )

− λ
(

(1− rā(r)
x )z −

∫ τ

0

(
e(t)− c(t)

)
e−

∫ t
0 (r+µx+s)dsdt

)
.

The first order condition (FOC) in c is the same as for pensions treated
above. The FOC in the amount z of life insurance is obtained by ordinary
differentiation with respect to the real variable z. This gives

v′(z∗) = λ
1− rā(r)

x

1− κā(κ)
x

.

We can now determine both the optimal life time consumption, including
pension and and the optimal amount of life insurance. An example will
illustrate.

Example 3: (The CRRA consumer.) Assume et is as in (21), the con-

sumption felicity index is u(x) = 1
1−γx

1−γ, and the life insurance index is
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v(x) = 1
1−ψx

1−ψ. The optimal life insurance amount and optimal consump-

tion/pension are given by

z∗ = λ−
1
ψ

( 1− rā(r)
x

1− κā(κ)
x

)− 1
ψ

and c∗t = λ−
1
γ e

1
γ

(r−ρ)t. (23)

Equality in the ’average’ budget constraint (i) determines the Lagrangian
multiplier λ. The equation is

λ−
1
ψ (1− rā(r)

x )
( 1− rā(r)

x

1− κā(κ)
x

)− 1
ψ

+ λ−
1
γ ā(r0)

x = y ā
(r)
x:n̄|. (24)

Notice that with life insurance included, the optimal consumption and the
pension payments become smaller than without life insurance present, which
is seen when comparing the expressions in (23) and (24) with (22). This just
tells us the obvious: When some resources are bound to be set aside for the
beneficiaries, less can be consumed while alive. The optimal amount in life
insurance is an increasing function in income y, and depends on the interest
rate r, the pension age n, the insured’s relative risk aversion γ as well as
his impatience rate ρ, the bequest relative risk aversion ψ and the corre-
sponding impatience rate κ, the insured’s age x when initializing the pension
and insurance contracts, and the insured’s life time distribution through the
actuarial formulas in (24).

Comparative statics in the parameters are not straightforward, and nu-
merical technics are necessary. As an example, when ψ = γ, it can be seen
that the optimal amount of life insurance z∗(κ) as a function of the bequest
impatience rate κ is increasing for κ ≤ κ0 for some κ0 > 0, and decreasing
in κ for κ > κ0. For reasonable values of κ this means that more impatience
with respect to life insurance means a higher amount z∗ of life insurance.
�

The above results deviate rather much from the standard actuarial for-
mulas, which is to be expected since the two approaches are indeed different:
The actuarial theory is primarily based on the principle of equivalence and
risk neutrality. This is problematic, since risk neutral insurance customers
would simply not demand any form of insurance. Therefore we assume that
the individuals are risk averse, unlike what is done in actuarial theory, and
use expected utility as our optimization criterion.

Going back to the actuarial relationship (11), the three quantities p, b and
z representing the premium, the pension benefit and the insured amount re-
spectively could be any non-negative numbers satisfying this relationship.
In the above example, all these quantities are in addition derived so that
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expected utility is optimized. The optimal contracts still maintain the ac-
tuarial logic represented by the principle of equivalence, which in our case
corresponds to the budget constraint (i) on the ’average’. The present ana-
logue to the relationship (11) is:∫ n

0

(y − c∗t )
lx+t

lx
e−rtdt =

∫ τ

n

c∗t
lx+t

lx
e−rtdt+ z∗(1− rā(r)

x ), (25)

where the constant premium p corresponds to the time varying pt = (y− c∗t )
for 0 ≤ t ≤ n, the constant pension benefit b corresponds to the optimal c∗t
for n ≤ t ≤ τ , and the number z corresponds to z∗ found in (23), where also
the optimal pension c∗t is given.

So far the insured amount is still a deterministic quantity, albeit endoge-
nously derived. The reason for the non-randomness in z∗ in the present
situation is that only biometric risk is considered.

When uncertainty in the financial market is also taken into account, we
shall demonstrate that the optimal insured amount becomes state dependent,
and the same is true for c∗t . Both real and nominal amounts are then of
interest when comparing the results with insurance theory and practice.

Including risky securities in a financial market is our next topic.

4 A Financial Market including Risky Assets

We consider a consumer/insurance customer who has access to a securities
market, as well as pension and life insurance as considered in the above. The
securities market can be described by a price vector X ′ = (X(0), · · · , X(N)),
where (prime means transpose)

dX
(n)
t = µnX

(n)
t dt+X

(n)
t σ(n) dBt, X

(n)
0 > 0, t ∈ [0, T ], (26)

The vector σ(n) is the n-th row of a matrix σ consisting of constants in
RN×N with linearly independent rows, and µn is a constant. Here N is also
the dimension of the Brownian motion B.

Underlying there is a probability space (Ω,F , P ) and an increasing infor-
mation filtration Ft generated by the d-dimensional Brownian motion. Each
price process X

(n)
t is a geometric Brownian motion, and we suppose that

σ(0) = 0, so that r = µ0 is the risk free interest rate. T is the finite horizon
of the economy, so that τ < T . The state price deflator π is given by

πt = ξte
−rt, (27)
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where the ’density’ process ξ has the representation

ξt = exp(−η′ ·Bt −
t

2
η′ · η). (28)

Here η is the market-price-of-risk for the discounted price process Xte
−rt,

defined by
ση = ν. (29)

ν is the vector with n-th component (µn − r), the excess rate of return on
security n, n = 1, 2, · · · , N . From Ito’s lemma it follows from (28) that

dξt = −ξ η′ · dBt, (30)

i.e., the density ξt is a martingale.
The agent is represented by an endowment process e (income) and a

utility function U : L+ × L+ → R, where

L = {c : ct is Ft-adapted, and E(

∫ T

0

c2
t dt) <∞}.

L+, the positive cone of L, is the set of consumption rate processes.
The specific form of the function U is as before, namely the time additive

one given in (17). The remaining life time Tx of the agent is assumed inde-
pendent of the risky securities X. The information filtration Ft is enlarged
to account for events like Tx > t.

4.1 The Consumption/Portfolio Choice/Pension Prob-
lem

The consumer’s problem is, for each initial wealth level w, to solve

sup
(c,ϕ)

U(c) (31)

subject to an intertemporal budget constraint

dWt =
(
Wt(ϕ

′
t · ν + r)− ct

)
dt+Wtϕ

′
t · σdBt, W0 = w. (32)

Here ϕ′t = (ϕ
(1)
t , ϕ

(2)
t , · · · , ϕ(N)

t ) are the fractions of total wealth held in the
risky securities. The first order condition for the problem (31) is given by
the Bellman equation:

sup
(c,ϕ)

{
D(c,ϕ)J(w, t)− µx(t)J(w, t) + u(c, t)

}
= 0, (33)
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with boundary condition

EJ(w, Tx) = 0, w > 0. (34)

The function J(w, t) is the indirect utility function of the consumer at time
t when the wealth Wt = w, and represents future expected utility at time t
in state w, provided the optimal portfolio choice strategy is being followed
from this time on. The differential operator D(c,ϕ) is given by

D(c,ϕ)J(w, t) = Jw(w, t)(wϕ · ν + rw − c) + Jt(w, t) (35)

+
w2

2
ϕ′ · (σ · σ′) · ϕJww(w, t).

The problem as it now stands is a non-standard dynamic programing prob-
lem, a so called non-autonomous problem. Instead of solving this problem
directly, we solve an equivalent one. As is well known (e.g., Cox and Huang
(1989) or Pliska (1987)), since the market is complete, the dynamic program
(31) - (35) has the same solution as a simpler, yet more general problem,
which we now explain.

4.2 An Alternative Problem Formulation

Find
sup
c∈L

U(c), (36)

subject to

E

{∫ Tx

0

πtct dt

}
≤ E

{∫ Tx

0

πtet dt

}
:= w (37)

Here e is the endowment process of the individual, and is assumed that et is
Ft measurable for all t.

As before, the pension insurance element secures the consumer a con-
sumption stream as long as needed, but only if it is needed. This makes it
possible to compound risk-free payments at a higher rate of interest than r.

The optimal wealth process Wt associated with a solution c∗ to the prob-
lem (36)-(37) can be implemented by some adapted and allowed trading
strategy ϕ∗, since the marketed subspace M is equal to L (complete mar-
kets). Without mortality this is a well-known result in financial economics.
We claim that by introducing the new random variable Tx this result still
holds: In principal mortality corresponds to a new state of the economy,
which should normally correspond to its own component in the state price,
but the insurer can diversify this type of risk away by pooling over the agents,
all in age x, so that the corresponding addition to the Arrow-Debreu state
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price is only the term exp{−
∫ t

0
µx(u)du}, a non-stochastic quantity. Accord-

ingly, adding the pension insurance contract in an otherwise complete model
has no implications for the state price π other than multiplication by this
deterministic function, and thus the model is still ’essentially’ complete.

4.3 The Optimal Consumption/Pension

The constrained optimization problem (36)-(37) can be solved by Kuhn-
Tucker and a variational argument. The Lagrangian of the problem is

L(c;λ) = E
{∫ Tx

0

(
u(ct, t)− λ(πt(ct − et))

)
dt
}
, (38)

We assume that the optimal solution c∗ to the problem (36)-(37) satisfies
c∗t > 0 for a.a. t ∈ [0, Tx), a.s. Then there exists a Lagrange multiplier, λ,
such that c∗ maximizes L(c;λ) and complementary slackness holds.

Denoting the directional derivative of L(c∗;λ) in the ”direction” c ∈ L by
5L(c∗, λ; c), the first order condition of this unconstrained problem becomes

5L(c∗, λ; c) = 0 for all c ∈ L (39)

This is equivalent to

E

{∫ τ

0

((
u′(c∗t )e

−ρt − λπt
)
c(t)
)
P (Tx > t)dt

}
= 0, for all c ∈ L, (40)

where the survival probability P (Tx > t) = l(x+t)
l(x)

. In order for (40) to hold
true for all processes c ∈ L, the first order condition is

u′(c∗t ) = λe−ρtπt = λe−(r−ρ)tξt a.s., t ≥ 0 (41)

in which case the optimal consumption process is

c∗t = u′−1
(
λe−(r−ρ)tξt

)
a.s., t ≥ 0, (42)

where the function u′−1(·) inverts the function u(·). Comparing the first order
condition to the one in (19) where only biometric risk is included, we notice
that the difference is the state price density ξt in (41). Still mortality does
not enter this latter condition.

Differentiation (41) in t along the optimal path c∗t , by the use of Ito’s
lemma and diffusion invariance the following stochastic differential equation
for c∗t is obtained

dc∗t =
(
(r − ρ)T (c∗t ) +

1

2
T 3(c∗t )

u′′′(c∗t )

u′(c∗t )
η′ · η

)
dt+ T (c∗t ) η

′ · dBt (43)
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where T (·) is the risk tolerance function defined earlier.
Comparing with the corresponding differential equation (20) for c∗t with

only biometric risk present, it is seen that including market risk means that
the dynamic behavior of the optimal consumption is not so crucially de-
pendent upon whether r < ρ or not. This follows since, first, there is an
additional term in the drift, and, second, there is a diffusion term present
under market risk. The definition of what impatience means will also change
with market risk present, as we shall see.

Notice that when the market-price-of-risk η = 0, the two equations coin-
cide. We consider an example:

Example 4. (The CRRA-consumer.) In this case the optimal consumption
takes the form

c∗t = (λe−(r−ρ)tξt)
− 1
γ a.s., t ≥ 0. (44)

The budget constraint determines the Lagrange multiplier λ, where mortality
comes in. Suppose we consider an endowment process et giving rise to a
pension as in (21). Using Fubini’s theorem this constraint can be written∫ n

0

(
ye−rt

lx+t

lx
− λ−

1
γ e−

ρt
γ E(π

(1− 1
γ

)

t )
lx+t

lx

)
dt

+

∫ τ

n

(−1)λ−
1
γ e−

ρt
γ E(π

(1− 1
γ

)

t )
lx+t

lx
dt = 0. (45)

By the properties of the state prices πt and (27) - (30), it follows that

E
(
π

(1− 1
γ

)

t

)
= e−[(1− 1

γ
)(r+ 1

2
1
γ
η′·η)]t.

Accordingly, the budget constraint can be written

y

∫ n

0

e−rt
lx+t

lx
dt = λ−

1
γ

∫ τ

0

e−[ ρ
γ

+(1− 1
γ

)(r+ 1
2

1
γ
η′·η)]t lx+t

lx
dt.

Defining the quantity

r1 =
ρ

γ
+ (1− 1

γ
)(r +

1

2

1

γ
η′ · η),

the Lagrangian multiplier is determined by

λ−
1
γ = y

ā
(r)
x:n̄|

ā
(r1)
x

.
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From this, the optimal consumption (t ∈ [0, n]) and the optimal pension
(t ∈ [n, τ ]) are both given by the expression

c∗t = y
ā

(r)
x:n̄|

ā
(r1)
x

e
1
γ

(r−ρ) t ξ
− 1
γ

t for all t ≥ 0. (46)

which can be compared to (22) which gives the corresponding process with
only mortality risk present. Notice that this latter formula follows from (46)
by setting η = 0, in which case ξt = 1 for all t (a.s.) and r1 = r0.

The expected value of the optimal consumption is given by

E(c∗t ) = y
ā

(r)
x:n̄|

ā
(r1)
x

exp
{1

γ

(
r +

1

2
η′ · η(1 +

1

γ
)− ρ

)
t
}
, (47)

which is seen to grow with time t already when r > ρ− 1
2
η′ · η(1 + 1

γ
). When

the opposite inequality holds, this expectation decreases with time. In terms
of expectations, the crucial border value for the impatience rate ρ is no longer
r but (r + 1

2
η′ · η(1 + 1

γ
)) when a stock market is present.

As an alternative derivation of c∗t , the stochastic differential equation (43)
for the optimal consumption process is

dc∗t = c∗t
(r − ρ

γ
+

1

2

1

γ2
(γ + 1) η′ · η

)
dt+ c∗t

1

γ
η′ · dBt, (48)

from which it follows that c∗t is a geometric Brownian motion. Notice that
here it the risk tolerance function T (c) = c

γ
. The ”solution” to this stochastic

differential equation is

c∗t = c0e
1
γ

[(r−ρ+ 1
2
η′·η)t+η′·Bt], t ≥ 0.

The initial value c0 is finally determined by the budget constraint, and (46)
again results. The dynamics of c∗t will be used later in solving the optimal
portfolio choice problem. �

When stock market uncertainty is present, since γ > 0, the solution in
this example tells us that when state prices πt are low, optimal consumer is
high, and vice versa. State prices reflect what the representative consumer
is willing to pay for an extra unit of consumption; in particular is πt high in
times of crises and low in good times.

In real terms the result for pensions is as for optimal consumption in so-
ciety at large: In times of crises the pensions are lower than in good times.
This only explains the obvious, namely that society can only pay the pen-
sioners that the economy can manage at each time. Insurance companies,
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for example, pay the pensions from funds, which in bad times are lower than
in good times. The government is similarly affected. Since pensions are,
presumably, paid out to the whole generation of people above a certain age,
it is in principle not possible to insure the entire society against crises and
bad times. A single individual can of course find a strategy to hedge against
low income in certain periods, and so can an insurance company by proper
use of risk management, but this types of hedging will not work for the entire
population, by the mutuality principle: In equilibrium everyone holds a non-
decreasing function of aggregate consumption. If aggregate consumption in
society is down, everyone is in principle worse off.

4.4 Pensions in nominal terms

Pensions (and insurance payments) are usually not made in real, but in
nominal terms. There exist index-linked contracts, but these are still more
the exception than the rule. In nominal terms the optimal consumption is
c∗tπt.

For the preferences of Example 4, the nominal consumption/pension is
given by the

c∗tπt = (λeρt)−
1
γ π

(1− 1
γ

)

t

Here γ = 1 is seen to be a border value of the relative risk aversion in the
sense that for γ > 1 both optimal consumption and pensions in nominal
terms are countercyclical. This can give rise to an illusion of being insured
against times of crises.

People with γ < 1 experience no such illusion, since nominal amounts be-
haves as real amounts with respect to cycles in the economy. In the situation
when 0 < γ < 1 the agent is sometimes called risk tolerant.

This phenomenon is connected to another interpretation of γ. The quan-
tity α = 1/γ is the elasticity of intertemporal substitution. If α < 1 will an
increase in income of 1% lead to a higher increase in consumption today than
tomorrow. If α > 1 the substitution effect will dominate, and consumption
tomorrow increases the most. If α = γ = 1 the income and the substitu-
tion effect will cancel out, and the consumption at the two time points will
increase equally much.

Most people seem to have relative risk aversion larger than one, so γ > 1
when γ has this interpretation, and a value larger than 2 is found in most
experimental situations. This could, perhaps, explain the impression that
some people have1, namely that in good times, everyone else ”seem better

1in particular many state employees
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off”. First, this person’s nominal consumption is low, second a larger part
of the increased income will be consumed today, than the part invested for
consumption later on. This is probably a reasonable description of how many
people act, although the model is, admittedly, very simplistic.

The risk tolerant individual, of which there are fewer in society, are not
subject to this distorted perception: In good times both his real and nominal
consumption are high, and since α > 1 the substitution effect will dominate,
and a larger part of income increases is invested rather than consumed right
away. One would, perhaps, think that the investment of income for later
consumption is consistent with risk averse behavior, and thus be stronger
when γ > 1, but this is not so. It should be mentioned that a reasonable
value for α has been found to be close to 0.1 by some researchers.

A better description of this latter issue may, perhaps, be obtained if the
elasticity of intertemporal substitution could be separated form the indi-
vidual’s risk aversion. There are several representations of preferences that
accommodate this, like recursive utility, habit formation, Kreps-Porteus util-
ity, Epstein-Zin utility, etc. We choose the simplicity and elegance of the
separable and additive framework for the present presentation, except for
one small deviation later on.

4.5 The connection to actuarial theory and insurance
practice

In standard actuarial theory the nominal pension is nonrandom, at least is
this the case in most textbooks on this subject. Referring to the above theory,
this is only consistent with γ = 1 corresponding to logarithmic utility, the
case when the substitution effect and the income effect cancel each other.
In addition this theory commonly uses the principle of equivalence to price
insurance contracts, where the state price density ξt ≡ 1. This implies that
the agent is really risk neutral, so γ = 0 should follow. There seems to be an
inconsistency inherent in this theory.

In insurance practice, which actuaries are engaged in, we can distinguish
between two main types of contracts; (a) defined benefits, and (b) defined
contributions. With regard to the first, before possible profit sharing the
nominal value is usually constant, although as we have noticed, sometimes
is the real value also constant. The latter case is not consistent with any
finite value of γ. Attached to this contract is usually a return rate guarantee.
Many life insurance companies are having difficulties with this guarantee in
times when the stock market is down. Lately, in times of crises, this tends
to go together with a low interest rate (like in the financial crisis of (2008,
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- )) due to government interference. In such cases life insurance companies
suffer twofold, and must rely on built-up reserves before, possibly, equity is
being used.

Defined contribution contracts are actively marketed by the insurance
companies. For such contracts the insurance customers take all the financial
risk, only the mortality risk remains with the companies. Also such contracts
have no rate of return guarantees, and function much like unit linked pension
contracts. Thus the nominal, as well as the real pensions are state dependent,
in accordance with the general theory outlined above. In neither case does
a guaranteed return enter the optimal pension contract. A guarantee affects
the insurance company’s optimal portfolio choice plan. Typically, due to the
nature of the guarantees and regulatory constraints, the companies are led
to sell when the market goes down, and buy when the market rises, which
is just the opposite of what is known to be optimal, at least under certain
conditions, to be demonstrated in the next section.

Guarantees may seem attractive to customers, and insurers may decide to
offer such contracts in order to be competitive. There are different reasons
why such guarantees originated in the insurance business. In Norway for
example, it became part of the legal terms of the contracts, more or less
by an oversight, in times where the market interest rate was considerably
higher that the 4% that was used in the premium calculations, and which
the standard actuarial tables were based on.

In times of crises, defined benefit pension contracts seem most attractive
to the customers, at least as long as they ignore the possibility that their
insurance company may go bankrupt. In the crisis referred to above, many
life insurance companies failed, and individuals all over the world lost parts
of, or even their entire pensions. In times of rising stock prices, the defined
contribution contracts seem more attractive for many individuals. What
alternative the individuals find best may thus depend upon where in the
business cycle an individual decides to retire.

In the life cycle model optimal consumption and pension insurance are
intertwined and analyzed in one stroke, reflected in our analysis. In real
life consumers are likely to separate the two. An optimal pension may then
be regarded as an insurance against a bad state in the economy when the
consumer becomes retired. Regarded this way a pension is considered as a
minimum subsistence level when alternative forms of savings fail. With this
in mind, defined benefits can be a rational contract, even if it does not follow
from our simple analysis.

Insurance companies should, on the other side, be especially well equipped
to take on market risk, since they normally have a long term perspective.
This should enable them to obtain the risk premiums in the market, which
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are after all averages.

4.6 Pensions versus ordinary consumption

In this section we demonstrate that with pension insurance allowed, the
actual consumption at each time t in the life of the consumer is at least as
large as the corresponding consumption when the possibility of ”gambling”
on own life length is not allowed, provided the value of life time consumption
w is fixed. This demonstrates a very concrete effect of pooling.

To this end, consider the random, remaining life time Tx of an x-year old
as we have worked with all along, and for comparison, the deterministic life
length T , where T = E(Tx) = ēx is the expected remaining life time of an
x-year old pension insurance customer.

We consider the situation with a CRRA-customer with general coefficient
of relative risk aversion γ as in Example 4, and denote the value of life time
consumption by w, i.e.,

1

π0

E
( ∫ Tx

0

πt c
∗
t dt
)

= w.

Using (44) this can be written λ−
1
γ ā

(r1)
x = w, or

λ
1
γ =

ā
(r1)
x

w
, (49)

where we have set π0 = 1 without loss of generality. The corresponding value
of life time consumption w for the deterministic time horizon T is determined
by

1

π0

E
( ∫ T

0

πt ct dt
)

= w,

where it is assumed that these two values are the same for the deterministic
and the stochastic life times. In other words, in the two situations the budget
constraints are the same. Again the optimal consumption/pension ct is given
in (44), however, the Lagrange multipliers determining the optimal consump-
tion/pension are different in the two cases. In order to distinguish, we denote
the optimal consumptions by c∗t and ct, respectively. The multiplier for the
deterministic situation is determined by

λ
− 1
γ

(T )

∫ T

0

e−r1t dt = w,
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using Fubini’s theorem, which in actuarial notation is equivalent to

λ
1
γ

(T ) =
ā

(r1)

T̄ |

w
. (50)

The function ā
(r1)
t̄| =

∫ t
0
e−r1tdt = 1

r1
(1 − e−r1t) is convex in t, which means

that ā
(r1)
x = E

( ∫ Tx
0
πt c

∗
t dt
)

= E(ā
(r1)

T̄x| ) < ā
(r1)

T̄ | by Jensen’s inequality, since

T = E(Tx). By (49) and (50) this means that λ
1
γ < λ

1
γ

(T ), and using (44),
since the state price density ξt is the same in both cases, it follows that for
all states ω ∈ Ω of the world is

c∗t > ct for all w and for each t ≥ 0. (51)

With pension insurance available the individual obtains a higher consumption
rate at each time t that he/she is alive. This demonstrates the benefits from
pooling when it comes to pensions.

4.7 Including Life Insurance

We are now in position to analyze life insurance in the problem formulation
of this section. We assume that the felicity index u and the utility function
v are as in Example 3 of Section 3.1: The problem can then be formulated
as follows:

max
z,c≥0

E
{∫ Tx

0

e−ρt
1

1− γ
c1−γ
t dt+ e−κTx

1

1− ψ
z1−ψ

}
subject to

E
{
e−rTxW (Tx)

}
≥ E

{
πTxz

}
,

where z is the amount of life insurance, here a random decision variable. The
Lagrangian of the problem is:

L(c, z;λ) = E
{∫ τ

0

e−ρt
1

1− γ
c1−γ
t

lx+t

lx
dt+ e−κTx

1

1− ψ
z1−ψ

− λ
[
πTxz −

∫ τ

0

(et − ct)
lx+t

lx
dt
]}
.

The first order condition in c is:

5cL(c∗, z∗;λ; c) = 0, ∀c ∈ L+
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which is equivalent to

E
{∫ τ

0

(
(c∗t )

−γe−ρt − λπt
)
ct
lx+t

lx
dt
}

= 0, ∀c ∈ L+

and this leads to the optimal consumption/pension

c∗t =
(
λeρtπt

)− 1
γ a.s. t ≥ 0

as we have seen before in (44). The first order condition in the amount of
life insurance z is:

5zL(c∗, z∗;λ; z) = 0, ∀z ∈ L+

which is equivalent to

E
{(

(z∗)−ψe−κTx − λπTx
)
z
}

= 0, ∀z ∈ L+ (52)

Notice that both z∗ and z are F ∨σ(Tx) - measurable. For (52) to hold true,
it must be the case that

z∗ =
(
λeκTxπ(Tx)

)− 1
ψ a.s., (53)

showing that the optimal amount of life insurance z∗ is a state dependent
FTx - measurable quantity. If the state is relatively good at the time of death,

the state price πTx is then low and (πTx)
− 1
ψ is relatively high (when ψ > 0).

Thus this life insurance contract covaries positively with the business cycle.
In practice this could be implemented by linking the payment z∗ to an equity
index.

One can of course wonder how desirable this positive correlation with the
economy is. With pensions we found it quite natural, but life insurance is
something else. This product possess many of the characteristics of an or-
dinary, (non-life) insurance contact. In some cases it may seem reasonable
that a life insurance contract is countercyclical to the economy, thereby pro-
viding real insurance in time of need. For this to be the result, however, the
function v must be convex, corresponding to risk proclivity which here means
that ψ < 0, but risk loving people do not buy insurance.

The expected value of z∗ is found by conditioning: It is given by the
formula

E(z∗) = λ−
1
ψ

∫ τ

0

exp
{ 1

ψ

(
r +

1

2
η′ · η(1 +

1

ψ
)− κ

)
t
} lx+t

lx
dt. (54)
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For a given value of budget constraint (λ), this expectation is seen to be
larger if r + 1

2
η′ · η(1 + 1

ψ
) > κ than if the opposite inequality holds. As for

pensions, in terms of expectation has the impatience cutt-off-point increased
from r to (r + 1

2
η′ · η(1 + 1

ψ
)). In other words, not only the market interest

rate r, but also the market-price-of-risk and the relative risk aversion of the
function v determines what it means to be impatient, when a stock market
is present.

Using the budget constraint with equality, we find an equation for the
Lagrange multiplier λ;

E
{
πTxz

∗ −
∫ τ

0

(et − c∗t )πt
lx+t

lx
dt
}

= 0.

With an income of y up to the time n of retirement, and an optimal pension
c∗t thereafter as in (21), we obtain the equation

λ−
1
ψ (1− r2ā

(r2)
x ) + λ−

1
γ ā(r1)

x = yā
(r)
x:n̄|,

where

r1 =
ρ

γ
+ r(1− 1

γ
) +

1

2
η′ · η(1− 1

γ
)
1

γ
,

as in Section 4.3, and

r2 =
κ

ψ
+ r(1− 1

ψ
) +

1

2
η′ · η(1− 1

ψ
)

1

ψ
.

In the special situation where κ = ρ and ψ = γ so that u = v, it follows that
r1 = r2 and

λ−
1
γ =

yā
(r)
x:n̄|

(1 + (1− r1)ā
(r1)
x )

.

It is at this point that pooling takes place in the contract. In this situation
the optimal consumption/pension is given by

c∗t =
yā

(r)
x:n̄|

(1 + (1− r1)ā
(r1)
x )

e((r−ρ)/γ)t ξ
− 1
γ

t , (55)

and the optimal amount of life insurance at time Tx of death of the insured
is

z∗ =
yā

(r)
x:n̄|

(1 + (1− r1)ā
(r1)
x )

e((r−ρ)/γ)Tx ξ
− 1
γ

Tx
. (56)

One could, perhaps, say that these contracts represent an ”innovation” in
life insurance theory.
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If large parts of the population buys life insurance products, a positive
correlation with the business cycle seems like a natural property, and is really
the only one that is economically sustainable. Unlike pension insurance,
however, life insurance is a product that not everybody seems to demand.
We can single out two different family situations where life insurance is of
particular interest. The first concerns a relatively young family with small
children. Then one of the parents, usually the wife, can not work full time,
which means that the other is the main provider. If this person dies, in for
example an accident, this is of course dramatic for this family. Life insurance
then plays the role of substitution for part of the loss of a life time income.
As can be seen from (56), is the insured amount proportional to the present

value at time zero of life time income yā
(r)
x:n̄|. If death comes early, Tx is

relatively small so the factor e((r−ρ)/γ)Tx is close to one.
The other situation is the traditional one attached to the bequest motive,

usually meaning that an older person wants to transfer money to his or her
heirs. The social need for this insurance seems less obvious than in the first
situation described. Here the factor e((r−ρ)/γ)Tx may be large for the patient
life insurance customer, implying a large insured sum to the beneficiaries.
Despite of the all the good reasons for a life insurance contract for the young
family, its seems far less widespread than life insurance with the bequest
motive, which is ironic.

In climate problems the bequest idea could be interesting in the following
sense. By paying a premium (e.g., by reducing consumption) today, one may
”roll over” a more sustainable society to future generations by ”inter-personal
transfers”. This is discussed further elsewhere (e.g., Aase 2011b).

One objection to the optimal solutions (53) and (56) is that the amount
payable has not been subject to ”enough pooling” over the individuals. The
pooling element is present, since it is used in the budget constraints, but the
amount payable is here crucially dependent on the actual time of death Tx
of the insured, which is unusual in life insurance theory.

One alternative approach is to integrate out mortality in the first order
condition (52). Notice that this is strictly speaking not the correct solution
to the optimization problem, but must instead be considered as a suboptimal
pooling approximation. This results in the following approximative first order
condition:

Ez,z∗
{(

(z∗)−γ(1− ρā(ρ)
x )− λ

∫ τ

0

πtfx(t)dt
)
z
}

= 0, ∀z,

assuming again that κ = ρ and ψ = γ. The solution to this problem also a
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random variable, and given by

z̄∗ =
(λ ∫ τ

0
ξte
−rtfx(t)dt

1− ρā(ρ)
x

)− 1
γ

a.s. (57)

However, this contract is seen to depend on the state of the economy from
time 0 when the insured is in age x, to the end of the insured’s horizon τ .
At time of death Tx (< τ) this quantity is not known, which is a consequence
of our approximative procedure. Ignoring this information problem for the
moment, by employing the budget constraint, the Lagrange multiplier λ is
found as

λ−
1
γ =

yā
(r)
x:n̄|

ā
(r1)
x +

E[(
∫ τ
0 ξte−rtfx(t)dt)

(1− 1
γ )

]

(1−ρā(ρ)x )
− 1
γ

(58)

Inserting λ from (58) into (57), the suboptimal insured amount results.
When stock market uncertainty goes to zero, i.e., when ξt → 1 a.s., z̄∗

converges to the corresponding contract of Section 3.1 when only biometric
risk is present.

We can derive an insured amount z∗∗ that is consistent with the infor-
mation available at time of death of the insured as the following conditional
expectation

z∗∗ := E{z̄∗|FTx}.
This is a random variable at the time when the life insurance contract is
initialized, and an observable quantity at the time of death of the insured,
and thus solves the information problem mentioned above, but is otherwise,
of course, somewhat ad hoc.

Note that such a contract would benefit the young family in the case of
early death of the provider, since those who die early are subsidized by those
who live long when the insured sum is subject to enough averaging.

The advantage with this contract is that it takes into account pooling over
life contingencies at two stages of the analysis. Furthermore it is consistent
with the standard analysis when there is ”no market risk in the limit”.

5 The optimal portfolio choice problem

We have barely touched upon the portfolio choice problem in Section 4.1,
but could there proceed without really having to solve it. This is due to the
fact that in the model that we discuss, we may separate the the consumer’s
portfolio choice problem from his or her optimal consumption choice. In the
present section we do solve the investment problem explicitly. For this we
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need the agent’s net wealth Wt at time t. For the general CRRA-consumer
it is given by

Wt =
1

πt
Et

{∫ Tx

t

πsc
∗
sds
}

=
1

πt
Et

{∫ Tx

t

π
(1− 1

γ
)

s λ−
1
γ e−

ρ
γ
sds
}
,

where we have used (44). Here Et means conditional expectation given the
information filtration Ft ∨ (Tx > t), i.e., given the financial information
available at time t and the fact that the individual is alive then. Recalling
that at time t the agent is in age x+ t, we get, using Fubini’s theorem

Wt =
1

πt
λ−

1
γ

∫ τ

t

Et(π
(1− 1

γ
)

s ) e−
ρ
γ
s lx+s

lx+t

ds.

The conditional expectation appearing in the integrand is computed as fol-
lows:

Et(π
(1− 1

γ
)

s ) = Et
(
π

(1− 1
γ

)

t e(1− 1
γ

)(−r− 1
2
η′·η)(s−t)+(1− 1

γ
)η′·(Bs−Bt)) =

π
(1− 1

γ
)

t e−[(1− 1
γ

)r+ 1
2

1
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where we have used the lognormal representation for the state price π and
the moment generating function of the normal distribution. This gives for
the wealth process

Wt = π
− 1
γ

t λ−
1
γ e−

ρ
γ
t ā

(r1)
x+t = c∗t ā

(r1)
x+t, (59)

where r1 is as given in Section 4.3. This shows that the wealth at any time t
in the life of the consumer, who is then in age (x+t), is equal to the actuarial
value of receiving the optimal consumption c∗t per time unit for the rest of
his or her life, discounted at the rate r1. For logarithmic utility, r1 = ρ
the subjective interest rate; when γ 6= 1 this discount rate depends on the
volatility of the state prices, or the market price of risk η, ρ, r as well as of
γ. In fact, r1 can be interpreted as the a risk adjusted return rate.

Using the dynamics for c∗t given in (48), by Ito’s lemma we obtain the
following dynamic representation for the wealth Wt:

dWt = µW (t)dt+
1

γ
Wtη

′ · dBt,

for some drift term µW (t). Comparing this to the intertemporal budget
constraint (32) of Section 4.1, we may apply diffusion invariance to determine

the the optimal fractions ϕ′t = (ϕ
(1)
t , ϕ

(2)
t , · · · , ϕ(N)

t ) of total wealth held in
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the risky securities at each time t. By equating the two diffusion terms, we
obtain that

1

γ
η′ = ϕt · σ.

and recalling that ση = ν, it follows from this that the optimal investment
fractions are

ϕ =
1

γ
(σσ′)−1ν, (60)

where ν, with components νn = µn − r, n = 1, 2, · · ·N , is the vector of risk
premiums for the N risky securities. These ratios are all seen to be constants,
meaning that they do not depend upon the age (x + t) of the investor, the
state of the economy π, or on the investor’s death intensity µx+t.

This result is the same as the one found by Mossin (1968), Samuelson
(1969) and Merton (1971) without pension insurance present. A random
time horizon simply does not alter this result.

The formula (60) basically tells us that when prices of stocks increase, it
is optimal to sell, and when prices fall it is optimal to buy. From an insurance
perspective companies are often led to do the opposite, as we have mentioned
before, which is of course unsatisfactory.

One immediate objection to this result is that the optimal strategy does
not depend upon the investor’s horizon, or put differently, is independent of
the investor’s age (x+ t) at the time of investment. This is, however, against
empirical evidence, and also against the typical recommendations of portfolio
managers. The typical advice is that as the horizon gets shorter, the investor
should gradually go out of equities, and thus take on less financial risk.

One of the reasons for the advice that younger people should hold a higher
fraction in equities is the tendency for stocks to outperform bonds or bills
over the long run, despite the higher stock market volatility. This should not
be mistaken as a ”time diversification” advice, which is a different but related
issue, typically arising after each down-turn in the stock market (e.g., Delong
(2008), Bodie (2009)). For example, following the 2008/09 market crash it is
evident that many people around the world have lost their pensions, partly
or entirely. For many old people it seems obvious that they have too short
remaining lifetimes to regain what has been lost.

Paul A. Samuelson has explained, in many articles over the years, what
is wrong with time diversification. In Samuelson (1989) for example, he
demonstrates that under the standard assumptions of the financial market,
the optimal portfolio strategy based on maximizing expected utility of con-
sumption over the investor’s lifetime, beats various buy-and-hold strategies
by clear margins. The standard assumptions are: 1) asset returns are i.i.d.,
2) agents have additively separable constant relative risk aversion (CRRA)
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utility, 3) agents have no non-tradeable assets, and 4) markets are frictionless
and complete. If portfolio choice is going to depend on age and/or on wealth,
then one or more of these standard assumptions must be relaxed. Aase (2009)
has discussed this problem by a slight reformulation of assumption 2), which
we discuss next.

5.1 The horizon problem

In this part we examine the effect of horizon and wealth on portfolio choice.
We assume that the felicity index u(x, t) satisfies the following

Assumption 1

u(x, t) =

{
1

1−γ(t)
x(1−γ(t))e−ρt, if γ(t) 6= 1;

ln(x)e−ρt, if γ(t) = 1.
(61)

where γ : [0, τ)→ R+ is a continuous and strictly positive function of time.

Notice that in this case u(x, t) is not time and state separable, but this is
the only relaxation of the standard assumptions 1) - 4) that is done. Using
this assumption, Aase (2009) shows that under Assumption 1 the optimal
fractions in the risky assets are

ϕ(t) =
1

γ(t̃t)
(σσ′)−1ν, (62)

where t̃t is an Ft−measurable random time satisfying t̃t ∈ (t, τ). It is deter-
mined at each time t by the equation

γ(t̃t) =

∫ τ
t
g(s, t)ds∫ τ

t
g(s, t) 1

γ(s)
ds

:=
W (t)

Y (t)
. (63)

Here W (t) is the agent’s optimal wealth at time t, given by equation

Wt =
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t
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exp
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)} l(x+ s)

l(x+ t)
ds. (64)

Notice that when the function γ(t) ≡ γ, then the wealth in this equation
becomes the same as the wealth in (59), as the case should be. Clearly the
quantity Y (t) can be computed from the expression for Wt in (64) and the
function γ(t).
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Expectation Standard deviation

Consumption growth 1.83% 3.57%
Return S&P500 6.98% 16.67%
Government bonds 0.80% 5,67%
Equity premium 6.18% 16.54%

Table 1: Key numbers for the time period 1889-1978

The consequences of this result are several, and the above reference gives
the details. Here we only point out that if the risk aversion function γ(t)
is increasing with time, then this result implies that individuals should in-
vest more in the risky asset when they have a longer horizon, i.e., when
they are young, and gradually move into bonds as they grow older. This is
then in agreement with both advice from investment professionals, and with
empirical studies of actual behavior.

It seems natural, with this assumption, that the investor should pick some
average time in the remaining horizon when deciding on today’s portfolio
choice.

5.2 A second portfolio choice puzzle

In connection with the optimal portfolio choice result (60), there is also
another empirical puzzle. Mehra and Prescott (1985) studied consumption
and market data in the US-economy for the period of 1889-1978. The data
are summarized in Table 1. Newer data are of course somewhat different,
but the main conclusions remain.

Using the data of Table 1, for a relative risk aversion of around two,
the optimal fraction in equity is 132% based on the standard, first term in
(65) (when elW (c∗t ) = 1). In contrast, depending upon estimates, the typical
household holds between 6% to 20% in equity. Conditional on participating
in the stock market, this number increases to about 40% in financial assets.

Based on an equilibrium model with production and capital stock (K),
and a non-linear production function, Aase (2011) shows, among other things,
that the equilibrium demand for the risky asset is given by

ϕt =
(
− uc(c

∗
t )

ucc(c∗t )c
∗
t

) 1

elW (c∗t )

µR − r
σRσR

− elK(c∗t )

elW (c∗t )

σRσK
σRσR

, (65)

where σK is the volatility of capital, σR is the volatility of the return on
equity, µR is the expeced rate of return on equity, and elW (c∗t ) and elK(c∗t )
are partial consumption elasticities with respect to wealth and capital stock,
respectively.
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The first term is seen to be the solution corresponding to (60), reformu-
lated to the present situation, in the case when elW (c∗t ) = 1.

Implied by results in Aase (2011), the observed risk premium (µR − r) =
6.18 and the observed value for the short rate r = 0.0080 of the last century
follow from the production model for a value of the relative risk aversion of
γ = 2.27, provided the investors only use the first term in (65), with elW = 1.

The last term in (65) reflects the investor’s demand for the risky asset
to hedge against unfavorable changes in technology. If the investors take
into account also information conveyed by the real economy, they find that
the stock market may have appeared more risky than it really was. The
consumption based capital asset pricing model still holds in the production
economy, which implies that the risk premium should have been closer to
1% than to the observed 6% of the last century for a reasonable value of the
relative risk aversion γ.

If this explanation holds, from the first term alone, ϕ is down to 20% in
equities, for γ = 2.27, µR − r = 0.013 when elW = 1. The last term in (65)
further adjusts this number in the right direction.

Conditional on these results, also the second portfolio choice puzzle can
be explained. Of course, the above mentioned paper aims at solving two
other celebrated puzzles; namely the equity premium puzzle, and also the
risk free rate puzzle. If we accept the results of that paper, all these puzzles
are more or less explained.

6 Discussion and extensions

The life cycle model is analyzed in two steps; first with only a credit market
and mortality risk, then with a securities market added. The analysis pro-
vides an optimal demand theory from the point of view of the consumers,
who are also life and pension insurance customers. We have derived several
conclusions from the analysis, some with more predictive power than others,
which we now summarize.

The first result was related to the optimal consumption path in the sit-
uation with only a credit market. When there is life time uncertainty, the
optimal consumption paths are shown to be crucially dependent on the im-
patience rate. The impatient consumer (ρ > r) must always look forward
to an ever decreasing optimal consumption, since dc∗t/dt = (r − ρ)T (c∗t ).
The patient agent (ρ < r), on the other hand, can look forward to an ever
increasing optimal consumption.

While this gives an interesting and intuitive interpretation of the impa-
tience rate, or the subjective interest rate ρ, it is not likely to give reliable
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predictions. With a securities market included this property is diluted, by
both a new addition to the drift term and a diffusion term. In particular the
latter will dictate consumption paths to deviate from the simple, determin-
istic description given above. This opens up for interpersonal comparisons
of consumption behavior at the same time in agents’ life cycles. Impatience
is more naturally discussed in terms of expectations when a stock market
is present, in which case both the market-price-of-risk and the relative risk
aversion must be taken into account when characterizing this property.

The optimal pensions in these two situations differ only by a random
factor with a stock market included. This factor is reciprocal to the state
price density, a fact which was found to have several interesting implications.
In particular the optimal pensions are found to be positively correlated with
the economy in the sense that when stock prices are high, the pensions are
also high, and vice versa. This is a quite natural property, in particular for
the aggregate economy, since such a consumption pattern is consistent with
what the economy can deliver.

The discussion of nominal pensions revealed a weakness with the additive
and separable framework of preference representations that this paper is build
on. The reason is that the parameter γ has two different, and sometimes
conflicting interpretations.

We have a strikingly simple demonstration of the advantages of pooling
with regard to pensions. It is shown that, with the same economic resources,
the optimal yearly pension is strictly larger with pooling, than without. This
shows the mutuality idea is still fruitful, a fact that is worth a reminder, in
particular since we live in a time of individualism, seemingly picturing a
world in which we are solely responsible for our own successes and failures.

Optimal life insurance, where the insured amount is endogenously deter-
mined, is analyzed, and its properties are found reasonable. Like pension
insurance, also the insured amounts in life insurance are co-cyclical with the
economy.

It should be pointed out that we know little about the specification of the
function v, when it serves a bequest motive, as compared to u. Life insur-
ance is after all only a financial tool for controlling inter-personal transfers,
which necessitates references to the theory of transfers (like e.g., Bernheim,
Schleifer and Summers (1985)). We show that if the insured amount is to
be countercyclical to the economy, and thus be a bona fide insurance against
tough times for the beneficiaries, this requires risk proclivity of the bequest
function v. This effectively rules out this possibility. A countercyclical in-
sured amount does not appear directly irrational in a finance setting, but
risk proclivity does.

We compared our results to both actuarial theory and insurance practice.
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With regard to pensions it was found that defined contribution plans are most
in line with the optimal contracts found in this paper. These are also the type
of contracts that insurers seem most comfortable with at the present time.
The argument commonly used by corporate officers is that for these contracts
the financial risk is held by the customers. However, insurers should be aware
of the fact that if they are unwilling to take risk, risk premiums in the business
will be low, and consequently, so will profits. If insurance companies avoid
financial risk altogether, they can only expect a return rate equal to the
risk-less rate on government bonds, which may not impress the owners. This
holds if financial theory works in practice the way it is supposed to. Since
insurance companies normally have a long term perspective, they should be
especially well suited to take risk, and be able to earn the equilibrium risk
premiums in the long run.

Much has been written about the recent financial crises of 2008. One
major criticism of the financial industry that has been put forth is that the
banks were eager to collect fees for their services, by inventing all kinds of
products that were difficult to understand for ordinary customers. Such fees
can not be directly considered as a compensation for risks, and were the basis
for bonuses to the CEO’s and other leaders in the industry. As long as prices
went up, this worked, but as soon as confidence in the system started to fail,
the collapse came partly as a consequence of failed risk management, and,
too low equity, among other factors.

With defined contribution products, the insurers’ equity can be kept low,
and the return on equity can only be made high provided the insurers are
clever in collection fees from the customers. If the products are largely stan-
dardized, competition should bring down these fees, and also the profit mar-
gins for the insurers. For this reason insurers are are sometimes ingenious in
tailor making products to customers, where terms are opaque and difficult
to compare.

In some countries there are state guarantees issued for individual pen-
sions. As with banks, where the government has a stake because it insures
deposits, the reason is to preserve the stability of the financial system, which
is important to preserving the stability of the economy. If such an insurance
company gets into a situation of distress, the government has to come in to
honor its commitments to the insurance customers, which can be done by
conservatorship. Because of the importance of thrust between the population
and the life insurance industry, it is common that life insurance companies
in distress are taken over by other companies in the industry. If instead, as
happened in the 2008-09 crisis in the US, the government chooses to provide
funds to the financial firms with no strings attached, this may distort both
risk management in the future, as well as pricing of the products, due to
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moral hazard.
Financial firms trading in derivatives may access unbounded liability ex-

posures and are granted limited liability. Under such circumstances an all
equity firm holds a call option, whereby it receives a free option to put losses
back to the taxpayers (e.g., Eberlein and Madan (2010)). In such a situa-
tion increasing volatility increases the value of both assets and the liabilities,
thereby creating perverse incentives.

It is essential that the financial industry and the population at large learns
form this, so that future crises become less severe. In order for the relevant
requirement on equity and reserves to be appropriate, both incentives must
be aligned with societal goals, and governments must get in place a proper
regulatory regime that works.

Finally the paper discusses optimal portfolio choice strategies. This cul-
minates with the formula (60), characterizing the optimal plan. As with
all simple formulas, there are pros and cons. The advantage is the simple
logic this formula conveys, the drawback is that it is framed in a very simple
model of a complete, frictionless financial market, which is, perhaps often
taken too literally. One particular assumption about this market is that the
investment opportunity set is constant. When this is not the case, as in
the real world, other state variables must be taken into account. We refer
to an article where this was done indirectly through a production economy,
instead of using only a pure exchange economy that is most common when
analyzing such questions. When the state variables are capital and labor,
the message is that provided the information about these quantities is being
utilized, the picture changes and the above formula does not capture all the
key elements of the risks. The investors have in reality hedging possibilities
related to the ”real” economy, and when these are properly evaluated, the
stock market may not appear quite so risky as it was perceived to be during
the last century. These insights are then used to explain a portfolio choice
puzzle, as well as the equity premium puzzle.

Another weakness with the theory of optimal portfolio choice is related to
the ”horizon problem”. Here we make the only deviation from the additive
and separable preference representation: We relax the separability of state
and time in the felicity index u(x, t). This can be used to explain observed
behavior, namely that as investors grow older, they invest a larger proportion
of their wealth in government bonds.

6.1 Longevity and cohort risk.

We round off by discussing some issues that does not directly come as a
result of the analysis, but which are related to problems commonly discussed
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in connection with pensions.
In comparing longevity risk with cohort risk, it is tempting to dismiss the

latter as not being of such fundamental importance as the former. By cohort
risk is meant that some periods have larger numbers of retired people than
other periods. This is a transient phenomenon that will eventually pass away,
and not a structural one, as longevity risk. Of course, when these two risks
materialize at the same time, this causes extra problems for any nation’s
welfare programs. This seems to be the case in many western countries
when the large broods borne right after World War II become pensioners. In
addition these cohorts tend to live longer that the generations before them.

In some countries the actuarial tables are modified every year, like in
Canada, in other countries the same tables as were constructed in 1963 were
still used in 2009, like in Norway. The theory in this paper assumes that
the tables capture the real mortality risk, and pooling works so that there is
no economic risk premium associated with mortality. As long as the proper
measures have been taken regarding reserving for longevity risk, there should
be few problems for the private insurance industry with respect to either of
these two types of risk.

For government welfare programs, the situation is of course different.
Many developed countries have a social security system that pays a basic
pension to its citizens. This is usually independent of what the individuals
have arranged in terms of pensions from the insurance industry. In Norway,
for example, the country that I know best, the government pensions are
determined by the principle of ”pay as you go”. For those only acquainted
with the premium reserving of private or mutual insurance companies, this
may not look like a sound principle. In the parliament (Stortinget) the
politicians determine a basic amount each year, called one G upon which
the pensions are based. In 2010 the size of G = NoK 75.641, corresponding
to USD 13.000. The more registered work effort an individual has put in,
and the higher the salary, the higher the pension. First let us consider the
incentives: By and large this arrangement means that the daughters and
sons of the beneficiaries determine the benefits. Thus the ”weak” part - the
pensioners - seem protected, or they get what they have deserved. Second,
what about economic sustainability? Since all pensions are determined from
the basic amount G, by making this amount state dependent, matters can
be arranged such that the nation each year pays the pensions it can afford.

In practice, to set G lower one year than the previous year may require
a great deal of political determination and courage, which means that the
system represents no guarantee that the nation will not consume beyond its
means. Here rules rather than discretion may be the solution.

In addition to this basic pension from the government, and possible pri-
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vate pensions with the insurance industry, in many countries there are pen-
sions also from the employers. These collective pensions are usually arranged
between the employers and private insurers. The pensions depend upon how
long an employee has been with the company, and what the salary has been,
and the premium reserve moves with the worker as he or she changes jobs.

The two types of risk, longevity risk and cohort risk, are problematic for
governments’ welfare schemes. One solution has been pointed out in a recent
report2. By increasing the pensionable age by a few years, the projected
increase in the state’s pension expenses may be mitigated. In particular this
report claims that by increasing the pension age by two years, this increases
the state’s income of about four per cent of GDP. For an average working
period of 40 years, an increase of two years means that the total work effort
is society has increased by five per cent. In other words, society can become
five per cent richer if people work two more years.

This suggestion has of course its weaknesses, since for once it ”assumes
away” unemployment, which is not negligible in many western countries. It
is therefore also likely to be controversial. That it is politically difficult,
we know from protests and demonstrations in 2010 in countries like Greece,
Ireland, France, Portugal, Spain, etc. However, it is no secret that some
countries seem to have more ”slack” than others. As an illustration, in Table
2 is shown the employment frequency for people between 60 and 64 years
for a number of European countries and the USA. It starts at about 7% in
Austria, goes via 40% in the USA and ends with 58% in Sweden and Norway.

Freq. 5 12 12 21 22 31 35 40 43 58 58
Nation Au Fr It Sp Ger Gree Den US UK Swe Nor

Table 2: Employment frequency in per cent, 60-64 years. Source: Eurostat.

The official and the real pension age also vary across the European coun-
tries, highest in Iceland with 67 and 66 years, and lowest in France with 60
and 59 years, respectively. The problems with longevity and cohort risk are
thus seen to have both macro, public, and political economic perspectives.

7 Summary

In the paper we analyzed the ”life cycle model” in a modern setting, by
first introducing a credit market with biometric risk only, and then market
risk via risky securities. This approach enabled us to investigate pension

2http://www.dn.no/forsiden/borsMarked/article2029034.ece
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and life insurance step by step. We found optimal pension plans and life
insurance contracts where the benefits were state dependent. We compared
these solutions both to the ones of standard actuarial theory, and to policies
offered in practice.

We discussed two related portfolio choice puzzles in the light of recent
research, one is the horizon problem, the other is related to the aggregate
market data of the last century where theory and practice diverge, and sug-
gested resolutions to these problems.

Finally we presented some comments on longevity risk and cohort risk,
and fond that these problems are, perhaps, best analyzed in the perspective
of macro, public, and political economics.
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