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Abstract

The paper develops a consumption based equilibrium model, fo-
cusing on the risk premium and the risk-free interest rate. We derive
testable expressions for these quantities, and confront these with sam-
ple estimates for the 20. century. Our framework is a dynamic model
in continuous time, allowing for random jumps at random time points,
in addition to diffusion uncertainty. Preferences are time separable
and additive.

The classical equity premium puzzle and the risk-free rate puzzle
are re-examined. We present values for the parameters of the repre-
sentative agent’s utility function for different values of risk premia and
interest rates, calibrated to two first moments of the US-data of the
last century. Relatively low values for agents’ risk aversion are con-
sistent with the model, but positive values of the subjective interest
rate seem harder to fit.

KEYWORDS: Consumption based CAPM, Equilibrium interest rate, The
equity premium puzzle, the risk-free rate puzzle, jump/diffusions.

Introduction

The paper develops an expression for the difference between average equity
and debt returns, and an expression for average real debt return in equi-
librium, using a dynamic model in continuous time. For different values of
this risk premium and the spot rate we calculate a range of values for the



relative risk aversion and the subjective interest rate of the representative
agent. We take into account the small covariance between consumption and
equities, and the small variance of consumption observed in the last century.
The small magnitudes of these two quantities are the primary causes of the
equity premium puzzle and the risk-free rate puzzle, respectively, given the
choice of model. Our first question is if an alternative model could do better,
and if so, by how much. In this regard we extend the preliminary examples
presented in Aase (1993 a-b).

McGrattan and Prescott (2003) adjust for some factors ignored by Mehra
and Prescott - taxes, regulatory constraints, and diversification costs - and
focusing on long-term rather than short-term savings instruments. The new
findings for the difference between average equity and debt returns of the
last century, and the average real debt return, fits nicely into the permitted
range. If these findings are generally accepted, both puzzles are resolved at
one stroke.

As a model for the consumption rate ¢ and the equities return R we
employ a dynamic model in continuous time allowing for random jumps at
random time points, in addition to the more familiar diffusion type. We
demonstrate that this framework is well suited for economic equilibrium anal-
ysis.

One motivation for introducing jumps, is to get out of the mean-variance
setting of economic modelling under uncertainty. A diffusion model is driven
by the Brownian motion, a stochastic process that is Gaussian, and can thus
be characterized by its first two moments. This usually results in expressions
for economic quantities that only depend upon the two first moments of the
relevant probability distributions, even if these are not normal. The cause of
the classical mean-variance dependence, usually in a one period setting, has
a different origin. Here preferences were assumed to depend only on the two
first moments. Although the means and the variances have a different origin
in these two settings, the results can sometimes have a striking similarity.

Recalling the related discussion between Borch, Feldstein and Tobin in
1969, Borch, for example, simply pointed out that the probability distribu-
tion of a random variable generally depends on more than only its two first
moments. Similar remarks were made by Feldstein, and both authors illus-
trated possible shortcomings from restricting attention to only the two first
moments in the representation of preferences of individual decision makers.

Here we should remember that it is a consequence of Carleman’s Theo-
rem (see e.g., Anderson (1958)) that, even in the case where a probability
distribution has moments of all orders, knowledge of these moments is, in
general, not enough to determine the entire probability distribution itself.

By allowing random sized jumps at random time points in the dynamic



framework, we obtain equilibrium relations that depend on other quantities
of the relevant, joint probability distributions than only the two first mo-
ments. We demonstrate that this fact gives us more flexibility when trying
to e.g., fit equity premia and average debt returns derived from the model,
to consumption and equity data of the 20. century, than can be obtained
from using Ito-processes only. We relate our findings to those of Hansen and
Jagannathan (1991), Rietz (1988) and Salyer (1998).

We work with a time additive and separable set of preferences, and a
key point is to try to confront the data using this type of model framework.
There is, of course, a large literature discussing different preferences, such as
habit formation, in the present setting, recent references being Allais (2004)
or Chen and Ludvigson (2004). See also the basic papers in this direction
by Haug (2001), Constantinides (1990), Detemple and Zapatero (1991) and
Sundaresan (1989).

The paper is organized as follows: In section 1 we present a short ver-
sion of the the premises of the economic model, and recall the expressions for
the equilibrium risk premiums and equilibrium interest rate using continuous
dynamics. In section 2 we introduce discontinuous dynamics in the repre-
sentative agent model, and derive the relevant risk premia and interest rate
in this setting. In section 3 we introduce certain simplifying assumptions,
making our model suitable for calibration to the data of the 20. century.
Several examples are presented throughout. Section 4 concludes.

1 The case of continuous dynamics

In this section we present, very briefly, the rudiments of a consumption
based equilibrium model. Follow e.g., Aase (2002), the consumption space
L is the set of adapted processes c satisfying the integrability constraint

E ( fOT c? dt) < oo for some fixed time horizon 7. In this economy there are

m agents, each being characterized by a nonzero consumption endowment
process €' in the set L, of non-negative processes in L, and by a strictly
increasing utility function U;(-) : Ly — R.

We assume the utility functions to be time-additive with a representation
Ui(c) = F [fOT ui(ct, t) dt] .1 =1,2,...,m. Consider the function u defined
by

m m
u(y,t) = sup Z)\iui(xi,t) subject to Zx, <, (1)
i=1

TER™ i1

for non-negative constants ;. Conditions are well-known guaranteeing that
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problem (1) has a solution, in which case the market, or the representative
agent, has the “additive” utility function of the form

U(e)= E [/OTu(ct,t) dt] |

1.1 A Model for the Short-Term Interest Rate

We now assume that the aggregate consumption rate c¢; follows an It6-process
with the representation

de(t) = pe(t)dt + oo(t)dB(t), 2)

The uncertainty in continuous models in continuous time is usually modelled
by a d-dimensional Brownian motion B(t), which we assume for the moment.
Then we know that the spot price p; of aggregate consumption also plays
the role of a state price deflator, where p, = u'(¢;,t). Assuming the marginal
utility u’ smooth enough for the application of It6’s lemma, we get that

dp(t) = py(t)dt + 0, (1)dB(), (3)

where o, = u"(¢;,t)o.(t) and

pp(t) = u" (e, t) pe(t) + %u'(ct, t) + %u’"(ct, t)oe(t) - oc(t). (4)

It is then known that the equilibrium spot interest rate r; is given by

fort <T, (5)

where p, = u'(¢y, t), the marginal utility of the function u given in equation
(1), and p, is given in equation (4).

Let the representative agent have a Savage expected utility functional of
the following additive and separable type

T
Ul)=FE {/ e fot”(s)dsu(ct) dt} , (6)
0
where p(t) is the subjective interest rate. In this case we get that

U"(Ct)ct> pe(t)  1u"(ct)

u'(¢y) Ct 2 u'(cy)

mo=mw+(— o) o). (D)



The second term on the right hand side is the reciprocal of the intertem-
poral elasticity of substitution in consumption multiplied by the expected

growth rate. The term (1:;7((;:))) is the degree of prudence of the consumer,

and (—%)’1 := el(c;) is the intertemporal elasticity of substitution in
consumption. Since u' > 0, the prudence term is positive if v > 0, and the
representative consumer is then called prudent. If this is the case precaution-
ary saving results. From the expression (7) we notice the local mean-variance
nature of this relationship: It typically depends on the mean rate p.(t) at
any time instant ¢, as well as on the variance rate o.(t) - o.(t) at time ¢.
Since rational behavior dictates that the subjective interest rate p(t) is

non-negative, equation (7) gives the intertemporal restriction

Ll 14" (e
el(ct) . /é—t <r+ 5 U’((Ctt))

oc(t) - oc(t). (8)

for any ¢ < T'. It is interesting to compare this inequality to the restriction
on the agent’s intertemporal marginal rate of substitution (IMRS) of Hansen
and Jagannathan (1991). They present a restricted region for the means and
standard deviations of IMRS’s, consistent with historical time series data,
using a non-parametric approach. With a positive subjective interest rate,
only very large values of the risk aversion « are consistent with this region.

1.2 The Risk-Free Rate Puzzle

The risk-free rate puzzle is perhaps best illustrated my a simple example.
Ezample 1. Consider a (lognormal) model where the aggregate consump-
tion rate satisfies

dCt = Ct,U,Cdt -+ Cy (O'C,ldBl (t) -+ O'C72dB2 (t)), (9)

where fi.,0.1 and o.9 are constants, and B; and B, are two independent,
. . 2
standard Brownian motions. Here o, := 02, + 02,.

The representative investor (consumer) has a felicity index wu(z,t) =
-« . . . . .
t—e ", a#1,u(r) =In(z) if @ = 1, where he subjective impatience rate p

is a constant, and « is the coefficient of intertemporal relative risk aversion,
_ Ilfa

another constant. Here u(x) = £— in the representation (6) above.

It now follows that the equilibrium short term interest rate is

1
r=p+ap. — 504(1 + a)o?. (10)

For the valid values of & (a > 0) the precautionary savings hypothesis holds
in this case, so this representative consumer is prudent. By its very nature,



p > 0, measuring the time preference of consumption. This quantity is often
thought to be is close to one per cent. Reasonable values for the parameter
a are known from independent studies in the economics of uncertainty to be
in the interval [1/2,7], say. This is the case, at least in one-period settings
of choice. The Kelly criterion is obtained if a = 1, i.e., for the logarithmic
utility. Notice the local mean-variance flavor of equation (10).

Using the estimates 0.0183 and 0.0357 for u. and o, respectively, esti-
mates that are consistent with the Mehra and Prescott (1985)-study (see e.g.
Constantinides (1990), and in addition p = 0.01, we find the equilibrium,
annual interest rate to be around 4.3 per cent, consistent with McGrattan
and Prescott (2003).

In the Mehra and Prescott - study r was independently estimated to be
around one per cent. Maintaining that approximately p ~ 0.01, this gives
an estimate of 27.81 for «, generally considered to be too large. On the
other hand, suggesting that o = 2, this gives p ~ —0.03, i.e., —3 per cent.
This latter observation is related to the “risk-free rate puzzle” (Weil (1989)).
O

1.3 The Consumption-Based CAPM

Suppose that the real dividends of a risky asset is given by
th = ,U,D(t)dt +0p (t)dBt, (11)

The real price S; of the asset is supposed to be an Ité-process, and will
in general be determined in equilibrium. G = S + D is the adjusted price
process of the risky asset. It is also assumed to be an It6-process, i.e., dG(t) =
pg(t)dt + og(t)dB(t). We can then show that in equilibrium it must be the
case that

il - = (2Lt} 2000 12

u’(ct, t) St Ct
for any ¢t < T with probability one, where pg(t) =: “%Et).
The quantity ”%—Et)”‘;—gt) is interpreted as the covariance rate between the

returns of the risky asset and the aggregate growth rate in consumption.
Here we also notice the local mean-variance nature of the equilibrium rela-
tionship given in (12): The risk premium, a mean rate, is proportional to
this covariance rate in equilibrium.



1.4 The Equity Premium Puzzle

In this section we briefly explain the equity premium puzzle. Also this puzzle
is perhaps best illustrated by an example:

Ezample 2. The situation is as in Example 1 related to aggregated con-
sumption and preferences, and in addition we consider an asset having price
dividend process D given by

th = St/LDdt + St(O'DJdBl(t) + O'D,QdBQ(t)),

where Bi(t) and Bs(t) are two independent Brownian motions. The price
process S is only assumed to be an Ito-process. In equilibrium it turns out
that the price process S is consistent with the following representation

dSt = Stﬂgdt + St(O'S,ldBl (t) -+ O-S,QdBQ(t)).

In this situation the CCAPM involves the following restriction of the param-
eters in equilibrium

ps +pp —r=a(0s.+0op.) (13)

The expression for the spot interest rate r is given in equation (10).

In the Mehra and Prescott-study referred to above, the risky asset is
represented by the Standard and Poor’s composite stock price index during
the time period 1889-1978. They estimated (ugs + up) to 0.07, (05, + 0p.c)
to 0.0059, and (05 + op) to 0.165. (e.g., Constantinides (1990)). Using their
estimate for r of 0.01, we can substitute these estimates, together with those
reported in Example 1, into equations (13) and (10) and solve for the two
unknowns p and «. The solution is & = 10.2 and p = —0.10.

Hence, not only do we get a relatively high (method of moments-) estimate
of a, but also the estimate for the subjective discount rate is at odds with the
assumption that it must be non-negative. The first aspect, that & is relatively
high is known as the equity premium puzzle as posed by Mehra and Prescott
(1985). The second aspect, that p is negative meaning a negative time value
of money, is the riskless rate puzzle suggested by Weil (1989). If p is forced
to be positive, then the riskless interest rate becomes too high relative to the
values reported by Mehra and Prescott (1985), as follows from equation (10)
O

McGrattan and Prescott (2003) re-examine the equity premium puzzle,
taking into account some factors ignored by the Mehra and Prescott: Taxes,
regulatory constraints, and diversification costs - and focusing on long-term
rather than short-term savings instruments. Accounting for these factors, the
authors find the difference between average equity and debt returns during
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peacetime in the last century is less than 1 percent, with the average real
equity return somewhat under 5 percent, and the average real debt return
almost 4 percent. The latter is more in agreement with the findings of Siegel
(1992).

Using the values one per cent for the risk premium, four per cent for the
quantity 7; of this model, and maintaining the covariance rate between the
equity index and aggregate consumption .0059, we find an estimate of the
subjective interest rate p = .012, or 1.2 per cent, and an estimate of the
relative risk aversion & = 1.70. Thus these new interpretation will simply
solve both puzzles.

In the rest of the paper we develop an analogous theory to the one pre-
sented above using discontinuous dynamics. We claim that this framework
has certain advantages. Here we present a relatively simple example where
the p and the « parameters are calibrated to the above data for various val-
ues of the risk premium and the average real debt return. That is, we have
retained the historical low values of the covariance between equity and aggre-
gate consumption of the last century, and also the estimates for the variance
of the equity index, the variance of aggregate consumption and the estimate
of the growth rate in consumption, all values reported above. This should
provide the reader some insights into how the model is doing compared to
the continuous model. It turns out that the original equity premium puzzle
can not be explained by the model allowing jump dynamics, but this model
may provide more reasonable values than the continuous one. For the inter-
pretation of McGrattan and Prescott (2003), we can calibrate p = .014 and
a = 1.59, which start looking very plausible indeed.

2 Discontinuous dynamics

In this section we introduce discontinuous dynamics for the exogenously given
processes ¢ of aggregate consumption and D of the cumulative dividends of
the risky assets. In doing so we maintain the economic model of the previous
section, but allow for a different revelation of uncertainty as time goes. We
assume that the aggregate consumption ¢ and the dividend process D of a
risky asset are given by:

de(t) = po(t)dt + oo()dB(t) + / vo(t, )N (dz, dt), (14)
and
dD(t) = pp(t)dt + op(t)dB(t) +/ vp(t, 2)N(dz, dt), (15)



where N(dz,dt) = N(dz, dt) — v(dz)dt. Here N(dz,dt) is a random measure,
where the two independent, underlying Levy-processes are assumed to be in
L?, i.e., random processes having finite variances, v(dz) is the Levy measure
and N(dz, dt) is the centered random measure.

The reason we choose our primitive processes to be in L? is that then state
prices will in the dual space, which is also L2. Thus we avoid unnecessary
technical complications, in particular with regard to the representation of
the underlying jump processes.

The terms op, o., and vp, 7. may all be matrices of appropriate dimen-
sions, B and N are vector or scalar processes, depending on the circum-
stances, where B is again a Brownian motion.

For this type of processes we may perform several kinds of relevant analy-
ses, including: Optimal stopping, stochastic control,the stochastic maximum
principle, impulse control, singular control, chaos expansion and Malliavin
calculus, the Girsanov theorem, statistical inference, etc.

2.1 A General Pricing Formula

Let (S, D) represent any given primitive security with real price process S
and accumulated dividends process D. In the Aase (2002) it is demonstrated
that a security-spot market equilibrium is characterized as follows: The real
market value S at each time ¢ satisfies

S(t) = Lt)E { /t ' <u'(cs, s)dD(s) + d[D,u’](s)) | ,7-}} . (16)

u'(ey,

Here u' is the marginal utility of the representative agent, ¢; := > 1", ¢’y is
the aggregate consumption process in the market, and [D,u'] is the square
covariance process between accumulated dividends and the marginal utility
process.

The additional covariance term, not following from the Lucas (1978)-
model, is in fact also important in the continuous model, in the case where
the dividend process is assumed to follow an It6-diffusion with a nonvanishing
diffusion term op(t). In Aase (2002) the pricing relation (16) was taken as
the main starting point in deriving both the equilibrium interest rate and
the equilibrium risk premium.

In the following we assume that there exists a solution in the marketed
subspace of the representative agent problem, or we may argue directly using
a single agent economy. In either case the following can be done. We start
with the equilibrium short rate process.



2.2 The equilibrium short-term interest rate

In this section we derive a model for the short-term interest rate in equilib-
rium. This spot rate is given by

r(t) = _t(®) fort <T, (17)

(almost surely) also in this case, where p; = (¢, t) (see e.g., Aase (1993a-b,
2002)). By Ito’s lemma

dpy = p,(t)dt + o, (t)dB(t) + / Y,(t, 2) N (dt, dz).

More precisely, we have that

o 1
dp, = lau'(ct, t) + u" (¢, t) e + §U,,,(Cta t)tr(oc(t)o, (t))

—u" (¢, t) /Z Ye(t, 2)v(dz) + /Z (u'(ct_ +7(t, 2),t) — u'(ct_,t)> Z/(dz)] dt

+u" (¢, t)odB(t) + / (u'(ct_ +7e(t, 2),t) — (¢, t)) N(dt, dz)

z
(18)
Thus the equilibrium interest rate equals
o [ Elent)) | wlent)e) ((pelt)
u'(cy, t) u'(cy, t) ct
1u" (e, t) T
- = tr(o.(t t
PR OLAD)
(19)

(&
. /Z (u’(ct_ | %(f;l (Zc)t?) — u'(c-, t))y(dz)>

The first term is the subjective interest rate p(¢). The second term is the
product of the growth rate in consumption and the reciprocal of the intertem-
poral elasticity of substitution in consumption, the third term is related to
precautionary savings. The last two terms stem from the jumps.
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Note from the last term that we are no longer in the local mean-variance
framework - the entire probability distribution of the jump sizes may be
required.

Ezxample 3. Let us specialize as follows: Consider a compound Poisson
process as a model for for the jump term, where a geometric model is adopted
for the aggregate consumption process with constant coefficients: This means
that the “mark space” Z = [—1,00) X [—1,00), and (¢, (2¢, 2r)) = 2 > —1,
the latter requirement must hold in order to avoid negative consumption, i.e.

de(t) = ¢ <,ucdt—|— o.dB(t) + /Z 2N (dz. dt)) (20)

Notice that the Lévy measure v is now the joint probability distribution
function of the jump sizes (Z., Zg) multiplied by the frequency of jumps .

The representative agent is the same as in Example 1, the constant rel-
ative risk aversion case. Taking this into account we get for the equilibrium
interest rate

r=p+au.— %a(l +a)o? — A(aE(ZC) +(EQ+2,) - 1)). (21)

The random variable Z, signify the jump sizes in the aggregate consumption
process ¢ (a compound Poisson process). The first of the jump terms helps
in explaining the “risk-free-rate” puzzle when EZ, > 0, the second term may
not. [

2.3 An economic interpretation of the interest rate
jump term

In this section we attempt to find an economic interpretation of the jump
term in equation (19). The idea is perhaps best illustrated by an example:

Ezample 4. Consider equation (21) in the above example, in the very
special case where o = 2. The “jump term” is then approximately equal to
—3M\E(Z?) based on a Taylor series argument, truncating the series after two
terms.

One way of increasing the level of consumption uncertainty is to increase
AE(Z?), which is the variance rate of the jump process. This has the effect
of lowering the interest rates. The implication is that the consumer saves in
the presence of increasing consumption uncertainty, as is typically the case
with a prudent representative agent. [J

We now extend this idea. To this end we start by expanding the jump
term in a Taylor series, which seems valid here since the support of the dis-
tribution of Z, is mostly the interval (—1,1). The marginal utility difference

11



can be approximated as follows:

(U (et + 7Ye(t, 2), 1) — ' (e, 1)) = u" (cp, t)7Ve(t, 2)+

1 1
U (e t)ve(t 2)” + gu“‘)(ct, e(t, 2)% + - -

In the jump term referred to above, the two first terms cancel and this
term equals:

Lu" (e, t) 1u® (e, t)

_§7u’(ct,t) /nyc(t, 2)%v(dz) + Giu'(ct,t) /Z%(t, 2)%v(dz) + - - -

Truncating after three terms we get

A S (ci,1) _u"(e e | [ pe(t)
b ( u' (e, t) + u' (¢, t) Ct
lum(ct’ t)

e (tr(oc(@a?(t)) + [ e z)%(dz)> (22)

1 U(4) (Cta t)

6 (e t) /Z(H(tv 2)7%e(t, 2))°v(dz),

where 0(t, z) € [0,7.(t, z)] a.s., dictated by by the mean value theorem.
The jump term is now split in two, one part related to precautionary sav-
ings, the other part depending on the fourth derivative of the utility function.
The requirement that p; > 0 can be written as

1u" (e, t)

el(c,)™ "é_: <r + 2wl t) (tr(ac(t)ocT(t)) +/Z’yc(t, z)QZ/(dZ)>

lu(‘l) (¢, t)
6 u'(cy,t)

(23)
/Z (0(t, )% (t, 2))*(d2)

for any ¢ < T. Notice that in comparing with the corresponding restriction
(8) in the continuous model setting, the above requirement is less demanding
if the last term is positive.

As with the continuous model, also here it helps with a prudent consumer.
It is likely, however, that the order of magnitude of the three last terms in
equation (22) is smaller than that of the second term on the right hand side.
It will require an empirical investigation to settle these issues. Continuing
our previous example, we have:

12



Ezample 5. Returning to Example 4, the jump term in (21) is now ap-
proximately equal to —A(3E(Z2) - 4E(Z?)), bringing in one more term in
the Taylor series. Here the representative agent is prudent. If the last term
is negative as well, this may help in explaining the risk-free rate puzzle. This
could happen here if the third central moment of the jump sizes in consump-
tion is negative, which is quite possible, since Z, is the relative jump size in
aggregate consumption.

In the pure jump case (0. = 0), the model in (21) looks like, to the second
order approximation

r=p+ Q. — %a(a +1)AE(Z]) + éa(a +1)(a+2)AE(Z]) (24)

Returning to the discussion in Example 1, consider the case where a = 2.
In this case the continuous model gave p = —0.03 for the estimates used by
Mehra and Prescott (1985). Using the same population estimates, the pure
jump model in (24) gives p = 0.01 for this level of relative risk aversion, if
the term AF(Z2) = —0.0082. This latter numerical value is, however, too
large in absolute value compared to the estimate AE(Z,) = 0.0016, where
this latter value follows from the given population estimates. This is in fact
the highest absolute value that can be allowed for the term AE(Z2). Using
this in the above equation gives p = —0.025 when o« = 2. Thus the extra
term in equation (24) brings the subjective rate in the right direction, but
not quite enough. [

In conclusion, one part of the jump term enters quite naturally as a vari-
ance rate, analogues to in the continuous case. This retains the precautionary
savings interpretation of this term. In addition, according to this approxi-
mation a new term enters, depending on the fourth derivative of the utility
function and the third central moment of the aggregate consumption process.
If the latter term is positive, it will tend to increase the subjective rate p,
in which case it will help in explaining the risk-free rate puzzle. As example
5 indicates, however, this does not seem to be enough to reconcile the data
analyzed by Mehra and Prescott (1985) with the model assumptions.

2.4 The Consumption Based Capital Asset Pricing Model
(CCAPM)

In this section we derive the CCAPM in the case of jump dynamics. Let S
be a price process of a no-dividend paying risky security in this market, or, S
may alternatively be interpreted as an adjusted price process GG, as in section
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1.3. We assume it to be of the Ito-Lévy type, i.e.

dS, = Si_ (uR(t)dt +oR(t)dB, + / ve(t, 2)N(dt, dz)), (25)

A state price deflator is a strictly positive It6-Lévy process p such that the
deflated price process SP(t) =: S(¢) - p(t) is a martingale. We deduce the dy-
namic equation for the deflated price process SP, using a generalized version
of 1t6’s lemma, here sometimes called the product rule:

t
0

57(0) = SO0)+ | S)n(s) + [ w51 (o
+/0 /Zq/p(s, z)vR(s,z)S(s)N(ds,dz)—i-/o 0,(5)S(s)or(s)ds.

Then we insert the equations for p and S and collect terms; the martingale
requirement amounts to a zero drift term, or

St pp(t) +p(t)S(t)ur(t) + 0p(t)or(t)S(2)
+/Z’)/p(t, 2)vr(t, 2)S(t)v(dz) = 0.

Assuming both S and p strictly positive, we may divide through by the
term S - p. Using the relation p,(t)/p(t) = r(t) we get:

pa®) = () =~ / ot 2)va(t, 2)v(dz) — "pp—(t’”aR(t»

Now recall, using again It6’s lemma, the endogenous expressions for o,(t)
and 7,(t, z) in terms of the exogenous consumption process and preferences:

op(t) = ceu" (e, t)oc(t)
and
Yolt, 2) = u'(crm + 7e(t, 2), t) — (i, 1),

This leads directly to the following relation for the risk premium:

pn(t) = ) = (= ) (e

U’I(ctat) Ci
(26)
_ [ (e et D)) — e )
/z< u'(ct, t) )%z(t, Jv(dz).
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Equation (26) is an extension of the celebrated CCAPM to jump models. A
more general expression for the risk premium than (26) is known (see Back
(1991)) for special semimartingales when aggregation across agents does not
work as we assume it does. The above expression was first appearing in Aase
(1993 a-b).

Notice in particular how the last term brings us outside of the the mean-
variance type of analysis. This term stems from the jumps in the equity S
and the aggregate consumption c.

Ezample 6. Let us adopt the same assumptions as in examples 1 and 2.
Assuming in addition that the jump sizes Zr and Z. are independent, the
risk premium can be written:

pr — 1 = aoro. — AE(Zg)E{(1 — Z,)~ — 1}. (27)

Here we have assumed that 7.(t,z) = ¢_Z, so that Z. signify jumps in
percentage in the aggregate consumption, i.e., we have a geometric model for
the aggregate consumption. Note that the above independence assumption
does not imply that the return R on the stock index is independent of the
consumption growth ¢, as is evident from equation (27). This will be further
explained below. [J

2.5 An interpretation of the CCAPM jump term

In this section we attempt to give an economic interpretation of the jump
term in the CCAPM-relation (27). To this end, let us return to the general
form of the risk premium and rewrite the last term. It can be written

_ /Z ul(ct— +70(t (Z)’t)) (Ct ) )’YR(ta Z)I/(dZ) —

/Z (‘ et zét 2;,)(& )(Ct ’t))ct) (70(: Dt z))zx(dz)

Written this way, this term somehow corresponds to the first term in (26).
This follows since the first term in the last integrand is a “first order” approx-
imation of the intertemporal coefficient of relative risk aversion, the second is
the instantaneous covariance (by the It6-Lévy isometry) between the jumps
in the return of the risky asset and the jumps in the growth rate of the
aggregate consumption in the market.
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A better approximation follows by including one more term:

B /Z u’(ct_ + ’)/c(z;(zc)t:?) — u’(Ct—, t) ’YR(t’ Z)y(dZ) —

(-t f (462 )

The first term corresponds to the usual one in continuous dynamics. The
second term is new, and signify the product of the degree of prudence and a
second-first cross moment between the the consumption growth and the the
risky asset.

Our expression for the risk premium is, based on this approximation

0= (- ) )
- (%(;’ Z))’VR(??, z)u(dz>} (28)

() (A2

From this expression we notice that if u” > 0, i.e., the consumer is
prudent, this will tend to lower the risk premium in the case where the in-
tertemporal cross-moment in the last expression is positive, and to increase
the risk premium if this moment is negative. Thus there are two possibilities
for this model to give a larger risk premium that is the case for the contin-
uous model. The first is where the representative agent is not prudent, and
the cross-moment is positive, the second involves a prudent representative
investor and a negative cross-moment. The sign of this cross-moment is an
empirical question.

When treating the equilibrium riskless rate r, we noticed that a prudent
consumer would in fact help in a possible resolution of the “risk-free rate
puzzle”. This illustrates the potential difficulty to explain both puzzles at
once.

16



Ezxample 7. Let us illustrate the use of the expression (28). We consider
the pure jump case, where 0. = og = 0. Using the geometric model for the
consumption process of Example 3, the risk premium can be written

[e.e] o 1 o o0
PR —T = a/ / zrz.V(dzg,dz.) — §a(a + 1)/ / zrzov(dzg, dz.).
-1 J-1 -1 J-1
(29)

Notice that we do not assume that Zz and Z,. are independent here. From
Example 2 and the It6-Lévy isometry (explained in the next section), an
estimate of the first term on the right hand side is .0059. The risk premium
of the original Mehra and Prescott (1985)-investigation was 0.06. Let us
denote the mixed crossmoment appearing in last term on the right hand side
in equation (29) by k. We then have the equation

06 = 0(0.0059) — %a(a + 1)k, (30)
Suppose, for example, that the value of the coefficient of the relative risk
aversion « = 2. This leads to a corresponding value of x = —0.016. Unlike
the situation in Example 5, there is no restriction on this mixed crossmoment
K, so this value is in the permitted range, given the estimates of the other
moments. Only an empirical investigation can bring us further on this point.
But this illustrates the potential of the expression for the risk premium in
equation (28). O

2.6 A comparison between the continuous model and
a particular simplified version of the pure jump
model

In order to better understand the jump components of our model, we here
find the conditions when the the pure jump model is a direct analogue of
the continuous model. By the pure jump model we simply mean the model
resulting from ignoring the Brownian motion part of the dynamics.

We make the same simplifying assumption as in Example 6, that the
relative jump sizes (Zg, Z.) in the composite stock index and the aggregate
consumption are independent. There is still an instantaneous correlation
between these quantities, since the respective jumps take place at the same
random, time instants 7y, 7o, .... The dynamic equations are then

de(t)
c(t—)

= pdt +/ 2.N(dz, dt),
z
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and

dS(t -
dR(t) =: d5(t) = ugdt +/ zr N (dz, dt)
S(t-) z
This leads to the following two relations for the equilibrium interest r
rate and risk premium (pr — 7):

pn— 1 = —AB(ZR)E{(1+ Z)™ = 1)}, (31)

and
r=p+ap;— A(aE(Zc) + (E(l +2Z) " - 1)) (32)

We modify these equations as follows: Since (1 + Z,)™® ~ 1+ —aZ,, we
get for the equilibrium risk premium

pr — 1 ~ e AE(ZR)E(Z,)), (33)

Taking one more term in the Taylor series for the interest rate, (14 Z,) * ~
1+ (—a)Z. + 5(—a)(—a — 1)E(Z?2), we get for the equilibrium interest rate
T

1
TP+ ape — 504(1 + @) AE(Z2). (34)

In order to calibrate this model, we need the estimates of the variances
and covariances. These we assume unaffected by the tax rules and other
frictions taken into account by McGrattan and Prescott (2003). We thus use
the same numerical values of these estimates as in examples 1 and 2.

We now invoke the Ito-Lévy isometry, giving the following estimates:
AE(Z%) = (.1654)%, NE(Z?2) = (.03574)* and [, zgz.v(dzg,dz.) = .0059.
The latter equality can be written AE(Zg)E(Z.) = .0059, using the assumed
independence between Zx and 7.,

Note that this particular independence in the joint jumps of S and ¢ does
not lead to a zero annualized covariance.

In order to illustrate the It6-Lévy isometry employed in the above, re-
call that the variance of a compound Poisson process is varX (t) = M FE(X?),
not Atvar(X;). Likewise, the covariance of two compound Poisson processes
making independent jumps at the same time points is cov(X(t),Y (1)) =
ME(X1Y1), not Atcov(Xy,Y]), which would have been zero under indepen-
dence.
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Notice that these equations (33) and (34) have the same interpretations
as the corresponding ones provided by the continuous model, using this ap-
proximation of the discontinuous model.

Recalling that iz — r = .01 in the McGrattan and Prescott (2003) in-
terpretation, and . = 0.0183, from the above equations (33) and (34) we
obtain directly the following calibrated values: & = 1.70 and p = .012. These
are, of course, the same as provided by the continuous model for the this in-
terpretation of the data set.

Regarding the problems that we discuss, with the above interpretation
of the frequency parameter A and independence assumption, the continuous
model is equivalent to a first order approximation of the jump model regard-
ing the risk premium, and a second order approximation of the jump model
for the interest rate.

In the next, and final, section we calibrate the model without using any
Taylor series approximations, but we retain the independence assumption of
this section.

3 Calibration and Numerical Results

In this section we calibrate our jump model to the same data set as indicated
above, without using any Taylor series approximations. Naturally, in order
to make any progress we need some assumptions regarding the joint prob-
ability distributions of the jump sizes in our model. To this end we make
the following assumptions: The random variables (1 + Z., 1+ Z) are jointly
lognormally distributed. As a consequence In(1 + Z,), In(1 + Zg) is bivari-
ate normal with parameters p;,0? and g, 02 respectively, the correlation
coefficient being assumed equal to zero. Since both ¢ and R are aggregated
quantities, this assumption is partly supported by the Central Limit Theo-
rem. Note in particular that this gives positive consumption, as our model
requires.
In this case we get the following:

BE(1+Z) =Wt B+ Zg) = e+,

E(1+ Zc)2 — 6(2/11—1—20%)’ E(1+ ZR)Q — o(2n2+203)
and

E(1+ Z,)~® = eCam+iota?)
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As a consequence of these relations we also get:
E(Z?) = e2m+207) _ 2(e(u1+%af) —1)—1,

with a similar expression for F(Z%). From the previously observed estimates,
we can now set up the following five equations in order to calibrate all the
parameters. From the sample estimates reported in examples 1 and 2 we get:
(i) AE(Z%) = 0.001277, (ii)) AE(Z%) = 0.027357 and (iii) AE(Z,)E(Zg) =
.0059.

The two main equations are the one for the equilibrium risk premium and
the equilibrium market interest rate:

(i) PR —T = —A <e(“2+%‘7§) _ 1) (e(—au1+%g—%a2) _ 1)

and

(v) r=p+ «(.0183) — A(a(e(“ﬁ%”%) -1+ (e(_a“ﬁ%”%az) - 1))

The idea is now to vary the risk premium (ug — ) and the interest rate r in
equations (iv) and (v), and find the corresponding values of the risk aversion
« and subjective rate p. This we do in the next sections.

3.1 Varying the frequency )\ in the pure jump model

We have a system of five equations in seven unknown parameters, and nat-
urally infinitely many solutions may fit the equations. By trial and error
we fix 01 = .0loy, and solve the system for different values of the frequency
parameter A\. This way we get rid of two parameters, and we can solve the
five equations in the five unknowns «, p, 1, o and oy for various values of
A

For the Mehra and Prescott (1985) pair (ug—7,7) = (.06, .01) we obtained
a relative risk aversion a = 4.69 for the parameters A = .02738, u; = —.2436,
[o = —7.8567, 0, = .0163 and o5 = .1634. This is a rather low value of this
coefficient. However, the corresponding subjective rate p = —.04, i.e., minus
four per cent. Although this is relatively small in absolute value, it still has
the wrong sign. This is typical for our calibrations using the Mehra and
Prescott (1985) values (ur — r,7) = (.06,.01); it seems easier to obtain a
reasonable coefficient of the relative risk aversion than a reasonable value for
the subjective interest rate.
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As the frequency of the jumps A increases, the values («, p) approach the
corresponding ones for the continuous model. For example, when A = 10.000,
then o = 10.17 and p = —.1023, close to the values & = 10.2 and p = —.10 for
the continuous model. This seems reasonable, since an increasing frequency
implies that the pure jump model will display an ever increasing sequence of
smaller and smaller jumps, approaching the continuous model in the limit.
The corresponding values for the other parameters are p; = —.0001, ps =
—.0005, 07 = .48 -107% and o, = .48 -1077. As we can see, these values
confirm that the jump sizes are small on the average.

Turning to the McGrattan and Prescott (2003) pair (ug—r,r) = (.01,.04),
both puzzles disappear, as we have seen also for the continuous model. Typ-
ical values are o around 2 with p varying around .02, both considered as
very plausible values. When the frequency gets large, e.g., A = 1000, then
a = 1.69 and p = .01. The values for the other parameters are y; = —.001,
ps = .005, oy = .48 -10~7 and oy = .48 - 107%. This is close to the values
provided by the continuous model.

For the frequency A\ = .02738, v = 2.3386, p = .001 and p; = —.2436,
o = —7.8567, 0y = .0163 and o, = .1634, all acceptable values for the
parameters.

Since the data are annual, it could be of some interest to investigate the
case A = 1, corresponding to one jump per year on the average. For the
pair (ug — r,7) = (.06,.01), we obtain then o = 8.50 and p = —.0856. The
other parameters are then p; = —.0366, uy = —.1795, 0y = .65 -10~* and
oy = .65 - 1073, Similarly, for the pair (ugr — r,7) = (.01,.04), we obtain
then = 1.78 and p = 0.01. The other parameters are then p; = .0353,
po = 1516, oy = .37-10~* and oy = .37 - 1073.

Table 1 presents values for « for different values of (ug — ), when the
frequency A\ = .02738. The interest rate r does not affect the values of «,
only the difference (ur — ), as can be seen from equation (iv). Note that
the values of the relative risk aversion are surprisingly low, even for large risk
premiums.

(urp—7) [[.00 .01 [.02].03].04].05].06].07
o 0 [23]22[30]37 (424751

Table 1: The relative risk aversion « for given variances and covariances, for
different values of (1 —7): A = .02738.

Table 2 presents values of the subjective rate p for various values of the

risk premium (ug — r) and the equilibrium interest rate r, also for the fre-
quency value A\ = .02738.
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(up —m)r ] 00 [ 01 [ 02 ] 03[ .04 05 06 | .07
.00 00 | 01 | 02 ] .03 ] 04| 05| 06 | 07
.01 -.039 [-.029 | -.019 [ -.009 | .001 | .011 | .021 | .031
02 -.034 | -.024 [ -.014 | -.004 | .005 | .0158 | .0259 | .0359
03 -.0437-.033 [-.023 | -.013 [ -.003 | .007 | .017 | .027
04 048 [ -.038 [ -.028 [ -.018 | -.008 | .002 | .012 | .022
.05 052 | -.042 [ -.032 [ -.022 | -.012 | -.002 | .008 | .018
.06 -.054 | -.044 | -.034 | -.024 | -.014 | -.004 | .001 | .016
.07 054 | -.044 | -.034 | -.024 | -.014 | -.004 | .006 | .016

Table 2: The subjective interest rate p for given variances and covariances,
as a function of the risk premium and the interest rate. A = .02738.

The feasible range of non-negative values for the subjective rate in Table
2 is shown in the upper right corner of the table. The negative values in the
table are inconsistent with rational behavior, violating the inequality (23),
but notice that their absolute values are relatively small.

The tables allow the reader to fill in their “favorite” pair of the risk
premium (pr—7) and the risk-free interest rate r and see what values of « and
p could be consistent with the low variances and covariances of consumption
and equity of the last century.

For the particular case outlined in Table 1 and 2, we have a steady growth
in both consumption and the equity index, but about three times during the
century, on the average, a drop occurs in both these variables. The interpre-
tation is that there is a growth in both the processes ¢ and R, measured by
the positive drift terms in the corresponding dynamic equations, while the
compensated jump terms, the noise terms, adjust the process parameters to
the observed first and second sample moments. Compensating for the con-
tinuous upwards drift, jumps occur to align the processes to the the data.
The jump sizes are downwards on the average, indicated by the signs of the
parameters (i; = —.2436 and i, = —7.8567.

The situation may be partly compared to the model by Rietz (1988).
In his model the endowment growth rate is assumed to follow a three-state
Markov process, two states are normal growth rate states while the third
state is a crash state. Also Ritz was able, in a calibration exercise, to match
the unconditional means maintaining the assumptions of time-separable iso-
elastic preferences and relatively low values for agents’ risk aversion. He did
not, however, consider the riskless rate puzzle.

Our model is considerably more flexible than the one considered by Rietz,
and our dynamics does not imply any “crash state”, only some rare adjust-
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ments. The results in our tables are consistent with the findings of Hansen
and Jagannathan (1991), but we are able to explain more reasonable values
of the relative risk aversion than the values they indicate. Our results are
not consistent with those of Rietz (1988), nor with those of Salyer (1988).
The latter tried to reconcile the results of the former two investigations, and
in doing so he discovered a “new puzzle” in that his crash model, similar
to that of Rietz, could not explain the observed volatility of excess returns.
Our model is, in contrast, calibrated to the standard deviation of .165 in the
sample period, which presents no problem.

Another, but perhaps related, matter is that Salyer did not really address
the risk-free rate puzzle the way we do, since he fixed the agent’s discount
factor at .98, implying a positive value of the subjective rate p = .0202 in
our setting. Fixing p = .0202, by examining our system of equations (i) - (v)
in this situation, we typically get solutions with large risk aversion and/or
negative values of some of the parameters that must be positive, like A, o1,
09 OT even «.

3.2 Including also diffusion uncertainty

In this section we allow for diffusion uncertainty to enter in addition to the
jumps. Below we consider a case where roughly one half of the standard
deviations are attributed to the diffusion sample paths, the other half to the
jump terms.

Here we fix the values of 0. = .02, and oz = .10. In this case ogo. = 0.002
which is about one third of the total covariance rate 0.0059. The system of
equations (i) - (v) is solved to yield A = .1761, u; = —.074, us = —.376,
0? = .0001, and o3 = .002, the latter two parameters were subject to trial
and error. As before, all these parameter values are the same regardless of
the values of r and (ugr — ). For various values of these latter quantities, we
have computed the following two tables of o and p:

(ur—7) [-00] .01 [ .02 [ 03] .04 .05 .06].07|
o 0 |1.59]3.05[4.41]5.68]6.85]7.96|8.99 |

Table 3: The relative risk aversion « for given variances and covariances, for
different values of (u —r): A = .1761.

In the above the frequency of jumps has risen to about one in every five
years on the average.

By comparing these tables with Table 1 and 2, we notice that including
the diffusion uncertainty in the present situation does not change the prefer-
ence parameters very much. From Table 1 and Table 3 we see that smaller
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(ug—r)r ] 00 [ 01 | 02 ] 03] .04 ] .06 | .06 .07
.00 00 | 01 | 02 ] .03 | .04 | 05 [ .06 .07
01 -.026 | -.016 | -.006 | .004 | .014 | .024 | .034 | .044
.02 -.047 [ -.037 | -.027 | -.017 [ -.007 | .003 | .013 | .023
.03 -.063 | -.053 | -.043 | -.033 | -.023 | -.013 | -.003 | .007
04 -.075 | -.065 | -.055 | -.045 | -.035 | -.025 | -.015 | -.005
.05 -.084 | -.074 | -.064 | -.054 | -.044 | -.034 | -.024 | -.014
.06 -.090 | -.080 | -.070 | -.060 | -.050 | -.040 | -.030 | -.020
.07 ~.092 | -.082 | -.072 | -.062 | -.052 | -.042 | -.032 | -.022

Table 4: The subjective interest rate p for given variances and covariances,
as a function of the risk premium and the interest rate, when diffusion un-
certainty is also included. A = .1761.

risk aversion can be explained for low values of the market risk premium in
the combined case, while for high risk premiums the situation is reversed.
Comparing Table 2 and Table 4, we see that the case of pure jumps gives
a wider range of acceptable values of p than the combined case, as can be
observed from inspecting the upper right corners of the two tables.

The pair for the classical puzzles (g — r,7) = (.06,.01) gives & = 7.96
and p = —.080. For the pair (uz — r,7) = (.01,.04) we have & = 1.59 and
p=.014.

This basic trend can be brought further by excluding the jumps from
the model entirely, in which case the risk aversion o would increase, and the
acceptable range for the subjective rate p is further diminished, a demonstra-
tion that the jump model is more flexible in this regard that the continuous
one. The details can be found in tables 5 and 6.

(ug—r)J.00] 01 ] .02 03] .04 .06] .06 .07
o 0 |1.70 | 3.40 | 5.09 | 6.79 | 8.49 | 10.19 | 11.88

Table 5: The relative risk aversion « for given variances and covariances, for
different values of (u — r): The continuous case.

Generally it is seen that an increase in the equilibrium interest rate r
typically increases p, and a decrease in the equilibrium risk premium (pr —7)
similarly decreases the relative risk aversion «, ceteris paribus. In the tables
there is only one violation of this, as the risk aversion drops slightly from
2.34 to 2.23 as the risk premium increases from .01 to .02 in Table 1. Also
an increase in the risk premium (ug — r) generally decreases the subjective
rate p, the only exception in the tables again being in Table 2 when the risk
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(up —r)r ] 00 | 01 [ 02 [ 03| .04 [ .05 .06 | .07
.00 00 | 01 | 02 ] .03 ] 04| 05| 06 | .07
.01 -.030 [-.020 | -.010 | .002 | .012 | .022 | .032 | .042
.02 -.053 | -.043 [ -.033 | -.023 | -.013 | -.003 | .007 | .017
03 073 [-.063 | -.053 | -.043 | -.033 | -.023 | -.013 | -.003
04 091 [-.081 | -.071 [ -.061 |-.051 |-.041 |-.031 | -.021
.05 104 [-.094 | -.084 | -.074 | -.064 | -.054 | -.044 | -.034
.06 114 [-.104 | -.094 | -.084 | -.074 | -.064 | -.054 | -.044
.07 120 [ -.110 | -.100 | -.090 | -.080 | -.070 | -.060 | -.050

Table 6: The subjective interest rate p for given variances and covariances,
as a function of the risk premium and the interest rate: The continuous case.

premium goes from .01 to .02.

It seems like the representative investor of the 20. century has been very
rational (e.g., & = 1.59) if the risk premium is around one per cent, in fact
approaching the Kelly criterion of &« = 1. This is an interesting observation
in its own right, since this criterion is known to have certain optimality
properties, see i.a., Thorp (1971), Breiman (1960) or Aase and (Dksendal
(1988).

4 Conclusions

We have introduced jump dynamics in the “noise term” of the dynamic
stochastic differential equations for the aggregate consumption process and
the dividend processes of the risky assets. As a result, the equilibrium re-
lations for the short rate and the risk premium could no longer be fully
described by the two first moments only. We demonstrate that this gives
some added flexibility in modelling, for example, it brings us outside the lo-
cal mean-variance framework, permitting us to utilize other properties of a
joint probability distribution than merely its two first moments.

The analysis revealed that the jump components in the model open up
several possibilities related to the classical equity premium puzzle. For exam-
ple could we imagine a non-prudent representative agent and a positive mixed
cross-moment, or, and perhaps more realistic, we could imagine a prudent
representative agent and a negative sign of a certain mixed cross-moment.
Only an empirical investigation can, of course, resolve these issues.

In the latter case the model can also be related to the classical risk-free
rate puzzle. A better fit could be obtained provided the consumer has a
fourth derivative of the utility function satisfying a mixed preference and
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moment requirement of the type

u(4)(ct,t) /Z(H(t, 2)7e(t, 2))*v(dz) > 0

and, preferably, not small in absolute value.

We have presented a range of values for the parameters of the represen-
tative agent’s utility function for different values of risk premia and interest
rates. It turns out that the McGrattan and Prescott (2003) pair of values for
the difference between average equity and debt returns of the last century,
and the average real debt return, fits nicely into the permitted range. If these
values can be trusted, both puzzles are resolved at one stroke, both for the
continuous model and for the model containing jumps.

In general the model can be used to indicate fairly reasonable values for
the relative risk aversions when calibrated to the data of the last century.
However, the subjective rates are negative for the Mehra and Prescott (1985)
pair of values for the risk premium and the the average real debt return.

We have carried out a rather crude calibration, and many refinements
could easily be imagined. It is likely, for example, that one could improve
the results by choosing other distributions for the stock index, like the Nor-
mal Inverse Gaussian distribution or variants thereof, that are popular in
parts of the extant empirical work on stock price returns. Despite these
possible shortcomings, we feel we have demonstrated that the Lucas type
equilibrium model with a time additive and separable utility function for the
representative consumer still represents a viable framework for many types
of economic analyses, especially seen in light of the new interpretation of the
data of the last century.
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