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October 4, 2003

Abstract

Tobin (1958) has argued that in the face of potential capital losses
on bonds it is reasonable to hold cash as a means to transfer wealth
over time. It is shown that this assertion cannot be sustained taking
into account the evolution of wealth of cash holders versus non cash
holders. Cash holders will be driven out of the market in the long run
by traders who only use a (risky) long-lived asset to transfer wealth.
Moreover, bond holders do not survive in the presence of only stock
holders even if the payoff of bonds dominates the dividend of stock.
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1 Introduction

Using two-period mean-variance analysis, Tobin (1958) has argued that in
the face of potential capital losses on bonds it is reasonable to hold cash as a
means to transfer wealth over time. He concludes on page 66: “If cash is to
have any part in the composition of investment balances, it must be because of
expectations or fear of loss on other assets.” While this assertion is certainly
true for two-period models, we argue here that it cannot be sustained when
considering the long run evolution of the wealth distribution. Analyzing the
wealth dynamics resulting from cash and asset holdings, we show that cash
holders will be driven out of the market by traders who only use a (risky)
long-lived asset to transfer wealth.

The main idea of this point is rather simple. The zero return on cash
can dominate the return on any other asset with non-negative payoffs only
if this asset generates capital losses. That is to say, only if the price of
the other asset decreases. The price of an asset having non-negative payoffs
can however not decrease below zero. Otherwise the agents would simply
withhold the asset from the market and still enjoy the non-negative asset
payoffs. Therefore capital losses are bounded and eventually the rate of
return on the asset will dominate the zero rate of return on money.

On this general level of reasoning, the our point is similar to the one made
by Hellwig (1993). Hellwig argues that Tobin (1958)’s assertion cannot be
sustained in an infinite horizon model with rational expectations. As Hellwig
argues, in any point in time money can have a positive value only if some
agents believe that the other assets may have sufficiently severe capital losses.
Hence in order to have rational expectations in any point in time agents must
believe that there is a non-ending sequence of severe capital losses which is
inconsistent with positive asset prices.

Time is discrete, and there is a finite state space in every period.
The point of our note is to show that the general idea of the inconsistency

of cash holding in the long run does not need to be based on the assumption of
rational expectations. The wealth of all cash holders will eventually become
a negligible part of total wealth in the market. We try to make this point
precise in a simple model with two assets. One riskless asset, whose price will
be chosen as the numeraire, and one risky asset that is risky both in terms of
dividends and resale values. Both assets’ payoffs are denominated in terms
of the numeraire. Hence the payoffs of the assets are in terms of a storable
asset and the amount of the numeraire in the model grows over time.

Various interpretations of this simple setting are possible. In the case the
return on the riskless asset is zero, one may consider the riskless asset as
money/cash and one could think of the risky asset as being a console/bond
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which is exactly the setting of Tobin (1958). In the case the return on the
riskless asset is positive, one could consider the riskless asset to be a bond
while the risky asset may be interpreted as a stock, as it is done in many
evolutionary finance models, e.g. Arthur, Holland, LeBaron, Palmer, and
Taylor (1997), LeBaron, Arthur, and Palmer (1999), Brock and Hommes
(1997), and Lux (1998), among others. Concerning this strand of literature
our note would suggest to build evolutionary finance models in which cash
cannot be used as a store of value.

The model shows more generally that even if the per period payoff of the
numeraire is always higher than the dividends paid on the long-lived asset,
still—taking into account capital gains—the rate of return on the long-lived
asset eventually dominates that of the numeraire asset. The reason is that
the price of the long-lived asset will in the long run grow with the wealth
accumulated in the economy. To avoid this feature one must explicitly take
into account consumption at a rate at least as high as the growth rate of
total payoffs in the market. A simple example of this sort is the famous
Lucas (1978) model in which all payoffs are in term of a single perishable
consumption good. Hence in Lucas’ model consumption is exactly equal to
the inflow of additional units of the numeraire, injected into the model by
the assets’ payoffs. Our results thus suggest to base evolutionary finance
models on Lucas (1978). Models based on this approach are e.g. considered
in Blume and Easley (1992, 2001), Sandroni (2000), and Evstigneev, Hens,
and Schenk-Hoppé (2002).

2 The Model

Time is discrete and denoted by t = 0, 1, 2, ... . There is one long-lived asset
and cash. Cash is riskless both in terms of its return R = 1 + r ≥ 1 and in
terms of its price. It is also used as the numeraire and is thus the price of
cash is always equal to one. The long-lived asset may be risky both in terms
of dividends and resale value. In every period the asset pays off a dividend
Dt(s

t) ≥ 0 which is observed at the end of the period. st = (s0, ..., st) is the
history of states of the world up to period t, st is the state of the world in
period t. All payments are in units of cash.

There are I ≥ 2 agents who can hold cash and the asset to transfer wealth
across time. mi

t denotes the units of cash hold by investor i at the beginning
of period t, and ai

t denotes the units of the long-lived asset, respectively.
As in Tobin (1958) we assume that short selling is not possible. This will
in particular rule out negative price bubbles. Alternatively we could have
introduced short selling bounded by some arbitrary lower limit.
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It is not essential for our reasoning, how the demands mi
t and ai

t are deter-
mined. It could stem from completely rational agents maximizing expected
utility over the infinite horizon, or boundedly rational agents solving myopic
two period maximization problems. It is even allowed to dismiss any ratio-
nality interpretation. In this note we consider the evolution of wealth for any
sequence of demands mi

t and ai
t no matter where they come from.

The asset is in fixed supply (normalized to one), while the supply of cash
is endogenously given by the cumulated dividends. Thus the market clearing
conditions are given by

I∑
i=1

ai
t = 1 and

I∑
i=1

mi
t =

t∑
τ=0

Rt−τ Dτ (s
τ ) for all t = 0, 1, ... (1)

The wealth of an investor i in period t after dividend payment is deter-
mined as

wi
t = R mi

t−1 + (Dt(st) + qt) ai
t−1 (2)

where qt denotes the price of the asset in terms of cash.
The budget constraint of each investor i is

mi
t + qt a

i
t = wi

t (3)

Considering the right-hand side of the budget constraint we can already
make the intuition of the general argument outlined in the introduction more
precise. In the case of cash the net return on the riskless asset is zero, r = 0.
Hence if there are no capital losses, we obtain that whenever the risky asset
has some positive payoff, its return dominates that of the riskless asset. Since
capital losses are bounded and since the horizon of the model is infinite,
eventually cash holding will then be dominated. With a positive net return
r > 0 on the riskless asset, the intuition for our result becomes clear, once the
formation of prices has been explained. As we show below, prices increase
with market wealth. Hence, the more returns and dividends are paid, the
more likely become capital gains on the risky asset. Holdings of agents are
described in terms of budget shares. Let λi

t denote the fraction of wealth an
investor i assigns to the purchase of the asset and by 1 − λi

t the fraction of
wealth assigned to cash holdings, i.e.

mi
t = (1− λi

t) wi
t and ai

t =
λi

t w
i
t

qt

(4)

Rewriting (2) one obtains

wi
t = R (1− λi

t−1) wi
t−1 + (Dt(st) + qt)

λi
t−1 wi

t−1

qt−1

(5)
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Equation (4) implies that the market-clearing price qt is given by

qt =
∑

i

λi
t w

i
t = λt wt (6)

where λt = (λ1
t , ..., λ

I
t ) and wT

t = (w1
t , ..., w

I
t ). If for some investor λi

t w
i
t > 0,

then qt > 0. Since wealth increases with returns on the riskless and on the
risky asset, prices are more likely to rise when the riskless asset has positive
returns. Hence in that case capital losses are even less likely than in the case
of money/cash.

Inserting (6) in (5) yields an implicit equation for the wealth of investor
i in period t for each given distribution of wealth across investors wt−1 in
period t− 1. Define

Ai
t−1 = R (1− λi

t−1) wi
t−1 + Dt(s

t) Bi
t−1

and

Bi
t−1 =

λi
t−1 wi

t−1

λt−1 wt−1

The subscript t− 1 refers to the time-dependence of the wealth distribution
wt−1. This implicit equation for the evolution of wealth can now be written
as

wt = At−1 + Bt−1 λt wt (7)

with AT
t−1 = (A1

t−1, ..., A
I
t−1) and BT

t−1 = (B1
t−1, ..., B

I
t−1). One needs to solve

(7) for wt to derive the law of motion for the distribution of wealth across
investors.

¿From (7) we obtain

wt = (I −Bt−1 λt)
−1 At−1 (8)

where I is the identity. The inverse of I − Bt−1 λt is given by I + (1 −
λt Bt−1)

−1 Bt−1 λt provided λt Bt−1 6= 1 (Horn and Johnson 1985, Sec. 0.7.4).
It is straightforward to check that in our model λt Bt−1 < 1, if for some
investor λi

t < 1 and λi
t−1 wi

t−1 > 0.
One finally obtains

wt =

(
I +

1

1− λt Bt−1

Bt−1 λt

)
At−1 (9)

where the ith component of (9) is given by

wi
t =

(
R (1− λi

t−1) + Dt(s
t)

λi
t−1

λt−1 wt−1

+λi
t−1

∑
j

[
R (1− λj

t−1) + Dt(s
t)

λj
t−1

λt−1 wt−1

]
λj

tw
j
t−1∑

j(1− λj
t)λ

j
t−1w

j
t−1

)
wi

t−1
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It is clear from the above discussion and (9) that the evolution of the wealth
distribution is well defined if at least one investor i with initial wealth wi

0 > 0
adopts an investment rule with λi

t ∈ (0, 1) for all t.

3 The Main Result

Tobin (1958)’s assertion on the rationality of holding cash in the presence of
potential capital losses is now addressed in the model introduced above for
the particular case of two investors. The first investor only holds the risky
asset to transfer wealth across time (λ1

t = 1) while the second investor holds
a mixed portfolio and invests partly in cash (0 < λ2

t < 1). Both investors
are endowed with initial wealth wi

0 > 0. Under these two assumptions the
equation governing the evolution of wealth (9) is well-defined. The model
with I = 2 turns out to be analytically tractable because the inverse matrix
in (9) has a simple expression. In particular one can study the long-run
distribution of wealth in this case.

After some lengthy but elementary calculations one obtains that, for I =
2, (9) is equivalent to

w1
t =

Dt(s
t) + R (1− λ2

t−1) λ2
t w2

t−1

(1− λ2
t ) λ2

t−1 w2
t−1

w1
t−1

(10)

w2
t =

Dt(s
t) + R (1− λ2

t−1) w2
t−1

(1− λ2
t ) w2

t−1

w2
t−1

¿From equations (10) we can analyze the possibility of capital losses on the
risky asset. To this end compute its price change, which is, by (6), qt−qt−1 =
w1

t + λ2
t w

2
t − (w1

t−1 + λ2
t−1w

2
t−1). Inserting (10) one obtains

qt − qt−1 =
Dt(s

t) +
([

1 + (1− λ2
t−1) r

]
λ2

t − λ2
t−1

)
w2

t−1

(1− λ2
t ) λ2

t−1 w2
t−1

w1
t−1

(11)

+
λ2

t Dt(s
t) +

([
1 + (1− λ2

t−1) r
]
λ2

t − λ2
t−1

)
w2

t−1

(1− λ2
t ) w2

t−1

w2
t−1

If dividends on the risky asset were negligible, capital losses would occur if
the second agents’ budget share for the risky asset λ2

t decreases by more than
the riskfree return R = 1 + r. In particular from this expression we see that
capital losses are more likely if the riskfree return r is zero.

Since there is no consumption, the total wealth Wt = w1
t + w2

t of the
economy may become arbitrarily large as time tends to infinity. In this
case the dividends may become negligible in the long-run. For instance,
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it is apparent from (1) and (3) that the aggregate wealth tends to infinity
(almost surely) if dividend payments

∑t
τ=0 Dτ (s

τ ) → ∞ (almost surely):
Wt ≥ m1

t + m2
t =

∑t
τ=0 Rt−τ Dτ (s

τ ) ≥ ∑t
τ=0 Dτ (s

τ ), since R ≥ 1. If
dividends are uniformly bounded from above, the dividend-wealth ratio,
Dt(s

t)/Wt, converges to zero.
The most convenient way to avoid this problem is to make the following

assumption:

(A) Dt(s
t) = d(st) Wt−1 and d(st) ≥ 0 is an ergodic process such that

d(s) > 0 with positive probability.

That is, the dividend grows on average with the same rate as the economy.
Under assumption (A) one obtains from (10) an equation for the evolution

of the ratio of the investors’ wealth shares ri
t = wi

t/Wt:

(
w1

t

w2
t

=

)
r1
t

r2
t

=
1

λ2
t−1

d(st) + R (1− λ2
t−1) λ2

t r2
t−1

d(st) + R (1− λ2
t−1) r2

t−1

· r1
t−1

r2
t−1

(12)

We make the assumption

(B) There is a δ > 0 such that δ ≤ λ2
t ≤ 1− δ for all t.

Under this assumption investor 2 cannot mimic investor 1’s investment
strategy who only holds the risky asset. In fact it suffices to require that the
fraction of wealth allocated to the purchase of the risky asset by investor 2
does not tend to zero or one exponentially fast.

Theorem 1 Under assumptions (A) and (B) the investor holding only the
risky asset (while the other investor also holds cash) gathers total wealth
almost surely. The investor with a mixed portfolio becomes extinct.

Hence we have shown that while Tobin (1958)’s argument for a liquid-
ity preference as behavior towards risk certainly makes sense in the short
run, it is not sustainable in the long run if one takes the wealth dynamics
into account. Moreover, our result may be seen as a justification of building
evolutionary models analyzing the market selection hypothesis based on the
ideas of Lucas (1978). If, as in Lucas (1978), asset payoffs are denominated
in terms of a perishable consumption good rather than in terms of some of
the assets then these payoffs do not drive out the asset in which payoffs are
denominated as a reasonable investment alternative vis a vis the other assets.
For example in Evstigneev, Hens, and Schenk-Hoppé (2002) a riskless asset
with positive payoff R that is dominated by the the payoff D of some other
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asset can well be sustained as an evolutionary stable outcome of the wealth
dynamics.

Proof of Theorem 1 The task in this proof is mainly to derive a lower
bound on the asymptotic growth rate of the market share ratio r1

t /r
2
t . It will

be shown that for any investment strategy (λ2
t )t≥0 the asymptotic growth

rate limt→∞ 1/t ln(r1
t /r

2
t ) > 0. This implies (as is detailed below) r1

t → 1
and r2

t = 1 − r1
t → 0. Thus investor 1 (who invests only in the risky asset)

gathers total market wealth in the long run.
Consider the right-hand side of (12). Let us first show that for each fixed

d ≥ 0
d + R (1− λ2

t−1) λ2
t r2

t−1

d + R (1− λ2
t−1) r2

t−1

≥ λ2
t + α (13)

with α ≥ 0 (and α > 0 if d > 0) for all δ ≤ λ2
t−1 ≤ 1 − δ and 0 < r2

t−1 ≤ 1.
(13) is equivalent to

α ≤ (1− λ2
t ) d

d + R (1− λ2
t−1) r2

t−1

(14)

The right-hand side of (14) is decreasing in r2
t−1 as well as in λ2

t and increas-
ing in λ2

t−1. Inserting the maximal resp. minimal possible values for these
variables a sufficient condition on α is obtained:

α ≤ δ d

d + R (1− δ)
(15)

For each d ≥ 0, let us define α(d) ≥ 0 by the right-hand side of (15).
Taking the derivative with respect to d it is straightforward to see that

α(d) is increasing in d.
Fixing any ε > 0, (13) thus implies that for every d(st) ≥ ε,

1

λ2
t−1

d(st) + R (1− λ2
t−1) λ2

t

d(st) + R (1− λ2
t−1)

≥ λ2
t + α

λ2
t−1

with α = α(ε). From (13) and the fact that α(d) ≥ 0 we also find that for
all d(st)

1

λ2
t−1

d(st) + R (1− λ2
t−1) λ2

t

d(st) + R (1− λ2
t−1)

≥ λ2
t

λ2
t−1

Summarizing these findings, we obtain the following estimate from below
on (12):

r1
t

r2
t

≥
(
1dt≥ε

λ2
t + α

λ2
t−1

+ 1dt<ε
λ2

t

λ2
t−1

)
r1
t−1

r2
t−1
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where 1dt≥ε ∈ {0, 1} with 1dt≥ε = 1 if and only if d(st) ≥ ε. Analogously for
1dt<ε. Taking logarithms, we find

ln
r1
t

r2
t

≥
t∑

τ=1

ln

(
1dτ≥ε (λ2

τ + α) + 1dτ <ε λ2
τ

λ2
τ−1

)
+ ln

r1
0

r2
0

The sum on the right-hand side can be estimated from below as

t∑
τ=1

ln

(
1dτ≥ε (λ2

τ + α) + 1dτ <ε λ2
τ

λ2
τ−1

)
= ln

t∏
τ=1

(
1dτ≥ε (λ2

τ + α) + 1dτ <ε λ2
τ

λ2
τ−1

)

= ln

[
1dt≥ε (λ2

t + α) + 1dt<ε λ2
t

λ2
0

·
t−1∏
τ=1

(
1dτ≥ε

1 + α

λ2
τ−1

+ 1dτ <ε

)]

= ln
1dt≥ε (λ2

t + α) + 1dt<ε λ2
t

λ2
0

+
t−1∑
τ=1

ln

(
1dτ≥ε

1 + α

λ2
τ−1

+ 1dτ <ε

)

≥ ln
λ2

t

λ2
0

+
t−1∑
τ=1

ln

(
1dτ≥ε

1 + α

1− δ
+ 1dτ <ε

)
≥ ln

δ

1− δ
+ C

t−1∑
τ=1

1dτ≥ε

where C = ln[1 + α/(1− δ)] > 0.
The long-run growth rate of r1

t /r
2
t is thus bounded from below by

lim
t→∞

1

t
ln

r1
t

r2
t

≥ lim
t→∞

1

t

(
ln

δ

1− δ
+ C

t−1∑
τ=1

1dτ≥ε + ln
r1
0

r2
0

)
= C P{d(s) ≥ ε}

where the last equality follows from the ergodic theorem.
Assumption (A) implies P{d(s) ≥ ε} > 0 for all sufficiently small ε > 0.

Since C > 0 for every fixed ε > 0, the last equation implies

lim
t→∞

1

t
ln

r1
t

r2
t

=: γ > 0 (16)

for all small enough ε > 0. This means for t large

r1
t

1− r1
t

=
r1
t

r2
t

≈ exp(t γ) →∞ as t →∞

which implies r1
t → 1 (and r2

t → 0) as t →∞ almost surely. Convergence is
even exponentially fast. This completes the proof of Theorem 1. ¤
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