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Abstract

We consider a one period (two time points-) model of efficient risk
sharing, when the set of possible sharing rules are constrained to be
linear. This can be interpreted as a model of a market for common
stocks. Here we study the properties of a competitive equilibrium in
an incomplete market.

The lack of Pareto optimality is then the typical case. We do
characterize, however, the situations where the competitive financial
equilibrium is also Pareto optimal, and illustrate by examples.

Since the marketed subspace M is a closed, linear subspace of L2,
we employ Hilbert space techniques in finding the first order condi-
tions.

We conclude with a discussion of the different features of idiosyn-
cratic risks in insurance, and risks in financial markets, where a com-
mon ground is suggested.

KEYWORDS: Incomplete Financial Market, Competitive Equilibrium,
Pareto Optimality, Representative Agent, Marketed Subspace

Introduction

Much of the theory of optimal allocation of risks in a reinsurance market
can be directly applied to a stock market. The principal difference from the
insurance risk exchange model is that only linear risk sharing is allowed in
a market for common stocks. In certain situations this may also be Pareto
optimal, but by and large this type of risk sharing is not. Still, it is quite
plausible that a competitive equilibrium may exist.



Today the modelling framework in continuous time seems to be changing
from Ito price processes to price paths containing unpredictable jumps, in
which case the model typically becomes incomplete. One could, perhaps,
call this a change form “linear” modelling of uncertainty to “nonlinear” un-
certainty revelation. What I have in mind here is the much more involved
nature of the corresponding random measure behind the jump process term,
than the corresponding diffusion term, arising in the stochastic differential
equation. Being much more complex, including a random measure facilitates
possibilities for far better fits to real observations than does a mere diffusion
term. On the more challenging side is the resulting incompleteness of the
financial model. Many of the issues of the present paper then inevitably
arise.

Classical economics sought to explain the way markets coordinate-ordinate
the activities of many distinct individuals each acting in their own self-
interest. An elegant synthesis of two hundred years of classical thought was
achieved by the general equilibrium theory. The essential message of this
theory is that when there are markets and associated prices for all goods and
services in the economy, no externalities or public goods and no informational
asymmetries or market power, then competitive markets allocate resources
efficiently.

The focus of the paper is on understanding the role and functioning of
the financial markets, and the analysis is confined to the one period model.
The key to the simplicity of this model is that it abstracts from all the
complicating elements of the general model except two, which are taken as
primitive for each agent, namely his preference ordering and an exogenously
given future income. The preference ordering represents the agent’s attitude
towards the variability of an uncertain consumption in the future (his risk
aversion). The characteristics of the incomes is that they are typically not
evenly distributed across the uncertain states of nature. A financial contract
is a claim to a future income - hence the logic of the financial markets:
by exchanging such claims agents change the shape of their future income,
obtaining a more even consumption across the uncertain contingencies. Thus
the financial markets enable the agents to move from their given income
streams to income streams that are more desired by them, according to their
preferences. The reason that they could not do this transfer directly is simply
that there are no markets for direct exchange of contingent consumption
goods.

We start by giving the relevant definitions of the financial model to be
studied. Then we refer to the ideal or reference model (the Arrow - Debreu
model) in which, for each state w € €, there is a claim which promises to pay
one unit of account in the specified state. Trading in these primitive claims



leads to equilibrium prices (£(w)), which are present values at date 0 of one
unit of income in each state at date 1. Since agents in solving their optimum
problems are led to equalize their marginal rates of substitution with these
prices, the equilibrium allocation is Pareto optimal.

However, Arrow-Debreu securities does not exist in the real world, but
common stocks do, together with other financial instruments. The purpose
of these various instruments is thus to transform the real market as close to
the ideal one as possible.

We introduce a class of financial contracts (common stocks), in which
each contract promises to deliver income in several states at date 1, and
where there may not be enough securities to span all the states at this date.
Two ideas are studied which are crucial to the analysis that follows:

(i) the characterization and consequences of no arbitrage

(ii) the definition and consequences of incomplete financial markets.

We demonstrate in particular how security prices are determined in equi-
librium such that agents, in solving their optimum problems, are led to equal-
ize the projections of their marginal rates of substitution in the subset where
trade of common stocks takes place.

The Financial Model

Consider the following model. We are given [ individuals having preferences
for period one consumption represented by expected utility, where the utility
indices are given by w;, where u; > 0, u] < 0 forall i € 7T =: {1,2,...,I}.
There are N securities, where 7, is the payoff at time 1 of security n,
n=12,...,N. Let Z = (Z1,Zy,...,Zn)" where prime denotes the trans-
pose of a vector, i.e., Z is a random (column) vector. We use the notation
27]:]:1 Zn =: Zyr for the “market portfolio”. We consider a one period model
with two time points 0 and 1, one consumption good, and consumption only
at the final time point 1.

We suppose individual i is initially endowed with shares of the different
securities, so his pay-off at date 1 of his initial endowment is

N
Xi=> 097,
n=1

where 955) is the proportion of firm n held by individual 7. In other words,
the total supply of a security is one share, and the number of shares held
by an individual can be interpreted as the proportion of the total supply
held. Denote by p, the price of the security n, n = 1,..., N, where p =

(p1,p2, ... ,pn). We are given the space L? = L?*(Q,F,P) where L2 is
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the non-negative part (the positive cone) of L?, Q is the set of states of the
world, F is the set of events, a o-algebra, and P : F — [0, 1] is the probability
measure common to all the agents.

Consider the following budget set of agent u:

N N N
n=1

n=1 n=1

Here 0 € R, so from the range of these parameters we notice that negative
values, i.e. short selling, is allowed.

An equilibrium for the economy [(u;, X;), Z] is a collection (6,62, ... , 6%
p) such that given the security prices p, for each individual i, 6" solves

sup  Eu(Y;) (2)
Y;€ BE (p;0)

and markets clear: 25:1 955) =1.

Denote by M = span(Zy,...,Zy) = {30 0.7, SN 6, < 1}, the
set of all possible portfolio payoffs. We call M the marketed subspace of L?.
Here F = FZ =: 0{Zy,Zs,...,Z;} (all the null sets are included). The
markets are complete if M = L? and are otherwise incomplete.

Here we remark that a common alternative formulation of this model
starts out with pay-off at date 1 of the initial endowments X; measured in
units of the consumption good, but there are no outstanding shares, so that
the clearing condition is Zle 6%’ = 0 for all n. In this case we would have
F = F¥X. More generally we could let the initial endowments consist of
shares and other types of wealth, in which case F = F%Z.

If there is uncertainty in the model not directly reflected in the prices and
initial endowments, F O F~Z. Then we ought to specify these sources of
uncertainty in the model.

Arrow securities and complete markets

Let us consider the ideal model of Arrow and Debreu (1954), and assume for
expository reasons that there is a finite number of states: Q = {wy, ws, ... ,ws}.
Denote the N x S payout matrix of the stocks by Z, where

21,w1 Rlws - Al ws

22, w1 Z2we e R2ws
Z = . ) :

ZNwi ANws -+ ~ZNuwg



and z,,, is the payout of common stock n in state w,. If N = S and Z is
nonsingular, then markets are complete. It is sufficient to show that Arrow
securities can be constructed by forming portfolios of common stocks. Since
Z is nonsingular we can define

gs) — glw)z—1

where e(s) = (0,0,...,0,1,0,...,0) with 1 at the s-th place. Then §“)Z =
e@s) by construction. The portfolio <) tells us how many shares of each
common stock to hold in order to create an Arrow security that pays “one
unit of account” in state ws. It is obvious that as long as Z is nonsingular,
we can do this for each w, € €). Hence a complete set of Arrow securities can
be constructed, and then we know that the market structure is complete.

In the one period case markets can not be complete if the random pay-
offs Z have continuous distributions, or if there is an infinite and countable
number of states, cases that interest us. In the finite case, the market can
not be complete if the rank of Z is strictly less than S, the number of states.
It is easy to find examples in the finite case where options can complete an
otherwise incomplete model (see e.g. Ross (1976), Aase (2002)).

In continuous time models with a finite set of long-lived securities, a redef-
inition of the concept of Arrow-securities may lead to dynamically complete
markets, even if the payoffs are continuously distributed, as is the case for
e.g., the Black and Scholes model.

Example 1. Suppose S = 3 and N = 2, and let the payoff matrix Z be

given by
21 3
Z= <1 3 2)

Here rank(Z) = 2 < 3, and the market is not complete. The payoff of
the market portfolio is (3,4,5). Let cp (k) denote the price at date 0 of
a European call option on the market portfolio expiring at date 1 with an
exercise price k. The payoffs for ¢j;(3) and ¢y, (4) are (0,1,2) and (0,0,1).
Putting these payoffs together with the market portfolio, we have the payoff
structure

o o w
o — &
— N Ot

which is a nonsingular matrix. Arrow securities can then be constructed by
forming portfolios of the market portfolio and the two call options, so this
market structure is complete. 0



This example shows a situation where options can play an allocative role,
and thus be welfare improving. More generally one can show the following;:
In an economy where options can freely be created on portfolios of common
stocks, the market is Arrow complete if and only if there exists a portfolio
of common stocks where payoffs are different in each state, or where payoffs
separate (Ross (1976)).

Some general pricing principles

We now consider some general pricing principles. Let there be a stock mar-
ket in a single good, single period economy. Agents have von Neumann-
Morgenstern strictly concave and strictly increasing utility functions. Re-
turning to the problem (2), we substitute the first constraint into the ob-
jective function and form the Lagrangian of each individual’s optimization
problem:

N N

Li(0) = E{u; (Y69 Z,) — (Y pa(6) — 6)}.

n=1 n=1

The first order conditions are

oL; (0
) _ B2 - awn =0,
a0y
implying that
1
pn = —EW(Y:)Z,), n=20,1,...,N.
Q;

Defining R, = Z,,/pn, the return of asset n, we have that for each i € 7

1
—FE (U;(Y;)(Rn —R,)) =0, Vn,m,

Q;
or, by the definition of covariance,

1 1
a—E(u;(Y,))E(Rn — Rp) + gcov(u;(Yi), R,—R,)=0 VYn,m, (3)
hold for each i € 7.

Suppose there exists a riskless asset, the 0-th asset, that promises to pay
one unit of the consumption good at date 1 in all states w € §2. This asset is
assumed to be in zero net supply. Thus

1 1 1

=—F(Y) 1) = — = f 11 €T
Do o (u;(Y;) - 1) 7 T, or a 1 €T,




where r; denotes the riskfree interest rate. Combining this with equations
(3) gives

1 1
T rfE(R" — Rn) + a—icov(u;(YZ-), R,—R,)=0  VYn,m, (4)

for all i € Z. Set m = 0 in this relationship. Then (4) becomes

E(R,) = (14 75) = —(1 + 15)cov (“ﬂYf)

Lr) v @
(2

saying that the risk premium of any asset in equilibrium is proportional to
the covariance between the return of the asset and the normalized, marginal
utility of the equilibrium allocation Y; for any 7 of the individuals. This latter
quantity one may conjecture to be equal on M across all the individuals in

equilibrium. We shall look into this conjecture below, but first we may utilize
the relation (5) to derive the Capital Asset Pricing Model (CAPM).

CAPM derived under multinormality

The results of the previous section can now be utilized to derive the standard
CAPM. Two avenues could be chosen: One is to assume that all the indi-
viduals possess quadratic utility functions. This we do not find plausible in
financial economics, where the utility is taken over final consumption, which
in a one period model equals final wealth. It is highly unlikely to have a
satiation point when it comes to wealth.

The other is to assume that returns of common stocks are multinormally
distributed. This means that the model becomes infinite dimensional, and
consequently incomplete. Fama (1976) in his book “Foundations of Finance”,
and numerous other authors have repeatedly tested out this hypothesis on
US stocks, and found the assumption acceptable under certain conditions.
This assumption is often employed in theoretical models in finance, such
as e.g., the Black and Scholes model, but is frequently refuted in empirical
studies. For the moment, let us assume that R is multivariate normal, and
thus that Z is multivariate normal, since the prices p of the common stocks
are all constants at time 0. Using Stein’s lemma, from (5) we get that

E(Rn)—(1+rf):—(1+rf)E<M>cov(Rn,Yi), Vn,i.  (6)

Q;

Let Zy =: 27]:[:1 Z, and py =: Zf:[:lpn and consider the weights w, =:
pn/py for n = 1,2,...  N. Clearly 25:1 w, = 1. By the definition of
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return, Ry, =: Zy/py signifies the return on the market portfolio, and it
follows that this can be written Ry, = 25:1 wy Ry, i.e., Ry is the return
on the value-weighted market portfolio. Multiplying (6) by w,, and summing
over the stocks n we get

ul (Y; _

E(Ry)—(1+r)=—1+rp)E <7Z( )> cov(Ry, Y), Vi.
Rearranging this equation, summing over the individuals 7, and noticing that
cov(Rur, Zyr) = puvar(Ryr), we obtain using the market clearing condition

(B(Ru) = (1 +70) Y Frcys

€T v

= —(1+7rs)puvar(Ry). (7)

Returning to equation (6), rearranging and summing over the individuals,
using again the market clearing condition, we get

Q)

(E(Rn) = (1+77)) sz Ty — (L ropueov(Bo Bar). - (8)
Finally, we substitute the term »_,_; #EY;) from equation (7) into equation
(8), and the result is:

cov(R,, Ry)
E(R,) — (1 = — —(E(Ry) — (1 , Vn. 9
(o) = (14 77) = e (Bl = (1 77)). Vo ()

The risk premium of any of the given common stocks, (E(R,) — (1 + r¢)),
is proportional to the corresponding risk premium of the market, (E(Ry;) —
(147ry)), where the constant of proportionality (3, := cov(R,, Rar)/var(Ry)
is called the stock’s beta. This is the traditional version of the CAPM due to
Mossin, Lintner and Sharp. Note that we needed no completeness assumption
for this relationship to hold.

Let Ry = 25:1 0, R, be the return on any portfolio of common stocks,
where the portfolio weights satisfy Zflv:l 0, = 1. Then, from the above it is
trivial to see that

E(Rg) — (L +75) = Bo(E(Rar) — (1 +77)), (10)

where By := cov(Ry, Ryr)/var(Ryy) is the portfolio’s beta. Since only portfo-
lio formation can be made in this market, we here see a difference between
this version and the corresponding insurance version (Aase (2002)). Note
that in this model the budget set of agent 7 is

N N N
n=1 n=1 n=1



instead of the more common B (p; §) given in equation (1).
This means that the utility functions u,(-) must be defined over all of R,
not only on R, , and the resulting situation allows for bankruptcy.

Existence of mean variance equilibrium

The problem of existence of equilibrium is, perhaps surprisingly, only dealt
with fairly recently (Nielsen (1987, 1988, 1990a,b), Allingham (1991), Dana
(1999)). Instead of assuming multinormality as we did in the above, a com-
mon assumption in this literature is that the preferences of the investors only
depend on the mean and the variance, in other words, if Z € M, then a util-
ity function u; : M — R is mean variance if there exists U; : R X R — R
s.t.,

ui(Z) =Ui(E(Z),var(Z)) for all Z € M.

The function U; is assumed strictly concave and C?, increasing in its first
argument and decreasing in the second.
We then have the following result (Dana (1999):

Theorem 1 Assume that E(X;) > 0 for every i = 1,2,...,1 and Zy; is a
non-trivial random variable (i.e., not equal to a constant a.s.). Then there
exists an equilibrium.

When utilities are linear in mean and variance, we talk about quadratic
utility, i.e., U;(x,y) = x—a;y, a; > 0 for every i. If this is the case, equilibrium
both exists and is unique. In the above it was assumed that utilities were
strictly concave, so quadratic utility only fits into the above framework as a
limiting case.

Let us recall one definition of risk aversion: A preference relation > on
a subset M of L? is called risk averse if X = X +Y for any X € M and
non-zero Y in L? satisfying X +Y € M and E(Y | X) = 0. This means
that an agent is risk averse if the addition of a random prospect that has no
incremental effect on expected value is undesirable.

A related concept is the following: A preference relation > on a subset
M of L? is variance averse if X > X + Y whenever X and X + Y are in M
and EY =cov(X,Y) = 0. This means that an increase in variance is disliked
if it does not affect expected value. In this case quadratic utility is a special
case of a variance averse preference relation.

Suppose that the vector space M has a Hamel basis of jointly normally
distributed random variables. If > is a risk averse preference relation on M,
it follows that > is variance averse. In verifying this, we notice that if X and



Y are bivariate normally distributed, then E(XY) = EX = 0 implies that
EY | X)=0.

In these two examples variance aversion applies because the agent’s pref-
erences are given only in terms of means and variances of an asset, and for
a given mean, more variance is worse. However, nothing in the definition of
variance aversion requires that preferences depend only on mean and vari-
ance.

No arbitrage restrictions on expected returns.

Instead of relying on the rather restrictive assumptions behind the CAPM,
we now indicate a similar relationship assuming only the existence of a state
price deflator. For a finite version of the following, see Duffie (2001). First
we recall some facts.

The principle of no-arbitrage may be used as the motivation behind a
linear pricing functional, since any insurance contract can be perfectly hedged
in the reinsurance market. In the standard reinsurance model there is an
assumption of arbitrary contract formation. We use the following notation.
Let X be any random variable. Then by X > 0 a.s. we now mean that
P[X > 0] =1 and the event {w : X(w) > 0} has strictly positive probability.
In the present setting, by an arbitrage we mean a portfolio 6§ with p-6 <0
and 0-Z > 0,orp-6 <0andf#-Z > 0 a.s. Then we have the following version
of “The Fundamental Theorem of Asset Pricing”: There is no arbitrage if
and only if there exists a state price deflator. This means that if there exists
a strictly positive random variable & € L%rJr, i.e.,, P[¢ > 0] = 1, such that the

market price pg := ZN 0,,p,, of any portfolio  can be written

n=1

N
po=Y 0.E(-Zy,),
n=1

there can be no arbitrage, and conversely (see e.g., Dalang, Morton and
Willinger (1990)).

The extension of this theorem to a discrete time setting is true and can
be found in standard texts (see e.g., Duffie (2001)). In continuous time
the situation is more complicated, see e.g., Kreps (1981) or Schachermayer
(1992). If we assume that the pricing functional 7 is linear, and in addition
positive, i.e., 7(Z) > 0 if Z > 0 a.s., both properties being a consequence
of no arbitrage, then we can use the Riesz’ representation theorem, since
a positive linear functional on an L?-space is continuous, in which case we
obtain the above representation. If we add the assumption of strict positivity
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of m, also a direct consequence of no arbitrage possibilities, the result is a
strictly positive Riesz’ representation &.

The following result is also useful: If there exists a solution to at least
one of the optimization problems (2) of the agents, then there is no arbitrage.
(Ross (1978)). The conditions on the utility functional may be relaxed con-
siderably for this result to hold. Consider a strictly increasing utility function
U: L? — R. If there is a solution to (2) for at least one such U, then there
is no arbitrage. The utility function U : L? — R we use is U(X) = Fu(X).
Also if U is continuous and there is no arbitrage, then there is a solution to
the corresponding optimization problem.

Clearly, the no-arbitrage condition is a weaker requirement than the ex-
istence of a competitive equilibrium, so if an equilibrium exists, there can be
no arbitrage.

For any portfolio 6, let the return be Ry = Zy/py, where Zy = 25:1 0,2,
and py = 25:1 0,.pn. We suppose there is no arbitrage, and that the linear
pricing functional 7 is strictly positive. Then there is, by Riesz’ representa-
tion theorem, a state price deflator & € L, (by strict positivity). We easily
verify that

B(ER) = D€ 6n2) =1 (12)

Suppose as above that there is there is a riskfree asset. It is then the case
that

E(Ry) — Ry = By(E(Ry+) — Ry), (13)

where

. COV(RQ, Rg* )

bo var(Ry-)

and where the portfolio 8* solves the following problem

supgp(§, Zp), (14)

where p is the correlation coefficient. Indeed, here p(&, Zp-) = 1. The exis-
tence of such a 6* follows as in Duffie (2001).

We notice that the portfolio 8* having maximal correlation with the state
price deflator £ plays the same role in the relation (13) as the market portfolio
plays in the CAPM of relation (10). The right hand side of (13) can be
thought of as the risk adjustment in the expected return of the portfolio 6.
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The advantage with the present representation is that it does not require
the rather restrictive assumptions underlying the CAPM.

In order to price any portfolio, or security, we get by definition that
E(Ry) = E(Zy)/pe, or

E(Zy)
E(Ry)

P = (15)
In order to find the market value of the portfolio #, one can compute the
ratio on the right hand side of (15). The numerator requires the expected
payout, the denominator the expected return of the portfolio. In computing
the latter, (13) may be used. It amounts to find the expected, risk adjusted
return of the portfolio (security), which one has been accustomed to in finance
since the mid 1960’s. The method is still widely used in practice, and can
find further theoretical support in the above derivation (beyond that of the
CAPM).

This in contrast to the more modern contingent claims valuation theory,
where one instead risk adjusts the numerator in (15) E9(Z,), through a risk
adjusted probability measure (), equivalent to the given probability measure
P, and then use the riskfree interest rate Ry in the denominator, i.e., py =
E9(Zy)/Ro. Here dQ/dP = 1 and n = £Ry. Both methods require the
absence of arbitrage, and the existence of a state price deflator. Which
method is the simplest to apply in practice, depends on the situation.

Incomplete models and allocation efficiency

In this section we elaborate on the incomplete case. Consider a model where
an equilibrium exists, so that there is no arbitrage, and hence there is a
strictly positive state price deflator & € L?H. Recall the optimization problem

of the standard risk sharing model in insurance. If (7;Y7,...,Y7) is a com-
petitive equilibrium in the reinsurance model, where 7 (V') = E(V - §) for any
V € L?, then there exists a nonzero vector of agent weights A = (A1,... , \;),

A; > 0 for all 7 such that the equilibrium allocation (Y7,...,Y7) solves the
problem

I I
Eux(Zy) = sup E NiEu;(V;) subject to ZV; < Zu,
Vi V) 52y i—1

where V; € L?, i € Z. Here \; = %, where «; are the Lagrangian multipliers
of the individual optimization préblems of the agents. For u; concave and
increasing for all 7, we know that solutions to this problem also characterizes
the Pareto optimal allocations as A > 0 varies.
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Suppose now that a competitive financial equilibrium exists in M. Then
there exists a nonzero vector of agent weights A = (A,..., A7), A\; > 0 for
all i such that the equilibrium allocation (Yi,...,Y7) solves the problem

1 1

Euy(Zy) == sup Z)\lEul(V;) subject to ZV}- < Zny, (16)

(Vi V1) 53 pary

where V; € M, 1« € Z. The relation between the A\; and «; is the same as in
the above. The first order conditions are

E{(@\(Zy) —a€)Z} =0 forall Ze M,

where a > 0 is a Lagrangian multiplier. This rives rise to the pricing rule

w(7) = éE(a’,\(ZM) Z)=FE(6-7) forall Ze M.

Similarly, for the problem in (2) the first order conditions can be written
E{(u,(Y;) —a&)Z} =0  forall Ze M, i=1,2,...,1,
where Y; are the optimal portfolios in M for agent 7, 1 = 1,2,...,1, giving

rise to the market value
w(Z) = aiiE(u;(Yi) Z)=E(¢-7Z) forany ZeM,icT.
Let us use the notation

- (7 0%
gzw’ gz:ul( 1), i=1,2,... .1
(6] o,

Since M is a closed, linear subspace of the Hilbert space L2, if M # L?
then the model is incomplete. In this case there exists an X in L%, X # 0,
such that F(X - Z) =0 for all Z € M. We use the notation X 1 Z to signify
E(X - Z) =0, and say that X in orthogonal to Z. Also let M+ be the set
of all X in L? which are orthogonal to all elements Z in M. There exists
a unique pair of linear mappings 7' and @ such that T maps L? into M, Q
maps L? into M, and

X =TX +QX

for all X € L%, The orthogonal projection TX of X in M is the unique
point in M closest (in L?>norm) to X. If X € M then TX = X, QX = 0;
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if X € M+, then TX = 0, QX = X. We now simplify the notation to
TX = XT and QX = X€ for any X € L?.
Using this notation, from the above first order conditions we have that

(&-&LM and (€ —&)LM, 1=1,2,...,1.

In other words (€ — &) € M* and (£ — &) € M~ for all ¢ and accordingly
(E—-8T =0and (£ —&)" =0 for all 4, so the orthogonal projections of &, &
and &,t=1,2,...,I on the marketed subspace M are all the same, i.e.,

r=r=¢r', i=12...,I (17)
Thus we have shown the following

Theorem 2 Suppose an equilibrium exists in the incomplete financial model.
Then security prices are determined in equilibrium such that agents, in solv-
ing their optimum problems, are led to equalize the projections of their marginal
rates of substitution in the marketed subspace M of L?, the projections being
given by the equations (17).

The conditions ¢7 = & for all 4 correspond to the first order necessary
conditions £ = &; for all 7 of an equilibrium in the standard reinsurance
model, when trade in all of L? is unrestricted, and similarly the condition

T = fT corresponds to the first order necessary condition & = éu,\(ZM) of
the corresponding unrestricted, representative agent equilibrium.

Notice that there is an analogue to the above in the finite dimensional
case, saying that if a financial market equilibrium exists, then the equilibrium
allocation is constrained Pareto optimal (i.e., the optimal allocations are
constrained to be in the marketed subspace M) (see Magill and Quinzii

(1996), Theorem 12.3).

The law of demand

One may formulate the “law of demand” in the complete model as saying
something like: “As the total abundance goes up, the price goes down”.
What we mean here is that as the “abundance” Z);(w) = z)s increases, the
state price u)\(zys) decreases. Here we may think of zj, as being a real vari-
able, or one could perhaps take the expectation of the state price deflator,
and think in terms of first degree stochastic dominance. In either case, the
result follows since the real function w)(-) is strictly decreasing. Will the
same hold true in the incomplete world? Well, take a look at the optimiza-
tion problem (16). It is still the result of a sup-convolution, and since the
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individual utility functions are assumed to possess decreasing marginal util-
ity, the same will be the case for the real function @) (). When defined, this
real function will simply coincide with the real function u(-). The reason
that the expected value Fuy(Z);) may be smaller that the corresponding ex-
pected value FEuy(Zy,) is that M C L2, i.e., the domain of the optimization
problem is now a smaller set as compared to the domain of the unconstrained
problem. We thus have the following result:

Theorem 3 As the random variable Z); increases in first degree stochastic
dominance, the expected state price Eu\(Zys) decreases.

This can be related to a more serious result about monotonic demand in
economics: By monotonic demand we mean that the demand function f(p, w)
of a price vector p (of [ commodities, say) and income w satisfies

(p—0) - (flp,w) = f(p,w)) <O.

whenever p # p’. In this setting both the income effect and the substitution
effect of a price increase is taken into account, and monotonicity in demand
imply that the latter is the dominating effect (e.g., Quah (2003)).

Applied to the economics of uncertainty, there is a result saying that the
corresponding demand is monotonic if the coefficient of relative risk aversion
pi = —xul(x;)/ul(z;) is between zero and 4 for all . This holds in the
infinite dimensional case, and in incomplete markets, see e.g., Dana (1995)
and Bettzuge (1998).

Pareto optimality

If an equilibrium exists and M = L?, then £ = §~ and the equilibrium allo-
cation (Y7,...,Y7) is Pareto optimal. In this situation contingent claims in
zero net supply would not have any allocative effects, in other words, such
financial instruments would not be welfare improving.

If M # L? the market is incomplete, and two situations can arise:

(a) Euy(Zy) = Euyx(Zy) or (b) Eux(Zy) < Bux(Zy) .

In situation (b) the equilibrium allocation is not Pareto optimal, but is
constrained Pareto optimal, which is the typical case. Welfare could hence
be improved by allowing trade in non-linear financial instruments (in zero
net supply). The difference

(Bux(Zy) — Eux(Zu)) > 0,

'The X’s in these two functions may not be the same.
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can be considered as the welfare loss due to the incompleteness of the market.
In case (a) this loss is simply zero. In this situation the “welfare function”
Euy(Zy) is equal to its maximal value, the value it would obtain if trade in
all of L? was permitted (or possible). By standard, neoclassical economics
the equilibrium allocation is then Pareto optimal. Thus, even if the market is
incomplete, there is no loss of welfare in restricting attention to the marketed
subspace M. If this is the case we call the market allocation efficient (e.g.,
Rubinstein (1974)). Here we face the same situation as for a complete market:
Contingent claims in zero net supply would not improve welfare.

One interesting issue would be to design the minimum set of derivatives
required in order to complete the model in case (b). We know from Hart’s
(1975) investigation that it is simply not enough to introduce more assets. If
this does not result in a complete model, welfare may indeed decrease after
such an introduction. Although this may not be the typical case, Hart was
able to construct examples of this, in the finite dimensional case.

There is an interesting, general result on risk sharing characterizing the
situation where all the agents have affine risk tolerances p;(x;) = «; + f;x; for
all 7 € Z, where «;, 3; are constants. In the special case that §;y =, = ... =
(3, we refer to this situation as the one with identical cautiousness across
the population. Consider the class of negative exponential utility functions,
where the marginal utilities u}(x;) = e~%/¢, in which case p;(z;) = ¢;. For the
situation where the utility functions are given by u,;(x;) = xz(l_ai)/(l —a;), it
follows that p;(x;) = x;/a;. In the former case we have identical cautiousness
since the corresponding (3’s are all zero, in the latter example we have equal

cautiousness across the population only if a; = as = ... = a for some
constant a. Finally, when w;(z;) = In(z;), it follows that p;(x;) = x;. Below
we assume u;, > 0 and u) < 0 for all i = 1,2,...,I. We can then show the

following (e.g., Wilson (1968)):

Theorem 4 The Pareto optimal sharing rules are affine if and only if the
risk tolerances are affine with identical cautiousness, i.e., Y;(x) = A;+ Bz for
some constants A;, B;, 1 € T, Zj A; =0, Zj B; =1, & pi(z;) = a; + By,
for some constants 3 and «;, 1 € L.

In some sense this theorem presents a nice result, since it characterizes the
preferences of the agents when the sharing rules are affine, and it also tells us
precisely when we can expect sharing rules to be of the affine type. In another
sense, however, this result is rather negative. It simply states that in most
stock markets one can not hope to obtain efficient risk sharing in common
stocks only. When payoffs are continuously distributed, the corresponding
stock market model is incomplete. Pareto efficient risk sharing would still be
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possible if the optimal sharing rules were of the affine type. The above theo-
rem states that this can only take place for very specific cases of preferences,
essentially the class of negative exponential, or of power (logarithmic) utility
functions with identical coefficients of relative risk aversion.

Let us present two examples of the situation (a). According to Theorem
4 these two are about the only ones that can be found. In the first example
the individuals have constant absolute risk aversions.

Example 2. Consider the case of negative exponential utility functions,
with marginal utilities u}(z) = e */% i € T, where a; ' is the absolute risk
aversion of agent 7, or a; is the corresponding risk tolerance. We assume that
the payouts of the stocks Z; are continuously distributed random variables,
so that the market is incomplete, and let us assume that an unconstrained
equilibrium exists in L?.2 We know from the standard reinsurance model
that the equilibrium allocations are given by

Y, = %ZM%—bi, where bi:ailn)\i—aiE, 1€ 1.
A A
where \; = a; ' are the agent weights in the representative agent utility
function, the reciprocals of the Lagrangian multiplier o; of agent i’s individual
optimization problem, and where the constants K and A are given by

1
f(::jz:aihlA“ A_::ji:a@
i=1

=1

The constants b; represented the zero-sum side-payments in the reinsurance
application, i.e., > ., b; = 0.

The question is now if these allocations can also result in the marketed
subspace M C L?. Consider the case where a riskless asset exists, denoted
the zeroth security. Then we may write

N N ‘
K:ZHS)Zn:bZ--HZ%Zn

n=0 n=1

Thus, if individual i puts the same weight a;/A on each of the common stocks
n=1,2,...,N and invests 0((]2) = b; in the riskless security, he will obtain
his unconstrained Pareto optimal equilibrium allocation Y;. Notice that the
more risk tolerant an individual is, the more he holds of each of the risky
assets. In order for this to be possible he may borrow or lend the riskfree
asset. If, say, a more risk tolerant investor has a “low” initial endowment

2Conditions are given in the next section.
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X, he will finance his optimal portfolio by borrowing, whereas a more risk
averse investor will hold less of the risky assets and more of the riskless, i.e.,
he may be a lender, at least if he is initially well endowed. In equilibrium
this just adds up, since Y, ; o)) = > ierbi = 0.

We notice that the individuals hold varying fractions of the market port-
folio Zj; and the riskless asset in equilibrium, called two fund separation.
O

In the above example, even if the model is incomplete, the individuals
obtain their Pareto optimal allocations by an exchange of common stocks
only, so long as riskfree borrowing and lending is unrestricted. We notice
that this could lead a more risk tolerant, poorly endowed investor to assume
a rather risky position (despite the fact that he is, of course, risk averse in
the above example).

In the next example we consider the case of constant relative risk aversion.
Here it turns out that risk tolerant and poorly endowed individuals may not
engage in quite so “risky” positions as in the previous example, and they will
do just fine without a riskfree asset:

Example 3. Here we consider the case of power utility, where u;(x) =
(z'7* = 1)/(1 —a) for z > 0, a # 1, u;(z) = In(z) if a = 1. The parameter
a > 0 is the relative risk aversion of the agents, here assumed equal for all the
individuals. The investors are not equal because their initial endowments X
may be different. Again we consider continuous distributions so the model is
incomplete, and we assume that an unconstrained equilibrium exists in L?. ?
Then we know from the standard reinsurance model that the unconstrained
equilibrium allocations are given by

A

Y= —"+— 7 a.s. for all 7.

1/a M
ZjeI )‘j

where again \; = 1/q;, and the investor weights \; are determined by the
budget constraints, implying that

E(X;Z79\" ,
N=k (M) et
E(Zy )

or, \; is determined modulo the proportionality constant k = (ng )\;/a)“
for each 7. The question is again whether these Pareto optimal equilibrium
allocations can be obtained in M C L?. Also now the answer is yes. Here

3Conditions can again be found in the next section.
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agent ¢ may choose the portfolio weights 6\ such that

N N )\l/a
Yi=) 00Zn=) =57
n=1 n=1 Zjel’ )‘]/
which means that
. \/e :
) = =——= n=12...N o) =0, eI
ZjeI )‘j

We see that this equilibrium can be obtained in a market for common stocks
only, where riskfree lending or borrowing is not necessary. * Again the
individuals choose the same percentage of each of the stocks, but this time
the percentage is a positive linear functional of the initial endowment X; of
each individual ¢, meaning that someone with a “high” initial endowment
will quite naturally hold more stocks in equilibrium than someone with a
lower endowment.

Here we notice that each individual holds a fraction of the market portfolio
Zyr in equilibrium. U

It should be noticed that when the risk aversion parameter varies across
individuals, the optimal sharing rules are no longer linear, and the results of
this example no longer apply.

Existence of Equilibrium

In this section we address the issue of existence of equilibrium. It turns
out that we will have to relate to three different concepts of equilibrium:
First an equilibrium in the reinsurance market, second a financial economics
equilibrium, and third a “no arbitrage equilibrium”.

Let us start by summing up some of our findings so far. Suppose there is
no arbitrage, so that the pricing functional 7 : L? — R is linear and strictly
positive, i.e., 7(Z) > 0 for any Z > 0. Then, from The Riesz Representation
Theorem for L?, we know that there exists a random variable, the state price
deflator £ € L%r 4, such that any X € L? has market price

7(X) = B(¢ - X).

If there exists an equilibrium in L?, we can characterize the state price de-
flator as £ = u\(Zy). If the model is not complete and there exists an

4There could of course still be a risk free asset, if say Z; = 1 a.s.
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equilibrium in the marketed subspace M, we know that £T = @) (Zy)T. In
this case

m(X)=FE (X" @\(Zu)") + B (X9-£9).

If X € M, then X = X7 and X9 = 0 so the last term in the above pricing
formula disappears. Under this pricing rule, in case (a), if a new financial
asset in zero net supply is introduced for trade, the original equilibrium in
M will not be upset, and no individual will demand this asset. In case (b)
the introduction of new financial instruments may change the equilibrium.
Consider e.g., the polar (in the finite dimensional case) where the resulting
market becomes complete. Then we know that the final equilibrium alloca-
tions must have changed, since the equilibrium allocations are now Pareto
optimal unlike the original equilibrium allocations. Some agents will hold
other assets than those in the original stock market economy, and pricing
is now under the first rule above, i.e., £ on M has changed from @) (Z)) to
i (Zn).

In studying the existence issue, several approaches are possible. We indi-
cate one which may be extended to the multiperiod case. It involves trans-
forming the concept of a financial market equilibrium into the concept of a
“no-arbitrage equilibrium”, which is simply a constrained reinsurance equi-
librium. This transformation permits techniques developed for analyzing
the traditional reinsurance equilibrium to be transferred to the model with
incomplete markets.

Let us recall the budget set of the i’th individual in the financial market
economy B (p; ) in equation (1), while the budget set in the reinsurance
economy 1is

B X) ={Y, e L2 : E(¢-Y;) = E(¢- X))} (18)

The no-arbitrage equation is p = FE(£ - Z) where p = (p1,...,p,)" and
Z = (Zy,...,Zy)". The idea is to reformulate the concept of a financial
market equilibrium in terms of the variable £&. Then the demand functions
for securities as functions of p are replaced by demand functions for the good
as functions of the state price deflator &.

Whenever p = E(£ - Z), the budget set B (p;#) can be reformulated as

BN X)) ={Yie L} B¢ -Y;)=E(¢-X,),Y,i-X; e M}, (19)

We notice that this budget set is a constrained version of the budget set
BF(&; X5).

A no-arbitrage equilibrium is a pair consisting of an allocation Y and a
state price deflator £ such that
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(i) Y; € argmax{Eu;(V) : V € BN4(& X))}

(i) S0, (¥ — X5) = 0.

It may then be shown that a financial market equilibrium exists whenever
a no-arbitrage equilibrium exists. A proof of this result can be found, in
the finite dimensional case, in Magill and Quinzii (1996). Furthermore the
existence of a no-arbitrage equilibrium is closely connected to the existence
of a reinsurance equilibrium. Again a finite dimensional demonstration can
be found in the above reference.

Therefore we now restrict attention to the existence of a reinsurance mar-
ket equilibrium in the infinite dimensional setting of this paper. It is defined
as follows:

A reinsurance market equilibrium is a pair consisting of an allocation Y
and a state price deflator £ such that

(i) Vi € argmax{Fu;(V) : V € BF(& X,)}

(i) Yo, (Y - X,) = .

One main difficulty is that the positive cone Li has an empty interior, so
that we can not use standard separation arguments to obtain price support-
ability. One alternative is to make assumptions directly on preferences that
guarantee supportability of preferred sets. The key concept here is properness
introduced in Mas-Colell (1986), see also Mas-Colell and Zame (1991).

It should be noted that we do not face this difficulty if we allow all of L?
as our “commodity” space. In a one period model final consumption is equal
to final wealth, and if we allow this to be negative, we avoid this particular
difficulty.

A preference relation > defined on the set L? is proper at an element
X € L? with respect to another element V € L2, if there is an open cone
Kx at 0, containing V', such that X — Kx does not intersect the preferred
set {X € L?: X = X}:ie,if X = X then X — X ¢ K.

We say that > is uniformly proper with respect to V on a subset M C L?
if it is proper at every X € M, and we can choose the cone K independently
of X € M.

A pair (Y;§) is a quasi-equilibrium if E(§ - Xp/) # 0 and for each i,
E(€-Y;) > E(€ - X;) whenever U;(Y;) > U;(Y;). A quasi-equilibrium is an
equilibrium if U;(Y;) > U;(Y;) implies that E(€-Y;) > E(€-Y;) for all i. The
latter property holds at a quasi-equilibrium if F(¢ - X;) > 0 for all 4.

We also remark the following: Suppose for every 7 there is some Z; with
E(-Z;) < E(¢-X;). If (Y,€) is a quasi-equilibrium and all the U; functions
are continuous, then (Y, &) is also an equilibrium.

When preferences are convex, as in our exposition, properness of a pref-
erence relation > at X with respect to V' is equivalent to the existence of a
price £ € L? which supports the preferred set {X eL?: X > X} at X and
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has the additional property that E(£-V) > 0. Indeed, if such a & exists, we
can simply take Kx = {Z : E({ - Z) > 0}. Conversely, if > is proper at X
with respect to V, then {X eL?: X = X} and X — Ky are disjoint convez
sets, and the latter has non-empty interior (V' € Kx), so The Separating
Hyperplane Theorem provides a continuous linear functional ¢ € L? that
separates them; i.e., E(€-Z) < E(¢€-X) foreach Z € X — Ky and X = X.
Because Kx is an open cone at 0, containing V', it follows that E(£ - Z) > 0
for all X € Ky, and hence that E(¢-V) > 0 and E(¢-X) > E(¢- X) for all
X ~ X as asserted.

Let us denote by U;(X) = E(u;(X)). In the present setting properness of
U; at X with respect to X, is equivalent to the assertion that the random
variable u}(X) is in L?. In this case u}(X) represents the supporting linear
functional at X (see Araujo and Monteiro (1989)).

Following Mas-Colell and Zame (1991), we have the following:

Lemma 1 Suppose that X, € L?H_ and there is any allocation V > 0 a.s.
with Zle Vi = X a.s., and such that U; is proper at V; for each 1, then
there exists a quasi-equilibrium.

Using the above result about properness, this lemma can be reformulated
as follows (e.g., Aase (1993), (2002)):

Theorem 5 Assume u;(-) continuously differentiable for all i. Suppose that
Xy € L?H and there is any allocation V- > 0 a.s. with ZLIVQ = Xy
a.s., and such that E{(u}(V;))*} < oo for all i, then there exists a quasi-
equilibrium.

If every agent i brings something of value to the market, in that E(¢-X;) >
0 for all 7, which seems like a reasonable assumption in most cases of interest,
we have that an equilibrium exists under the above stipulated conditions. We
notice that these requirements put joint restrictions on both preferences and
probability distributions.

This theorem can be used on Example 3, where the equilibrium was
an unconstrained one in L?. Note that this example does not satisfy uni-
form properness. The above condition is, for V' = X, the initial allocation,
E(X7") < oo for all i. In order to compute this equilibrium in detail and
calculate all the investor weights \;, moments of the above kind appear, and
obviously these must exist in order for an equilibrium to exist. The above
theorem says that this is, basically, all that is required.

Let us also consider Example 2. The requirement is then

E{exp(—2X,/a;)} < o0, for all 4.
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Again these moments appear when calculating the equilibrium, where the
zero sum side payments depend on moments of this kind.

Let us now return the incompleteness issue, i.e,. the existence of a fi-
nancial market equilibrium. We require smoothness of the utility functions,
e.g., u; > 0, u/ <0 for all . In addition X; € L%, for each i € Z, and
the allocation V' € M. Suppose that a reinsurance market equilibrium exists
where F(£ - X;) > 0 for all i. We then conjecture that a financial market
equilibrium exists.

Theorem 6 Assume u;(-) continuously differentiable for all i, and that a
reinsurance market equilibrium ezists, such that E(§ - X;) > 0 for all i.
Suppose that X; € L?H and there is any allocation V> 0 a.s. with V € M
and S°1_ Vi = Zy a.s., such that E{(u}(V;))?} < oo for all i. Then there

exists a financial market equilibrium.

Proof: (Sketch) The proof that a no arbitrage equilibrium is equivalent to a
financial market equilibrium (Proposition 10.3 in Magill and Quinzii (1996))
does not depend on the dimension of €2, neither does the proof that a no
arbitrage equilibrium exists when a reinsurance market equilibrium exists
(Proposition 10.4 in Magill and Quinzii (1996)). The problem is then essen-
tially if a reinsurance equilibrium exists, which is directly assumed to be the
case in the above. O

If a reinsurance market equilibrium exists, the projections in M of the
marginal rates of substitution will be equalized, since now the agents, in
solving their optimal problems, are led to equalize the marginal rates of
substitution (in L?). Thus it is obvious that the first order conditions (17)
are satisfied.

On the other hand, if the first order conditions (17) hold, by the Hahn-
Banach Theorem the resulting linear, positive functional may be extended
to a continuous linear functional in all of L?, although this extension may
not be unique. Using the Riesz Representation Theorem there is a linear,
continuous pricing functional represented by & € L?, valid in all of L?.

The following result in fine print should be observed. Suppose there is
no arbitrage in the marketed subspace M. Then there is a strictly positive,
linear functional in M representing the prices. By a variant of the Hahn-
Banach Theorem, sometimes called the Kreps-Yan Theorem, if M is closed,
this functional can be extended to a linear and strictly positive functional on
all of L?. Thus there is no arbitrage in L? under the stated conditions.

Thus, if a finance market equilibrium exists, there is a close connection
to an equilibrium in L? in the corresponding reinsurance market.
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When the function Ewy(-) is concave and M is closed, there must exist a
solution to the problem (16). However, we do not know that this corresponds
to an equilibrium in the single agent economy unless there is a financial
market equilibrium in the original economy.

Idiosyncratic risk and stock market risk

A natural interpretation of the foregoing model may be as follows: Consider
some consumers having initial endowments X; measured in units of the con-
sumption good. The uncertainty they face is partly handled by forming a
stock market as explained above, but still there may be important risks that
can not be hedged in a stock market: Property damage, including house fires,
car thefts/crashes etc., labor income uncertainty, and life length uncertainty.
In order to deal with idiosyncratic risk, we may assume there exists an in-
surance market where the consumer can, against the payment of a premium,
get rid of some of the economic consequences of this type of uncertainty, and
also a social security system, which together with unemployment insurance
will partly smooth income form labor. The corresponding uncertainties are
assumed external.

We are then in situation (b) described above regarding the stock market,
but we assume the overall market facing the consumers is complete, just as
the reinsurance market is complete by construction. Suppose there exists
a unique equilibrium in this overall market. We may then use the results
from the standard reinsurance model. Despite the fact that the stock market
model is not complete, and indeed also inefficient, consumers can still be
able to obtain Pareto optimal allocations in this world, and the state price
deflator is &, not £&. The optimal allocations in the stock market must hence be
supplemented by insurance in order to obtain the final equilibrium allocations
Y; of the consumers.

This way we see that the principles governing the risks are valid in the
stock market as well as in the insurance markets, since the state price deflator
is the same across all markets, or, a risk is a risk is a risk... The reason is that
the different markets have the same purpose, namely to enable the consumers
to obtain their most preferred outcomes among those that are feasible.

A detailed study of a model based on these principles is beyond the scope
of this presentation. The inclusion of idiosyncratic risk together with market
risk would presumably complicate matters. Asymmetric information may
typically play a role. Suffice it is to note that much of the focus these days in
studying incomplete markets seems to be centered on the stock market alone,
not seeming to realize that very important aspects of economic uncertainty
facing most individuals can not be managed in the financial markets for
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stocks and options alone.

Conclusions

We have argued that many results in finance can be seen as consequences of
the classical theory of reinsurance.

Karl H. Borch both contributed to, and borrowed from, the economics of
uncertainty developed during the 1940’s and 1950’s (e.g. Borch (1960-62)).
While he reformulation of the general theory of equilibrium, formulated by
Arrow and Debreu (Arrow and Debreu (1954), Arrow (1970)), was perceived
as too remote from any really interesting practical economic situation by most
economists at the time, Borch found, on the other hand, that the model they
considered gave a fairly accurate description of a reinsurance market.

In this paper we have tried to demonstrate the usefulness of taking the
reinsurance model as the starting point for the study of financial market
equilibrium in incomplete markets. This as a modest counterbalance to the
standard point of view, that the influence has mainly gone in the opposite
direction.
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