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Abstract

Using a model of nonlinear decay of the stock pollutant, and starting from
the same initial conditions, the paper shows that a tax that only corrects for
stock externalities can, at the steady state, be higher than a tax that corrects
for both stock and flow externalities. The results indicate that the possibility
exists that the optimal corrective tax (correcting for both externalities) may
result in a steady state with fewer emissions and lower tax payments than a
tax that only corrects for the stock externality. Thus, a failure to consider flow
externalities may have important implications for the time path and steady
states of production, emissions and taxes, and not just in terms of transitory

consumption.
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INTRODUCTION

Pigouvian taxes are widely used to mitigate the externalities which exist in produc-
tion. Such taxes are favored when there exist many polluters and have been widely
applied in Europe to address a large number of environmental externalities (Andersen
1994; OECD 1992). Worldwide, corrective taxes generate billions of dollars annually
for governments. In theory, corrective charges should equal the costs imposed on
society of a defined level of pollution. In practice, charges are often based on the
notion that the current level or flow of pollution (such as the amount of phosphorous
discharged into a river) represents the externality imposed on society. However, many
pollutants impose both stock and flow externalities such that current and cumula-
tive discharges affect the non-monetary variables of utility or production functions
(Baumol and Oates 1988).

Much of the literature on Pigouvian taxes focuses either on flow externalities or
stock externalities (Sinclair 1992; Ulph and Ulph 1994; Farzin and Tahvonen 1996;
Hoel and Kverndokk 1996; Wirl and Dockner 1996). Moreover, many dynamic models
do not specify the underlying demand parameters and private and social costs of
production and, instead, optimize using an aggregate utility function. As a result,
many dynamic models fail to consider flow externalities and set the corrective tax
equal to the value of the co-state variable, commonly defined as the shadow price or
shadow cost of pollution.

Where both stock and flow externalities exist and are explicitly considered (Sandal
and Steinshamn, 1998), the optimal corrective tax will exceed the shadow cost of
pollution, for a given level of pollution (Wirl, 1994; Farzin 1996). Thus, we would
expect that a corrective tax which ignores flow externalities, when they are present,
to result in more pollution and a lower tax payment. By contrast, our paper shows

that different taxes result in different time paths and that the specification of the



decay function of the stock of pollution has an important affect on transitory and
steady-state production, taxes and emissions. Hence, the possibility exists that the
corrective tax that corrects for both flow and stock externalities, may result in a
steady state with higher emissions but lower accumulated pollution and lower tax
payments than a tax that only corrects for the stock externality, or a case of more is

less!

MODEL OF OPTIMAL PRODUCTION WITH STOCK AND FLOW
EXTERNALITIES

A simple dynamic model can be used to incorporate both stock and flow exter-
nalities in production. The model assumes that the objective is to maximize welfare
(W), defined as the discounted present value of social utility, which is a function of
the stock of pollution (a) and the production of a good (z). Utility is defined as the
sum of consumer and producer surplus, adjusted for flow externalities, less the effect

of the stock externality, defined by D(a) where D is increasing in a, ie.,
Ula,z) = / [P(z) — C*(2)]dz — D(a) =11(x) — D(a)
0

where x is quantity produced, P is the inverse demand, and C* is the social marginal
cost of production.!

A dynamic constraint governs the change in the stock of pollution, @, and is de-
termined by the instantaneous increase in pollution ~yz, which is proportional to
production by a factor 7y, and the decay of the stock of pollution, d(a), which might
be increasing or decreasing in a, depending upon the level of a.? The flow externality,
T¢, 1s the instantaneous externality which arises at the time the pollution is emitted.
By definition, the marginal cost associated with the flow externality plus the private

marginal cost of production, C?(z), equals the social marginal cost of production

C*(x), thus 7, = C* — C?.



Our analysis examines the case without discounting because, if the counterintuitive
“more is less” occurs at a zero discount rate, it will also hold true with a positive

discount rate. The dynamic problem is to maximize welfare defined as:
T
W = / Uv(t))dt, v(t) = (a(t),z(t)) e Rx X
0

where X = [0, B] is a given bounded interval, and W is maximized subject to the

following dynamic constraint and initial condition:

at) = =(t) —d(a(t), a(0) = ao, (1)

where aq is the initial level of the stock pollutant.
We assume that a long-term steady state is desirable and thus solve for processes

v € V, where

V=VI[RxX], lima(t)=a" (2)

t—o0
Here V represents the set of (a(t), z(t)) such that a is continuously differentiable, and
x 1s continuous and piecewise differentiable. To develop the model further, we define

the following set of admissible processes.

Definition 1 The set of admissible processes, A, is defined as all processes that sat-

isfy (1) and (2).

It is further assumed, unless otherwise explicitly stated, that:

1. II, D and d are C?-functions in their arguments whenever the arguments are
positive.

2. D : R — R, is strictly increasing and convex for positive arguments, and
identically equal to zero for non-positive arguments. The state a = 0 is, by definition,
a steady state without emissions and can be interpreted as the preindustrial level,

that is d(0) = 0 and D(0) = 0. No damage is associated with the preindustrial level.
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3. I1: X — R, is strictly increasing and strictly concave.
4. d: R — Ry is strictly increasing for 0 < a < @ and strictly decreasing for a > a.
Further
lim [II'(d(a))-d'(a) — D'(a)] > 0.

a—0*

Under these definitions, the optimal control problem is to determine the feedback
rule z(a) that can be written max w3

Our model represents either a single firm in a competitive world, or an entire
competitive industry. In the absence of intervention, market equilibrium requires that
P = CP, where private marginal cost is strictly increasing in z, and an equilibrium
price and quantity of x can be defined for any level a. If a is a constant, the solution
collapses to the standard result of static models with flow externalities, namely that
welfare is maximized when P = C°.

To demonstrate the result of “more is less” we specify key variables through the

following definitions.

Definition 2 (i) Sustainable utility, S, is defined as the utility obtained when a is

fixed at certain level:

Definition 3 (i) Total utility, K, is equal to the Hamiltonian in value, but it is a

function of a and x only:
K{(a,z) = (z) = D(a) + IT'(2) [z — [(a)]
Using Definitions 1-3, it can be shown that*:

Theorem 1 The OT-optimal production for the problem max W where ;—;K(a, x) <

0 on R x X, is given by
z(a) = max(0,z(a)) where K(a,z(a)) = maxS(a) = S(a").
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The long-term steady-state (a*,z* = f(a*)) is a saddle point for K(a,z) and deter-
mined by S'(a*) = 0.

Moreover, the optimal production path is characterized by Proposition 1.5

Proposition 1 The optimal steady state is to the left of maxd(a). The separatric
part of the feedback solution is strictly decreasing to the right of maxd(a). The steady

state is the only critical point. If K(a,x) is quasiconcave on
L={(a,z):a>a"0<z<z"z< f(a)},
then the separatriz part of the feedback solution is concave below f.

Using these results, we can examine how this production level can be achieved

through a system of corrective taxes.

AN OPTIMAL CORRECTIVE TAX

The result of Wirl (1994) and Farzin (1996) that the optimal corrective tax exceeds,
in the presence of stock and flow externalities, the shadow price or cost of pollution

can be derived by defining the current value Hamiltonian (H):

H(a,z,m) =U(a,z) + m[z — d(a)] (3)

where m is defined as the current value co-state variable for the stock of pollution, a.

Using Theorem 1, and Definition 3, yields
—m = U'(z).
The corrective tax, ignoring the flow externality, is thus

o(x) = —m =1I'(x)



on the optimal path z(a). Alternatively, we can rewrite the o tax as

c=P-C°=P-C"'—(C°-C")=1—1y.

By contrast, the tax which corrects for both flow- and stock-externalities, defined
as T, is the difference between the consumer price and producer price, 7(z) = P(z) —

C?(x), and can be calculated at both the firm and industry level. As a result,
T(x) = o(x) + 7¢(x), (4)

where (4) holds true at both the optimal steady state and on the path to the steady
state.® Given these results, we can compare o and 7 corrective taxes and their effects

on production, emissions and pollution.
COMPARISON OF 7 AND ¢ TAXES

At any given pollution level, ¢ must be lower than 7 because ¢ ignores the flow
externality. As a result, we would expect that a o-tax would be associated with more
pollution, more production and a lower tax payment at all times. In fact, because
emissions are different with the 7 and ¢ taxes, the time path of pollution will be
different and, thus, the possibility exists that ¢ may lead to a steady state with more
aggregate pollution but, surprisingly, less production and a higher tax-level.

In order to find the development of a with the o-tax we must first find the feedback
rule for production that corresponds to ¢. By ignoring the flow-externality and only
using the stock-externality part of the optimal tax, which is o(z(a)) for any given

a-level, we can obtain a new market equilibrium characterized by

7(y) = o(x(a)). (5)
This relationship is illustrated in Figure 1. As (5) is an expression in y and a only,

it can be used to solve for y as a function of a. Hence, we obtain new feedback rule,
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y(a) > z(a), and the development in a is given by

@ = y(a) — d(a).
This result can be stated in Proposition 2:

Proposition 2 The o-tax yields a production that is always higher than the optimal

for a given level of a.

The feedback rule based on ¢ leads to a different steady state with a higher a. This

steady state, a¥, can be found by substituting y = d(a) into (5):

7(d(a)) = o(x(a))

which eventually yields a? > a*. At the steady state, y* = d(a*), which can be
compared with z* = d(a*). To develop the result further, we define the following

case.

Definition 4 The counterintuitive case: The case where o leads to a steady state
where x(a*) > y(a¥), and hence o > 7, that is lower production and higher taz, is

called the counterintuitive ("more is less”) case.

The counterintuitive case, however, can only occur if d(a) is non-linear and non-

monotone, as stated Proposition 3.

Proposition 3 If the decay-function, d(a), is monotonically increasing, o will always

lead to a steady state with higher production and lower tax than T does.

Proposition 3 provides an explanation why the counterintuitive case is hard to find
in the literature as most of the literature uses monotone, and very often linear, decay

functions.



Let the steady state corresponding to 7 be (a*,z*) and let a** be a solution of
xz* =d(a) for a > a* if it exists, and infinity otherwise. We are then able to provide

necessary and sufficient conditions for the counterintuitive case, as per Proposition
(4):

Proposition 4 Ifd(a) is quasiconcave, (a*,x*) is the steady state corresponding to T

and (a¥ | y*) is the steady state corresponding to o, then o(y*) > 1(x*) iff a¥ > a**.

In Figure 2, it can be seen that discounting only shifts the z- and y-curves to the
right and, thus, if the “more is less” result holds true at a zero discount rate, it will
also hold true at a positive rate of discount. To better apply the result, we can derive
sufficient conditions for the counterintuitive case to occur. First, we note that the
values a* and a** can be found without solving the complete problem, or solving any

differential equations. Thus, we can assume the following quantities are known:

b = maxd(a), J=1[0,b] C X, AS*=S5(a*)— S(a™)

ke = max[r,(z) 2], M =min [-II"(2)], (6)
M =max [-1I"(z)]

Under the above assumptions, sufficient conditions for the “more is less” result are

provided by Propositions 5 and 6.

Proposition 5 AS* > kp is a sufficient condition for the counterintuitive case not

to occur for cases covered by Theorem 1.

Proposition 6 If there exists a z such that 0 < z < z* and if Tp :mij{} [T¢(x)] where
- T
N=[z,z*] CJC X, then QMQAS* < MT% 1s sufficient for the counterintuitive case

to occur for cases covered by Theorem 1.

An illustration of the counterintuitive result, and how the optimal corrective taxes

may be derived, is provided in the following section.
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MORE IS LESS: AN EXAMPLE

The possibility that ignoring the flow externality may eventually reduce production
and increase tax payments can be illustrated using a numerical simulation from the
climate change literature. This shows that it is not only a theoretic possibility but
it may occur in practice as well. We assume linear demand and linear marginal cost
functions and a quadratic damage function.

The parameters used in the model, defined below, are stylized and provided to
illustrate the theoretical results. Nevertheless, they are derived from the literature
on climate change. For instance, current emissions of COs are estimated at some 22
giga tonnes (Gt-COs), which is the private market equilibrium in our model when
marginal costs are normalized to one, and production is measured as emissions. The
cumulative anthropogenic emissions of COs, less decay, are estimated to be some 625

Gt-COy above the pre-industrial level.

P(z) = 15—-0.64 -z,
CP’(x) = 140.05- 2,
C(x) = 14012z,
yr = x, D(a) = 0.000005 - a?

d(a) = max(0,21-exp (—(a — 600)*-0.512 x 107°) — 3.32)

The parameters above imply II(z) = 142 — 0.38 - 22, and, hence, the corrective taxes

are

T(x) = 14-0.69-z,

o(z) = 14-0.76 -z,
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75 = 0.07-x.

Under this numerical specification, we obtain the following quantities:

b=17.68 a* =6385 AS*=(.462
M =07 M=0.76

Thus, the steady states resulting from 7(z) versus o(x) are

a*=561.5 2*=1752 7(z*)=1.91,
a? =669.3 y* =17.17 o(y*) = 2.15.

The counterintuitive result corresponds with the sufficiency criterion given in Propo-
sition 6. The criterion 2M AS* < MT% is fulfilled in the region 11.97 < x < z*. In
other words, starting at the same initial condition, a carbon tax that ignores flow
externalities will initially be lower than a tax that accounts for both the stock and
flow externalities. However, at the steady state, the optimal carbon tax rate will be
lower, the output will be higher and the cumulative carbon emissions will be lower
than with the tax that ignores the flow externalities.

Our model differs from the approaches of Sinclair (1992; 1994), Wirl (1994), Ulph
and Ulph (1994), Farzin (1996) and Farzin and Tahvonen (1996) who have all exam-
ined the optimal paths of corrective taxes for GHG emissions. With the exception of
Wirl (1994) and Farzin (1996), existing models do not explicity consider flow exter-
nalities as a function of the current level of emissions, and only Farzin and Tahnoven
(1996) examine the effect of different rates of uptake of carbon in the atmosphere
on the time paths of corrective taxes. Despite the fact that Farzin and Tahnoven
(1996) ignore the flow externalities associated with GIIG emissions, their approach is
the most similar to our own because they explicitly consider the affect of the decay
function on their results. Assuming multiple carbon stocks, each with different but
constant rates of decay, they find that for carbon levels in excess of pre-industrial lev-

els, the corrective tax may be decreasing or U-shaped over time. They conclude that
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the optimal carbon tax is “ -

- sensitive to the submodel describing the accumulation
of atmospheric CO,.” (Farzin and Tahvonen 1996, p. 533).

By incorporating nonlinear decay in the pollution stock in a model of GHG emis-
sions, which better represents the actual physical processes, we show the importance
of accounting for both stock and flow externalities. Moreover, in contrast to the ac-
cepted view that flow externalities affect only transient consumption (Wirl 1994), we
find that a failure to consider flow externalities in a model of GHG emissions may
affect both the time paths and steady states of production, emissions, and taxes. This

has important implications when examining the “no regrets” policies associated with

climate change and pollution policies.
CONCLUDING REMARKS

Using a dynamic model with both flow and stock externalities, the paper shows
that the possibility exists for an optimal corrective tax to result in less total emissions
but lower tax payments than a corrective tax which ignores flow externalities. This
counterintuitive result, which may arise if the decay of the stock pollutant is nonlinear,
has important implications for corrective tax policies where there exist both stock and
flow externalities.

The results emphasize that a failure to account for flow externalities, where there
exist stock and flow effects, will affect both transitory and steady-state production,
corrective taxes and emissions. Moreover, a failure to adequately model the rate of
decay of a stock pollutant in models of stock and flow externalities, can result in

higher steady-state levels of both the pollution and the corrective tax.
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APPENDIX
Proof of Theorem 1

A feedback control must satisfy K(a,z) = Ko, that is, the Hamiltonian is constant
for interior solutions of autonomous problems. The costate variable is m = —U"(x) <
0, and therefore H(-) = K(a,z) = Ky. That we are heading for a steady state implies
Ko = K(a,d(a)) = S(a). If the Hamiltonian is maximized, a* = arg max S(a). Our
assumptions imply S’(0%) > 0 and S’(a) < 0 to the right of maxd(a). Thus, there
exists a point where S’ = 0 and this is the global maximum of S.

The optimal steady state is S'(a*) = 0, and the feedback solution, defined as
K(a,xz) = S(a*), represents separatrix solutions of Hamilton’s canonical equations.
Note that %—f =1II"(z) - (d — x) # 0 except at steady state. The “Implicit function
theorem” guarantees that K(a,z) = S* defines a unique, continuously differentiable
feedback, z(a), outside to the steady state. The optimal feedback consists of the
separatrices that leads to steady state and are positive in addition to parts where
x = 0. Substitution into the Hessian matrix of K shows that the steady state is a
saddle point.

The over taking OT-criterion of Seierstad and Sydseeter (1987) replaces the condi-
tion tlgg m(t) [y(t) — z(t)] > 0 for other admissible functions y(t). The OT-criterion
is fulfilled if 3 ¢y such that A(t) > 0Vt > ¢y where

¢ ¢
Alt) = / M(z) - D(a)]ds — / Ti(y) — D(A)] ds.
0 0
In this case, (a,x) represents the separatrix solution and (A,y) represents other
admissible solutions. These must satisfy K(A,y) < Ky < S* in order to yield a
steady state. From Definition 2:

[ ) - Daas = Kot — [ 1))

aQ
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Inserted, this yields

A(t)

(S*—KO).t—l-/ H’(y(s))ds—/aﬂ’(a:(s))ds

ao ao

(S* - K()) -1 — Q(’A - CL()’ + ’CL — CL()D

v

Z (S* - K()) -1 — @(’A* - CL()’ + ’CL* — CL()D

where W =max IT'. Hence the OT-criterion is fulfilled for all other admissible solutions,
e

and tg is obtained from setting the last expression equal to zero. Thus, we derive

a unique OT-optimal solution as D" — d"IT" > 0 guarantees that the Hamiltonian

is strictly concave in (a,x). This solution is the separatrix solution wherever it is

positive.ll
Proof of Proposition 1

The steady state is a saddle point is shown in the proof to Theorem 1. We observe

that %—I; = %—f = 0 occurs only at steady state because II is strictly concave. Theorem

1 implies S'(a*) = II'(d(a*))d (a*) — D'(a*) = 0, which implies that d’'(a*) > 0.
Therefore the feedback intersects with d to the left of its maximum. Differentiating
K(a,z) = S* implicitly yields —II" - (d — )2’ = D' — II'd" > 0 to the right of maxd
where d — x > 0 and d’ < 0. Monotonicity follows from the assumptions about II.

Concavity of the separatrix solution can be shown by differentiating K(a,z) = S*
implicitly twice. This yields

a:”a—K _ [32K e 82[(1
Ox da? dadx

. . . . . . . . 8K
Quasiconcavity implies that the right-hand side is non-negative and 5> < 0 on L.H
Proof of Proposition 2

As 7(y) = o(y) + 7¢(y) = o(z) > o(y), and as 0 = U, is strictly decreasing, the

proposition is fulfilled for all levels of a associated with non-negative production.ll
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Proof of Proposition 3

Steady states are, by definition, intersections between the d-curve and the produc-
tion feedback-paths z:(a) and y(a). Since y, as a feedback, always is higher than z, the
intersection between y and an increasing d-curve will always imply that y is higher

than z in steady state.ll
Proof of Proposition 4

The proof of this proposition can be derived by looking at Figure 2. This case occurs
if and only if z(a) intersects with d at a higher value than y(a). Quasiconcavity of d

implies that this occurs if and only if ¥ > o**.1
Proof of Proposition 5

The steady state resulting from a o-tax is denoted (a¥,y#). As S is concave,
S(a**) > S(a#) is a necessary and sufficient condition for the counterintuitive case to

occur (see Proposition 4). It is easily verified that K(a,z) = S* is equivalent to

d(a)
S* — S(a) = / [T () — TT (s)] ds.

Therefore .
y
S(a**) — S(a™) = / [IT (z(a™)) — I'(s)] ds — AS™. (7)
z(a#)
From this result, it follows that
i
AS* > / [IT' (z(a®)) — IT'(s)] ds
z(a#)

is a necessary and sufficient condition for the counterintuitive case not to occur. The
lower limit of integration is less than the upper limit according to Proposition 3, and

IT is decreasing. Thus,
oy

255 [ (e = ") ds = ) - 1" = o(a")]

(a¥)



is suflicient for the counterintuitive case not to occur. This result is reinforced when

AS* > 74(y*) - y#, and which is gnaranteed whenever AS* > kr > 7,(y%) - y*. 1
Proof of Proposition 6

Let 6 denote the left-hand side of equation (7). It will be shown that this proposition
implies 6 > 0. Recalling o(z) = II'(x) equations (4) and (7) imply

y#

AS*+6 = /( . [IT'(z(a™)) — IT'(s)] ds
= [ ety - as- [ [ -] ds
z(a#) x(a#)
= ) -] - [ [ - ) s
z(a¥)

The first integral, together with (6), yield

%M [y* — at:(a#ﬂ2 <AS 46 < %M [y* — a:(a#)r.

This, together with last inequality, yield

W) _ s o Ty
— < — < .
ARGy
It follows immediately that
s ] 2 1y (1))
AS* 46> EM [y# — 37(61#)} > §M lT .

If AS* is smaller than the right-hand side, then this is sufficient for 6 > 0 and hence
for the counterintuitive case to occur. The right-hand side requires that (a¥,y*) has
been solved and can be ensured by securing that AS™* is less than the smallest value

that the right-hand side may take in the interval of interest.ll
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Endnotes:

1. For conciseness, functional dependence of the variables is suppressed in the text.
2. We define v = 1 which is equivalent to measuring ¢ and z in the same units.

3. The proof in the Appendix has a unique solution in the sense of “Over Taking”

(OT) Optimal (Seierstad and Sydseether 1987, p. 234).
4. The proof of Theorem 1 and all propositions are given in the Appendix.

5. An equivalent expression for the feedback solution has been applied by Grafton,
Sandal and Steinshamn (2000).

6. This expression for the optimal tax as a feedback control law can also be found

in Sandal and Steinshamn (1998).
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