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ABSTRACT Dynamic optimization problems covers a great class of problems in man-
agement science and technology. The classical problem formulations being the variational
approach as in classical mechanics, like Hamilton’s principle and the optimal control the-
ory in economics as the Pontryagin’s maximum principle. In this account we start with a
general problem formulation as an alternative to an approach based on solving differential
equations. We focus on creating an analytical environment aimed at deriving global bounds
and approximations. Alternative sufficient and necessary conditions for global optimal so-
lutions are formulated and practical schemes for finding concrete solutions are presented.
Optimization problems in a general setting is discussed and we define some ways to extend
the problem and approximate solutions. In most of the work we restrict ourselves to prob-
lems in the setting of dynamic systems in continuous time. The Principle of extension is
outlined and we also discuss the classical formulations i. e. the Hamiltonian and Dynamic
programming formulations, in the present context. Practical application of the theory is
presented as well as a summary and discussion of results.
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1 Introduction

Dynamic optimization problems covers a great class of problems in management science
and technology. The classical problem formulations being the variational approach as in
classical mechanics, like Hamilton’s principle and the optimal control theory in economics
as the Pontryagin’s maximum principle. In this account we start with a general problem
formulation as an alternative to an approach based on solving differential equations. We
focus on creating an analytical environment aimed at deriving global bounds and approx-
imations. Alternative suflicient and necessary conditions for global optimal solutions are
formulated and practical schemes for finding concrete solutions are presented In Sec. 2
, optimization problems in a general setting is discussed. In this setting we present and
define some ways to extend the problem and approximate solutions. Secondly we restrict
ourselves to problems in the setting of dynamic systems in continuous time in Sec. 3. The
Principle of extension is outlined in Sec. 4, which also contains a discussion on classical
formulations i. e. the Hamiltonian and Dynamic programming formulations, in the present
context. Sec. 5 deals with practical applications. A summary and discussion of results is
presented in Sec. 6.

2 Some General Optimization Problems. Extensions
and Approximations

The problem is to minimize a given {unctional I(v) over a given set, D, of admissible
processes v. We want to determine a given element v € D in the case of a minimum

d—vmglgl(v) = I(7), (1)
where the functional I(v) : D — R is something that are measuring or ranging different
processes.

This is a typical setting for a large class of optimization problems, and we want to start
out in a general way in order not to clutter the problem formulations with unnecessary
information. As already mentioned this formulation assumes that an optimal element v
exist in the set D. However, notice that in many actual problem formulations of our time,
this is often not the case. We give this a sharper formulation below. As an example
consider phenomena that occurs in some fisheries named as “pulse-fishing”. This has been
attempted to be explained by so called “chattering solutions”, used in the context of the
management of renewable marine resources [1].

An alternative formulation in more general terms is as follows

I(vs) > d= injgl(v) when s—oco and {vs} CD, (2)
ve

where the sequence v, which is supposed to be a minimizing sequence, does not necessarily
have a limit point in D. By definition, I(vs1+1) < I(vs), ¥s. The sequence exist by definition
of the exact lower bound (as long as the set of admissible processes is not empty). The
optimal element (when it exists) may of course be regarded as a minimizing sequence where
vs = U, Vs.

When trying to solve the problems above, we basically consider two approaches. We
may try to extend the set of admissible functions to choose from or we may try to extend
the functionals used in the sorting process, which involves a redefinition of I(v). In the
following we shall be more specific on this issue.

We suppose there exist a set M D D, and that we have at our disposal an algorithm
for constructing elements in M. We use a measure of distance satisfying

def 0 whenveD,
(”)_{>0 when v € M — D. (3)



The procedure is now to determine a sequence {vs} C M such that lims_,o p(vs) = 0.
This approach give us a tool for the construction of elements in M.

Then consider the alternative, namely a modification of the qualifying process through
the sorting functional. For this purpose we introduce a new functional, L(v; ¢), defined on
the set M D D. Here ¢ € 33, just indicates that this new functional may depend on other
parameters also. By assumption we now construct L such that L(v;¢) = I(v), Vv € D.
Thus these functionals are equal on the set of admissible processes, v, i. e. v € D, and the
problem amounts to determining a sequence, {vs} C M, such that

Livg;¢) — d inf I(v) and p(v,) -0 when s — co. (4)
ve

We may now use this to determine different candidates for approximative procedures.
Suppose there is given the sets D and M such that M O D, and that there exist a measure
of distance, on this set, which comply with Eq. (3). Then we introduce the concept of an
e-extension by the following definition

Definition 2.1 An ec-extension: The set D, = D.(p, D) = {veM>DD: plv) <
e and € > 0} we call an e—extension of the set D in the metric p.

According to this definition we may now determine an e-extended solution, that is a v, € D,
d = inf,cp, I(v), and this solution will be a lower bound for the actual solution, and as such
it will be an approximation. This is because we are now minimizing with less restrictions,
i.e., on a wider class of processes than the admissible processes, v € D. We may now view
the problem given by Eq. (4) in an approximative setting. In this respect we demand that
in addition to being an e-extended solution it should also be an n-optimal solution on D,
in the usual meaning expressed by

Definition 2.2 An n-optimal process: A process v is n-optimal on D, when 1 > 0,
ezist such that

L(v;¢) —b.<n, veED, peL where £, 4/ inf L(v; ). (5)

veD,

A trivial consequence of this is

L(v;¢) —d < L(v;¢) — be < 7. (6)

This implies that v is n-optimal on D, the set of admissible processes. In addition to this
we may also consider the special cases, € = 0 and 11 > 0; as well as, € > 0 and n = 0,
which corresponds to n-optimal on strictly admissible processes and strictly optimal on
e-extended processes.

Notice that ¢, = £.(D, M, p) and the problem connected to the interrelation between
different classes of problems, demands that we ask the question whether £, — d when € —
0. This is not obvious for all possible “extensions”, that is for all possible pair (M, p).

3 Dynamic Optimization in Continuous Time

We consider the class of problems

I(v) = : ’ flt,z(t),u(t))dt + Fo(To,x(Ty)) — Fy (T, z(T1)) , (7)

where the state vector has to satisfy

z(t) =  —x(t) = g(t,2(t),u(t), (Ti,z;) € W;, where z; 2 x(T3), i€ {1,2},(8)

o(t) Y (@@),u®) eV(E) and te A (T, T). 9)



The set V(t), is defined as the restriction on the path of solution x(t) and u(t), exclusive
the restriction imposed by the equation of state, Eq. (8).

The functions F; and F5 represent measures of quality for different possibilities with
respect to endpoints [(T;,2(T;)), € {1,2}].

This problem can be extend to the case, 7o — 00, and I(v) is unbounded only due
to an infinite time domain. This is to be interpreted as follows: {v:} is a solution of the

problem if 37 & N such that:
J)—Jw@;)>0 for t>7>T;, s>N>0 and WWweD

where

t

de

J@) L [ f(s,2(5), u(s))ds — Fy(Th, 2(T})).
T

This optimality definition is termed “catcing up” optimality, see [2].

At this point, we also restrict ourselves to cases where the functions

f AxXxU — R, (10)
F, : W, - R (ie{L,2}) (11)
g : AxXxU — R™, where XCR",UCR", (12)

are all continuous and piecewise differentiable functions.

For the case of a fixed start- and end-condition the process is v = (z(t),u(t)), and for a
fixed starting-point and completely free terminal/end point we have v = (z(), u(t, Ty, x2)),
and so forth.

We now introduce the definition of admissible processes.

Definition 3.1 Admissible Processes:

The set D, of admissible processes, v, is defined as the set of continuous and piecewise
differentiable states, x(t), and piecewise continuous controls u(t) which satisfy Eq. (8), and
eventual extra restrictions that come into play by demanding v € V(t).

This definition is a compromise. Stronger restrictions may result in situations where
“a solution” only exists in the form of a minimizing sequence. Two counteracting interests
meets:

1. Simplification. For example that (x(t), u(t)) are sufliciently smooth continuous func-
tions.

2. Sufficient compleatness of the set D.

It is worth noticing that dependent on the structure regarding V(t), the original opti-
mization problem could be simplified. In this respect it could be beneficial to look at the
sets D, and D, as the admissible sets of states and controls respectively. !

Let us now introduce the following notation labeling different families of optimization
problems:

1. Here {D, I} refers to the original problem.
2. Then let {D, L} refer to the alternative family of problems.

3. Finally let {D, I} refer to the e-extended family of problems.

In this way we may clarify problem areas as:

1In general we define V; as the projection of V on X and V* consists of all elements in V' belonging to
a given x (crossection).



1. Classical calculation of variation as {D,I}.

2. Classical control theory like Pontryagin and Hamilton-Jacobi-Bellman type formula-

tions as { Dy, I'}.

A natural extension of our class of admissible functions is the set F, consisting of all
piecewise continuous functions, v € V, and in addition having a piecewise differentiable
trajectory, z(t).

Such functions will normally not satisfy the equation of state, Eq. (8). A natural
operational choice for the metric defined in Eq. (3) is

p(v) = /T T

where 1 is the set of t-values where the state-vector, x(t), is discontinuous. We shall return
to a formal introduction of the set F in sec. 4.2.

%x(t) —g(t, x(t),u(t))‘ dt+ 3 fa(t) — ()] (13)

tey

4 The Principle of Extension

4.1 Preliminary Considerations

Let us now step back and reconsider the basic optimalization problem as formulated in
Eq. (2). We have extended this problem to include minimalization through minimiz-
ing sequences. We now formally introduce a one-parameter representation L(v;¢) of the
functional I(v), where by assumption, ¢ € X (to be specified later).

Definition 4.1 Let L(v; ¢) be any functional that satisfy
Lw;¢): MxY =R, & Lw¢)=Iw), Yve D, ¢cx. (14)

Here we make an extension of the original problem by adding the basic set M = M(¢) D D,
and instead look at a family of minimization problems defined by {M, L}. In other words
we look for a solution v, which solves the problem of finding

0o) Y inf L(v;9), —oo < () <d. (15)

The philosophy behind this is that by proper choice of the set M(®) (so far not speci-
fied), it may be easier to construct the elements of this set than for the original D, and we
can more easily generate lower bounds for the original infimum, d, by properly selecting
¢-values in a prescribed set Y. The strategy is then to select the best of these values of
lower bounds as an approximation to the solution of the original problem, thus let

e sup £(0), (16)
)
where ¢* is now the best approximation obtained from this procedure. In the cases where
#(¢) — —oo when T, — oo, there still is the possibility for further sorting concerning
practical applications. The concept of e.g. “catching up optimality ”, see [2] may often be
applicable.
If the element, ¥ = #(¢) € D, or the sequence {U5(¢)} C D, is a solution to the extended
problem {M, L}, ( that is; there exist a choice of the parameter ¢ = ¢, that makes the
members of this sequence an admissible function) then the following result apply:

Proposition 4.1 Let a parameter, ¢ = ¢ € X, exist such that for the minimizing sequence
vs(¢) we have {vs(¢)} C D, Vs. Then it follows that

lim I(7s) = inf I(v) = max {(¢) = 4(¢p) =" =d. (17)

500 veD PEL



This means that the sequence, {v, (#)}, minimizes the functional I on the set D and that

U(¢) is the exact lower bound. Furthermore the pair ({vs},) is the solution to the dual
problem.

Proof:
Since 75 € D, by definition we have L(v,, ¢s) = I(0s). It remains to prove that ) = d.

Suppose this is not the case, then it follows that d > ¢(¢). Moreover since the sequence

{#:} C D there exist an ¢ > 0 such that L(¥s,¢) = I(Ts) > d > £(¢) + ¢, and this must be

true for all s. This is contrary to the definition which demands that L(vs,#) — £(¢). The
case d < £(¢) is true by definition. We see that the dual problem is part of the construction
(the quantities linked by the second equality sign in Eq. (17)).

Q.E.D.

This result offers us the possibility to replace the minimization problem {D,I} with
a family of problems {M,L}. These problems may now be solved in conjunction with
the determination of the parameter ¢ = ¢, so that the solution becomes “admissible”, i.e.

v(¢) € D.
Three conditions must be fulfilled for the principle to be useful:

1. The new problem formulation must offer some structural simplifications.

2. The family of representation, L(v;$), ¢ € ¥, must be sufficiently large so that
it ensures the existence of a parameter ¢ that makes v(¢) belong to the admissible

processes, that is: v(¢) € D, not only v(¢) € M(¢).

3. Finally an efficient method to determine ¢ = ¢, must be available.

In order to continue developing these ideas we are now ready to introduce the concept
of equivalent extension.

Definition 4.2 Equivalent-extension:
We have that {M, L} is an equivalent extension of {D,I} if there exist a sequence
{vs} C D such that I(vs) — L(v;¢), Yv & M(¢) D D.

Comment: Equivalent extension corresponds to a closure of the original problem.

4.2 Ignoring The Equation of State

As a flirst approach we shall ignore the dynamics (the state equations) in the control
problem. The problem then reduces to finding the minimum value of I(v), where v can
now belong to a greater set than the set of admissible processes, on the interval A = [T} , T5].
We define a set extension that we will make frequently use of

Definition 4.3 The set I/ is the set consisting of all piecewise continuous functions with
a piecewise differentiable trajectory, x(t), defined over the interval A = [Ty ,T5], which
comply with all other restrictions except the equation of state, Eq. (8).

Thus the problem {F, I} is an extension of {D,I}. Occasionally it may also be mean-
ingful to drop the requirement of differentiability since the equation governing the processes
(or some of them) is omitted, this may, however, require an adjustment of the measure of
distance or metric presented in Eq. (13).

Then let I(v) be given by Eq. (7), and for the sake of simplicity let start and end
conditions be given. Then we may split the problem {E,I} in the following family of
problems: In every instant of time we seek the solution #(t) = (%(t),%(t)) that minimizes
the integrand f. Let this be denoted by w(t), thus

wmin f(t,0) = £(t,) = w(?). (18)



Clearly we now have a lower bound on I(v) on D, w(t). It is also self evident that if ¥ € D,
this is a sufficient condition for the process to be optimal, proposition 4.1. Notice that this
condition for optimality is strong in the sense that by its nature it is global. We notice that
the reason we may minimize pointwise in time, is because the dynamic process governing
equation is omitted.

We then have that problem {F,I} is an extension of problem {D,I} which may be
incorporated in {L(v;¢), F}. Thus the class of minimization problems is extended to also
finding a parameter ¢. Every such parameter corresponds to an equivalent extension. We
then have the following result:

Proposition 4.2 If by assumption

aéez,and@eD:inglzL(@;a)):d, (19)
ve
then -
1 . < 7 < . .
veglgez L(’Uv(b) =~ L(’U, (b) =~ L(vv¢)|v€D,¢€E (20)
Proof:

The first inequality is established on the basis that the minimum on the left hand side
is calculated with less restrictions than the right hand side.

The second inequality is true because v € D and ¢ € X are arbitrarily chosen and the
equal sign apply when v = v and ¢ = ¢.

Q.E.D

These inequalities may be the basis for an approximative approach to finding a solution.

Apparently these ideas may in particular be useful in cases where the admissible
processes only permit a minimizing sequence. This results in the following proposition:

Proposition 4.3 Let the function f(t,x,u) be continuous on A x X x U. The function
w(t) is defined and continuous according to Eq. (18). Moreover, suppose there exist a
sequence {vUs € D} such that

1. f(t,05(t)) — w(t) in measure relative to A .

2. There exist a number Q, such that f(t,0:(t)) < Q, V(t,s).

It then follows that

Ts

lim I(5,) = inf I(v) = £/ / w(t)dt. (21)
s—»00 veD T

Proof:

The function f is continuous and the function 7s(f) € D is continuous almost every-
where. It follows that for any s the function fs = f(t,75(t)) is continuous almost everywhere
and therefore f; makes up a bounded sequence such that w(t) < f(t,7:(t)) < Q, V(t,s)
and furthermore f(t,7,(t)) — w(t) on A.

From Lebesgue’s theorem it follows that

Th
lim I(v,) = ¢ / w(t)dt.

§—r00 Tl

Q.E.D.

Thus the number ¢ is a lower bound for the functional I(v) over the set of admissible
processes.



4.3 Equivalent Representation

We are now in the position where we have at our disposal a number of tools that make us
equipped for practical use. Here we will limit ourselves to dynamic problem formulations
in continuous time.

Definition 4.4 The set ¥
The set X is the set of all real differentiable functions: ¢ = ¢(t,z): Ax X — R.

We look at the problem {D,I} where the functional I is defined in Eq. (7), and the
corresponding one-parameter family of functionals L(v; ¢) (definition 4.1), which we restrict
to the following form:

Definition 4.5 Let the functional L(v; @) be defined as

Th

L(v;¢) € Go(Tz,22) — Gy(Th,21) _/ R(t, (1), u(t))dt (22)

Ty
where the parameter function ¢ € %, and the functions in the expression above are given
by:

Gr(t,x) € Ftw)+o(t,x), ke{0,1}, (23)
R(t,zu) < %—Fg(t,x,u)-%—f(t,x,u). (24)

In the definition above we have that x € X, and u € U, can both be vectors of arbitrary
but given dimensions, in which case the “dot” in Eq. (24) denotes the Fuclidian inner
product. The functions F}, represent a quality measure related to different initial and final
possibilities. We have (T}, 2(T;)) € W;, which also implies an optimization over W;. Fixed
end conditions is represented by Gy =0, k = 1,2.

Proposition 4.4 The functionals L(v;¢) and I(v) coincide for all admissible processes
v € D, and functions ¢(t,x) € X.

Proof:

The result follows trivially from the fact that for all processes v € D, we may write

R{t, () u(t)) = So(t,) — F(1,2(0), u(t))
Q.E.D.

Thus it is obvious that {D,I} and {D, L} are equivalent problems. This gives us a
starting point for extension to {F, L}. We can also use this to solve an improved problem
connected to the process v € D by choosing L(v; ¢) in such a way that it becomes obvious
how to choose an admissible process v € D, and such that L(v;¢) = I(v) < I(v) =
L(’UO, (b)

The two functionals L and I will in general not coincide for non admissible processes
(v € D). As an example consider the previously defined F (see Sec. 4.2), when v € F do
not satisfy the process equation. In this case we have

o) = 10+ [ 2D noeao) . 29)
no) L Lat) — glta(0),u(t) (26)

where % is the set of instants in time where the state vector is discontinuous, and the
function h(t) represent the “mismatch” in the equation of state.
The functional L has a couple of nice properties. In general it is important to bear in

mind that L(v;¢1) # L(v; ¢2) for ¢1 # ¢a.



v

Proposition 4.5 The functional L satisfy the following properties:
1. Invariance under special translations

L{v; ¢ +n(t)) = L(v; ¢), (27)

where n(t) is an arbitrary differentiable function of time only.

2. In particular we also have

L(v;¢1) = L(v;é2), veD, {¢1,42}CX. (28)
Proof:
We have from definition 4.5 that
Lfvs 6-+1) = Lvi0) = n(Ty) =n(T3) = |~ Tttt =0,

The last result follows {rom the definition given in Eq. (14).
Q.E.D.

4.4 Global Considerations

Consider the case where a minimum exist (see Eq. (1)) . We start from Eqgs. (22) - (24)
and make some useful definitions:

Definition 4.6

u(t)y € sup R(to(t), Vie(Ti,Ty), (29)
v(t)ev
m Y minGy(Ty,x), =eWs, (30)
M max G1(T1,z), x €Wy, (31)
Th
W) < m-M— | us)ds. (32)
Ty

Definition 4.7 Bounding function
Any ¢ = ¢ € X that makes £(¢) exist is called a bounding function.

When a bounding {unction exist, £(¢), emerge as a lower bound for L(v; ¢) , i.e., L(v;¢) >

#(¢) for v € F and all ¢ € 2. Thus we have

Proposition 4.6 Lower bound The functional £(¢) is a lower bound for the functional
I(v), or

Lp)<I(v), veD YpeX. (33)

Proof: This result follows immediately from the definitions and the remarks above.

Q.E.D.

Proposition 4.7 Solving function I Let a bounding function (Zﬁ(t,a:) exist such that the

associated process v = v(@) is defined and admissible (i.e. v € D). Then it follows that the
pair (¢,0) is a solution of the dual problems

I(7) = min I(v) = #(¢) = max £(¢) . (34)

veD I
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Proof: From the definition of L(v;¢), definition 4.5 and Egs. (29) - (32) and proposition

4.6, we find I(v) = L(v; ¢) = £($). The last quantity is also a lower bound since I(v) > £(¢)

for all v € D and by definition £(¢) < £(¢) for all ¢ € X. Thus the proposition is proved.
This result also follows from proposition 4.1.

Q.E.D.

In other words this is a global sufficiency condition and in addition the pair (7, ¢) solves
the dual problem. This proposition can be given an alternative formulation as follows

Proposition 4.8 Solving function II Let a bounding function q@(t, x) and an admissible
process U = (Z(t),u(t)) exist such that

w(t) = R(t,z(t),u(t) = max R(t,z,u) for te{(r,T). (35)
(z,u)eV (t)
Then the pair (¢,v) solves the dual problems given by Eq. (34).
Proof: We observe that by Eq. (32), Eq. (34) implies the existence of £(¢). The arguments

from the previous proposition, 4.8, then applies.

Q.E.D.

We also need a formulation of this proposition that can be applied to problems when
the optimal element ¥ ¢ D, but a ¢ € ¥ exists.

Proposition 4.9 Solving function III Let a bounding function (E(x,t) exist and a se-
quence of admissible processes {vs} = {xs(t),us(t)} C D, such that

L/){f%tﬂk(ﬂ)—-u(ﬂ}dt -0, (36)

then it follows that

I) = inf I(v) = 4(6) = max /(@) (37)

Proof: We have a bounding function, ¢, which implies by definition that

T
4(¢) = min Gy — max Gy — / p(t)dt

T

exist. Furthermore also by definition

I(vs) = L(vs; ¢) = L(vs3¢) = G2 — Gy — / R(t,ve)dt.

Then let the end-choices be the same as for £(¢), and consider the diflerence

B T
I(0) = 6) = = [ {Rlt.0) = )}t 0
This implies that

I — inf I(v) = 4(¢

(vs) = nf I(v) = ()

and therefore {v;} is a minimizing sequence. Since the maximum exist in the dual problem
the last equality is trivial.

Q.E.D.

Notice that this last proposition may be extended to cover the cases where we do not
have a bounding function in ¥, but only a sequence {¢s} C X, and the sequences { R(t,v;)}
and {us(t)}. If Ry — ps weakly, that is in the integrated form, then a similar proposition
exist with the change that the last max operator in Eq. (37) is replaced by sup.
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4.5 Classical Control Theory

The Classical Control Theory can easily be incorporated as special cases of this theory.
Classical Control Theory has two principle formulations.

e  The variational approach that results in a Hamiltonian formulation through Hamil-
ton’s equations.

e The principle of Dynamic Programming resulting in the Hamilton-Jacobi-Bellman
equation.

4.5.1 Variational, Hamiltonian formulation

Consider the family of problems given by Eq. (22), restricted to the case where we have
no end contributions. In this case the problem reduces to finding the maximum of R. For
this purpose we look for a local maximum by examining

where we have introduced

H(taxaua(bm) déf (b:r ° g(taxau) - f(taxau) .

For an admissible state 2 = Z(t), we define the function A(t) def ¢.(t,Z(t)), obtaining

A=—H,.
Admissibility implies that the state equation
& =g(t,x,u) or &=H,,
is satisfied. In addition we also have for an internal maximum that
R,=0 < H,=0,

or in a more general setting, the optimal control v*, is given by
u* = argmax H.
U

These equation implies, with some regularity conditions, that we also have

dd  OH
dt ot
Thus we have recovered the usual conditions for an optimal solution formulated within the
framework of a Hamiltonian setting. Incorporating end conditions resulting in transversal-
ity conditions at the endpoints require a little more work, but can easily be done.
We conclude that our formulation incorporate the usual formulation obtainable through
a variational approach.

4.5.2 Dynamic Programming Principle

For the purpose of incorporating the Dynamic Programming Principle in this theory, con-
sider a special formulation given by Eq. (22). Furthermore consider the case G2 = 0, and a
family of initial value problems where the choice 71 ,2(7T}), belongs to the set of admissible
inputs to the control U(t,z) = V*(t) C R™ (see lootnote 1), which is supposed to be well
defined and not empty for every (f,z) € A x R™.

The problem of determining an optimal feedback control u(t, ), is equivalent to finding
the solution to the family of optimal control problems with initial condition (7Ti,21) €

Ul(t,z).
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Let (25 € X be a bounding function according to definition 4.7.
Furthermore, let the control corresponding to this ¢ = ¢, be %(t, ). We now introduce
a new function P by

Pt,x) Y max R(t,z,u) = R(t,z,u(t,z)). (38)
ueU(t,x)
Alternatively we also say that the process © = (#(t), @(t)), corresponds to a (;NS(t, x), when
a ¢ = ¢, is associated with ¥(t,x).
Then by assumption let a bounding function ¢ € X exist such that

Pt,x)=c(t), VozeX, te(T,To), Gaa)d Fx)+¢(Ty,a)=C, voeX.
(39)
It then follows from proposition 4.4, that the corresponding process must be optimal, and
proposition 4.5, permits us to use a translation in ¢ to adjust for the function ¢(t) and
the constant C' to be zero. Furthermore by assumption £y = 0 (Eq.( 23)) and ¢(T3,z) =
—F5(z). Since the corresponding process is optimal d = #(¢) = —m = —¢(t,x), this opens
for the following choice

o(t,x) = —d(t,z), (the valuefunction).

Then returning to Eq. (38) we have that P = 0 gives

max {¢t+¢mg(taxau)_f(taxau)}:()a (40)
uelU(t,x)
or
¢r=— max {@.-g(t,z,u)— f(t,z,u)}, (41)
ueU(t,x)
which we recognize as the Hamilton-Jacobi-Bellman equation. Introducing the Hamiltonian
H*(t,2,05(t,2) 2 max H(t,2,u,6s). (42)
ueU(t,x)

Eq. (41) may also be written as
o= —H"(t,z,d,(t,2)). (43)

4.6 Bounds on accuracy

An important task in this work is to determine bounds on accuracy. This is of prime
importance because this is the only way to determine the quality of a given approximate
solution.

In this connection we shall now focus on e— optimal solutions.

Let ¢ be a bounding function. That is #(¢) exist and is a lower bound on I(v) and

L(v; ¢).
Then
Up) < L(v;¢), YvEFE and Y¢cX. (44)
Especially we have
Up)<d= igjg I(v). (45)

Then consider the difference

Iw)—d=L{v;$) —d < L{v;¢) —€(¢) Ywe D &VYpeX,
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where

N def

L) = 10) < Go(T.alT) ~ Grlra(r) - [ Rdt—{m—M— / u(t)dt}

= Go(T,2(T)) — ;Ié% Ga(T, ) —O—JI%%(Gl(T, x) — Gy (7, 2(7))

T

+/ { max R{t,a,u) — R(t,x(t),u(t))} |
- (z,u)eV

where W correspondes to Wy. For the case of simplicity let us consider those cases where

we have a fixed starting state and final state, z, and x7 in addition to a given time horizon,

T.
‘We then obtain

I0)—d = L(;¢)—d<A0) Y Lvig) - £(9)
- / (max R — R)de (46)
< / T(mVaxR_ min R)dt < A(6). (47)

Remember that V does not contain the restriction imposed by the equation of state.
This is a drastic simplification and might result in a bound that is “too weak ”. The
assoclated (¥ associated with ¢) is A-optimal, where A is defined above.

4.7 Summary

The traditional approach for solving optimal dynamic control problems is the Hamiltonian
formulation and the Hamilton- Jacobi - Bellman equation.

We have presented a more general approach incorporating these formulations as special
cases. This was discussed in Sec. 4.5. In Sec. 4.4 the essential tools for working with this
new formulation was presented, for example the inequalities (20) and (33).

Hunting for the optimal solution by solving differential equations that orignited from
either standard control theory via Hamiltonian formulation or from the dynamic program-
ming principle through the solution of the Hamilton-Jacobi-Bellman equation, can be very
cumbersome.

Very few problems can be solved exactly. One has to resort to approximate solutions for
most realistic problems, either by finding approximate numeric solutions or approximate
analytic solutions. In this context the question of accuracy is an important issue.

Our approach makes it much easier to evaluate accuracy, especially when dealing with
closed form approximate solutions. This new approach offers a straight forward technique,
its main virtue is simplicity in terms of how to implement it.

Regarding the accuracy some general remarks may be appropriate. One should bear in
mind that all models are inaccurate when it comes to describing the “real world”. Thus it
may not be meaningful to spend too much effort in order to improve accuracy, or finding
accurate solutions to a specific problem unless one is sure that features has not been left
out from the model that might introduce greater errors.

In particular we want to point out that our approach can be implemented in a system-
atic way also in conjunction with perturbation/expansion techniques used to {ind approx-
imate solutions through differential equations formulations. This will be demonstrated in
a following section.

In conclusion it is our belief that for a large class of problems sufficiently accurate
solutions can easily be obtained by our direct approach.
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5 Applications

5.1 A special class of problems
In management of renewable resources the following class of problems are of interest,
Ts
max / e TL{a, w)dt (48)
[ o)

where £ € X and v € U with X = [0,k], U = [0,00), II def yu — I'u? where v = v(x) and
I' = T'(x) are given non negative functions of the argument = and u may be interpreted
as the harvest rate. The maximization is to be performed subject to the constraint (state
equation),

i B

= o= g(z) —u. (49)
From Eq. (24) we find
R= ¢+ ¢u(g—u) +e "I (50)
Since ¢ is arbitrary (bounding) in this formulation we can make the following choice
1— —0t
¢ =W(z)e O — TQK. (51)

Here ¢ can be interpreted as a value function. By this choice we have

R = —K—-0W +W'(g—u)+yu—Tu?
_ K / L _ N2 _7_W, 2
= -K 6W+Wg+4r('y WHe—Tqu 5T . (52)

This form is quadratic in w, which means that the optimal value of u is obtained by
eliminating the last term, and thereby maximizing R. This way u is determined as
y—W

ar -

u =

(53)

Since u in our context represent a harvest function it follows that « > 0. Thus we have

_ 7
% = max {0, T QIW } . (54)

Introducing P for this particular choice of R, Eq. (52), we may write

def [ —K—0W+Wig+E(v—W)?, v>W

5t p te)
€ P({L‘,t) = { —K—(SW—FW’Q, ,Y<W/ ’ (55)

where W’ € C! and W and K, are in principle free. However, we now want to focus
on a particular choice of these parameters which comply with our previous perturbation
expansion approach [4] Eq. (114) and Eq. (116), we obtain to leading and first order in
the expansion

—Ko + € P(x,u9) =0 (56)

—Wo — Ky + " Py(z,uo)u; =0 (57)

where for this case

et P(x,u) i, (g—u). (58)
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Thus it follows that

e Pz u) = Tu? — 20gu +~g. (59)

We now pick as the first approximation the zeroth order expansion solution which imply,
when v > W/, that

v =Wy
or

U =uUuy = W:WO, K:Ko (60)

From Eq. (56) we then obtain

—Ko +Tud — 2Tugg +vg = —Ko +Tud + Wig =0,

or
Ko =Tud +Wg. (61)
Making use of this result in Eq. (55) we obtain P — Py, where

P Wt (62)
Notice that P; = O(82), relative to a “typical” value determined by Eq. (48) when sitting
in “a fixed equilibrium point”. This value turns out to be of (’)(%). We conclude that
the zeroth order perturbation solution makes P a first order quantity in the parameter of
smallness, d, whereas the integrated form, the value function is of zeroth order and first
order in the relative sense.
Continuing we consider the first order perturbation as the approximate solution with

u = ug+duq,
W = WO -+ 6 Wl 9
K = Ko+46K,.
From Eq. (57) we obtain
—Wo — Ky + [2Tug — 2Tgluy = —Wo — Ky + 2Tuguy + gW, =0 (63)

where we have used that according to Eq. (53) we have

u f— _M
T
We then obtain
Ky = Wy + 2l'uguy + gW{ = —Wo + (g — uo) W1 . (64)

Further more we obtain
~ 1
e’ P(z,u) = —Ko—0 K1—6 Wo—6% Wi +Wig+6 Wig+T (ug+dup )? = 62 {E(W{)2 - Wl} :

Thus invoking the first order perturbation expansion as our approximate solution makes
P — P,. The zeroth and first order contributions to P vanish and the result is

P — Py §% 00 {%(W{)Z — Wl} : (65)
Also notice that

Py =—Woe®t <0. (66)

An observation we make from this result is that the value function need only be deter-
mined to one order lower than the control. This is important, since it relaxes the necessary
amount of computations to be performed when determining the optimal control.
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5.2 An Example

Consider the following example relevant to fisheries, with a utility function

T _ ,—0s _ fg T2
fl=e {(1 =) rh}, (67)
and a state equation
é:Rz(l—%)—h, (68)

where s is time, z the stock, 2y refers to a break even point in the utility function, h is
harvest, k is carrying capacity and R represent the reproduction rate or intrinsic growth
rate in the stock. I'is related to a nonlinear cost of operation or downward sloping demand.
We now make the following substitutions/definitions:

e 1 e e ef = e 1) ef A~
u —h, J:d:fi, Zo d:fz—o, 1% Rs, rd:fw, % Rt (69)
RE k k R
By these substitutions the problem simplifies as follows
def 1 - ot o 9
II'= —Il=e 1——)u—-Tu 70
—fl= e (1- Du-Te?) (70
t=z(l—x)—u. (71)

We notice that the problem in this setting has three parameters r, zg and I'.
We now elaborate on this example according to the procedure used in Sec. 5.1. From

Eq. (48) we have v(z) defy _ = and I' is a constant. According to Eq. 58 we find

Plru) = (1-Dpu—Tu?+{(1 -2 —2ruda(l — 2) —u}
x x
= Tu? —2lua(l —z) + (v — z0)(1 — 2) (72)
From [4] Egs. (121) and (122) we f{ind that K, and the proper equilibrium point
y** € {&} (% the set of possible equilibrium points), is determined as the value that

maximizes H (the detailed account of this procedure is included here for the convenience
of easy reading):

S W = (w0 (2)) + Mz, uo(z) - i, (73)
at the point where £ =0, or
sk def
Y= Ga R Wz, g(@)) . (74)

In this particular case we have
x
l(z,g(@)) = (1= =) g(x) ~ Lg*(). (75)

where © = 0 = up = g(z) = (1 — x). This way Ko = —F(y**,uo(y™)) is determined
and we find for the case I' = 0.1, o = 0.2 that y** = 0.6050, ugo = uo(y**) = 0.23897,
Py, up(y*)) = F(y**,uo(y™)) = 0.15426 or K¢ = 0.15426. By solving P(z,uo(z) = Ko
for the given value of K we find the feedback solution drawn in the following plot presented
in Fig. 1.

The curved line above the horizontal axis represents natural growth function for the
stock, and at the equilibrium point for the system u = ugp = uo(y**) = 0.23897. There are
two branches for the feedback solutions. The proper one starts with a positive slope and
moves towards the equilibrium point from either side. This curve is plotted. The other
branch is unstable i.e. moves away from the equilibrium point on either side. This curve
is not plotted. We conclude that we have the zeroth order solution and can also find the



1o

T

Figure 1: Plot for u versus z for the cases » = 0 and dz/dt = 0 or u = z(x — 1), as the
curved line just above the z-axis. I' = 0.1.

i

Figure 2: Plot for stock, x versus time, ¢ for the case r =0, I' = 0.1.

evolution of the stock with respect to time by integrating Eq. (71), we obtain the following
result plotted in Fig. 2.
Turning to u; we have

B f; M(Z,uo(£))dE — K4
U T RwE)
where @ is any suitable arbitrary chosen constant. Notice here that P, = H, + H\M,, =

G M, =0, at the zeroth order equilibrium point z** given by Eq. (74) (known quantity).
Then regularity of u; at this point require

(76)

/m** M@, uo(#))ds — K1 = 0
Ki= / M, uo(@)di (77)

Finally we find

. — [2, M(#,uo(%))dE
LT Rmuw@)

(78)
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Figure 3: Plot for the first order component, w1, of solution u versus x for arbitrary but
“small” r, I' = 0.1. Thus to get the proper value this solution must be multiplied by 7.

Figure 4: The red curve is a plot for u = ug + ruy versus z for the case r = 0.3. The
black curve is the numerical solution of the exact problem. We see that the approximate
solution to first order compares very well with the “exact” solution.

This determines uq, and this way the procedure continues. Notice that this expression for
uy 1s singular at the equilibrium point, since P, = 0 there, as pointed out. In order to
determine u; at such points one may use L’Hopitals rule. For this particular case we can
solve for this solution numerically and obtain the results shown in Fig. 3. In Fig. 4 the
solution obtained by perturbation/expansion correct to first order is plotted (red curve)
and we observe that it fits very well with the exact solution (black curve).

We shall later argue that by proper adjustment of the zeroth order solution, it may not
be necessary to even go to the trouble of finding the above mentioned first order solution.

5.3 A numerical approach

These kind of problems can be solved numerically without any approximations in the
governing equations. A way of solving this problem is to locate the equilibrium points, make
the choice that maximizes the Hamiltonian; which at these points is equal to II(z g, ug),
where g, ug is the equilibrium point, see Eq. (75). Then we observe that the only
solutions making contact with the equilibrium point are the separatrices emerging from
or approaching this point. Notice that one may not start the solution at the equilibrium
point, since this point may not be part of the trajectory leading to it i. e. the separatrix.
Numerically one may solve for the separatrices for the exact problem, by starting the
solution just outside the equilibrium point in a point that is consistent with the calculated



Figure 5: Plot for u versus  for two cases r = 0 (green) and r = 0.3 (black) and dz/dt =0
or v = z(x — 1) (black). Notice that the blue curve, corresponding to r = 0 (green), is
created by moving the 7 = 0 - curve (green) parallel to itself so that the corresponding
equilibrium points coincides in the equilibrium point for the r = 0.3 curve (black). The
red curve is created by a simpler procedure, just lifting the zeroth-order (green) curve until
it passes through the equilibrium point for the 7 = 0.3 curve (black). Notice that for this
case I' =0.1.

value of the derivative at the equilibrium point. In the following figure this has been done.

One observation we make is that if we take the zeroth order solution and move it parallel,
so that the point corresponding to the zeroth order equilibrium point now coincide with
the exact equilibrium point for the given » = 0.3 curve, then this adjusted zeroth order
solution makes a very good approximation to the exact solution in the interval of interest
ie. for 0.44 < z < 1.0.

In Fig. 6 a different situation is plotted where the constant I is replaced by a function,
=245

V\:/?e conclude from these figures that one policy is to move the zeroth order curve in
such a way that the two equilibrium points coincide. Alternatively one may simply lift the
zeroth-order curve by adding an amount Aw to u, so that the adjusted curve passes through
the “exact” equilibrium point. The point to be made is: Determining the equilibrium point
numerically is a straight forward approach for any given problem of interest. Finding the
zeroth order solution is likewise straight forward, and can also be done by solving algebraic
equations, i.e P(z,uo(x)) = constant. We then argue that for a large class of problems
this may be a sufficiently accurate approximation, and the only representation for the
approximate solution that is needed. Thus we now have a very simple procedure for
finding a closed form approximate solution that is very likely to be sufficiently accurate for
most cases of interest. This solution is obtained as follows:

1. Find the zeroth order solution.

2. Move this solution vertically until it passes through the exact equilibrium
point.

Both these steps are simple to perform also in practical terms. We now turn back to a
more specific discussion regarding error control.

5.4 Analytic approximation

The usefulness of the approximation theory presented in section 4.6 needs to be demon-
strated through application. We apply some of our results to the following class of problems.
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Figure 6: Plot for u versus x for two cases r = 0 (green) and r = 0.3 (black) and dz/dt =0
or v = z(x — 1) (black). Notice that the blue curve, corresponding to r = 0 (green), is
created by moving the r = 0 curve parallel to itself so that the corresponding equilibrium
points coincides in the equilibrium point for the » = 0.3 curve (black). Likewise the red
curve is produced by simply lifting the green curve vertically until it passes through the
equilibrium point for the r» = 0.3 case. Notice that I' = ?TQI for this case.

Consider an example relevant to renewable resource management, with a quadratic
utility function as previously introduced by Eqs. (48) and (49)

I(v) = max/ e % (yu —Tw?)dt,
u>0 Jg
T = g(x)—u {L‘G[O,l},

where v = v(z) > 0 and I' = I'(z) > 0 and the stock z is measured relative to carrying
capacity. We shall adapt the following strategy:

1. Solve the zeroth-order expansion problem i.e. the associated problem with zero dis-
counting. Normally this will be associate with the separatrices approaching or passing
through such a point.

2. The next part is to determine the improved solution which is obtained by taking
the zeroth order solution and move it parallel to itself so that it passes through the
corresponding exact equilibrium point ( this procedure is not unique). The exact
equilibrium point can easily be determined. This procedure is highlighted in the
Figures 5, 6 and 7. We shall show that there exist a way of doing this which yields
an explicit expression for the feedback solution which is O(42) optimal in the global

Thus let
Iz, u) = y(z)u—D(z)u?, (79)
then we introduce the following definitions:
$(@) < (. g(2)) = 7(@) g(e) ~ L(2) g*() (80)
() < (2, 9(@)) = (@) - 20 (@) (). (81)

Equilibrium is now determined by solving S'(z) — éu = 0. From H =const we find
I'i? +S=H=9", (82)



with S* a constant defined below and we have that the last equality sign above applies
only to the case § = 0. For details see [11]. In the case of zero discount rate, § = 0, we
introduce

e S*—8 . de
Ug def wo(x) = glx) +v —T (z) , et max{0, uy(z)}, (83)
def . syer s def
where v = sgn (x — z*), ©* = argmax S, L.e. equilibrium, z € [0,1] and S* = S(z*),

wo(x*) = g(z™).
In the case of several equilibrium points one select that one which corresponds to the
largest S.

o argmax S, determined by S’ =0 where S’ el g . (84)
Then consider a parallel movement of the zero discount rate solution so that it passes

through the equilibrium point for the problem with nonzero discount rate.
Normally with a discount rate, § > 0, we have a saddle point at equilibrium, x**.

9(x) A

Xb *k

Figure 7: Plot for & and ug (6 = 0) versus x. The curve % is produced by simply moving
the ug-curve vertically until it passes through the equilibrium point for the § # 0 case.
Here 3, is the barrier/moratorium for the approximate policy @. At x = z** we have
W(x**) = up(x™*) + A = g(z™).

The parallel shift is made so that u** def w(z*) = g(x™):

i(z) Y max(0, uo(w) + A), (85)

and according to Eq. (83)
A g(a) —up(a™) = V(& = 5T, (86)

where §** %/ S(z**) and I'** = S(z**). We then compute R (see Eq. (24)), in the
functional L(v;@), which is given by

R = {¢+¢u(9—w}+ryu—Tu’
W +W'g+T4* — D(u—0)?,

where we have substituted for the bounding function ¢ by ¢ = e’étW(x) and introduced
the new parameter



L def 1 ;

= —=(y—-W". 87

8 = W) (87)

Regarding W this is a free function that we may utilize to make a choice so that our

corresponding ¢ becomes a bounding function associated with our @ i. e. % = @ This
implies that we can choose

x N S**

< () - 2@ (@)l de’ + =,

rE*

(88)

where the constant term S** /¢ is a choice of convenience as will become clear later (see
the proof following proposition 5.1). We conclude from this result that R is maximized by
% = t. By a simple rewriting we obtain

P(t,x) Y max R(t,x,u) = (=0 W + W'g + Dii2)e Ot = {—6W +S5+TD(g—w)?}e*,

(89)
where S is defined in Eq. (80). Eq. (89) may again be rewritten in the following form

AP P=§ W +Ti? =8 W +T(g—)2. (90)

Then let us consider the interval [z, **] C [0, 1]%, which for most cases is the region of
interest when the model is made dimensionless so that « € [0, 1] means z less or equal to
carrying capacity. Let

DY T2 =T (o — A)2 = Do — 2WA#g +TA? = D'=-—8 _T'Ai,
o

where a prime means derivative with respect to  and we have used S* = S + Dy, Do def
I'i3, see Eq. (82). We assume that P(z) (Eq. (90), is a concave function and look for a

maximum by discussing the derivative P’'(z) = 0. We obtain
P’(x)23’—;—0{S’+26P$0+P’A$0}, § S5, (91)

where we have I' 4y = /I (S* — S) and I'& = /' (§* — §) —T' A. We formulate the basic

result at this point in the following proposition

Proposition 5.1 Concave P
Suppose

P(z) = S(x) = dW(z) + I'(2) {g() — @ ()} (92)

is concave on an x—inervall, )N(, where ** € X. Then it follows that

max P(z) =P(z*) =0.
X
Proof:

Fore = z** we have & = 0 in Eq. (91) and from Eq. (84) we have S’ = 0. Thus
it follows that P'(z**) = 0 and maxP = P(z**) = §** — § W(z**) + I'i? = 0, where the
definition of W, Eq. (88) has been employed.

Q.E.D.

Proposition 5.2 An O(0*) bound on relative error _
Suppose 0 < A <wug and P <0 for x in an intervall X > x**.
Then it follows that the policy & at most has a relative error of order §2.

2See Fig. 7 and the associated text



Proof:
From proposition 5.1 or proposition 5.2 - (2a), it follows that
1 maxP —P=6W—-S—D=—P>0. (93)

We continue by evaluating 7.

W -8

S —8+94 ’ {y(z") =20 (z") a(z')} d’

r**

S5+ 5/ L (2!, (a'))da’

%%

D=13?=T(iy — A)> = Dy — 2I'Agy +TA* = (§* — §) —2l'Az — ' A?.

n = SW—-8S—-Ti?=6W—-S-D
(P—P**)A2+2PA32:+6/ IL,(z', (z")) dx’

r**

IA

(I —T")A%+2I'Ad,

where we have made use of Eq. (86). The last inequality follows from the assumption that
IL, > 0 3, so that the integral gives a negative contribution for = < z**. It follows that

e / e Otndt <2I' A + %AZ : (94)
0

or
et € _ 20 A + (I —I**)A?
We have that T' %</ max I'(z) where z € A. Thus I' — I'** > 0.

Notice that Eq. (95) is not merely an asymptotic error bound, but emerge as a fixed
upper bound.

= 0(6?). (95)

Q.E.D.

6 Summary and Conlusions

The first part formulates and reviews optimization problems in a general setting. The
Principle of Extension plays a central role in this connection. Opening up the problem
formulation to a wider context and introducing free functions that can be utilized for
simplification purposes is important in this context. Restricting ourselves to Dynamic
Optimization in Continuous Time this is given special attention in Sec. 3. The Principle
of Extension is given further attention in Sec. 4, where one especially focus on the drastic
approximation of leaving out the equation of state, as a first approach. Equivalent
representation is an other important tool that is discussed. A special derivation of The
Variational Hamiltonian Formulation as well as The Dynamic Programming Principle
from our more general setting is provided. The problem of determining the accuracy of
an approximation is also given special attention. The general results obtained are
discussed in the setting of practical problem formulations in Sec. 5.

3There are sound economic reasons to limit on selves to this restriction.
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