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1 Introduction

Dynamic optimization problems cover a great class of problems in theoretical and
applied economics and technology. The classical formulations being the variational
approach as in classical mechanics, like Hamilton’s principle and the optimal control
theory in economics as the Pontryagin’s maximum principle. In this account the
exploitation of a general renewable capital stock is modeled through an alternative
continuous time formulation rather than the usual classical optimal control approach.
We propose a very simple alternating iterative algorithm that is shown to converge
rapidly to a solution. A remarkably simple error control is also provided. The algo-
rithm can be used as a tool to obtain a fast numerical feedback solution as well as
being an efficient scheme to produce approximate closed form (analytical) feedback
solutions. In this respect we point out that an analytic solution is a more powerful
tool for parameter search than any numerical solutions can ever be.

The method is well suited for dealing with real world problems involving exploita-
tion of a general renewable capital stock by generating feedback rules (numerically
as well as analytically) for a family of problems concerning a single resource. We
reproduce perturbation results (formulae) published in the last decade.

The modeling approach and results presented in this paper are, however, of a
much more general character than the special field of application we focus on here
i. e. ideas from a natural renewable resource management1. From a mathematical
point of view we can always distinguish between the optimization problem and the
problem of finding the separatrix solutions to a set of differential equations.

A summary and discussion of results are presented at the end. Key features are a
simple scheme, fast convergence (two or three iterations) and error control.

2 The Model

In management of renewable resources the following class of problems is of interest,
find

max
u

∫ ∞

0
e−δtΠ(x(t), u(t))dt , (1)

where x ∈ X, u ∈ U and X, U are closed intervals. Here Π is a twice differentiable
and strictly concave function of u. The discount rate δ is nonnegative. To avoid
unnecessary technicalities it is sufficient in our context to assume that x = x(t)

1See e.g., Clark 1990, Arnason et al. 2004, Sandal and Steinshamn 1998 and 2000.
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and u = u(t) are piecewise smooth and in addition that x = x(t) is continuous. The
maximization (Eq. (1)), is to be performed subject to the constraint (state equation),

ẋ
def
=

dx

dt
= f(x) − u , (2)

where f is continuous.
Here x can be interpreted as a measure of the stock level of a renewable resource,

u the harvest rate and f(x) the natural growth rate of the resource.
In the next section we introduce an alternative capital dynamic formulation to

this control problem.

2.1 The Feedback Approach

In the modeling approach we consider the space (x, u) (the state/control space) where
time t is a redundant parameter. In this space we examine piecewise smooth functions
(paths) u = u(x), usually called controls/policies in feedback form. We use the
following definition.

Definition 1 Piecewise smooth function

The notion will be used for functions that are continously differentiable except at
possibly a finite number of points.

This means that we allow for discontinuities in the derivative as well as the function
itself at these points. The model can in mathematical terms be formulated as an
integral equation

M(x, u) = N(x, α)[u] , (3)

where

M(x, u)
def
= Π(x, u) + Πu(x, u) {f(x) − u} − S(x) , (4)

and
S(x)

def
= Π(x, f(x)) . (5)

This implies that M(x, f(x)) ≡ 0. Furthermore

N(x)[u, α]
def
= K(α) − S(x) + δ ·

∫ x

α
Πu(s, u(s))ds , (6)

where K(α) is a parameter to be determined. Eq. (3) reads,

Π(x, u) + {f(x) − u} · Πu(x, u) = K(α) + δ ·
∫ x

α
Πu(s, u(s))ds , (7)
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where again f(x) is the natural growth as given through the state equation, Eq. (2).
In the present setting Eq. (2) is actually redundant and only serves the purpose
of connecting the problem to the time domain. Interpretations of Eq. (7) within a
typical economic framework are:

Π ∼ (rate of) rent ,

S(x) ∼ (rate of) sustainable rent

(f − u) · Πu ∼ (rate of) saving/investments ,

K(α) ∼ (rate of) rent in a reference state ,

δ ·
∫ x

α
Πu(s, u(s))ds ∼ (rate of) discounted cost in moving from α to x .

We have that M = N is a point of balance in marginal contributions in time. Thus
the optimal policy corresponds to the case where we have a decreasing marginal
contribution by following an optimal policy in time, i.e. Mu < 0, where Mu =
(f − u) · Πuu (this applies to the region u < f and in the case u > f we have in the
time domain that this corresponds to moving towards decreasing values in u, in both
cases |u− f | is decreasing).

If we look for a place to “park”, then we have to continue until the marginal
contribution (consume) is as small as possible i.e. Mu → 0 ⇔ u → f , since
Πuu 6= 0. Then we ask the question: For what value of α can this be realized. We
restrict ourselves to an internal maximum point, thus

α = argmax(N) ⇒





K(α) = S(α) = Π(α, f(α)) ,
K ′(α) = δ · Πu(α, u(α)) ,
u(α) = f(α) ,

(8)

i.e. S ′(α) = δ · µ(α)2 which has been shown by Sandal and Steinshamn, 1997c to be
the equilibrium condition (u(α) = f(α)).

In our context this leads to a uniquely determined point α which we choose to be

our point of reference x∗δ
def
= α. From now on we make the replacement α = x∗δ.

2.1.1 Key definitions and assumptions

The following definitions give the core expressions involved in establishing the main
results in this paper.

S∗
δ

def
= S(x∗δ)

def
= Π(x∗δ, f(x∗δ)) , (9)

2µ is defined in Eq. (10).
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µ(x)
def
= Πu(x, f(x)) . (10)

ψ(x)
def
= S∗

δ − S(x) + δ
∫ x

x∗
δ

µ(s))ds , (11)

N(x)[u]
def
= S∗

δ − S(x) + δ ·
∫ x

x∗
δ

Πu(s, u(s))ds , (12)

A∗ def
= {(x, u)|(x− x∗δ)(f(x) − u) ≤ 0} , (13)

A∗
L

def
= {(x, u)| (x, u) ∈ A∗ & x ≤ x∗δ} , (14)

A∗
R

def
= {(x, u)| (x, u) ∈ A∗ & x ≥ x∗δ} . (15)

Notice that N(x)[u, x∗δ] = N(x)[u] and that ψ(x) = N(x)[f(x)] has a critical point
for x = x∗δ, which follows from Eqs. (8). Also notice that the global minimum of ψ(x)
is the reference point x = x∗δ.

The following assumptions are expected to hold throughout the rest of the paper:

A1 Π(x, u) is twice differentiable in its arguments and Πu ≥ 0, −∞ < Πuu < 0.

A2 ψ(x) ≥ 0 for x ∈ X and ψ(x) has a single zero.3

These assumptions are made more for the reasons of convenience than for the
reasons of necessity.

Definition 2 Admissible controles

Admissible controls (feedback policies) are u = u(x) ∈ PS(X) where PS(X) is the
set of piecewise smooth and bounded functions on X such that (x, u(x)) ∈ A∗.

Solutions are particularly easy to find when δ → 0. In this limit equation (7) becomes
an algebraic equation for the feedback policy u(x). Formally this limit may need to
be interpreted as a generalized optimality. That is, even though different policies may
create infinite large utilities there are no value of a discount rate that can alter the
practical result that ”two dollars a day is better than one dollar a day for infinitely
long time”. Catching-Up optimality (CU-optimality) is a generalization along theses
ideas. This an other natural extensions of the notion optimality can be found in
e.g., (Seierstad and Sydsæther, 1999). Indeed, the formal solution of this algebraic
equation is in fact the separatrix in phase space going through the reference point x∗δ.

3The generalization to the case with a finite number of zeros is straight forward.
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2.1.2 Monotonicity properties

The functional Q given by

Q(x)[u]
def
= S(x) +M(x, u) − S∗

δ − δ
∫ x

x∗
δ

Πu(s, u(s))ds = M(x, u) −N(x)[u] , (16)

is well defined on the set of admissible feedback controls.
The problems stated in this paper are transferred to the problem of finding Q ≡ 0

such that (x, u(x)) ∈ A∗.

Lemma 1 Important inequalities

The following important inequalities hold,

{f(x) − v} (Πu − Πv) ≤M(x, u)−M(x, v) ≤ {f(x) − u} (Πu − Πv) . (17)

Proof: These inequalities follow directly from the definition of M and the concavity
of Π. Thus from Eq. (4) we obtain for u = u(x) and v = v(x) that

M(x, u) −M(x, v) = Π(x, u)− Π(x, v) + Πu(x, u) {f(x) − u} − Πv(x, v) {f(x) − v} ,

and the concavity of Π with respect to u implies

Πu(x, u)(u− v) ≤ Π(x, u)− Π(x, v) ≤ Πu(x, v)(u− v)

and Eq. (17) is obtained.

By using

M(x, u) −M(x, v) = Q(x)[u]−Q(x)[v] + δ
∫ x

x∗
δ

∆uv(s)ds ,

where
∆uv(x)

def
= Πu(x, u(x))− Πv(x, v(x)) , (18)

the inequalities Eq. (17) can again be rewritten as

{f(x) − v(x)}∆uv(x) − δ
∫ x

x∗
δ

∆uv(s)ds

≤ Q(x)[u]−Q(x)[v]

≤ {f(x) − u(x)}∆uv(x) − δ
∫ x

x∗
δ

∆uv(s)ds . (19)

A key property for the functional Q restricted to A∗ is:
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Lemma 2 Monotonicity

(x − x∗δ)Q(x)[u] is a monotonically increasing function of u in the set of admissible
controls.

Proof: Since Π(x, u) is concave in u, then u ≥ v ⇒ ∆ ≤ 0. From the inequalities,
Eq. (19), we obtain:

1. Q(x)[u] is monotonically decreasing as function of u in A∗
L.

2. Q(x)[u] is monotonically increasing as function of u in A∗
R.

2.1.3 An Iteration Scheme

We are studying the relation Q(x)[u] = 0, or

M(x, u) = N(x)[u] . (20)

Introducing M as given by Eq. (4) has several advantages. The function M(x, u)
measures a potential gain of changing the state or moving in state space. There is
a potential benefit associated with changing the situation. It plays a role much the
same as the kinetic energy do for a mechanicle system. The motion by itself has
the potential of doing a physical work. The functional N(x)[u], Eq. (12), can be
associated with potential energy. It has the potential to change the state of motion.

Concavity of Π(x, u) with respect to u, implies uniqueness of the solution of
Eq.(20). This is the next proposition.

Proposition 1 Uniqueness

Eq. (20) has at most one admissible solution.

Proof: The crucial entity in the proof is ∆uv(x) as defined in Eq. (18). Suppose there
are two solutions u, v of the problem. It then follows that Q(x)[u] ≡ Q(x)[v] ≡ 0,
and the inequality (19) becomes

{f(x) − v(x)} · ∆uv(x) ≤ δ
∫ x

x∗
δ

∆uv(s)ds ≤ {f(x) − u(x)} · ∆uv(x) . (21)

From Eqs. (13) and (21) it follows that if not ∆uv(x) ≡ 0 , we have a contradiction
and the result follows trivially from this fact. This can be seen in the following two
steps:
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(i) Consider the case where we have two admissible solutions u = u(x), v = v(x)
which are different and where u ≥ v. Then ∆uv(x) > 0. In inequality (21), the left
hand side and the right hand side are positive/negative and the term in the middle is
negative/positive according to whether x < x∗δ or x > x∗δ, which gives a contradiction.

(ii) Let u and v have a finite number of crossings in A∗. Let x be a fixed state between
x∗δ and the next crossing on one of the sides of x∗δ. In this region u and v satisfy (i)
and hence must be identical in this region. For a given x in between the next crossing
we are still within the scope of (i). Hence u must be identical to v by continuing this
reasoning.

Definition 3 Super and sub solutions

Let B ∈ {A∗
L , A

∗
R}. An admissible control v = v(x) such that v(x∗δ) = f(x∗δ) is called:

1. A formal super solution on B provided (x − x∗δ)Q(x)[v] ≥ 0 on B and a sub
solution if the inequality is reversed.

2. The notion geometrical is here used as a prefix on an ordering relation
(>, <, ≥, ≤, super and sub) if the ordering relation holds for all states
considered.

Remark: Notice that the formal sub (super) solution is not necessarily a geometrical
sub (super) solution, however a geometrical sub (super) solution is always a formal
sub (super) solution. This difference is due to the term in N(x)[u] which depend on
an interval, i.e. the integral term. Later on we find it convenient to restrict ourselves
to using the notion sub (super) solutions meaning geomertical sub (super) solutions.

Notice that it follows directly that (x − x∗δ)Q(x)[v = f(x)] = −(x − x∗δ)ψ(x), i.e.,
f = f(x) is a super solution on A∗

L and a sub solution on A∗
R or in short notation, a

super - sub solution. It should be clear from the definition of A∗ and the notion of
admissibilty that u = f must be a geometrical super-sub solution if the problem has
any solution in A*. If v = v(x) is both a sub and a super solution on B then it is
the unique solution on B according to proposition 1.

We continue by stating some important properties associated with M , Eq. (4), and
N , Eq. (12).
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Lemma 3 Monotonicity properties

The following properties holds for admissible controls:

1. M(x, u) is non negative and zero only for u = f(x) and

TM(u)
def
= (x− x∗δ) ·M(x, u) is an increasing function of u.

2. N(x)[u] ≤ ψ(x).

3. TN(u)
def
= (x− x∗δ) ·N(x)[u] is a decreasing functional of u .

4. T (u)
def
= (x− x∗δ) ·Q(x)[u] is an increasing functional of u .

Proof:

1. From Eq. (4) we find

(x− x∗δ) ·Mu(x, u) = [(x− x∗δ)(f(x) − u)] · Πuu(x, u) . (22)

By assumption Πuu(x, u) < 0 and the square bracket is non positive by definition of
A∗.

2. We observe that from Eqs. (11) and (12) we have

ψ(x)−N(x)[u] =
∫ x

x∗
δ

Πu(s, z)|z=f(s)
z=u(s)ds ≥ 0 for (x, u) ∈ A∗ .

3. This point follows directly from the expression

TN(v) − TN (u) = (x− x∗δ)δ
∫ x

x∗
δ

∆uv(s)ds .

4. This is Lemma 2.

We will now consider a particular iteration scheme. To simplify notation we use
the following definitions:

Mn+1
def
= M(x, un+1) , Nn

def
= N(x)[un] and Qn

def
= Q(x)[un]. (23)
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Proposition 2 A sub - super sequence

Let the iteration scheme be
Mn+1 = Nn ≥ 0 . (24)

For every given admissible un, Eq. (24) has at most one admissible solution, un+1,
and the generated sequence has the following properties:

1. If there exist an element un+1 ≥ un (less or equal) then un+1 is a super (sub)
solution and un is a sub (super) solution.

2. If one element in the sequence is a super (sub) solution, then the following
members in the sequence will alternate between sub and super solutions.

Proof: From the definitions and properties of functions involved it is clear that
M(x, v) = N(x)[u] generates a function v which is piecewise smooth for any u ∈ PS
(admissible). The following relations are useful

T (un+1) = TN(un) − TN (un+1) , T (un) = TM(un) − TM(un+1) . (25)

These relations are derived Appendix A. Moreover we have that M(x, u) is convex in
u and has a global minimum for u = f(x). Therefore the equation M(x, u) = K(x)
(where K(x) can be any nonnegative function), has at most two solutions for u, but
only one of them is in A∗. This can be seen as follows: Mu = Πuu ·(f−u) has only one
zero u = f(x), i.e., the euilibrium point, (x∗δ, u(x

∗
δ)). Omitting the equilibrium point,

either x < x∗δ and M is monotonically decreasing, or x > x∗δ and M is monotonically
increasing, thus only one solution is possible.

1. The first of Eqs. (25) implies T (un+1) ≥ 0 since TN(u) is a monotonically
decreasing function of u (lemma 3 item 3), thus un+1 is a super solution. Furthermore
the last relation in Eqs. (25), since TM(u) is a monotonically increasing function of
u (lemma 3 item 1), implies T (un) ≤ 0 thus un is a sub solution.

2. Let un be a super solution, i.e. T (un) ≥ 0. Then the second relation in Eq. (25)
implies that TM(un+1) ≤ TM (un), and since TM(u) is an increasing function of u
(lemma 3 item 1), it follows that un+1 ≤ un . And vice versa for the sub solution case.

In Eq. (24) there is a nonnegative restriction on Nn. It is crucial for the iteration
process to continue that Nn stays nonnegative throughout. Technically this can be
achieved by replaceing Nn by max{Nn, 0}. This amounts to replacing a nonreal value
with the real value u = f(x). Later on we will show that u = f(x) is a good seed for
starting the iteration process given by eq. (24).
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Lemma 4 Property of an iterated admissible solution

Let v be a strict geometric and admissible super (sub) solution, i.e. v > u∗ for x 6= x∗δ.
All admissible iterates of v will have no common points with the unique solution u∗

for x 6= x∗δ. Two admissible iterations from an arbitrary seed are either identical or
have only the reference point x = x∗δ in common.

Proof: From the assumptions in the lemma we have

M(u) = N(x)[v] ,

M(u∗) = N(x)[u∗] .

Suppose contrary to the lemma that there exist a finite number of points x̂n , n =
1, 2, 3, . . . such that u(x̂n) = u∗(x̂n). Then choose the point x̂k closest to x∗δ. Since
M(u(x̂n) = M(u∗(x̂n)) it follows that N(x̂k)[u]−N(x̂k)[u

∗] = 0 or

δ
∫ x̂k

x∗
δ

∆uu∗(s)ds = 0 .

We observe that in our case ∆uu∗(s) is different from zero and have a fixed sign in
the region of integration, thus the integral must be different from zero, thus we have
arrived at a contradiction. This argument applies equally well for the case v < u∗.
Notice that the case δ = 0 is trivial since the first iterate gives the unique solution
u∗. This proves the first part of the lemma.

With respect to the second part, let v0 and u0 be two admissible seeds. Suppose
that contrary to the lemma there exist common points and let x̂ be the common point
closest to the reference point x∗δ, for the iterated of these seeds. That is ur+1(x̂) =
vs+1(x̂). As in the first part of the proof we then have δ

∫ x̂
x∗

δ
∆ur vs(s)ds = 0. Since ur

is geometrically greater than vs or the opposite in the interval between x̂ and x∗δ and
δ

∫ x̂
x∗

δ
∆ur vs(s)ds 6= 0. Thus we again arrive at a contradiction.

The case δ = 0 is trivial since all seeds give exact solution (this is a degenerate
case where N(x)[u] is independent of u).

This lemma makes it possible to consider only geometrical sub (super) solutions,
which from now on will be the case. The following proposition relates the super and
sub solutions to the exact solution, and thus makes these names meaningful.

Proposition 3 Super- sub solution

Let u+ be a super solution, u− a sub solution and u∗ the unique solution to T (u) = 0.
Then u− ≤ u∗ ≤ u+.

Proof: It follows by definition that we have T (u−) ≤ T ∗(u) = 0 ≤ T (u+). Proposition
3 is then a consequence of the monotonicity of T (u) given in lemma 3.
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2.1.4 Convergence of a sub-super sequence

The iteration scheme defined in Eq. (24), Mn+1 = Nn and the monotonicity properties
of M and N as discussed in lemma 3 can be used to to prove the next proposition.

Proposition 4 Convergence of a special sequence

The admissible sequence obtained from the iteration algorithm M(x, uk+1) = N(x)[uk]
with u0 = f(x), converges to the unique admissible solution u∗ where M(x, u∗) =
N(x)[u∗] if N(x)[u1] > 0.

Proof: From item 1 in lemma 3 we have the basic properties: M is a decrasing function
of u and N is an incrasing function of u for x < x∗δ. For x > x∗δ, M and N behave
oppositely. Let u0 = f(x) as given by Eq. (2), then:

M(x, u0) = M(x, f(x)) = 0 ,
M(x, u1) = N(x)[u0] = ψ(x) > 0 ,
M(x, u2) = N(x)[u1] > 0 (by assumption)

(26)

thus M(x, u2) > M(x, u0) ⇒ u2 < u0. Then consider the general recurrency relation
ur > us ⇒ ur+1 > us+1 which we prove by using the monotonisity properties shown
in items 1 and 3 in lemma3, and the iteration algoritme as follows. Let ur > us then

M(x, ur+1) = N(x)[ur]
M(x, us+1) = N(x)[us]

}
thus N(x)[ur] > N(x)[us] ⇒M(x, ur+1) > M(x, us+1).

and it follows that
ur > us ⇒ us+1 > ur+1 (27)

Then using u0 > u2 as a seed in the recurrency relation, Eq. (27), we obtain

u0 > u2 ⇒ u3 > u1 ⇒ u2 > u4 ⇒ u5 > u3 ⇒ . . .⇒ u2n > u2n+2 ⇒ u2n+3 > u2n+1 . . .
(28)

Thus we have by this construction a monotonically decreasing sequence: u0, u2, . . . , u2n

and a monotonically increasing sequence u1, u3, . . . , u2n+1. The first sequense is a a
sequence of super solutions and the second a sequence of sub solutions according
to definition 3. Thus the sequence of super solutions is monotonically decreasing
and the sequence of sub solutions is monotonically increasing, furthermor according
to proposition 3 both sequences are bounded by the unique solution x∗ satisfying
M(x, u∗) = N(x)[u∗]. Thus we conclude that both sequences converge. Let the se-
quence of super solutions converge to u∗+ ≥ u∗ and the sequence of sub solutions
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converge to u∗− ≤ u∗. Both these limits must, however, satisfy M(x, u∗±) = N(x, u∗±)
and since by proposition 1, the solution is unique, we must have u∗− = u∗+ = u∗. In
conclusion we have that the super solutions are approching u∗ from above and the
sub solutions are are approching u∗ from below, and they meet in the commen limit,
the unique solution u∗ satisfying M(x, u∗) = N(x)[u∗].

For the case x > x∗δ the monotonicity properties of M and N are switched arround
and the two sequences generated also switch so that {u2n} and {u2n+1}, n = 0, 1, 2, . . .
become sub and super solutions correspondingly. The proof, however, follows the
same pattern and is not reproduced here.

A straight forward approximation to the solution produced by ”alternating“ se-
quences like those above (in fact any sequences produced by a super-sub seed) is

u∗ =
1

2
(un + un+1) + ε where |ε| < 1

2
|un − un+1| , (29)

and ε is a measure of the error. This result comes from the fact that the exact solution
u∗ is located somewhere in between the super and sub solutions considered, see lemma
2 and definition 3. We now make a general statement about convergence.

Proposition 5 General convergence

Any infinite admissible sequence produced by TM(vk+1) = TN(vk) converge to the
unique admissible solution of T (u) = 0.

Proof: Either v2 is identical to v0 and they are then equal to u∗ or we have a solution
located over or under v0 except for x = x∗δ. This is a consequence of lemma 4.

Then let v2 > v0 for x 6= x∗δ. Since Eq. (27) is a general result it follows that v2k

is an increasing sequence and v2k+1 is decreasing. The increasing sequence is limited
by f in A∗

L and the decreasing sequence by f in A∗
R. In other words these sequences

converge in A∗
L and A∗

R respectively towards u∗. Since the elements in between (odd
and even) are produced by M(x, v) = N(x)[v]− > N(x)[u∗] and M is continuous and
the equation has a unique solution, then the sequence in total must converge. The
case v2 < v0 can be proved the same way.

Any infinit admissible sequence produced by TM(vk+1) = TN(vk) converge to the
unique admissible solution u∗ where T (u∗) = 0.
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us

ur

ur 2+

ur 1+

ur 3+

us 1+

us 2+

us 3+

u

Figure 1: This figure shows schematically how the iterations work, with new iter-
ations along the horizontal axis. Also notice that the sequence {us, us+2, us+4, · · ·}
is monotonically decreasing wheras {ur, ur+2, ur+4, · · ·} is monotonically increasing,
converging to the same limit u∗.

3 Examples from fisheries management

In this section we exemplify the method derived in this paper by reproducing already
published results, mainly in the field of bioeconomics within fishery management and
the problem of deciding on total allowable catch (TAC) quotas. The approach is by
no means limited to this class of problems. Among others, the papers, Sandal and
Steinshamn 1998, 2000, 2001a,b, deal with models that can be suitably handled with
the procedure described in this paper.

3.1 A Northern Cod Fishery Model

In Grafton et al. 2000, the collapse of the Canadian Northern Cod Fishery was
investigated by using a model defined by the economic relations

Π(x, u) = P (u)u− C(x, u) , P (u) =
a p1 + u p0

a+ u
, C(x, u) = q

u

x
. (30)

The prices p0 and p1 are the minimum and the maximum prices and a the flexibility
parameter in the inverse demand function, q is the derived cost parameter measuring
the cost per unit output per unit biomass. The biomass is assumed to be updated
according to

ẋ = f(x) − u = r x (1 − x

K
)α − u (31)

where r is the intrinsic growth rate for the biomass and K is the stocks carrying
capacity in terms of biomass. The parameter α is measuring how much the maximum
sustainable yield (MSY) is skewed to left or right of the MSY in the logistic model
(x = 0.5K when α = 1). The problem is naturally restricted to the region X = [0,K].
Applying the definitions: (4), (5), (9), (10) and (12) we get
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M(x, u) =
a2(p1 − p0)

a+ f(x)
·
[
(f(x) − u)

(a+ u)

]2

, (32)

S(x) = Π(x, f(x)) , (33)

Πu(x, u) = p0 −
q

x
+

(p1 − p0)a
2

(a+ u)2
, (34)

µ(x) = Πu(x, f(x)) , (35)

N(x)[u] = S(x∗) − S(x) + δ p0(x− x∗) − δ ln
(
x

x∗

)

+δ (p1 − p0) a
2

∫ x

x∗

ds

(a+ u(s))2
= Ŝ(x) + δ (p1 − p0) a

2
∫ x

x∗

ds

(a+ u(s))2
. (36)

The reference state x∗δ is the solution of S ′(x) = δ µ(x) (if more than one solution
we must choose the one that maximizes the sustainable rent S). It is worth pointing
out that we have an exact formula for the feedback policy in the limit of vanishing
discounting. In this case we must interpret the optimality in a generalized sense,
e.g., the Catching-Up optimality (CU-optimality 4). This is a generalization of the
practical notion that a dollar a day is less optimal than two dollars a day and no
discounting can change that fact even the accumulated amount of dollars becomes
infinitely large. The iteration scheme Mn+1 = Nn, can be started with the static
optimal policy (Bliss policy) making the Πu(x, u0) = 0, which is the same as neglecting
the discount rate in the first iteration. Thus it gives the exact discount free solution.
We get

a2(p1 − p0)

a+ f(x)
·
[
f(x) − u1

a+ u1

]2

= Ŝ(x)

a2 (p1 − p0)

a+ f(x)
·
[
f(x) − un+1

a+ un+1

]2

= Ŝ(x) + δ (p1 − p0) a
2

∫ x

x∗
δ

ds

(a+ un(s))2

The second iteration is for all practical purposes the solution. This is the same type of
solution one would get if one used classical perturbation theory with the discount rate
as the perturbational parameter, Sandal and Steinshamn 1997a,b. In our framework
it is just a result of a particular choice of seed in the iteration scheme. Notice that
the system becomes singular when p1 = p0, signalling that only the equilibrium point
fits the equation. This is in fact what we will expect since we then know that the

4See e.g., Seierstad and Sydsæter 1999, for this and other extensions of the notion of optimality.
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Figure 2: This figure shows the function f(x) = u0 (starts at (0, 0) and ends at (1, 0),
and the approximate optimal harvests u1, u2, u3. The commen poin for all curves is
(x∗δ, u(x

∗
δ)), the equilibrium point. Absolute error after 1,2,3 iterations: 0.058, 0.00167,

0.0000577. Discount rate is 5%. Considering the curves for x < x∗δ, the lower curve is
u1, u2 is the upper curve and u3 is the middel curve. This can be seen more clearly
in the window where a short portion of these curves ar enlarged. The unique solution
u∗ is located in between u2 and u3. This demostrates that u = 1

2
(u2 + u3) is a very

good approximation.

optimal behaviour is a bang-bang policy with the switch at the equilibrium point.
The CU -optimal policy when δ → 0 is given by u = u1.

u1(x) − f(x)

a+ u(x)
= sgn (x− x∗δ)

√√√√(a+ f(x))Ŝ(x)

a2(p1 − p0)

def
= Λ(x)

u1(x) =
aΛ(x) + f(x)

1 − Λ(x)
(37)

where the signum function stems from the definition of the region A∗. The above
seed in the iterative process is only worth doing when one needs a formula for the
solution. In the numerical analysis we can start with any function in the relevant
region. However, u0 = f(x) is an excellent choice since it is a super-sub solution.
By applying the parameter values from, Sandal and Steinshamn 1997b: r = 0.3036,
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K = 3.2×106, α = 0.3587, pmin = 200, pmax = 1250, a = 0.139×106, q = 2.006×108.
We plot for the case δ = 5% the iterative solutions {u0, u1, u2, u3}.

3.2 Bluefin Tuna

In the article Implications of a nested Stochastic/Deterministic Bio-Economic Model
for a Pelagic Fishery, McDonald et al. 2001, a bioeconomic model for Bluefin Tuna
in the Southeren hemisphere is investigated. We will here illustrate our technique
implemented on the model used in the cited paper. We summarize the basics in the
following relations

Π(x, u) = γ(x)u− Γ(x)u2 − α(x) , ẋ = f(x) − u . (38)

Our iteration scheme then reads

M(x, u) = Γ(x)(u− f(x))2 ,

Πu(x, u) = γ − 2Γ(x)u ,

µ(x) = γ(x)− 2Γ(x) f(x) ,

S(x) = γ(x) f(x) − Γ(x) f(x) − α(x) ,

N(x)[u] = S(x∗δ) − S(x) + δ
∫ x

x∗
δ

γ(s)ds − 2δ
∫ x

x∗
δ

Γ(s)u(s)ds

= Ŝ(x)− 2δ
∫ x

x∗
δ

Γ(s)u(s)ds .

Hence the iterations can be explicitly calculated, giving

un+1(x) = f(x) + sgn (x− x∗δ)

√√√√ Ŝ(x)

Γ(x)
− 2δ

Γ(x)

∫ x

x∗
δ

Γ(s)un(s)ds . (39)

We define the following basic functions for the problem, which can also be found
in, McDonald et al, 2001 where a model dealing with Bluefin Tuna is discussed. We
consider the case where the Bluefin Tuna is modeled by a surplus growth function
with critical dipensation:

Π = a · u− b · u2 − d

x
, f(x) = r · (x− k) · (1 − x

K
) , (40)

where the following parameter values were used: r = 0.2246, K = 0.565 × 106,
a = 88.25, b = 9.0× 10−4, d = 1.63 × 1011, k = 0.716 × 106. In the following solution
plots we have scaled to Carrying capacity.
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Figure 3: This figure shows the function u0 = f(x) (ends at (1, 0)), and the ap-
proximate optimal harvest u1, u2, u3. The commen poin for all curves is (x∗δ, u(x

∗
δ)),

the equilibrium point. Absolute error after 1,2,3 iterations: 0.041, 0.00289, 0.000246.
Discount rate is 5%. Considering the curves for x > x∗δ, the upper curve is u1, u2 is the
lowest curve and u3 is the middel curve. The unique solution u∗ is located in between
u2 and u3. This demonstrates that u = 1

2
(u2 + u3) is a very good approximation.

The optimal solutions produced in the plots presented in these two examples are
in full agreement with the cited reference.

4 Summary and discussion

We have presented a method for solving a class of control problems. The exposition
in this work is restricted to a single state and single control situation. This kind
of modeling approach requires lumped variables for the state and policy. However,
we believe that one can be able to catch the main behavior of such systems by this
kind of model. Our philosophy is to make the models as simple as possible but
still containing the overall behavior that we want to model and investigate. The most
important feature in our method of solution is a simple, fast and accurate scheme. The
accuracy can be determined and is of course dependent of the number of iterations,
and the specific problem investigated.
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For the two examples presented here, taken from current literature, two or three
iterations are sufficient to obtain an approximate solution with sufficient accuracy.
This is visualized in Fig. 2 and Fig. 3. One basic feature in our formulation is
that the source term dependency on the solution in the iteration scheme is of order
δ where δ is the discounting rate which is normally less than 10% i.e. 0.1 in actual
number. This is one of the key features that makes the iteration scheme converge so
fast. The convergence rate can actually be investigated analytically and this analysis
brings forward this feature. We do not include this analysis in the present account
because we do not want to overburden this presentation with too much details also
because a numerical check of the accuracy is easily available and it seems to be the
rule that only very few iterations are needed. This fact that so few iterations make
a sufficiently accurate solution also offers the possibility to analytically determine an
approximate solution. This of course is a much more powerful tool for parameter
search than any numerical solution can be.
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A Details Eqs. 25

From Lemma 3, the definitions given in Eqs. ( 23) and the iteration scheme, Eq. (24)
we find

T (un+1) = (x− x∗δ) · {M(x, un+1) −N(x)[un+1]}
= (x− x∗δ) · {M(x, un+1 −N(x)[un] +N(x)[un] −N(x)[un+1]}
= (x− x∗δ) · {N(x)[un] −N(x)[un+1]}
= Tn(un) − TN(un+1) .

By definitinon ( Eq. (24)) we have TM(un+1) = TN(un) and from the above relation
T (un) = TN(un−1) − TN(un) = TM(un) − TM(un+1).
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