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Abstract

The e¤ects of discounting, stochasticity, non-linearities and maximum decay

upon an optimal corrective tax are analyzed using stochastic dynamic optimiza-

tion. Optimal corrective taxes are derived as explicit feedback control laws in

the presence of both ‡ow and stock externalities when the decay of aggregated

pollution is subject to a general stochastic process. This represents an adaptive

approach to regulation of the environment. The problem has been solved using

a non-linear Hamilton-Jacobi-Bellman equation.

The model applied is quite general in the state variable, accumulated pol-

lution, and in the control variable, production. The objective function is to

maximize expected social welfare de…ned as the sum of consumers’ and pro-

ducers’ surplus adjusted for externalities. Social welfare is not assumed to be

separable in production and accumulated pollution.

The main result is that the optimal tax is more sensitive to discounting and

non-linearities than to stochasticity.

Keywords: Global warming; ‡ow and stock externalities; dynamic correc-

tive taxes; stochastic dynamic optimisation.
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INTRODUCTION

During the last few decades there has been an increasing concern with, and interest

in, environmental matters. This can be exempli…ed through the concern about the

so-called ’greenhouse e¤ect’, which refers to global warming through emission of CO2

into the atmosphere, the thinning of the ozone layer and pollution in general.

During the last few years there has emerged an entire literature on the economics

of global warming alone. Nordhaus (1991a and 1991b) has formulated an economic

model that links emissions of greenhouse gases and climate changes and analyses the

trade-o¤ between the cost of reducing emissions and the damage from global warming.

Sinclair (1992 and 1994) and Ulph and Ulph (1994) consider the optimal time path

of a carbon tax linked to the extraction of fossil fuels as nonrenewable resources and

discuss whether this tax should increase or decrease over time. In most cases the rule

is to let the tax decrease over time in order to postpone extraction. Wirl (1994a) uses

a Nordhaus model to study the dynamic and strategic interactions between producers

and consumers of fossil energy in the presence of carbon taxes. Wirl (1994b) discusses

the more general problem of …nding a time path for taxation of energy in the presence

of ‡ow and stock externalities. Sandal and Steinshamn (1998) derive an explicit

feedback rule for an optimal corrective tax in the presence of both ‡ow and stock

externalities and use this to analyze the time path of the tax.

In this paper the e¤ects of discounting, stochasticity, nonlinearities in the decay

function and maximum decay upon the optimal tax are analyzed. The optimal tax is

derived as a feedback control law.

To …nd a closed form solution to the feedback model, is not trivial even in the

deterministic case. This problem has, however, been solved by Sandal and Steinshamn

(1998). In contrast to most of the existing literature the model is de…ned in terms of

market parameters which can be estimated as opposed to utility parameters which are
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much harder to assess. Another paper that uses market parameters is Chakravorty

et al. (1997).

In this paper both the objective function and the dynamic constraint may be

fairly general both in the control variable and in the state variable. This makes

the model distinct from the literature on dynamic programming that uses so-called

linear quadratic models with quadratic objective function and linear constraints.

THE GENERAL MODEL

The objective function is to maximize social welfare, de…ned as the sum of con-

sumers’ and producers’ surplus corrected for externalities, when the decay of the

pollution causing externalities is subject to stochasticity.

There are two types of externalities. Flow externality is de…ned as the externality

associated with production, and is hence the di¤erence between social and private

marginal costs. Stock externality is de…ned as the externality associated with the

aggregated level of the pollutant. There is a …xed level of emissions associated with

each unit produced.

A list of the major symbols and de…nitions in this article can be found in Appen-

dix. Let x denote production and a denote the aggregated level of pollution. The

maximization problem is given by

max
x¸0

E
Z 1

0
e¡rtW (x(t), a(t))dt (1)

where E is the expectation operator, and W represents welfare. For each unit pro-

duced there is a …xed level of emission, δx, and the decay of pollution is a general

function, f(a). The time change in the aggregated level of pollution is then

da = [δx ¡ f(a)] dt + σ(a)dw (2)

where σ is a general volatility function and the term dw is a standard Wiener process

(independent and identically distributed) with variance dt and zero mean. In the rest
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of this paper it is assumed that δ ´ 1 which simply is to say that production and

pollution are measured in the same units.

The welfare function is de…ned as

W (x, a) =
Z x

0
[P (z, a) ¡ Cs(z, a)]dz ¡ D(a) (3)

where P is the inverse demand function, Cs is the social marginal cost of production

and D represents the stock externality.1 In this paper we assume that P (x, a) ¡
Cs(x, a) is a decreasing function of production.

The possible a-dependence in the demand function may, for example, re‡ect con-

sumers’ concern for the environment. If it is present, we expect the derivative Pa < 0

as a higher level of accumulated pollution, if anything, will shift the demand curve

for the polluting product down. Possible a-dependence in the marginal cost function

simply re‡ects that the costs of production may increase in a polluted environment.2

The a-dependence in P and Cs may also be skipped completely.

The ‡ow externality, which is associated with production, x, is Cs ¡ Cp. Here Cp

denotes the private marginal costs. The a-dependence in the demand, if it exists, rep-

resents possible a-dependence in the ‡ow externality and must not be confused with

the stock externality, D, which comes in addition. Even though the ‡ow externality

associated with the a-dependence in the inverse demand and possibly in marginal cost

may be weak dependence, it may have a signi…cant e¤ect on the optimal feedback

policy.

A competitive economy is assumed throughout this paper. Therefore private mar-

ginal costs represent the supply curve. In market equilibrium the supply curve rep-
1Functional dependence of the variables is often skipped in order to make the visual appearance

of the equations clearer. The functional dependence is always indicated when new variables are

introduced and in the symbol list in the appendix.
2It is straightforward to let marginal costs depend on a as well, but this does not seem relevant

in the present global-warming context.
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resents the producer price and the demand curve represents the consumer price. As

we shall soon see, these two may deviate due to the corrective tax.

The approach taken here is that the problem is solved for optimal production in

the stochastic environment. The Pigouvian tax needed to achieve this production is

then calculated through the market parameters, and it is assumed that there is no

uncertainty in the market. In this paper an ad valorem tax is applied, de…ned as

θ =
P (x, a) ¡ Cp(x, a)

Cp(x, a)
. (4)

Dynamic programming (in continuous time and state space is used to solve the sto-

chastic optimal control problem (SOC) given by (1) and (2); see, for example, Kamien

and Schwartz (1991). The Hamilton-Jacobi-Bellman (HJB) equation associated with

our SOC for the value function

V (t, a) = max
x¸0

E
Z 1

t
e¡r(s¡t)W (x(s), a(s))ds

is given by

Vt +max
x¸0

©
e¡rtW (x, a) + Va ¢ (x ¡ f (a))

ª
+

1
2
σ2(a)Vaa = 0. (5)

It will now be useful to de…ne a new variable ¤(a) implicitly through

V (t, a) = e¡rt¤(a) ¡ 1 ¡ e¡rt

r
K (6)

where K is a constant. The constant K depends on r such that lim
r!0

K = K0, and

lim
r!0

¤(a) = ¤0(a). Hence (6) is valid also when r ! 0 as V ! +¤0(a) + tK0. It is

seen that ¤(a) = V (0, a). An alternative interpretation of ¤ is therefore the initial

value. The de…nition in (6) inserted into (5) implies

K = ¡r¤(a) + max
x¸0

·
W + ¤0 ¢ (x ¡ f ) +

1
2
σ2¤00

¸
. (7)

All terms in this expression have interpretation. The term r¤ is the return on the

initial value. The …rst term in square brackets, W, is the return on current activity
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and ¤0 ¢ (x ¡ f ) is the loss/gain associated with changes in a. The last term 1
2σ

2¤00

is the change in welfare due to the stochasticity. From this the constant K can be

interpreted as the net bene…t from the total optimal activity. One should not be

surprised to …nd that K = 0 can be chosen for our problem. The optimal value may

be set to zero for extremely high stock of pollution. In this region we would expect

the value function to be ‡at. Eq. (7) then becomes of principle form for the viscosity

solution concept which represents the unique economic solution for many autonomous

SOC formulated problems. We may always choose K = 0. This is just the following

formal transformation ¤ ¡! ¡1
r K + ¤. It re‡ects that the HJB-equation stated in

eq(5) is invariant under a constant change in the value function (it only contains the

derivatives of the value function).

r¤(a) = max
x¸0

·
W + ¤0 ¢ (x ¡ f ) +

1
2
σ2¤00

¸
(8)

The optimal feedback control, x = G(a,¤0(a)) = X(a), is given partly by positive

parts of the unique solution of the algebraic equation P + ¤0 = Cs (inner optimum)

and partly by x = X(a) = 0 (corner solution).

Equation (8) is the tool needed for …nding the optimal corrective tax both in

special and more general cases. It is solved and the optimal production x = X(a)

is determined. This feedback production is then substituted into the ad valorem

tax expression given by eq(4). Our numerical procedure follow closely the procedure

outlined in Kushner and Dupois (2001). The eq(8) is formally discretized in order to

get the local consist probabilities in a controlled Markov Process that converges to the

viscosity solution of our problem. A thorough exposition of the concept of viscosity

solution and controlled Markov Processes can be found in Fleming and Soner (1991).
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NUMERICAL EXAMPLE

In this section we look at a speci…c numerical example based on the problem of

global warming due to accumulation of CO2 in the atmosphere. Meteorological data

have been provided by the ”Nansen Environmental and Remote Sensing Center” in

Bergen, Norway. CO2 can be measured in parts per million carbon (p.p.m.) or

gigatonnes CO2 (Gt-CO2) which will be used here. The relationship is approximately

1 p.p.m. ' 7.8 Gt-CO2. The numerical speci…cation of the meteorological model is

based on data from 1997.

Table 1. Meteorological data.

p.p.m. Gt-CO2

Pre-industrial a 280 2187

Current a 360 2812

Current _a 1.5 11.7

Current x 2.8 21.9

Current f (a) 1.3 10.2

The speci…cation of the economic model and the damage and decay function is as-

sumed to be as follows:
P (x) = 15 ¡ 0.64 ¢ x,

Cp(x) = 1 + 0.05 ¢ x,

Cs(x) = 1 + 0.12 ¢ x,

D(a) = 0.000005 ¢ a2,

f(a) = β¢a
a+γ

where x is measured in a-units; that is, δ in (2) is set equal to one. These parameters

are calibrated based on the assumption that the private marginal cost is normalized

to one. A price 15 times this level will choke all demand, and the market equilibrium
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without any policy measures corresponds to the present emission level.

The speci…cation of demand and supply functions are based on some assumptions

about elasticities. If current production is 22, this implies a demand elasticity of -0.16

and a supply elasticity of 1.9. This is in accordance with Jorgenson and Wilcoxen

(1990) who state that short-term demand elasticities are about one tenth of the long-

term, and probably lie between -0.1 and -0.2. As this model is dynamic and adaptive,

only short-term elasticities are of interest. The supply elasticity is in accordance with

Burniaux et al. (1992) who state that supply elasticities from countries within OPEC

vary between one and three.

The level of CO2 is measured from the estimated pre-industrial level 2187. In other

words, the current level is 625 (= 2812 ¡ 2187). This makes it possible to make the

natural assumptions that f (0) = 0 and D(0) = 0.

From Table 1 it is seen that the physical change is slow; f (a)/a today is 10.2/625

= 0.0163. Optimal policies will be quite sensitive to discount rates higher than this,

that is higher than 1.6 %. In this example however we have chosen to concentrate on

zero discounting as almost any discount rate will imply that the future is neglected

compared to the present. In the case of global warming, where the harmful e¤ects

will take place some time in the future, it is important that these e¤ects are not ruled

out by a high discount rate.

The parameters in the f-function, β and γ, have been calibrated such that f (a) goes

through f(0) = 0 and the present situation f (625) = 10.2. The functional form of f

makes it monotonically increasing, concave and f (a) ! β as a ! 1. The parameter

β is interpreted as the maximum level of decay and can also be used to determine the

degree of nonlinearity. Small values of β, that is β close to the present observed decay,

implies a highly non-linear function. On the other hand, large values of β makes the

decay function almost linear for realistic values of a. Hence the parameter β can be

used to test how sensitive the optimal tax is to di¤erent degrees of non-linearity.
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Two σ-functions have been used: the linear σ(a) = σ0a and the non-linear σ(a) =

σ0f (a) which mimics the decay-function, and all uncertainty is in the magnitude of the

decay. Further, it has been assumed that the stock externality is D(a) = 0.000005 a2.

The results are illustrated in Figures 1 - 6.

Figure 1 illustrates the deterministic part of the decay-function and how the degree

if non-linearity varies with di¤erent values of β. Figure 2 illustrates how these di¤erent

values of β a¤ect the optimal ad valorem tax. It is seen that the optimal tax is quite

sensitive to the degree of non-linearity in the decay function.

Figure 3 illustrates the e¤ect of discounting. Here two values of β have been used:

β = 12 (highly non-linear) and β ! 1 (almost linear). Then tree values for the

discount rate have been used: δ = 0.5 %, 1.5 % and 3 %. The important thing to

note is that the optimal tax is quite sensitive to changes in the discount rate, and

more so with non-linear decay than with linear.

Next we look at how the results are a¤ected by stochasticity. Figure 4 illustrates

this with linear decay (β ! 1). In this case we only have a linear σ-function.

It is seen that the resulting optimal tax is not very sensitive to di¤erent values of

σ0. Stochasticity will only have any e¤ect when it is signi…cantly larger than the

deterministic part, and this supposition is not supported by data. Figure 5 looks

at the e¤ect of stochasticity with non-linear decay and linear σ(a) whereas Figure 6

looks at the situation with non-linear decay and non-linear σ(a). In both cases the

e¤ects of stochasticity are almost negligible for all reasonable combinations of σ0 and

a.

These examples are only meant for illustrative purposes. However, noting how the

expected range for the optimal tax varies with changes in the volatility function and

in the decay function emphasizes the importance of performing quantitative studies

in order to estimate the input parameters in this model.
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SUMMARY

The primary purpose of this paper has been to investigate the e¤ects of discounting,

stochasticity, nonlinearities in the decay function and maximum decay upon and

optimal corrective tax in the presence of both ‡ow and stock externalities. Using

stochastic dynamic optimization the optimal ad valorem tax is given as a feedback

control law. Sensitivity analysis has been performed with respect to stochasticity,

maximum decay and discounting.

This paper brings in ideas used in the real option theory to environmental issues

without using the limitations of the discrete choice found in the applications of real

option theory that all boil down to more or less simple stopping problems. A sto-

chastic, dynamic optimization problem is solved which addresses directly the often

raised issues of di¤erent kinds of options related to reducing greenhouse gas emissions.

As far as we know, this has so far largely been addressed in much simpler models,

e.g. two periods instead of continuous time and simple stopping problems instead of

continuous decisions.

The main conclusion is that optimal corrective taxes are quite sensitive to the

assumptions made about discounting and nonlinearities in the decay of pollution

but not very sensitive to the degree of stochasticity for reasonable combinations of

pollution level and stochasticity. The implication of this is that future e¤ort is better

put on empirical studies of the decay function than on advanced stochastic models as

long as the stochastic process itself is poorly known.

APPENDIX. LIST OF MAJOR SYMBOLS AND DEFINITIONS.

This appendix gives brief de…nitions of some of the major symbols. For more

thorough de…nitions, see the text.

x : Some product causing emissions
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a : The stock pollutant measured in physical units

θ : A corrective ad valorem tax

D(a) : Disutility caused by the presence of the stock pollutant; that is the stock

externality

f(a) : The deterministic part of the decay function for pollution

σ(a) : Volatility function

dw : Standard Wiener process increment

P (x, a) : Inverse demand function for x

CP (x) : Private cost of producing x

CS(x): Social cost of producing x

W (x, a) =
R x
0 [P (z, a) ¡ Cs(z)] dz ¡ D(a) : Social welfare from the production and

consumption of x

V (t, a) : Value function

¤(a) : Variable de…ned through V (t, a) = e¡rt¤(a) ¡ 1¡e¡rt

r K

K, K0: Constants
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Figure 1. 
The decay model given by )/()( 0 kaaaaf ββ +−=  where )(/ 00 afak =  for different values 
of β . Decay today in percentage of the maximum decay level β . 
 
 
 



 
 
 
Figure 2. 
Effects of different values of β  upon the optimal tax for the deterministic case with 1.5 % 
discount rate. Decay today in percentage of the maximum decay level β . 
 
 



 
 
 
Figure 3. 
Effects of different values of  the discount rate upon the optimal tax in the deterministic case 
with two different values of ß (ß = 12 and ∞→β ). 
 
 



 
 
 
Figure 4. 
Effects of the stochasticity upon the optimal tax with 1.5 % discount rate in the case of a 
linear decay model ( ∞=β ) and linear volatility, aa 0)( σσ = .  
 
 



 
 
 
Figure 5 
Effects of the stochasticity upon the optimal tax with 1.5 % discount rate in the case of a low 
level of maximum decay ( 12=β ) and linear volatility, aa 0)( σσ = .  
 
 
 



 
 
 
Figure 6. 
Effects of the stochasticity upon the optimal tax with 1.5 % discount rate in the case of a low 
level of maximum decay ( 12=β ) and nonlinear volatility, )()( 0 afa σσ = .  
 


