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Abstract

Risk sharing resulting in pooling of risk is considered. First pooling
is discussed from the perspective of life and pension insurance. Second
we take the perspective of Pareto optimal risk sharing, originating
from a model introduced by Karl Borch in the late 50ties, and discuss
when pooling may result, and also what is needed for pooling not to be
optimal. Finally we illustrate by some examples, including a limited
liability partnership.
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Introduction

Pooling of risk may roughly be taken to mean the following: Consider a
group of I individuals, each one facing a certain risk represented by a random
variable X;, i € Z = {1,2,... ,I}. The individuals then decide to share the
risks between themselves, rather than facing them in splendid isolation. Let
the risk confronting individual ¢ be denoted by Y; after the exchange has taken
place. Normally Y; will be a function of X = (X, X, ..., X;). We call this
pooling of risk if the chosen sharing rule is of the form Y;(X;, Xo, ..., X;) =
Yi(Xy), where X, := Zle X;, i.e., the final portfolio is a function of the
individual risks X3, Xy, ..., X7 only through their aggregate Xj,.

In this paper we want to identify situations where pooling typically plays
an important role.



Life and Pension Insurance

Life and pension insurance dates back several hundred years, and is one
important form of risk sharing where pooling is essential. In some of the
extant literature, however, where different modern contracts are analyzed
such as unit linked contracts, defined benefit based pension plans, defined
contribution based pension plans, rate of return guarantees and the like, the
simple idea of pooling seems to be more or less forgotten. In much of this
literature idiosyncratic risk is ignored, which is surprising, since this is the
rationale behind life insurance and pensions.

In order to explain the idea very briefly, consider a group of individuals,
all of the same age z, each paying a certain amount to a fund, managed by a
clerk. At the age of retirement, a fixed amount is paid back each year from
the fund to the members of the group. As time goes, the amount received by
the surviving individuals increases year by year, since the same fixed amount
will have to be divided by an ever smaller number of individuals.

Here we notice several interesting features: First the members will enjoy a
higher “interest rate” than the riskfree rate r; at time ¢, because of mortality.
Note that this is a simple consequence of pooling, allowing the individuals
to gamble on their remaining lifetimes. Second, payments are received when
needed, and only then, i.e., only when the member is alive. In conclusion,
welfare at large is increased in a society where pooling is allowed, compared
to a society where this is not the case, ceteris paribus.

We may of course quantify the addition to the interest rate r; from pooling
in life and pension insurance. Let p,.; > 0 be the mortality rate at time
t of an individual who pooled his risk with others at age . Then one unit
of investment grows to 1 - elo (rsthats)ds 1y time n provided the recipient is
alive then, assuming continuous compounding, which is clearly larger than
1-elorads the result without pooling.

Thus pooling is simply a good idea in itself, and there should be no need
for any additional government support, such as tax crossubsidization or other
incentive mechanism to motivate people to engage in such arrangements.

Early references to the economics of life and pension insurance can be
found in e.g., Hakanson (1969) and Yaari (1964-65).

Actually pooling permeates most of insurance, as our next example shows.

Reinsurance

Consider the situation in the introduction: Let the individuals be interpreted
as reinsurers, having preferences >; over a suitable set of random variables.



These preferences are represented by expected utility, meaning that X =; V
if and only if Eu;(X) > Eu,;(Y). We assume smooth utility functions; here
ui(w) > 0,u(w) <0 for all w in the relevant domains, for all i € Z.

We suppose the agents can negotiate any affordable contracts among
themselves, resulting in a new set of random variables Y;,7 € Z, representing
the possible final payout to the different members of the group, or the final
portfolio.

In characterizing reasonable sharing rules, we concentrate on the concept
of Pareto optimality:

Definition 1 A feasible allocation Y = (Y1,Ys, ... ,Y7) is called Pareto op-
timal if there is no feasible allocation Z = (Zy, Zs, ... , Z;) with Eu,(Z;) >
Eu,(Y;) for all i and with Eu;(Z;) > Eu;(Y;) for some j.

Consider for each nonzero vector A\ € R! of agent weights the function
ux(+) : R — R defined by

1 I
uy(v) =: sup Z)\lul(zz) subject to Zzz < o. (1)
i=1

(#15---521) =1

As the notation indicates, this function depends only on the variable v,
meaning that if the supremum is attained at the point (yi,...,ys), all these
yi = yi(v) and uy(v) = 2 Nui(yi(v)). Tt is a consequence of the Im-
plicit Function Theorem that under our assumptions, the function wuy(-) is
two times differentiable in v. The function wuy(v) is often called the supcon-
volution function, and is typically more ”well behaved” than the individual
functions u;(-) that make it up.

The following fundamental characterization is proved using the Separat-
ing Hyperplane Theorem (see e.g., Aase (2002))

Theorem 1 Suppose u; are concave and increasing for all i. Then Y is a
Pareto optimal allocation if and only if there exists a nonzero vector of agent
weights A € RL such that Y = (Y1,Ys,...,Y]) solves the problem

(Z17-" 7ZI) i

I I
Euy(Xy) :=  sup Z)\lEul(Zl) subject to ZZi < Xuy. (2
i=1 i=1

Here the real function uy : R — R satisfies u\, > 0, u < 0.

Notice that since the utility functions are strictly increasing, at a Pareto
optimum it must be the case that 25:1 Y, = Xu.

We now characterize Pareto optimal allocations under the above condi-
tions. This result is known as Borch’s Theorem:



Theorem 2 A Pareto optimum Y is characterized by the existence of non-
negative agent weights A1, Ao, ..., A\; and a real function A : R — R, such
that

Muy (Y1) = Aaug(Ya) = .o = Ay (Yr) = uh (X) a.s. (3)

In proving the above theorem we have used the Saddle Point Theorem
and directional derivatives in function space.

Existence of Pareto optimal contracts has been treated by DuMouchel
(1968). The requirements are, as we may expect, very mild.

As a consequence of this theorem pooling occurs in a Pareto optimum.
Consider agent i: His optimal portfolio is Y; = (u}) ' (u}\(Xas)/A;), which
clearly is a function of (Xj, Xy, ... X)) only through the aggregate X,,. Here
(u})~'(-) means the inverse function of u}, which exists by our assumptions.
Pooling is simply a direct consequence of (2) in Theorem 1. Let us look at
an example.

Example 1: Consider the case with negative exponential utility functions,
with marginal utilities u}(z) = e~#/% i € T, where a; ' is the absolute risk
aversion of agent 7, or a; is the corresponding risk tolerance. Using the above
characterization (3), we get

e Yil4 =yl (X ), a.s., iel.

After taking logarithms in this relation, and summing over i, we get
I I
uh (X)) = eE=Xam)/A a.s. where K = Zai In \;, A= Zai.
i=1 i=1

Furthermore, we get that the optimal portfolios are

i K .
aZXManZ-, where b; = a;1n \; _aiZ’ 1€ 1.

Note first that the reinsurance contracts involve pooling. Second, we see that
the sharing rules are are affine in X,;.

The constant of proportionality a;/A is agent i’s risk tolerance a; relative
to the group’s risk tolerance A. In order to compensate for the fact that the
least risk-averse agent will hold the larger proportion, zero-sum side payments
b; occur between the agents. O

The other example where the optimal sharing rules are affine is the one
with power utility with equal coefficient of relative risk aversion throughout
the group, or the one with logarithmic utility, which can be considered as a
limiting case of the power utility function. Denoting agent i’s risk tolerance
function by p;(z;), the reciprocal of the absolute risk aversion function, we
can in fact show the following (see e.g., Wilson (1968)):

Y, =

4



Theorem 3 The Pareto optimal sharing rules are affine if and only if the
risk tolerances are affine with identical cautiousness, i.e., Y;(x) = A;+ Bz for
some constants A;, B;, 1 € T, Zj A; =0, Zj B; =1, & pi(z;) = a; + By,
for some constants 3 and «;, 1 € L.

No Pooling

Let us address two situations when we can not expect pooling to occur.

(i) If the utility functions of the insurers depend also on the other insurers’
wealth levels, i.e., u = u(xy,...,z;), pooling may not result.

(ii) Suppose the situation does not give affine sharing rules as in the above
example, but one would like to constrain the sharing rules to be affine, i.e.,
of the form

I
Vi=) bisXp+b, i=12...1
k=1

Here the constants b;; imply that the rule keeps track of who contributed
what to the pool. In general the constrained optimal affine sharing rule
will not have the pooling property, which of course complicates matters.
However, these constrained affine sharing rules are likely to be both easier to
understand, and simpler to work with than nonlinear Pareto optimal sharing
rules.

Some examples

The above model is formulated in terms of a reinsurance syndicate. Several
such syndicates exist in the US, in Europe the Lloyds of London is the most
prominent example.

However, other applications are manifold, since the model is indeed very
general. For instance,

e X; might be the initial portfolio of a member of a mutual insurance
arrangement. The mutual fire insurance scheme which still can be found in
some rural communities may serve as one example. Shipowners have formed
their P& I Clubs, and off shore oil operators have devised their own insurance
schemes, which may be approximated by the above model.

e X; might be the randomly varying water endowments of agricultural
region (or hydro-electric power station) i

e X; might be the initial endowment of individual 7 in a limited liability
partnership;



e X; could stand for nation i’s state-dependent quotas in producing di-
verse pollutants (or in catching various fish species);

e X; could account for uncertain quantities of different goods that trans-
portation firm 7 must bring from various origins to specified destinations;

e X; could be the initial endowments of shares in a stock market, in units
of a consumption good.

Consider an example of a limited liability partnership. A ship is to be
built and operated. The Operator orders the ship from the Builder, and
borrows from the Banker to pay the Builder. The cautious Banker may
require that the operator consults an Insurer to insures his ship. Here we
have four parties involved in the partnership, and it is easy to formulate a
model of risk sharing that involves pooling, and where the above results seem
reasonable. More along these lines can be found in e.g., Borch (1979).

Conclusion

A short review of pooling has been presented. We have given an informal
discussion of pooling in life insurance, and also a more concrete discussion of
pooling in reinsurance. Since many of the results in reinsurance carry over
also to direct insurance, the results are valid in a rather general setting.

Furthermore, we have indicated situations of risk sharing outside the field
of insurance, where the model seems appropriate.

The pioneer in the field is Karl Borch, see e.g. Borch (1960a), (1960b),(1962)
and many other articles by Borch (he published 150 papers, among them 3
books). See also Bithlmann (1980) for making Borch’s results better known
to actuaries, and also improving some of his original proofs. Lemaire (1990),
(2004) mainly review the theory. Gerber (1978), Wyler (1990) and Aase
(1993) review and further expanded the theory of optimal risk sharing as
related to pooling. Aase (2002) contains a review of the theory, and also
gives some new results on game theory, and moral hazard in the setting of
insurance, presenting modern proofs of many of the classical results.
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