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1 Introduction

Price changes and dividend payments of stocks induce wealth dynamics
among investors using different investment strategies (portfolio rules) in fi-
nancial markets. These dynamics act as a natural selection force among the
portfolio rules: some prove to be successful and “survive,” the others fail and
"become extinct.” The purpose of the present paper is to investigate finan-
cial dynamics from this evolutionary perspective with the view of identifying
evolutionarily stable (surviving) investment strategies.

Evolutionary ideas have a long history in the social sciences going back
to Malthus, who played an inspirational role for Darwin (for a review of the
subject see, e.g., Hodgeson [16]). A more recent stage of development of these
ideas began in the 1950s with the publications of Alchian [1], Penrose [22]
and others. A powerful momentum to work in this area was given by the in-
terdisciplinary research conducted in the 1980s and 1990s under the auspices
of the Santa Fe Institute in New Mexico, USA, where researchers of differ-
ent backgrounds—economists, mathematicians, physicists and biologists—
combined their efforts to study evolutionary dynamics in biology, economics
and finance; see, e.g., Arthur, Holland, LeBaron, Palmer and Taylor [4],
Farmer and Lo [14], LeBaron, Arthur and Palmer [18], Blume and Easley [6],
and Blume and Durlauf [5].

While inspired by the above studies, especially by the pioneering work
of Blume and Easley [6], our approach to evolutionary finance is different
from theirs both in the modeling frameworks and in the specific problems
analyzed. In particular, we deal with models based on random dynamical
systems, rather than on the conventional general equilibrium settings where
agents maximize discounted sums of expected utilities. The emphasis is on
finding explicit formulas for evolutionarily stable portfolio rules with the view
of making the theory closer to practical applications. In contrast to a number
of the papers mentioned above, we use mathematical modeling, rather than
computer simulations, to justify our conclusions.

We consider a dynamic stochastic model of a financial market in which
there are I investors (traders) and K traded assets (securities). Asset supply
is constant over time. Each trader chooses a strategy prescribing to dis-
tribute, at the beginning of each time period t = 1,2, ..., his/her investment
budget between the securities according to fixed proportions. Assets pay
dividends, that are random and depend on a discrete-time stochastic process
of exogenous “states of the world.”

The prices of the securities at each date are derived endogenously from
the equilibrium condition: aggregate market demand of each asset is equal
to its supply. Each investor’s individual demand depends on his/her bud-



get and investment strategy. The latter is fixed (the investment proportions
are constant over time). The former depends on time and random factors.
The investment budget has two sources: the dividends paid by the assets
and capital gains. These two sources form investor’s wealth, which is par-
tially consumed and partially reinvested at each time period. The invest-
ment /consumption ratio is fixed, and it is supposed to be the same for all
the traders.

We note that the class of fixed-mix, or constant proportions, strategies
we consider in this work is quite common in financial theory and practice;
see, e.g., Perold and Sharpe [23], Mulvey and Ziemba [19], Browne [8] and
Dempster [10, 11].

The strategy profile of the investors determines the “ecology” of the mar-
ket and its random dynamics over time. In the evolutionary perspective,
survival or extinction of investment strategies is governed by the long-run
behavior of the relative wealth of the investors, which depends on the com-
bination of the strategies chosen. A portfolio rule (or an investor using it)
is said to survive if it accumulates in the limit a positive fraction of total
market wealth. It is said to become extinct if the share of market wealth
corresponding to it tends to zero.

An investment strategy, or a portfolio rule, is called evolutionarily stable
if the following condition holds. If a group of investors uses this rule, while
all the others use different ones, those and only those investors survive who
belong to the former group. If this condition holds regardless of the initial
state of the market, the investment strategy is called globally evolutionarily
stable. If it holds under the additional assumption that the group of investors
using other portfolio rules (distinct from the one we consider) possesses a
sufficiently small initial share of market wealth, then the above property of
stability is termed local.

We prove that among all fixed-mix investment strategies, the only globally
evolutionarily stable portfolio rule is to invest according to the proportions
of the expected dividends. This recipe is similar to the well-known Kelly’s
principle of “betting one’s beliefs.” The present paper contributes to that
field of studies which originated from the pioneering work of Shannon'! and
Kelly [17]—see Breiman [7], Thorp [24], Algoet and Cover [2|, Hakansson
and Ziemba [15] and references therein. Most of the previous work was
concerned with models where asset prices were given exogenously, or where

!Although Claude Shannon—the famous founder of the mathematical theory of
information—did not publish on investment-related issues, his ideas, expressed in his lec-
tures on investment problems, should apparently be regarded as the initial source of that
strand of literature which we cite here. For the history of these ideas and the related
discussion see Cover [9)].



the analysis was based on a reduction to such models [6]. Our aim is to obtain
analogous results in a dynamic equilibrium setting, with endogenous prices.
Intermediate steps towards this aim were made in the previous papers (3] and
[12]. Those papers dealt with a special case of “short-lived” assets. Here, we
extend the results to a model with long-lived, dividend-paying assets and thus
achieve the long-sought goal of providing a natural and general framework
for this class of results.

The structure of the paper is as follows. Section 2 provides a rigor-
ous description of the model, a brief outline of which was given above. In
Section 3, we formulate and discuss the main result. Sections 4-6 develop
methods needed for the analysis of the model under consideration. Section 7
completes the proof of the main theorem based on the auxiliary results of
the foregoing part of the paper. The Appendix contains a technical lemma
used in this work.

2 The model

There are I > 2 investors (traders) acting in a market where K > 2 different
risky assets, or securities, are traded. Total amount of each security k =
1,..., K in the market is constant in time and normalized to 1. At each
date t = 1,2,..., the assets k = 1, ..., K pay dividends Dg(s;), where s; is
the state of the world at date t. The states of the world si, s9,... form a
sequence of independent identically distributed random elements with values
in a set S. The set S is supposed to be finite, and, for each s € S, the
probability that s; = s is strictly positive. The functions Di(s), k =1, ..., K,
are non-negative, their sum with respect to k is strictly positive for each s:

K
> "Di(s) >0, s€S, (1)
k=1
and
EDy(s)) >0, k=1,.., K, (2)

where “E” stands for the expectation with respect to the underlying proba-
bility measure P.

Each investor i chooses an investment strategy (portfolio rule) character-
ized by a non-negative vector

A= (A}, )



such that
Mo+ X =1

The set of such vectors—the unit simplex in the K-dimensional space RX—
will be denoted by AX. The numbers A indicate the proportions according to
which investor i distributes his/her budget between the assets k = 1, ..., K.
These proportions remain the same over time, so that we deal here with
simple, or fired-miz, investment strategies. Throughout this paper we will
consider only those portfolio rules (Xi, ..., \%) which are completely mized,
ie, A\t >0 foreach k=1,..K.

Asset prices pia, ..., P,k at each time period t are determined by the
equilibrium condition: demand equals supply. Total amount invested (by all
the traders) in asset k at date t equals

I
<)‘ka bt> = Z A%bia
=1

where bi is the trader i’s investment budget at date t and b, = (b}, ...,b]).
Equality

<)‘k 3 bt>
Dtk

=1

3

expressing the fact that demand of asset k is equal to its supply, gives the
formula for the equilibrium price of asset k£ at date ¢:

Pt = (ks by)- 3)
Investor ¢ with budget b, distributing it between the assets according to
the proportions \i, ..., \i, purchases
th = =
Dk <)‘ka bt>

units of asset k at date ¢. The number xik is equal to the amount of money
Aib: investor ¢ spends for purchasing security k divided by the price p; =
Ak, by) of this security. Thus the vector

i

Ty = (xi,la "'axi,K)

is the portfolio of investor i at date t. (Here, positions xik of the portfolio
z¢ are measured in terms of “physical units” of assets.)

S



At the beginning of the next time period t+ 1, investor ¢ obtains dividends
from the portfolio z¢ resulting in the amount

e bl
ZDk St+1)Tk = ZDk St41) 7y O, be)

Trader ¢’s budget at date ¢t + 1 used for purchasing assets is as follows:

b§+1 = Pw§+1a (5)
where
K K
Wiy = ZPtH,kxz,k + ZDk(3t+l)xz,k' (6)
k=1 k=1

The first sum in (6) expresses the value of the portfolio z¢ in terms of the
prices piy1 prevailing at date ¢ + 1. The second sum is the amount of
dividends obtained from the portfolio zi. Trader i’s wealth wi,, is divided
between investment and consumption in the proportions p and 1 — p. The
number p € (0,1) is given: 1 — p is the consumption rate—the same for all
the investors. The amount b},, = pwj,, is invested into risky assets, while
the sum (1 — p)w},, is consumed.

We suppose that the consumption rate is the same for all the market
traders because we are mainly interested in comparing the long-run perfor-
mance of investment strategies. This can be done only for a group of traders
having the same consumption rate. Otherwise, a seemingly lower perfor-
mance of a strategy may be simply due to a higher consumption rate of the
investor.

Denote by W; the total market wealth at date t:

I

i

W, = g wy.
i=1

Consider the relative wealth r¢ of investor i, i = 1, ..., I, at date t:

, wi
ri=—t,
t Wt
We are interested in the long-run behavior of the relative wealth, i.e. in the
asymptotic properties of the sequence of vectors r, = (rtl, ...,rtI ) as t — 0.
To analyze these properties, we will derive equations allowing to compute



the vector ;1 based on the knowledge of the vector r; and the state of the
world s;,; realized at date t + 1. By using the formulas (4) and

Ptk = (N by1) = p(Ak, W) [wy = (wtl, ath)],
(see (3)), we substitute the values of z} , and p;x into (6), which yields
Akw;

Wi = D lpe wisa) + Duloa) 70 (7)

By summing up these equations over ¢ =1, ..., I, we obtain

K I o K
Al
Werr = > _ [0, weet) + Dk($t+l)]% = pWer1 + Y Di(se41)-
k:l ’ kzl
This leads to the formula
_ D(s441)
I/I/t-l-l - 1— 0 3 (8)

where

D(st11) = ZDk(3t+l) (>0)

is the sum of the dividends of all the assets. Dividing both sides of equation
(7) by Wiy1 and using formula (8), we find

Dy(st41), Mwi/ Wy
D(3t+1) <>\k,wt>/VVt.

7":'+1 = Z[p<)‘k,7't+l> +(1—p)

k=1

Thus we arrive at the system of equations:

K .
. AZ ,’,.Z .
i = D[P ) + (1= ) Balsusn)| T i =1 (9)
k=1 )
where
Dy (st41)
R =— " k=1 .. K
k(st-i-l) D(St+1) ’ 9 3 3

are the relative dividends of the assets k = 1,..., K. It can be shown (see
Section 4 below) that, for any 7, = (r},...,r!) € Al and any s,,; € S, this
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system of equations has a unique solution 7,,; > 0. We have r,.; € Al
which can be verified by summing up equations (9) and using the fact that

K
ZRk(s) =1,s€Ss.
k=1

We will denote the solution 741 to system (9) (as a function of s;1; and
r¢) by F(s441,7¢). The mapping F(s;i1,) transforms A’ into A’. Thus we
deal here with a random dynamical system

Ti41 = F(3t+1, Tt) (10)

on the unit simplex Af. We will assume that a strictly positive non-random
vector 79 € Al is fixed. Starting from this initial state, we can generate a
path (trajectory)

ro,71(s%), ra(s?), ...
of the random system (10) according to the formula
Tir1(s1) = F(sp41,m(s)), t=10,1, ..,
where
st = (51, ..., 8¢)-

(If t = 0, we formally write ro = 70(s°) having in mind that g is a constant.)

Remark. The model we have described was proposed in [13]. Its presen-
tation in this paper is slightly different from that in [13]. (In particular, we
here write p in place of 1 — A\g and A instead of A% /(1 — X¢) in [13].) In the
limit as p — 0, the model reduces to the one studied in [12]. In particular,
if p = 0, the random dynamical system described by equations (9) coincides
with that examined in [12].

3 The main result

We examine the dynamics of the relative wealth 7!, governed by equations
(9), from an evolutionary perspective. We are interested in questions of
“survival and extinction” of portfolio rules. We say that a portfolio rule
Xo= (M) ..., X%) (or investor 4 using it) survives with probability one in the
market selection process (9) if, for the relative wealth r! of investor i, we have
lim; o ¢ > 0 almost surely. We say that \* becomes extinct with probability
one if lim;_,, 7! = 0 almost surely.
A central role in this work is played by the following definition.

8



Definition 1 A portfolio rule A = (Ay, ..., Ak) is called globally evolution-
arily stable if the following condition holds. Suppose, in a group of investors
i=1,2,...,J (1< J<1I), all use the portfolio rule A\, while all the others,
i =J+1,...,I use portfolio rules X\ distinct from \. Then those investors
who belong to the former group (i = 1,...,J) survive with probability one,
whereas those who belong to the latter (i = J +1,...,1) become extinct with
probability one.

In the above definition, it is supposed that the initial state ry in the
market selection process governed by equations (9) is any strictly positive
vector 1 € Al. This is reflected in the term “global evolutionary stability.”
An analogous local concept (cf. [13]) is defined similarly, but in the definition
of local evolutionary stability, the initial market share rf*! + ... 4+ r] of the
group of investors who use strategies \i distinct from ) is supposed to be
small enough.

Our main goal is to identify that portfolio rule which is globally evolu-
tionarily stable. Clearly, if it exists it must be unique. Indeed if there are
two such rules, A # X, we can divide the population of investors into two
groups assuming that the first uses A and the second \. Then, according
to the definition of global evolutionary stability, both groups must become
extinct with probability one, which is impossible since the sum of the relative
wealth of all the investors is equal to one.

Define

X = (AL AY), XM= ERy(s), k=1,.., K,

so that Al,..., Ak are the ezpected relative dividends of assets k = 1,..., K.
The portfolio rule (investment strategy) A* is called the Kelly portfolio rule.
It prescribes to invest in accordance with the principle of “betting one’s
beliefs,” as formulated in the pioneering paper by Kelly [17], for further
studies in this direction see Breiman [7], Thorp [24], Algoet and Cover [2]
and Hakansson and Ziemba [15].

Recall that, according to a convention made in Section 2, we consider
in this paper only completely mixed portfolio rules. Therefore the vectors
A and A\’ involved in Definition 1 are supposed to be strictly positive. The
Kelly rule is completely mixed by virtue of assumptions (1) and (2).

Throughout the paper, we will assume that the functions R;(s), ..., Rx(s)
are linearly independent (there are no redundant assets).

The main result of this paper is as follows.

Theorem 1 The Kelly rule is globally evolutionarily stable.



In order to prove this theorem we have to consider a group of investors
1 =1, ..., J using the portfolio rule \*, assume that all the other investors ¢ =
J+1, ..., I use portfolio rules A\* # \* and show that the former group survives,
while the latter becomes extinct. In general, J should be any number between
1 < J < I. We note, however, that it is sufficient to prove the theorem
assuming that J = 1, in which case the result reduces to the assertion that
r; — 1 almost surely. To perform the reduction of the case J > 1 to the
case J = 1, we “aggregate” the group of investors ¢ = 1,2, ..., J into one by
setting

Tr=rf 4ty
By adding up equations (9) over i = 1, ..., J, we obtain:

*
)\rt

kalr‘t>’

ftl+1 = Z[P(Ak, Tev1) + (1 — p) Br(St41)] O

where

Ak, r) = AP+ Z Ao

i=J+1

Thus the original model reduces to the analogous one in which there are
I — J+ 1 investors (i = 1,J + 1,...,I) so that investor 1 uses the Kelly
strategy A* and all the others, i« = J + 1, ..., I, use strategies distinct from
A*. If we have proved Theorem 1 in the special case J = 1, we know that
ri — 0 almost surely for all 4 = J + 1,...,I. Consequently, 7} — 1, which
means that the group of investors i = 1,...,I (which we treat as a single,
“aggregate,” investor) accumulates in the limit all market wealth. It remains
to observe that in the original model, the proportions between the relative
wealth of investors ¢, j who belong to the group 1, ..., J using the Kelly rule
do not change in time. This is so because for all such investors, the growth
rates of their relative wealth are the same:

ri A% )
t+l Z[p Akart-i-l (1 - )Rk(st-l-l)] <)\ r > 1= 1) ey J.

Consequently,

10



and so

Ty _TL_To
e e ¥ =1,..,J
1 Tt 0
Therefore ¢ = Br} (i = 1,...,J) for all ¢, where §° = r}/r} is a strictly
positive constant. Since

J J
= Zr: = (Z Bt — 1 (as.),
i=1 i=1

we obtain that i — §/(32, #)~! > 0 (a.s.) for all i = 1, ..., J, which means
that all the “Kelly investors” ¢ =1, ..., J survive.

Thus in order to prove Theorem 1 it is sufficient to establish the following
fact: if investor 1 uses the Kelly rule, while all the others use strategies
distinct from the Kelly rule, investor 1 is almost surely the single survivor
in the market selection process. We will prove this assertion in Section 7
based on a number of auxiliary results which will be obtained in Sections
4-6. These results provide methods needed for the analysis of the model at
hand, and some of them (especially those in Section 5) are of independent
interest.

4 The mapping defining the random dynam-
ical system

Let p be a number satisfying 0 < p < 1. For each s € S, consider the
mapping

F(s,r) = (F'(s,7), s F(5,7))
of the unit simplex AT into itself defined by
Nt 1.,
< ka’r)

The fact that the mapping under consideration is well-defined is established
in Proposition 1 below. Fix some element s of the state space S and a vector
r = (r},...,r") € Al. Consider the affine operator B : R — R’ transforming
a vector z = (z',...,z’) € R} into the vector y = (y*, ..., y") € R defined by

(s,r) = Z[p Ak, F(s,7)) + (1 — p)Ri(s)]— 1. (11)

At
<)‘ka T) ’

y' =Y [p(Mk @) + (1= p) Ry
where Ry = Ry(s).

11



Proposition 1 The operator B possesses a unique fized point in Ri. This
point belongs to the unit simplex Al.

Proof. Consider any z,z € R} and put y = B(z), § = B(Z). We have

ly—gl= Z|y—y|—pZ|ZAk,x—x A;“T>|§
i=1 k=1

K I o X
o ATt _
PY > [,z — ) )\k =pY [(Mz—2) <
k=1 i=1 (Aks7) k=1
K I
b ZMW—xﬂ|—p2|x3—x3|—p|x—x|
k=1 j=1

Thus the operator B : Rﬁ_ — Rﬁ_ is contracting and hence it contains a
unique fixed point z € Ri. To show that z € Al we sum up the equations

K .
. AZ ,’,.Z
k=1 ks
over i = 1,..., I and obtain
u Z ALyt
2| = [p(Ak, x) + (1 — p) Re e ’“ Z[p Mk, z) + (1= p)Ry] =
k=1
plz| + (1 - p),
which yields |z| = 1. O

Proposition 2 We have

I

D IF (s, = Fi(s,7)| < 5 ip) S>> &,’:TT) - &:Tﬂ |, 7€ Al

i=1




It follows from (12) and the inequalities

Mg, T) ZAkri>o Ak, T) Zm%o,

(holding because A > 0) that the mapping F(s,r) is continuous in r € A’,
Proof of Proposition 2. For any r,7 € Al and i =1, ..., 1, we have

Fi(s,r) — Fi(s, )| = |Z[p()\k,F(s,r)) (1= p)Rx(s)] <)\;’T>

K

S oA, F(s,7)) + (1 = p)Ra(s)]

=i (A

1
)\kr

ka/r>

IA

i i =i
ALT ALT

P21 Pl ) = Qs F(s, M) s+

it i 7
(1— k Ak <
p)j{j| Pty v

Nt AL

P2 Flo I3 = s

i

Pk Fls, 7)) = (A, F(s,7)| D)

)\’r it
1—p)Z| bk

<
ka/r>|_
)\Zfl )\Z’I"Z )\zfz
A, Fi(s,7)) — (Mg, F(s, T LA k__ k|

13



By summing up these inequalities over ¢ = 1, ..., I, we obtain
I
> |Fi(s,r) — Fi(s,7)| <
i=1

)\kr _

PY 1w, Fs,r)) = (A, F S?”)|+ZZ|

=1 k=1

<
)\k ’I">|

I K ,
Z p )\’r L
pZ|Fsr> RS Sppifc =S )
i=1 k=1
which yields (12). O
For each s € S and r = (r!,...,r) € Al define

(s,r) = Z[p Ok, F(s,7)) + (1 — p) Ra(s) AA%T =11 (13)

It follows from (11) that if r¢ > 0, then
, Fi(s,r
lor) = P

so that gi(s,r) is the growth rate of the ith coordinate under the mapping
F. Define

Fho —Irzl;cnx\k ©* —HZI%X/\ H = p*/ o

The proposition below shows that the growth rate is uniformly bounded away
from zero and infinity.
Proposition 3 For eachr € Al and eachi=1,...,I, we have
H'<g4'(s,r)<H, s€S. (14)
The function g'(s,r) is continuous inr € Al
Proof. Since p. < (Mg, 7) < p*, we obtain
g 1=t < A <K _g
I <)‘ka’r> Iy

3

which yields (14) because

Z[p Ak, F(s,m)) + (1 — p)Ri(s)] = Z Ak, Fi(s,m)) + (1 —p)ZRk

The function g'(s,r) is continuous in r € A’, because F(s,r) is continuous
in r and (Ag,7) > pe > 0 (see (13)). O

14



5 Return on the Kelly portfolio

Define

fls,m) = Z[p P+ 1= pRG s, (19)

where A\ = ERy(s), k =1, ..., K. Suppose, at date ¢, the relative wealth of
the investors ¢ = 1, ..., I are given by the vector r = (r,...,7’) € A’. Then
the (relative) asset prices at dates t and ¢t + 1 are

D = <)‘ka’r>’ q’c(s) = <)‘k’F(sa7‘)>a (16)

provided the state of the world realized at date t + 1 is s. An investor’s
portfolio in which unit wealth is distributed between the assets according to
the proportions A}, k = 1,..., K, is called the Kelly portfolio. The (gross)
return on this portfolio, taking into account the dividends and consumption,
is given by the function f(s,r) defined by (15), which can be written as

f(s,r)= Z[qu s)+ (1 —p)Rk(s)]—’:.

If one of the investors ¢ = 1,...,1, say investor 1, employs the investment
strategy A\* = (A}, ..., \%) (i.e., A\ = A;, k=1,..., K), then the growth rate
of his/her market share is equal to f(s,r):

g'(s,r) = f(s,7)
(see (13) and (15)).
An important result on which the analysis of the model at hand is based
is contained in the following theorem.
Theorem 2 For each r € AT, we have
Eln f(s,r) > 0. (17)
This inequality is strict if and only if
(Ag,T) # AL, for at least one k=1, ..., K. (18)
This result means that the expected logarithmic return on the Kelly

portfolio (A, ..., A%) is non-negative. It is strictly positive if and only if
(A}, ..., A% ) does not coincide with the market portfolio (py, ..., px). Recall

15



that the total amount of each asset is normalized to 1, so that the total wealth
invested into asset k is pr, = (Mg, 7). We emphasize that, in Theorem 2, it
is not assumed that any of the investors ¢ = 1, ..., I uses the Kelly strategy.
The result is applicable without this assumption.

Proof of Theorem 2. 1st step. Multiplying both sides of (11) by A? and
summing up over ¢ = 1,..., I, we get

DL NN
i1 7k m 19
kBT )

(m =1, ..., K). By using the notation introduced in (16), equations (19) and
inequality (17) can be written as

A, F(s,7)) = Z[p Ak, F(s,7)) 4 (1 = p)Ry(s)]

9= loa(s) + (1 p)&(s)}z“p% m=1,.K  (20)
and
PnY_lpas) + (1 - PR >0 (21)

Condition (18) is necessary for this inequality to be strict (the “only if” part
in (18)) because pr = A for all K = 1,..., K implies that the left-hand side
of (21) is zero.

2nd step. We fix the argument s and omit it in the notation. Consider
the K x K matrix

NG
A:(amk)a amk:(smk_ ZZ L Ta

Dk
where O, = 1 if m = k and 6,,;, = 0 if m # k. Put

AL
b= (by,...,bx), b = (1 — p) ZR Zi 1pkm r (22)
Then (for the fixed s) the system of equations (20) can be written
Ag=15b (23)

[¢ = q(s)]. Indeed, the mth coordinate (Aq — b),, of the vector Aq — b can
be expressed as follows

bY; )\’r
(Ag - b)m—zamqu—b = m — qu L N

Dk

16



K I . . K
i AL ALT? i )\:n)\’r
(=) SRR o g, 1 - gy e e
k=1

1 Dk

which is equal to the difference between the left-hand side and the right-hand

side of (20).
We can represent the matrix A as

A=1d - pC,
where Id is the identity matrix and

I i NG i
Zi:l A AT

C= (cmk)a Cmk = Dk

The norm of the linear operator C' is not greater than one, because

K K K K
Cxl =D 1 cmrznl > conlae] =2,

where

Z - Z Zz 1 )‘:n)‘zr Zgzl Art -1

Dk

(24)

(25)

Consequently, the operator pC is contracting, and so each of the equivalent

equations

Ag=0, g=pCq

has a unique solution. Thus the matrix A is non-degenerate, and the solution

to the linear system (23) can be represented as

qg=A"'b.
3rd step. Define
A%
cx = pp— 1—p)ZRk—.
Then we have

K \:

(c;q) +d= Z[P% + (1 —P)Rk]—:-
k=1

17
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(27)



This expression appears in (21), and our goal is to estimate the expected
logarithm of it (when Ry and ¢ depend on s). To this end we write

(,q) = (¢, A7'b) = (A7)'e,b) = ((4) e, b), (28)
where A’ denotes the conjugate matrix. In (28), we use the following identity
(A—l)/ — (AI)_I,

holding for each invertible linear operator A.
By virtue of (28),

(e:q) = (b, 1), (29)
where | = (A')7 !¢, i.e., the vector [ is the solution to the linear system
Al=c.
The matrix A’ is given by

Z e )\’r

£ai=1"m"'k"

’ ’ ’
A= (akm)’ Ay = Qmk = 6mk - D
k

and the linear system A’l = ¢ can be written

3

K (2 (2 *
> (i — p —z”/\m’\kr)l bk k1K
m=1 p k
(see (26)) or equivalently,

L NN

m=1

Further, in view of (26) and (22), we obtain

d+(l,b 1—P)ZRk_ 1—p)Zl ZR Z’ 1)\:")\ZT =

1—p)ZRk— 1—p)ZRkZl Tt AnAir? an -

18



P

where the last equality follows from (30). Consequently,

(c,q) +d=(I,b) +d = (1;p)§:3kzk (32)

(see (27) and (29)).

4th step. According to Step 1 of the proof, we have to establish inequal-
ity (21) for every solution ¢(s), s € S, of system (20) and show that this
inequality is strict if

(P1s - PK) # (AL, s Ak)- (33)

The considerations presented in Steps 2 and 3, allow to reduce this problem
to the following one: for the solution [ = (ll, .., Ik) to system (30), show that

(see (32) and (29)). Additionally, it has to be shown that the last inequality
is strict if assumption (33) holds. The advantage of the new problem com-
parative to the original one lies in the fact that system (30), in contrast with
(20), does not depend on s.

We write (30) equivalently as

L;mpklk = P[Z Pm(

and, by changing variables

m/\’r =)\«
5k (20

(1-p)

fk = lkpka
we transform (30) to
)\:n)\’r .
Then
K K
1
( p)ZRklk:ZRk&a
P k=1 Pk



and the problem reduces to the following one: given the solution (fi, ..., fx)
to system (34), show that

EanRk )— >0 (35)

with strict inequality if (p1,...,pr) # (A, ..y A%)-

Note that the affine operator defined by the right-hand side of (34) is con-
tracting (see (24) and (25)) and leaves the non-negative cone R invariant.
Therefore there exists a unique vector f = (f1, ..., fx) solving (34). Further-
more, this vector is strictly positive (which follows from the strict positivity
of A* = (A}, ..., A%)) and satisfies Zszl fi = 1. The last equality can be
obtained by summing up equations (34) over k =1, ..., K.

By virtue of Jensen’s inequality, applied to the concave function In(-), we
have

EanRk s) >E'2:R,c s)ln Z)\*

(We use here the fact that Zszl Ry (s) =1 for all s.) Thus it is sufficient to
prove that if a vector (fi, ..., fx) satisfies (34), then

ZAk 7k > 0, (36)

and inequality (36) is strict when assumption (33) is fulfilled. This problem
is purely deterministic: no random parameter s is involved either in (34) or
in (36).

5th step. Put gx = fi/px, kK =1,..., K. Then, from (34), we get

K I
DR =P Y gm D NN+ (L= p)AL, k=1,..., K. (37)

m=1 i=1

Let us multiply both sides of these equations by In gy and sum up over k =
1 K:

K K K I K
Zpkgk Ing, = pZ(lngk) Z 9m Z MELrt 4+ (1 — p) Z Az In g
k=1 k=1 m=1 =1 k=1

20



This yields

K 1 K K K I
D Ailngi= 7D prgelnge—p D (nge) g ) NNl
k=1 p k=1 k=1 m=1 i=1

Further, we have

K f K
ZA;;lnp—::ZA;;lngk

(recall that gx = fx/pr). Thus, in order to prove the desired inequality (36)
it is sufficient to verify the relation

K K K I
> prgrlnge —p Y (Inge) Y gm ¥ ApAirt > 0. (38)
k=1 k=1 m=1 =1

If inequality (38) is strict, then (36) is strict as well.
We have

K K f
Zpkgk Ingy = Z feln 2% >0, (39)

by virtue of the well-known inequality (recall that f,p € AK)

K K
S flnfi > filnpy, (40)
k=1 k=1

which is strict if
(fla"'afK) # (pla"'apK)' (41)

Therefore relation (38) is valid if

K K 1
> (Inge) > gm Y AN <0 (42)
k=1 m=1 =1

In the rest of the proof, we will assume that the opposite inequality holds:

K K I

Z(ln 9k) Z Im Z APt > 0. (43)
k m=1 =1

=1
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Then (38) will be obtained if we establish that

K K K I
D okgelnge > D (Inge) Y gm > A Air'. (44)
k=1 k=1 m=1 =1

Indeed, then we have

K K K I K K I
D _pegelnge > D (0gk) D gm D ANt 2 p) (I0gk) D gm D AN,
k=1 k=1 m=1 i=1 k=1 m=1 =1

which yields (38). In the above chain of relations, the last equality holds by
virtue of (43).
To verify inequality (44) we write

K
> pigkIngy = Z Z Xir'gr In gy, = Z Z Xkgk In g,
k=1 =1 k=1

k=1 i=1

and

K I K K
Zlngk)zgmz)‘z)‘ ZTZZZ )‘klngk) 9m m)
k=1 m=1

i=1 k=1 m=1

Thus to prove (44) it remains to check that

Z Aiegr In gg > Z Ak In g )( Z Ny (45)

foreachi=1,...,, I.
Let us fix ¢ and put Ay = AL, Inequality (45) can be written

Elglng] > (Elng)Eg,
where “E” stands for the weighted average
K K
k=1 k=1
Observe that the function ¢(g) = gln g is strictly convex. Consequently,

E¢(g) > ¢(Eg), (46)
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and the inequality is strict if gy # g, for some k and m. Thus
Elglng] > (Eg)InEg > (Eg)(EIng), (47)

where the former inequality in this chain of relations coincides with (46) and
the latter is a consequence of the concavity of the function In(-). Furthermore,
both inequalities in (47) are strict provided that g # gn, for some k. If the
last condition does not hold, then

fi

Dk
for some constant ¢, which must necessarily be equal to one because > f =
> pr = 1. Thus if gy = gy, for all k,m, then fy = px, k = 1,2, ..., K, which
implies (see below) that py = A} for all k.
6th step. At the previous step of the proof, we established inequality (38)
and hence (36). Moreover, the arguments conducted show that inequality
(38) (and hence (36)) is strict if condition (41) is fulfilled. Indeed, if rela-
tion (42) holds then, under assumption (41), we have a strict inequality in
(39), which implies a strict inequality in (38). Alternatively, if relation (43),
opposite to (42), holds, then strict inequalities in (47) and (45) imply strict
inequalities in (44) and (38).
Thus to complete the proof it suffices to show that if
fk = Dk, k= 1, 2, ceny K,
then
DPr = )\,:, k= 1,2, ...,K.

Indeed, if fx = px, then we have

A NEp?t
Pr = pr S 1pm (=P, k=1,..., K,
which implies

K I
=P D At + (L= )X =

m=1 i=1

I
pY Nrt+(L—p X =ppe+(1—p)X, k=1,..., K.

i=1

Thus (1 — p)pr = (1 — p) A}, and so p, = k. O
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6 The Kelly portfolio and the market portfo-
lio

According to Theorem 2, the expected logarithmic return on the Kelly port-
folio (A}, ..., A¥%) is non-negative. It is strictly positive if and only if the
market portfolio (py, ..., px) does not coincide with (A}, ..., A%). Of course
it can happen at some moment of time that (A}, ..., \%) = (p1, ..., px). But
can it happen that the market portfolio coincides with (Af,...,A%) at two
consecutive moments of time? In other words, can the system of equalities

w(s)=pr=X (k=1,..,K, s€85) (48)

hold? Recall that we denote by p the price of the asset k corresponding to
the vector r = (r!, ..., rT) of relative wealth at some fixed moment of time,

I

Pk = (A, 1) = Z)\iri

i=1

and by gx(s) the price of the asset at the next moment of time, when the
state of the world realized is s:

ar(s) = O, F(s, 1)) = Z)\ZFi(s,r).

The question we formulated is important for the analysis of the asymptotic
behavior of the relative wealth of an investor using the Kelly rule. As Propo-
sition 4 below shows, the answer to this question (under the assumptions we
impose) is negative.

Recall that we assume that there are no redundant assets, i.e., the func-
tions Ry (s), ..., Rk (s) are linearly independent. This assumption will be used
in the following proposition.

Proposition 4 Suppose one of the following assumptions is fulfilled.

(a) All the investors i = 1,2,...,I use portfolio rules \* = (A%, ..., \%)
distinct from the Kelly rule \* = (A}, ..., A%).

(b) All the investors i = 2,3, ..., I use portfolio rules \* = (N, ..., \%,) dis-
tinct from the Kelly rule \* = (A}, ..., i), and the wealth share ' of investor
1 s less than one.

Then equations (48) cannot hold.
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Proof. The variables gx(s), pr and ry (k = 1, ..., K) are related to each
other by the system of equations (20). Suppose equations (48) hold. Then,
from (20), we obtain:

Z[pxk MRV AR CL L P
k

or equivalently,

=Y Ri(s)Y E- m=1,.,K, (49)
i=1 k

k=1

where
X; = ERy(s), Ry(s) = pA; + (1 — p)Ri(s).

Observe that if there are no redundant assets, then the relation

K —
> Ri(s) =0
k=1

implies 7; = ... = 7 = 0. Indeed, suppose that
K
> lpAi + (1= p)Ri(s)] = 0. (50)
k=1

Then we have

K

O—EZ%[/»\ + (1= p)Ry(s)] = Z’)’k[ﬂ)\;ﬁ‘ (1= p)A;] Z’Yk)\
k=1

k=1

which in view of (50) yields

K p K
Ri(s) = ——"— S At =0
kzz;’wc k() 1_pkz:;7k k=0,

and so 7; = ... = 7x = 0 because the functions Ry(-), & = 1,..., K, are
linearly independent.
From formula (49) and the relation

I
_ i .0
= Z)\mr ,
i=1
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we obtain

I K I

SN =Y "Ri(s)> Mn?g?“, m=1,.., K. (51)

i=1 k=1 i=1

We have Y"1, Ry(s) = 1, and so equations (51) imply

K
ZRk(S)’Y;T =0, m=1,..,K,
k=1

where
1 J I
T = = Z ANt — Z ALt
k =1 i=1

Since there are no redundant assets, we have 7;* = 0 for each m and k. This
gives

I I
S A A =0 ko K
=1 i=1

which can be written as
I
Y L= A =0, k,m=1,.., K.
i=1

We derive two expressions from this equation. The first by setting £k = m in
the foregoing formula. The second by adding up over m = 1,..., K. We find

I I
S XML =A)rt=0,k=1,.,K, and > (M —Ap)r=0.
=1 =1

Multiplying the second equation by — A} and adding it up with the first, we
obtain

I I
0= Nk = A)r = ANk = 2)r] =Y (N = 2)Pr.

Consequently, we have

M=) =0,i=1,..,I, k=1,.., K. (52)
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Suppose condition (a) holds. Since Y.._ 7* = 1 and ¢ > 0, we have
73 > 0 for some j = 1, ..., I. Then, from (52), we get

M-X=0k=1,.,K, (53)

which is a contradiction.

If condition (b) is fulfilled, then X7, 7 =1 — 7! > 0, and so 77/ > 0 for
some j = 2, ..., I. This implies (53), and the contradiction obtained completes
the proof. O

7 Limiting behavior of the Kelly investor’s
relative wealth

Let 7y be a strictly positive vector in A’. Define recursively the sequence of
random vectors ry, r1(s!), 2(s?),... by the formula 7, = F(s;,7_1). Then
ry = (r},...,rl) is the vector of relative wealths of the investors i = 1,..., T
at date t, depending on the realization st = (s, ..., s;) of states of the world.
It follows from Proposition 3 that r; > 0 as long as r,_; > 0 and so all the
vectors r;(s?) are strictly positive for all ¢ and s*. Consequently, the random
variables

Inri =Inri(st), i=1,..,I, t=0,1,...

are well-defined and finite. Clearly, they have finite expectations because
each of them takes on a finite number of values (since the set S is finite).
Suppose investor 1 uses the Kelly rule

X = (AL oy Ny) = (ERy(8), ..., ERk(5)).

Consider the growth rate 7 ,/r; of investor 1’s relative wealth. It can be
expressed as follows:

r} FY(s441,1
ttl =g (st41,70) = F ooy ttl’ D [re = r4(s")]
T} T}

(see (13)), and since the strategy A! of investor 1 coincides with the Kelly
rule \*, we have
Tt 1
L =g (8t41,7¢) = f(8t41,71), (54)
¢

where f(s,r) is the function defined by (15).
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Denote by & = &(s') the logarithm of the relative wealth of investor 1,
& =1Inr}.
We claim that the sequence &; is a submartingale:

E(&1]s") > & (55)

Indeed, we have

E(§en1ls’) — & = El(é+1 — &)Is'] = El(Inryy, —Inry)|s’] =

1
E[(In T;—il_l”st] = E[In f(st41,7¢)|s"] = E[ln f(s, Tt)]|rmra(st) =

> w(s)In f(s,re(s")),

seS

where 7(s) > 0 is the probability that s;y; = s. The last two equalities in
the above chain of relations follow from the fact that the random variables
S1, 82, ... are independent and identically distributed. By virtue of Theorem 2,

Zﬂ(s) In f(s,7,(s")) >0,

seS

which proves (55). Since 0 < r{ <1, wehave{; <0, andso &,t=0,1,...,isa
non-positive submartingale. As is well-known, a non-positive submartingale
converges almost surely (a.s.)

& — € (a8.) ast — 00
(see, e.g., [21], Section IV.5). This implies

rr =€ — b >0 (as.).
This leads to the following result.

Theorem 3 The relative wealth of a Kelly investor converges a.s., and the
limit is strictly positive.

It follows from Theorem 3 that an investor using the Kelly strategy sur-
vives with probability one. A key result of this study is Theorem 4 below,
asserting that if one of the investors uses the Kelly rule and all the others
use other strategies, distinct from the Kelly one, then the Kelly investor is
the only survivor in the market selection process.
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Theorem 4 Let the strategy of investor 1 coincide with the Kelly rule: \i =
v k=1,..,K. Let the strategies of investors i = 2,...,I be distinct from
the Kelly rule:

( ’:il""’ ZI{)#( I’ "")\;{)'
Then the relative wealth r} of investor 1 converges to one almost surely.

We note that if p = 0, Theorem 4 follows from the main result of the
paper [12]. Methods developed in this work are different in some respects
from those in [12].

Proof of Theorem 4. By virtue of Theorem 3, the limit 7l := limr} exists
a.s. and is strictly positive. Suppose the assertion we wish to prove is not
valid. Then we have

P{0 < limr} <1} > 0. (56)

Let us write for shortness Ey(-) in place of E(:|s'). If £ is a non-positive
submartingale, then E; 1&11—&_1 — 0 a.s. (see Lemma 1 in the Appendix).
By applying this fact to the non-positive submartingale & = Inr}, we obtain

?”1 ?”1 1
E’t_l(ln ,r.l—t + In t+l) = Et 11 t+l = Et—l€t+l - ft—l — 0 (a.s.). (57)

t—1 Tt t—l

t—1

By using the fact that the random elements s, s; and s;,; are independent

and representing the histories s, s*! as

St — (St_l, St)a St+l — (St_l,st, 3t+1),

we get
Ttl t1+1 tl t—1 Ttl+1 t—17 _
E,_1(In 5~ +1In—1) = E[(In5-)[s"] + E[ln(—1)[s" '] =
Tt 1 t Tt—l Ti

ZP{st—s}ln ri(s° t1)+ZP{st—s}ZP{st+1—a}ln%:

seS seS og€eS

S A 5 r() Y alo) )
i1 (s ) (st71,s)

s€eS seS og€eS

Yo w()mf(s,ra(s)) + Y w(s) Y (o) Inflo,ri(s,s)) =

seS seS o€eS
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Z m(s)In f(s,me_1(s"1)) + Z 7(s) Z m(o)In f(o, F(s,me_1(s1)). (58)

seS seS €S

The last but one equality in the above chain of relations is valid because the
strategy of investor 1 coincides with the Kelly rule (A\! = \*) and the last
equality holds because r;(st™!,s) = F(s,r;_1(s™1)).

By virtue of (56), (57) and (58), there exists a realization (si, ..., St,...)
of the process of states of the world such that, for the sequence of vectors
re1 =ri_1(st71) € A, we have

0 <limr , <1, (59)

> w(s)nf(s,r1) + > _7(s) Y m(0)In f(o, F(s,m—1)) = 0.  (60)

seS seS og€eS

In the rest of the proof, we will fix such a realization (si, ..., s, ...) and write
r,_1 in place of r;_;(st™1).

Since the simplex A’ is compact, there exists a sequence ¢; < t, < ... and
a vector » € AT such that

T, 1 — 1 € AL (61)

It follows from (59) and (61) that the first coordinate r' if the vector r =
(rl,...,rT) satisfies

0<r' <1, (62)

Relations (60) and (61) imply

> w(s)Inf(s,r)+ > _w(s) Y 7(o)Inf(o, F(s,r)) =0 (63)

seS seS og€eS

because the function In f(s,r7) = Ing!(s,r) is continuous in r € Al (see
Proposition 3).
By virtue of Theorem 2,

Zﬂ(s) In f(s,r) >0, ZW(O’) In f(o,F(s,r)) >0 (for all s € S).

seS geS

Consequently, it follows from (63) that

> w(s)Inf(s,r) =0, (64)

seS
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and

ZW(O’) In f(o, F(s,r)) =0for all s € S. (65)

€S

According to Theorem 2, relation (64) can hold only if
(A, T) =X, k=1, K, (66)
and equations (65) imply
(M, F(s,r))y =X, k=1,..,K, s€S. (67)

By virtue of Proposition 4, relations (62), (66) and (67) cannot hold simul-
taneously. This is a contradiction. O

A Appendix: A lemma about submartingales

Lemma 1 Let & be a mon-positive submartingale. Then the sequence of
non-negative random variables ¢; = E; 1&;.1 — &1 converges to zero a.s.

Proof. We have (; > 0 by the definition of a submartingale. Further, E¢; =
(E&iy1 — E&)+ (E§ — E& 1), and so

N N N

Y EG=> (Bt —E&)+> (B4 —E& ) =

t=1 t=1 t=1
Eéni1 — E& + Eéy — E§ < —E& — E&

because E¢; < 0 for each t. Therefore the series of the expectations Y .o, E(;
of the non-negative random variables (; converges, which implies (see, e.g.,
Corollary to Theorem 11, in Chapter VI in [20]) that ¢; — 0 (a.s.). O
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