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Abstract

This article examines dynamic investment decisions when there is an agency

problem. A principal delegates the decision of an investment strategy of a

project to an agent. The agent has private information about the investment

cost, whereas the principal only knows the probability distribution of the cost.

The principal's problem is how to compensate the agent in order to optimize

the value of the principal's investment opportunity. Owing to the asymmetric

information, it may be optimal for the principal to leave the agent some "infor-

mation rent". An optimal compensation function dependent on the observable

output from the investment is found.

1 Introduction

In the literature on real options, the option value resulting from the interac-

tion of uncertainty, 
exibility and (partly) irreversibility is recognized. The

uncertainty taken into account is mainly \symmetric" uncertainty, i.e., the un-

certainty in future income is common knowledge. However, in many situations

there is also asymmetric information. An example of such a situation is when

a manager (an agent) of an investment project has better information than the

investor (the principal) about the investment costs, and the manager also has

diverging interests from those of the investor. The situation is known from the

principal-agent and the regulatory literature.

I sketch a model where a principal delegates the investment strategy of

a project to an agent. The agent has private information about the exact

investment cost, whereas the principal only knows the probability distribution

of the cost. One reason for an owner of an investment possibility to delegate the

management of a project to an agent, may be that the management requires

expertise that the principal does not possess, or that is too costly for him

to obtain. In other cases it may be impossible for the principal to make the

decisions himself, but it may be possible for him to commit to a delegation

contract.
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The information asymmetry creates a situation where adverse selection may

occur. The agent is compensated according to a contract. The principal ob-

serves the output from the investment project, and the contracted compensation

is a function of this variable. Both the principal and the agent aim to maximize

the value of the project. An implementable compensation function, with value

equal to the sum of the value of the agent's private information and the true

investment cost, is found. The value of private information depends upon the

value of the output relative to the true investment cost, and upon the uncer-

tainty in both these variables.

The model applies to situations where the production from the project is

sold in perfect markets, whereas there are imperfections due to the costs of

projects.

An application of the model is the case where a government owns natural re-

sources. Production of natural resources involves large and (partly) irreversible

investments, and uncertainty due to future output prices. A feature of produc-

tion of natural resources is that uncertainty in output prices usually is common

knowledge, whereas investment and production costs may be private informa-

tion for those investing in and operating such projects. To exploit the resources,

the government delegates the production of the resources to companies. The

companies may have incentives to signal higher cost than the true cost in order

to obtain a larger pro�t within the companies. The model presented in this

paper gives the government a method of how to �nd the most e�cient con-

tract between the government and the companies. The contract can be in the

form where the companies are paid a compensation for the management of the

resources, or it can be in the form of a taxation system.

Shareholders versus corporate management is another example where the

model may apply. The problem is then how to compensate the management

given their private information about some costs. As in the example above, the

management may want to signal higher costs than the true ones. An alternative

interpretation is that the companies may have incentives to maximize slack in

the organization, thereby increasing the realized investment cost compared to

the necessary cost.

Bjerksund and Stensland (1999) have formulated an adverse selection model,

somewhat similar to the model described in this paper, where an owner of

some resource may exploit the resource in two ways: (i) Sell the resource in

a competitive spot market at a constant price, or (ii) ship the resource to

an agent for processing and sell the processed resource in a competitive market

where the price of the processed resource is stochastic. Bjerksund and Stensland

assume that the processing may be switched on and o� at no cost (i.e. they

formulate a \switching option", similar to Brennan and Schwartz 1985). In

alternative (ii), the owner of the resource (\the regulator") must compensate the

agent for the cost of processing the resource. The cost of processing is perfect,

private information to the agent, whereas the regulator knows the probability

distribution of the costs. The stochastic income process used in Bjerksund and

Stensland (1999) is more general than the di�usion process presented in the

model in this article.

The interaction between options and diverging incentives between a principal

and an agent is also analyzed in Antle, Bogetoft and Stark (1996). They show

how timing and incentive e�ects interact to a�ect investment strategies in a two-
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period model. At each of the two points in time where investment is possible,

the manager (the agent) knows the investment cost, whereas the owner (the

principal) does not. Before the time of an investment possibility, neither the

owner nor the manager know the investment cost. However, they both agree

on the distribution of future costs. Antle et al. �nd that incentive e�ects, as

timing e�ects, lower the target costs. Incentive problems also have the e�ect

of pushing investment towards periods of lower uncertainty, i.e., the target cost

at time zero (today) may be increased by incentive e�ects, so much that the

overall probability of investment can increase with incentive problems.

The article is organized as follows: In section 2 the problem is formulated,

and model assumptions are given. In section 3 future cash 
ows in the model are

evaluated using the market-based valuation approach (assuming dynamically

complete markets). Section 4 presents the agent's optimization problem and

his value of private information. The optimal investment strategies are given in

sections 5 and 6 for the cases where the information about the investment cost is

symmetric and asymmetric, respectively. In section 7 the optimal compensation

function is found. The results are illustrated in section 8, using the uniform

distribution for the investment cost, and the geometric Brownian motion for

the income process. Section 9 concludes the article.

2 Model assumptions

A principal has an opportunity to invest in a project. The investment decision

of the project is undertaken by an agent, and the principal compensates the

agent based on the output from the project. The output is observable by both

parties, whereas the agent has private information about the investment cost.

In order to keep a larger part of the pro�t from the project, the agent has

incentives to base his investment strategy on signaling a higher investment cost

than the true cost. Thus, the problem for the principal is how to compensate

the agent to maximize the value of the principal's investment opportunity.

The agent has perfect knowledge of the true investment cost � of the project,

whereas the principal knows only the probability density, f(~�), of an assessed

stochastic cost ~�. The cumulative distribution is denoted by F (~�), and upper

and lower levels of the investment cost are � and �, respectively.

It is assumed that the option to invest is perpetual, and that the value of the

output follows a stochastic process where the uncertainty is common knowledge.

The value of the output at time t is denoted St. The stochastic process is de�ned

by a complete, �ltered probability space (
; fFtgt�0;F ; P ) where the �ltration
satis�es the usual conditions (see e.g. Borodin and Salminen (1996), ch. I.3).

Under the equivalent martingale measure Q (see e.g. Du�e (1996), ch. 6.H)

the stochastic income process is given by

dSt = (rSt � �(St))dt+ �(St)dwt; S0 � s; (1)

where r is a constant risk free rate, �(St) reduces the drift in the stochastic

process because of the convenience yield, and wt is a standard Brownian motion

with respect to the equivalent martingale measure. It is assumed that �(St) and

�(St) are continuous, and that 0 is an unattainable lower boundary for St.

The transfer function from the principal to the agent must be based on some

observable variable. In the model, it is assumed that the value of the output, s,
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is observable. Also, recall that the information with respect to the process St is

assumed to be symmetric. To avoid the agent from behaving opportunistically,

the value of the compensation must not be paid before the time of investment.

Below the principal's optimization problem is formulated:

The principal optimizes his value function with respect to the compensation

function G(�),

W (s;G(S�K )) = supG(S�K )E
~�
n
E0

h
e�r�K (S�K �G(S�K ))

+
io

= supG(S�K )

R �
�
E0

h
e�r�K (S�K �G(S�K ))

+
i
f(~�)d~�;

(2)

subject to the agent's optimization problem,

V (s;K; �) = sup
�K

E0

h
e�r�K (G(S�K )� �)

+
i
; (3)

and the agent's participation constraint,

V (s;K; �) � 0: (4)

The expectation with respect to the cost level � is denoted E
~�. It is assumed

that the uncertainty in the investment cost is the same under the P and the Q

measure. The expectation operator Et[�] denotes the expectation, conditioned
on the time t information, with respect to the equivalent martingale measure

Q. The stopping time with respect to the �ltration Ft, is denoted �K , and is a

function of K, whereK is the "cost" upon which the agent bases his investment

strategy. The signaled cost, K � K(~�), is higher than or equal to �, since the

agent pro�ts on signaling a higher cost than the true one. The exercise value

of output is denoted S�K , and G(S�K ) is the agent's compensation, transferred

at the investment time.

3 Valuation of future cash 
ows

We assume that the option to invest is perpetual. This implies that the optimal

investment strategy is time homogeneous. Thus, we know that the optimal

stopping time �K will be of the form

�K = infft � 0jSt � Ŝ(K)g:

The \trigger value of income" Ŝ(K) is independent of time. We can therefore

rewrite the principal's and the agent's value functions as, respectively,

W (s;G(S�K )) = sup
G(S�K )

Z �

�

E0[e
�r�K ]

�
Ŝ(K)�G(S�K )

�+
f(~�)d~�;

and,

V (s;K; �) = sup
S�K

E0[e
�r�K ] (G(S�K )� �)

+
;

where the expected value of the discount factor is written independently of

the value of the output and the compensation function. This independence

simpli�es the problem of �nding the optimal investment strategy, since we will
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be able to optimize with respect to a \deterministic" trigger level Ŝ(K), instead

of the stochastic trigger S�K .

Using results from the classical theory of di�usions, the expected value of

the discount factor can be formulated as a function of the trigger level Ŝ(K),

and the time 0 value of the output, s (Borodin and Salminen [4], ch. II.10 and

Ito and McKean [8], sect. 4.6),

E0[e
�r�K ] =

(
�(s)

�(Ŝ(K))
if s < Ŝ(K)

1 if s � Ŝ(K):
(5)

De�ning u(s) = E0[e
�r�K ], the function �(�) is the strictly positive and

increasing, unique solution to the ordinary di�erential equation,

1

2
(�(s))2uss(s) + (rs� �(s))us(s)� ru(s) = 0; (6)

with boundary lim
s"Ŝ(K) u(s) = 1.

Using equation (5) the principal's and the agent's value functions can be

reformulated. The principal's value function will be,

W (s;G(Ŝ(K))) = supG(�)

R �
�

n
�(s)

�(Ŝ(K))

�
Ŝ(K)�G(Ŝ(K))

�
I(s < Ŝ(K))

+(s�G(s))I(s � Ŝ(K))
o
f(~�)d~�

(7)

where I(A) is the indicator function of the event A. The agent's value function

is formulated as,

V (s;K; �) = sup
Ŝ(K)

(
�(s)

�(Ŝ(K))

�
G(Ŝ(K))� �

�
if s < Ŝ(K)

G(s)� � if s � Ŝ(K);
(8)

respectively. Note that the value functions now are functions of the "deter-

ministic" trigger level Ŝ(�) and the time zero value of the output process s,

only.

4 The agent's optimization problem and his value

of private information

The agent optimizes his value of the investment opportunity given by equation

(8) with respect to investment strategy Ŝ(K). The �rst-order condition with

respect to the investment strategy is

@V (s;K; �)

@Ŝ(K)
= G

Ŝ
(Ŝ(K))�

�
Ŝ
(Ŝ(K))

�(Ŝ(K))

�
G(Ŝ(K))� �

�
= 0; (9)

where G
Ŝ
(Ŝ(K)) and �

Ŝ
(Ŝ(K)) denote the �rst-order partial derivatives of the

functions G and � respectively, with respect to Ŝ(K).
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For the investment strategy Ŝ(K) to be optimal, the second-order condition

must be non-positive, i.e.,

@2V (s;K; �)

@Ŝ(K)2

=
�(s)

�(Ŝ(K))

��
�
ŜŜ

(Ŝ(K))

�(Ŝ(K))
� 2

�
�
Ŝ
(Ŝ(K))

�(Ŝ(K))

�2��
G(Ŝ(K))� �

�
+G

ŜŜ
(Ŝ(K))

�
� 0:

(10)

Equations (9) and (10) lead to the agent's optimal investment strategy given

a compensation function G(�).
One approach which simpli�es the task of �nding the optimal compensation

function is to use the revelation principle (see e.g. Baron and Myerson (1982)

and La�ont and Tirole (1993) ). By the revelation principle, the agent's value

of private information can be found.

Under a revelation mechanism, the agent reports his private information

to the principal, and the decision in question is then made according to a

decision rule to which the principal has committed himself. Loosely speaking,

the revelation principle makes use of the fact that for every contract between the

principal and the agent that leads the agent to lie, there is another contract with

the same outcome, but with no incentive for lying. This reduces the principal's

optimization problem to optimizing over the set of truthful mechanisms.

In the model the investment decision is delegated to the agent. Conse-

quently, the revelation principle does not apply directly here: there is no de-

cision to be made by the principal, and therefore the agent does not have to

report his private information. However, Melumad and Reichelstein (1987) have

found that under certain conditions, the performance of an optimal revelation

mechanism can be replicated by a delegation scheme which does not involve

communication. This situation is valid in the presented model.

Implementation of the revelation principle requires that the agent's �rst

order condition is satis�ed for all K 2
�
�; �
�
. Using the envelope theorem, the

�rst-order condition for optimization1 is,

dV (s;K(�);�)

d�

���
K(�)=�

=
@V (s;K(�);�)

@�
= � �(s)

�(Ŝ(�))
8K(�); � 2 [�; �]: (11)

Incentive compatibility implies V (s; �; �) = V (s;K; �). In order to simplify

the notation, I de�ne V (s; �) � V (s; �; �).

In addition the second-order condition for K must be satis�ed at K(�) = �.

The second-order condition is shown in the appendix, section A.

Integrating the condition in (11) gives an equivalent condition on the reward

function (when s < Ŝ(�)):

V (s; �) =

Z �

�

�(s)

�(Ŝ(u))
du+ V (s; �): (12)

Equation (12) gives the agent's value of accepting the contract. The �rst

term on the right-hand side of equation (12) is the agent's value of private

1 dV (s;K(�);�)

d�

��
K(�)=�

=
@V (s;K(�);�)

@K(�)

dK(�)

d�
+

@V (s;K(�);�)

@�
. The agent optimizes K(�), given his cost

level �. The �rst term on the right-hand side is zero when K(�) is optimal.
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information. In accordance with intuition, we see that the value of private

information is decreasing in the true cost level.

The last term on the right-hand side, V (s; �), is the value of the reservation

utility. From the participation constraint (4) we know that the agent at least

must earn his reservation utility in order to accept the contract. Also in the

case where the agent's true cost is at the highest possible cost level, �, the agent

must earn his reservation utility. In this model the reservation utility is assumed

to be zero, i.e., V (s; �) = 0. Hence equation (12) represents the agent's value

of accepting the contract that the principal o�ers.

5 Benchmark: Symmetric information

As a benchmark, we �rst study the case where the information about the in-

vestment cost � is symmetric. When the agent has no private information, there

is no need for the principal to compensate the agent with more than his true

cost. Thus, the agent is compensated for his capital cost only, i.e.,

G(s) =

�
0 if s < Ŝ(�)

� if s � Ŝ(�):
(13)

Inserting G(Ŝ(�)) = � into the agent's value function in equation (8), we �nd

Vsym(s; �) = 0, where the subscript sym indicates that this is the value under

symmetric information. The agent has no private information, and therefore

the term,
R �
�
�(s)=�(Ŝ(u))du, of equation (12) is zero.

Deterministic � and substitution of G(Ŝ(�)) with � into the principal's value

function in equation (7), leads to

Wsym(s; �) = sup
Ŝ(�)

(
�(s)

�(Ŝ(�))

�
Ŝ(�)� �

�
if s < Ŝ(�)

s� � if s � Ŝ(�):
(14)

Equation (14) shows that when we have no asymmetric information, we

have an optimization problem similar to the \standard" real option problem of

exercising an in�nite (American) option with exercise price �, and Ŝ(�) as the

critical level of exercising the option.

The optimal trigger value of income is given by the �rst-order condition,

@Wsym(s; �)

@Ŝ(�)
= 1�

�
Ŝ
(Ŝ(�))

�(Ŝ(�))

�
Ŝ(�)� �

�
= 0: (15)

For the trigger value in equation (15) to be optimal, the second-order con-

dition has to be non-positive,

@2Wsym(s; �)

@Ŝ(�)2
= �

�(s)

�(Ŝ(�))

�
ŜŜ

(Ŝ(�))

�(Ŝ(�))

�
Ŝ(�))� �

�
� 0;

The �rst-order condition (15) can be written as

S�
sym(�)� � =

�(S�
sym(�))

�S�sym(S
�
sym(�))

; (16)
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where S�
sym(�) is the optimal critical value for investment. The last term on

the right-hand side can be interpreted as the opportunity cost of exercising the

option with payo� S�
sym(�) � �. The fraction captures the wedge between the

critical value S�
sym and the investment cost �.

By (14) and (16) the value of the investment opportunity is

Wsym(s; �) =

(
�(s)

�(S�sym(�))

�
S�
sym(�)� �

�
if s < S�

sym(�)

s� � if s � S�
sym(�):

(17)

6 Asymmetric information: The optimal exer-

cise strategy

In this section we solve the principal's problem of �nding the optimal investment

strategy, given the agent's private information.

In order to simplify the problem of �nding an optimal strategy, we substitute

the unknown function G(�) in the principal's value function in equation (7), with
an expression of known functions of Ŝ(�). Using equations (8) and (12), the

value of the compensation function may be written as the sum of the value of

the true investment cost and the value of the agent's private information,

�(s)

�(Ŝ(�))
G(Ŝ(�)) =

�(s)

�(Ŝ(�))
� + V (s; �)

=
�(s)

�(Ŝ(�))
� +

R �
�

�(s)

�(Ŝ(u))
du:

(18)

The right-hand side of the equation gives an representation of the value of the

compensation, which contains known functions and �, only.

Substituting the expression for
�(s)

�(Ŝ(�))
G(Ŝ(�)) in equation (18) into the prin-

cipal's optimization problem in equation (7) leads to

W (s; �) = sup
Ŝ(�)

R �
�

nh
�(s)

�(Ŝ(�))

�
Ŝ(�) � �

�
�
R �
�

�(s)

�(Ŝ(u))
du
i
I(s < S�(�))

+(s�G(s))I(s � S�(�))g f(�)d�:
(19)

From equation (19) we see that the substitution of G(Ŝ(�)) implies that the

principal's problem is reduced to �nding an optimal trigger income S�(�).

A further simpli�cation of the optimization problem in equation (19) can

be done by partial integration of the term
R �
�

R �
�
�(s)=�(Ŝ(u))duf(�)d�. Inte-

gration leads to (see appendix B for a derivation of equation (20)),

Z �

�

Z �

�

�(s)

�(Ŝ(u))
duf(�)d� =

Z �

�

�(s)

�(Ŝ(�))
F (�)d�: (20)

Inserting the right-hand side of (20) into the objective function (19), we �nd

W (s; �) = sup
Ŝ(�)

R �
�

nh
�(s)

�(Ŝ(�))

�
Ŝ(�)� � � F (�)

f(�)

�i
I(s < S�(�))

+(s�G(s))I(s � S�(�))g f(�)d�:
(21)

From the last term in equation (21) we see that the principal's optimization

problem is now similar to the problem of optimally exercising an American call
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option, with optimal exercise price � + F (�)=f(�). The term F (�)=f(�) can be

interpreted as the ine�ciency due to the agent's private information.

Pointwise di�erentiation gives the �rst- and second-order conditions for the

optimal \exercise value" S�(�),

@W

@Ŝ(�)
= 1�

�
Ŝ
(Ŝ(�))

�(Ŝ(�))

�
Ŝ(�) � � �

F (�)

f(�)

�
= 0; (22)

The conditions for the trigger value are satis�ed as long as the second-order

condition

@2W (s;G(�))

@Ŝ(�)2
= �

�(s)

�(Ŝ(�))

�
ŜŜ

(Ŝ(�)

�(Ŝ(�))

�
Ŝ(�)) � � �

F (�)

f(�)

�
f(�) � 0;

holds. Hence, the optimal trigger value for the principal is given by

S�(�)� � �
F (�)

f(�)
=

�(S�(�))

�S�(S�(�))
: (23)

Given the compensation function (to be evaluated in the next section), the

trigger value in equation (23) is also the optimal exercise strategy for the agent.

Equation (23) shows that the trigger value is based on the principal's total cost

of exercising the investment option, i.e., it is based on � + F (�)=f(�). As in

equation (16), the right-hand side represents the opportunity cost of exercising

the option. Compared to the optimal investment strategy under symmetric in-

formation (equation (16)), the critical value for investment has increased due to

the asymmetric information. This ine�ciency leads to underinvestment because

of the longer "waiting time" of investment.

7 Implementation of the optimal compensation

function

We are now left with the problem of �nding an implementable compensation

function that leads to the optimal investment strategy. Considering equations

(18) and (23), the time zero value of the optimal compensation function when

s < S�(�) is given by

�(s)

�(S�(�))
G(S�(�))

=
�(s)

�(S�(�))
� +

R �
�

�(s)

�(S�(u))
du

=
�(s)

�(S�(�))
� +

h
u

�(s)

�(S�(u))

i�
�
�
R �
�
u
�
��(s)�S�(S

�(u))

(�(S�(u)))2

�
S�
udu:

(24)

The �rst right-hand side equality in (24) states that the compensation func-

tion must cover the agent's true cost (the �rst term), and the agent's value

of private information (the last term). Notice that the compensation function

in equation (24) is not written in a contractable form, as it is a function of

the unobservable variable � as well. The right-hand side of the equation must

therefore be found as a function of observable variables only. From Melumad
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and Reichelstein (1987) we know that a compensation function G(�; S�(�)) un-

der a communication-based centralized contract (by the revelation principle) is

compatible with the compensation function G(S�(�)) under a direct delegation

contract if for all � 2 [�; �], G(�; S�(�)) = G(S�(�)). This restriction is satis�ed

when the function S�(�) is one-to-one. Assuming that this is valid for S�(�),2

we denote � � #(S�(�)). This leads to

�(s)

�(S�(�))
G(S�(�))

=
�(s)

�(S
�

(�))
� �

R �
�
#(S�(u))

�
��(s)�S�(S

�(u))

(�(S�(u)))2

�
S�
udu

=
�(s)

�(S�(�))
� �

R S�(�)
S�(�)

#(S�(u))
�
��(s)�S�(S

�(u))

(�(S�(u)))2

�
dS�(u)

= #(S�(�))
�(s)

�(S�(�))
+
R S�(�)
S�(�)

#0(S�(u))
�(s)

�(S�(u))
dS�(u)

(25)

Thus, from equation (25), and the assumption that only the output of the

investment is observable, we �nd that the contracted, optimal compensation

function is given by

G(s) =

8>>>>><
>>>>>:

0 if s < S�(�)

#(s) +
R S�(�)
s

#0(S�(u))
�(s)

�(S�(u))
dS�(u) if S�(�) � s < S�(�)

� if s � S�(�)

(26)

The above expression represents an implementable compensation function

dependent upon the observable variables s and S�(�), only. When s < S�(�)

the compensation is zero, as the investment has not taken place in this range

of the value of s. As long as s < S�(�), the agent will wait with exercising the

option until the point in time where the time zero value of the output, s, reaches

S�(�). When S�(�) < s � S�(�) the compensation is dependent on s, only. The

compensation is increasing in s. However, note that the compensation never can

be higher than �. The reason is that the principal knows that the investment

cost is not higher than the upper level �.

Equation (26) shows that the agent's private information results in a loss

(relative to no private information) for the principal as long as s < S�(�).

However, the compensation function leads to a second-best solution only for a

part of the interval where s < S�(�). For some values of s the compensation

function gives a sharing rule between the parties without leading to an ine�cient

investment strategy.

We can �nd the loss due to a second-best investment strategy by de�ning

L(s; �) = Wsym(s; �) + Vsym(s; �) � ( ~W (s; �) + V (s; �)). The notation ~W (�) is
used about the principal's value from the project, for a given cost �.

The agent's value of the project, V (s; �), derived from equations (8), (25)

2S�

(�) is a one-to-one function as long as it is continuous and strictly increasing in the interval

S�

(�) 2 [S�

(�); S�

(�)].
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and (26), is

V (s; �) =

8>>>>>>>><
>>>>>>>>:

R S�(�)
S�(�)

#0(S�(u))
�(s)

�(S�(u))
dS�(u) if s < S�(�)

#(s)� �

+
R S�(�)
s

#0(S�(u))
�(s)

�(S�(u))
dS�(u) if S�(�) � s < S�(�)

� � � if s � S�(�)

(27)

In section 5 it was shown that the agent's value from the investment is zero

under symmetric information about the investment cost. Equation (27) states

that the agent's value from the investment when he has private information

about the cost, is positive as long as his investment cost is below �. The agent's

share of the total value of the investment, is larger the larger s is. However, the

agent's value from the project will never exceed � � �.

The principal's value of the investment option for a given � is represented

by

~W (s; �) =

8>>>>>>>>>><
>>>>>>>>>>:

�(s)

�(S�(�))
(S�(�)� �)

�
R S�(�)
S�(�)

#0(S�(u))
�(s)

�(S�(u))
dS�(u) if s < S�(�)

s� #(s)

�
R S�(�)
s

#0(S�(u))
�(s)

�(S�(u))
dS�(u) if S�(�) � s < S�(�)

s� � if s � S�(�):

(28)

As is to be expected, the principal's time zero value is lower under asym-

metric information than under the symmetric information case (compare (28)

and (17)). The reason is that the investment occurs at a later time, and at

a higher cost (as the compensation is higher than the true investment cost),

thereby lowering the value of the investment. The principal's loss will, however,

never be higher than the loss in the interval s > S�(�), i.e., it will not exceed

Wsym(s; �)� ~W (s; �) = � � �.

Below it is shown that the dead-weight loss is larger than zero when s >

S�(�):

L(s; �) =

8>>>>>>>>>><
>>>>>>>>>>:

�(s)

�(S�sym(�))

�
S�
sym(�)� �

�
� �(s)

�(S�(�))
(S�(�)� �))

if s < S�
sym(�)

s� � � �(s)

�(S�(�))
(S�(�) � �) if S�

sym(�) � s < S�(�)

0 if s � S�(�):

(29)

The total dead-weight loss is 0 when s � S�(�) because in this range the

agent's investment strategy leads to the same decision as in the full informa-

tion case, and the contracted compensation function only gives a sharing rule

between the principal and the agent. The agent's gain exactly equals the prin-

cipal's loss because of the asymmetric information.

11



8 Illustration of the results

The preceding sections used a general di�usion (equation (1)) for the output

process St, and an unspeci�ed probability density f(~�) for the assessed invest-

ment cost ~�. To illustrate the results the simple uniform distribution and the

geometric Brownian motion are assumed for the investment cost and the income

process, respectively.

A uniform distribution implies that F (�)=f(�) = � � �. The geometric

Brownian motion process of the value of the income is represented by

dSt = (r � �)Stdt+ �Stdwt; S0 = s; (30)

under the equivalent martingale measureQ. The strictly positive and increasing

solution �(�) to the ordinary di�erential equation (compare equations (5) and

(6)),
1

2
�2�2u��(�) + (r � �)�u�(�)� ru(�) = 0

is then found to equal �(�) = �� , where

� =
1

�2

2
41
2
�2 � (r � �) +

s�
(r � �)�

1

2
�2
�2

+ 2r�2

3
5 > 1:

Hence, the solution to the expectation E0[e
�r�K ] is (using equation (5)),

E0[e
�r�K ] =

(
�(s)

�(S�(�))
=
�

s

S�(�)

��
if s < S�(�)

1 if s � S�(�):
(31)

For the benchmark symmetric information case, the right-hand side of equa-

tion (16) becomes S�
sym=�, and hence the optimal critical value for investment

is S�
sym(�) = ��=(� � 1) > �, as � > 1. From equation (17), the corresponding

value of the investment opportunity isWsym(s; �) = (s=S�
sym)

�
�
S�
sym(�)� �

�
=

�=(� � 1)(s=S�
sym)

� for s < S�
sym(�). Recall that the agent obtains no pro�t

under symmetric information, i.e., Vsym(s; �) = 0.

For the asymmetric information case, however, the optimal \trigger income"

is found by equation (23), to be

S�(�) = (2� � �)
�

� � 1
; (32)

which (when � > �) is higher than the trigger under symmetric information,

S�
sym(�) = ��=(� � 1). The fraction �=(� � 1) > 1 causes a wedge between the

critical value for exercising the investment opportunity and the principal's cost

of the investment, even in the case of symmetric information. The di�erence

(� � �)�=(� � 1) is the increase in the trigger income caused by asymmetric

information.

The variable #(S�(�)) � �, equals by equation (32),

#(S�(�)) =
1

2

�
S�(�)

� � 1

�
+ �

�
:

12



In order to �nd the expression for the compensation function G(s), we �rst

insert the above variables into the integration in the second equality in (26).

This leads to

Z S
�(�)

s

1

2

�

� � 1

�
s

S�(u)

��
dS�(u) =

1

2

"
s

�
�

�
s

S�(�)

��
�

S�(�)

#
:

In addition, observe that #(s) in (26) equals #(s) = 1=2(s(� � 1)=� + �). This

gives

G(s) =

8>>>><
>>>>:

0 if s < S�(�)
1
2
[s+ �

�
�

s

S�(�)

�� �
S�(�)� (2� � �)

��
if S�(�) � s < S�(�)

� if s � S�(�);

(33)

Further, we �nd that the time zero value of the agent's and the principal's

value functions (equations (27) and (28)), are

V (s; �) =

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

�
s

S�(�))

��
1
2
[S�(�)� (2� � �)

�
�
S
�(�)

S�(�)

�� �
S�(�)� (2� � �)

��
if s < S�(�)

1
2
[s� (2� � �)

�
�

s

S�(�)

�� �
S�(�)� (2� � �)

��
if S�(�) � s < S�(�)

� � � if s � S�(�);

(34)

and

~W (s; �) =

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

�
s

S�(�)

��
1
2
[S�(�) � �

+
�
S
�(�)

S�(�)

�� �
S�(�)� (2� � �)

��
if s < S�(�)

1
2
[s� �

+
�

s

S�(�)

�� �
S�(�)� (2� � �)

��
if S�(�) � s < S�(�)

s� � if s � S�(�);

(35)

respectively.

Observe that the total combined value for the principal and the agent is

~W (s; �) + V (s; �) =

( �
s

S�(�)

��
(S�(�)� �) if s � S�(�)

s� � if s > S�(�)
(36)

in the case of asymmetric information. Similar expressions held for the sym-

metric information case as well, but with S�(�) replaced by S�
sym < S�(�).

13
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Figure 1: The compensation G as a function of s.

G

These relations are consistent with (29), which in the case the assumptions of

a geometric Brownian motion and a uniform density, equals

L(s; �) =

8>>>>>>>>>>>><
>>>>>>>>>>>>:

�
s

S�sym(�)

�� �
S�
sym(�)� �

�
�
�

s

S�(�)

��
(S�(�)� �))

if s < S�
sym(�)

s� � �
�

s
S�(�)

��
(S�(�) � �) if S�

sym(�) � s < S�(�)

0 if s � S�(�):

(37)

The results are illustrated graphically. In the base case the investment cost

� is set to 1, the lower level cost � = 0:5, and the upper level cost � = 2.

For the parameters of the output process we set the risk-free rate r = 0:04,

the convenience yield � = 0:03, and the volatility � = 0:1. With a uniformly

distributed investment cost, and an output process that follows a geometric

Brownian motion, these parameters lead to � = 2:37, S�
sym(�) = 1:73, S�(�) =

2:59, and S�(�) = 6:05.

In �gure 1 the compensation is plotted as a function of s. The compensation

is zero when s is lower than the critical value of investment, S�(�) = 2:59, as the

compensation is not paid prior to the investment time. Therefore, at S�(�) the

function jumps to the amount paid when s � S�(�), and it is increasing from

14
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Figure 2: Wsym, ~W + V , ~W and V as functions of s.

Wsym

~W + V

~W

V

this point until s = S�(�) = 6:05. For s � 6:05 the compensation is constant at

its maximum level � = 2.

Both within regulation and corporate �nance we often �nd that compen-

sation functions are linear in the observable output from a project. In the

numerical example given here the compensation function is concave. The rea-

son is that the upper level for the cost has a signi�cant e�ect. If the upper level

the cost had been very high, the compensation function would have approached

a linear function of s.

In �gure 2 the principal's and the agent's value functions are shown as

functions of s. The principal's value function under symmetric information is

convex when s < S�(�) = 2:59, and it is linear in the interval where the optimal

decision is to invest immediately. This corresponds to the value of a "standard"

real option as a function of the output price. Under asymmetric information,

it is also the case that the principal and the agent have convex value functions

in the interval where it is ex ante pro�table to postpone the investment. This

is for the same reason as under symmetric information: a volatility higher than

zero implies a possibility of higher pro�tability in the future.

In the interval S�(�) � s < S�(�) the agent's value is concave for the same

reason as for the concavity in the compensation function: the upside potential

for future pro�t is limited. For s � S�(�) the principal alone bene�ts from

higher s, and the agent's value of the contract is constant at � � � = 1.

Since the agent's value of information leaves less pro�t to the principal,

and the agent's value function is concave in the interval [S�(�); S�(�)), the

15
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Figure 3: Principal's loss and dead-weight loss as functions of s.
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principal's value is convex in the same interval. When s � S�(�), the principal's

value under asymmetric information increases linearly, as the agent's value of

information is zero in this interval.

Figure 2 also shows the sum of the principal's and the agent's value functions

under asymmetric information, ~W (s; �) + V (s; �). As long as s is higher than

or equal to S�(�) = 2:59, this curve is identical with the principal's value

under symmetric information, Wsym(s; �). The reason is that in this interval

the contract between the principal and the agent gives a sharing rule without

having any e�ect on the investment strategy compared to the situation of full

information. In the interval (0, S(�)), ~W (s; �)+V (s; �) is lower thanWsym(s; �)

due to an ine�cient investment strategy. This fact is also illustrated in �gure

3, where the relative dead-weight loss as a function of s is plotted in the lower

curve. The relative dead-weight loss is de�ned as (Wsym � ~W � V )=Wsym).
3

The �gure shows that dead-weight loss is positive when s < S�(�) = 2:59. In

addition, we see that in our example the dead-weight loss is about 16 per cent

of the value in the case of no private information, and when s < S�
sym = 1:73.

In �gure 3 the principal's relative loss, (Wsym� ~W )=Wsym, is plotted in the

upper curve. Both the principal's relative loss, and the relative dead-weight loss

is constant as long as the best decision under both asymmetric and symmetric

information is to postpone the investment, i.e., when s < S�
sym(�) = 1:73.

The losses are decreasing in the interval [S�
sym(�); S

�(�)), since the inef-

�ciency in the second-best investment strategy is decreasing as s approaches

3
In the �gures, the notation Vsym is not included as Vsym = 0.
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Figure 4: Wsym, ~W , and V as functions of �, s = 1.
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S�(�) = 2:59. For all s higher than this point the investment strategy is the

same for the symmetric and the asymmetric information case, i.e., there is no

dead-weight loss.

In the interval [S�(�),S�(�)), the principal's relative loss �rst increases and

then decreases. The reason is that two e�ects pull in opposite directions: higher

s leads to higher di�erence between the principal's values under symmetric and

asymmetric information, which increases the relative loss, whereas an upper

limit for the investment cost tends to decrease the agent's value of information

as s gets closer to S�(�).

Figure 4 plots the parties' functions of � when s = 3. In the "standard" real

option problem of valuing an investment possibility, corresponding to the value

of Wsym(s; �), the value is increasing with respect to � in the interval where

the best decision is to postpone the investment. The reason is that as long as

the option is not exercised, higher volatility increases the possibility of a higher

future pro�t.

The principal's value function under asymmetric information depends on �

also in the interval where the optimal decision is to invest immediately, i.e., the

interval s � S�(�), corresponding to � � 0:14. The reason is connected to the

agent's value of information: as � increases, the agent's value of information

decreases, and therefore the share of the pro�t left to the principal is increasing.

The agent's value is decreasing in � because of the upper limit on the agent's

compensation.

For s < S�(�), corresponding to � > 0:14, there is an additional e�ect on
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the principal's value under asymmetric information, which tends to depress the

principal's value: the loss in value because of an ine�cient investment strategy.

This e�ect is dominating when � is between 0.14 and 0.18.

The same e�ects are re
ected in �gure 5. At the � corresponding to S�(�) =

3 the relative dead-weight loss gets positive, because then it reaches the interval

s < S�(�), in which we know that the loss is positive. Both the relative dead-

weight loss and the relative principal's loss increase in this interval as long as

the e�ect of a second-best investment strategy dominates the e�ect that the

agent's value of information decreases with an increasing volatility.

The principal's loss when s � S�(�) decreases because of the agent's de-

creasing value of information as � increases.

Figure 6 plots the principal's and the agent's values as functions of the

investment cost, �. Both the principal's and the agent's value functions are

nonincreasing with respect to �, as a higher cost lowers the value of the invest-

ment for both. For � � 1:1, corresponding to s � S�(�), the principal's value

is independent of the agent's investment cost. The reason is that the com-

pensation paid to the agent cannot be a function of the unobservable variable

�.

Figure 7 shows that the relative dead-weight loss is increasing in �. This is

because higher costs lead to higher critical values for exercising the option, and

thereby larger ine�ciency in the investment decision.

The principal's relative loss is decreasing in � for � lower than or equal to

1.1, corresponding to s � S�(�). Once again the reason is connected to the fact

that when s � S�(�), ~W is independent of �, and therefore an increase in �
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results in a corresponding increase in the principal's loss. For � corresponding

to s < S�(�), the dominating e�ect is the same as in the dead-weight loss as

long as � is lower than 1.6. For �s higher than 1.6, the dominating e�ect is the

agent's value of information getting lower the closer to the upper level cost the

true investment cost is. This tends to decrease the loss.

At � = � the principal's loss and the dead-weight loss coincide, as the value

of the agent's information is zero at this point.

9 Conclusion

In this article, we study e�ects of asymmetric information on an optimal stop-

ping problem. A principal owns an investment opportunity and delegates the

investment strategy of the project to an agent. The agent has private infor-

mation about the investment cost, whereas the stochastic output is common

knowledge.

This setting may apply to a number of situations, both within regulation

(the principal is a regulator, and the agent is a company) and corporate �nance

(shareholders represent the principal, and managers represent the agent).

The agent's private information about the cost implies that it is optimal

for the principal to compensate the agent according to his value of private

information. Thus, the compensation will be higher than the true investment

cost in most cases, thereby increasing the principal's cost of his investment

opportunity. A higher cost leads to a higher critical value for investment. Thus,

it is found that the agent's private information about the investment cost may

lead to underinvestment.

The agent's value of private information will, however, not always lead to

an ine�cient investment strategy. Ine�cient decisions will occur only in the

interval where the critical value of investment, given asymmetric information,

is higher than the time zero value of the output from the investment. If the

time zero value of the output is higher than the critical value of investment,

the compensation function only gives a rule for sharing the pro�t between the

principal and the agent, without having any ine�ciency e�ects.

In the same way as asymmetric information about investment may depress

activity, an agent's private information about the costs of shutting down an

activity, may lead to higher activity than when there is no private information.

More generally, in an model where one can switch between options, pri-

vate information about switching costs lead to higher costs and therefore fewer

switches. For instance, in Dixit (1989) entry and exit decisions of production

are discussed. In this model Dixit �nds that entering and exiting an activity

leads to a "hysteresis band" due to the uncertainty of future outcome and to

the irreversible entry and exit costs. If an agent has private information about

the costs of switching between activity and no activity, the hysteresis band will

be larger than in Dixit's model. Thus, the costs of switching between the two

options may lead to both too much and too little activity. Thus, on a macroeco-

nomic level, even though the level of activity when there is private information

should happen to be not far from the aggregate level when we have no private

information, the activity may not necessarily take place in the activities where

the pro�t is highest.

20



A switching option model can also be applied for �nancial investments.

An example is the holder of a fund who delegates the trading strategy of the

�nancial portfolio to an agent, and where there are some transaction costs.

If the agent has private information about some �xed transaction costs, the

investor can use a variant of the method described in this article to design

the compensation to the agent in such a way as to optimize the agent's risk

management.
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Appendix

A The second-order condition for incentive compatibility

The second-order condition for K must be satis�ed at K(�) = �, i.e., the

function V (s; �) must be more convex than V (K(�); �) and

@V (s;K(�); �)

@K(�)

����
K(�)=�

�
@V (s; �)

@�
: (38)

The �rst-order condition of V (s;K) with respect to K is given by

@V (s;K; �)

@K
= G

Ŝ
(Ŝ(K))Ŝ0(K)�

�
Ŝ
(Ŝ(K))

�(Ŝ(K))

�
G(Ŝ(K))� �

�
Ŝ0(K) = 0 (39)

Di�erentiating the �rst-order condition in equation (39) when K(�) = �,

with respect to � yields,

@2V (s; �)

@�2

=
�(s)

�(Ŝ(�))

�
2
�
�
Ŝ
(Ŝ(�))

�(Ŝ)

�2
(Ŝ0(�))2(G(Ŝ(�) � �)

��S(Ŝ(�))

�(Ŝ)

�
Ŝ00(�)(G(Ŝ(�)) � �) + 2(Ŝ(�))2G

Ŝ
(Ŝ(�))� Ŝ0(�)

�
�
�
ŜŜ

(Ŝ(�))

�(Ŝ(�))
(Ŝ0(�))2(G(Ŝ(�)� �) +G

ŜŜ
(Ŝ(�))(Ŝ0(�))2

+G
Ŝ
(Ŝ(�))Ŝ00(�)

o
� 0:

(40)

This leads to the second-order condition (using the restriction in (38)),

@V (s; �)

@�
�

@V (s;K(�); �)

@K(�)

����
K(�)=�

=
�(s)

�(Ŝ(�))

�
Ŝ
(Ŝ(�))

�(Ŝ(�))
Ŝ0(�) � 0:
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B Deriving equality (20)

Z �

�

 Z �

�

�(s)

�(Ŝ(u))
du

!
f(�)d� =

"Z �

�

�(s)

�(Ŝ(u))
duF (�)

#�
�

�(�)

Z �

�

�(s)

�(Ŝ(u))
F (�)d�:

By inserting the bounds � and � in the �rst term on the right-hand side, we

see that this term is zero: substituting � with � yields
R �
�
�(s; Ŝ(u))du = 0, and

substituting � with � yields F (�) = 0. Thus, we are left with the right-hand

side term of equation (20).
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