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Abstract

The optimal extraction path of fossile fuels and the corresponding corrective
tax on extraction are derived when two types of externalities associated with
emission of carbondioxide (COgq) are taken into account. The optimal path
is derived as a feedback control, that is, as a function of time and pollution.
The tax-path is thereby adaptive to the aggregated level of carbondioxide. The
two types of externalities are flow externalities associated with the extraction,
defined as the difference between private and social marginal costs, and stock
externalities associated with the aggregated level of COs.

The total time horizon is divided into two periods: an initial phase with
extraction and a terminal phase without extraction. The lengths of these pe-
riods are endogeneously determined, as is the scarcity rent of fossile fuels and
the shadow cost of CO9. The mathematical model is completely general in the
state variable, COsy, the decay function included. Furthermore, there are no
assumptions about separability in the objective function, which is to maximize

social benefit.



INTRODUCTION

The literature on flow and stock externalities is quite extensive. This literature
is divided in two parts. On the one hand, there are static models concentrating
upon flow externalities (see for example Baumol and Oates 1988, Bovenberg and van
der Ploeg 1994). These are the externalities associated with extraction itself, for
example, the flow of pollution connected with production or consumption. On the
other hand, there are dynamic models concentrating upon stock externalities (Plourde
1972, Keeler et al. 1972, d’Arge and Kogiku 1973, Brito and Intriligator 1987, Ko
et al. 1992, Ulph and Ulph 1994, to mention a few). These are the externalities
associated with the aggregate level of pollution. Very few attempts so far have been
made to include flow externalities in dynamic models. Therefore authors rightly
conclude that the optimal corrective tax should equal the shadow cost of the pollutant
with the shadow cost defined as the costate variable in the dynamic optimization
problem. Here it is shown that such a tax corrects for the stock externality but not
for the flow externalities, if any. Wirl (1994a) is one of the few who attempt to take
both flow and stock externalities into account simultaneously, but he uses a number of
special assumptions such as zero private marginal cost, linear-quadratic formulation
of the model and no decay of pollution.

In connection with stock externalities a whole literature has emerged on global
warming (Nordhaus 1982, 1991a, 1991b, Peck and Teisberg 1992, Sinclair 1992, 1994,
Wirl 1994a, 1994b). A significant contribution to this literature has been made by
Sinclair (1992) and Ulph and Ulph (1994) by combining the time path of carbon taxes
with the extraction of nonrenewable resources (fossile fuels). They do not, however,
take the flow externalities into account. It is impossible to take flow externalities into
account without making the damage function a function of production (extraction)

of fossile fuels or of the time derivative (flow) of the pollutant.



In the literature on the economics of global warming the question of whether a
carbon tax should increase or decrease over time has received considerable attention
(Sinclair 1992, Ulph and Ulph 1994). In most of the literature on stock externalities,
however, quite a few special assumptions are made. One such assumption, as men-
tioned above, is that the optimal tax on pollution should always equal the shadow
cost of the pollutant. Other common assumptions are that the decay of pollution
is linear and that social welfare is separable in consumption and the pollutant stock
(Plourde, 1972, Keeler et al., 1972, Ulph and Ulph, 1994, to mention a few). In the
case of carbon emissions, this assumption is at best true in the short run. On a longer
time scale the assimilation of carbon in the ocean will gradually be reduced due to
saturation. Hence, decay as a function of the aggregate level of CO, will be decreas-
ing sooner or later. In a time horizon of more than ten years the decay function will
certainly be a non-linear function (see Joos et al. 1996). In addition many papers
concentrate on analysis of steady states (Forster, 1975, Brito and Intriligator, 1987,
Ko et al., 1992).

The aim of the present paper is to derive an optimal corrective tax for a dynamic
problem with both flow and stock externalities, and to investigate analytically the
time path of the tax. The reason analytical results are emphasized, is that such results
do not depend upon particular numerical specifications or assumptions. It makes it
possible to perform general parameter analysis. In order to account for numerical
considerations, the feedback control law derived for the corrective tax is examplified.
A feedback control makes it possible to determine the optimal corrective tax at any
point in time as an explicit function of the stock pollutant.

This approach represents a genuine example of adaptive regulation as the optimal
carbon taxes change each time new information about the aggregate level of CO,
is available. In this paper COsg represents all of the so-called greenhouse gases. A

similar approach to adaptive corrective taxes, but without the nonrenewable resource



aspect, can be found in Sandal and Steinshamn (1998).
THE MODEL

The model applied here is a generalisation of the model applied by Ulph and Ulph
(1994). The objective is

max W(z,a) = /000 e " [B(z,a) — a(a)] dt (1)

€T

where B is the social benefit derived from production and consumption of the good,
z, and « is the damage or disutility from the aggregate level of pollution (CO,), a,
which represents the stock externality. The product, x, can be thought of as the flow
rate of fossile fuels on the market. The functions B and « are completely general in a.
The only restriction is that the benefit function is quadratic in . This is, for example,
the case when B is thought of as the sum of consumers’” and producers’ surplus under
linear supply and demand curves, adjusted for externalities. The inclusion of a in
B then describes how the level of COq allects the demand and cost structure. The
infinite time horizon is divided in two periods, an initial phase up to T" with positive
extraction and a terminal phase with zero extraction from T to infinity.

Denoting the remaining stock of fossile fuels s, equation (1) has to be maximized

subject to the dynamic constraints'
§ = —u, (2)
and
b= 68— f(a)]. 3)
The parameter ¢ is the emission of COs per unit of fossile fuel consumed whereas f

is the decay function which is a completely general function. The decay measured

in COy units is §f whereas f represents the decay measured in fossile fuel units. A

I1Dots denote time derivatives.



genereal decay function is useful as the decay of CO,y through photosynthesis may
be a very complex process. (Global warming may affect the growth of forests and

phytoplankton which again affect the COy level. In addition to this,

T
s(0) = 30>0,§€(0,80),80—§=As:/ xdt,
0

z > 0,a2>0, tlimazO.

The initial stock of fossile fuel, sq, is given. The stock level s is also exogeneously
given and is the stock level below which the costs of extracting increase to infinity.
The level a = 0 is defined as the natural, pre-industrial level of COy which is a natural
steady state and does not harm the global climate. That is f(0) = 0 and «(0) = 0.
The benefit function represents the sum of producers and consumers surplus ad-

justed for any flow externalities. That is

B(z,a) = / " D(y.a) - C(y.a)] dy

where D is the inverse demand function and C* is the social marginal cost of extrac-
tion. This means that by maximizing B the flow externalities are internalized. The

functions D and C* are assumed to be linear,

D(z,a) = po(a)— pi(a)z,
C%(xz,a) = cos(a) + ci5(a)x,

and B can then be written as a quadratic function in z,
B(x,a) = B(a)r — v(a)z” (4)

where

B(a) = pola)— cos(a),

(@) = 7 (pi(a)+cis(a)).



At any point in time market clearing is assumed, implying that the equilibrium level
of x 1s given by D = C? without any policy measures. The function C? is the supply

function corresponding to the private marginal cost of production,
CP(x,a) = cop(a) + c1p(a)z.

In other words, C? is the market supply of z in a competitive economy. The flow
externality is defined as the difference CP — C° which is a function of z for any given
level of a. The optimal tax also must include the scarcity rent of the resource. In
Ulph and Ulph (1994) the scarcity rent is instead included in the producer price; in
other words they assume a monopolist who controls the resource.

Above we have an argument for choosing an objective function that is quadratic
in extraction, z. On the other hand, there are no arguments for choosing special
functional forms with respect to the pollutant, a. It is quite common in the literature
to choose objective functions that are quadratic both in the control variable and
the state variable and constraints that are linear in both (so-called linear-quadratic
models) with the only justification being mathematical convenience. In the present
model both the objective function and the constraints are general in the state variable,
a. In other words, it is assumed that demand, as well as social and private marginal
costs can be affected arbitrarily by the level of COs, due to changes in environmental
concern among consumers or changing production costs.

As mentioned, there are two types of externalities in this paper. The stock exter-
nality associated with the aggregate level of COs, is represented by the damage term
«. The flow externality associated with the production of z is represented by the
difference between social and private marginal costs for any given level of a. This is
defined as a flow externality because production is directly associated with the flow
of pollution, the time derivative a, through Fq. (3). A pure flow externality is the

reduction in welfare associated with 6z in Eq.(3). The common thing to do in the lit-



erature is to focus solely upon flow externalities in static models and solely upon stock
externalities in dynamic models. Here both externalities are included simultaneously
in a dynamic model.

The externalities referred to above indicate that there is need for some policy
instruments in the form of quotas or corrective taxes, and in this paper we will
concentrate on two possibilities, namely a tax per unit of fossile fuel extracted, 7, or
an ad valorem tax, #. It is important to keep in mind that these instruments are in
effect only during the initial phase with extraction. As a consequence of the market

clearing condition, there will be a one-to-one correspondance between the unit tax,
T('xua’) :D<$7a’)_0p<ajua’) (5>

and the level of extraction, z, for a given value of a. Here C? is the producer price and
D = C? 4 7 is the consumer price. Note that maximizing the sum of the consumers’
surplus as a function of the consumer price, the producers’ surplus as a function of the
producer price, and the government’s surplus which is the tax revenue, is equivalent
to maximizing B — a.

Given the assumptions above, x can be written as a linear function of 7,

xr = X() - XlT (6>
where
XO _ pO_COp7
1+ cip
1
Xy = —.
Y4l +Clp

The interpretation of Xy is the market equilibrium without any policy measures.
Similarly, there will be a one-to-one correspondance between the ad valorem tax

D(z,a) — CP(x,a)

Oo,a) = =G (7

8



and z.

A corrective tax based on the shadow cost of pollution defined as the costate vari-
able, which is quite common in the literature, corrects only for the stock externality,
whereas a corrective tax 7 = C° — CP corrects only for the flow externality (this is
the common result {rom static models, see for example Baumol and Oates, 1988).

As there is a one-to-one correspondance between the instruments, 7 or #, and
production, x, it does not matter whether we choose 7, 6 or x as the control variable
in the mathematical model. The approach taken here is that we first find the optimal
extraction level, x, and then substitute this into (5) or (7) to find the unit tax or the
ad valorem tax respectively.

The infinite time horizon is divided in two periods: one with extraction, z > 0,
up to T, and one with zero extraction, x = 0, from T to infinity. At what time it is
optimal to stop extraction is determined by the alternatives we have. It is assumed
that there exists a substitute to fossile fuels which does not emit CO and which yields
a constant social benefit B. Depending upon the magnitude of B\, the switching time,
T, may vary from zero to infinity. As the corrective tax is on extraction, x, it is not
possible to levy any tax when ¢ > T even though the harmful effects, a(a), continue
to exist in this period. An optimal tax in the initial phase, therefore, also has to take
into account the stock externality in the terminal phase.

Let 'H denote the Hamiltonian and let m and n denote the costate variables asso-
ciated with a and s respectively. The optimization problem and its solution is then

outlined 1n Table 1 below.



Table 1

Description Initial phase Terminal phase

Time 0<t<T T<t<o0

Production x>0, z(1) =xr xr =

Social utility B(a,z) — a(a) B — ofa)

Hamiltonian H = B(z,a) — afa)+ H = B — afa) — 6mf(a)

om [z — f(a)] — nx

Dynamic constraint 4 =6 [z — f(a)] a =—6f(a)
Interior solution obm—n=—B,
Costate equation n =rmm—Hs=1rn

(= n(t) = nee™)

Costate equation m =(r+6fYm+a —B, m =(r+6f)m+d

The interpretation of the costate variables is that m is the shadow cost of pollu-
tion (COsq) wheras n is the scarcity rent of the resource and ng is a constant to be
determined. All variables are in current values.

In addition to this we have in general that

dH .
= r(ma — xn) (8)
and we have the requirement that the Hamiltonian and the costate variables are
continuous at time I'. The state variables in this maximization problem are a and s.
As the stock of fossile fuel, sg, is limited, the system will not settle on a steady state

with respect to s but the trivial one, s = s.

By defining zero as the pre-industrial level of COg which is the natural steady state,

10



we have f(0) = 0. Further, by solving @ = —6 f(a), we can define

—(t—=T)=¢(a) = % fCEZ) for ¢>1T.

With this definition we get

smfe™ = —/0 o (a)e™Vda 9)

by solving the equation for 712 in Table 1 for ¢ > T'. Notice that e™* — 0 when ¢ — oo.
As a, = 0, we have mfe™ — 0 when ¢ — co. From (9) it is seen that m < 0 when
t>1T.

It is easily seen that H(r > 0) < H(r = 0), that H(r > 0) is increasing in time,
and that H(r > 0) = H(r =0) = B when t — oc.

It is now possible to determine in which cases the optimal corrective tax should
correspond to the shadow price of pollution, defined as the costate variable, m, given
the assumptions in this model. Let ¢ denote a corrective tax based on the shadow
price. As the shadow price is per unit pollution and the tax is supposed to be per

unit production, this tax must be given by
o= —bm. (10)
From Table 1 it is seen that in the initial phase,

o = By—n=0—-2vx—n (11)

= [f—n—2vXy+ 2vXyT.

In other words, the only case in which ¢ = 7 is when 2yX; = 1 and § — 27Xy = 0.
(Remember that n adjusts for the scarcity of the resource in a competitive economy
and is therefore neglected in this context). From the definitions of § and v in (4) it
is seen that this will be the case if and only if there is no difference between social
and private marginal costs in the model, but that is exactly the case when there is

no flow externality and the only externality is the stock externality represented by a.

11



In the general case it is easily seen that 7 > o+naso+n = B, = D(x,a)—C*(z,a)
whereas, by definition, 7 = D(x,a) — C?(z,a) and C*(z,a) > C?(z,a) for all values
of . An alternative way of stating this is to write the optimal corrective tax as
T =0+ n+ (C° — CP) where o accounts for the stock externality, n accounts for
the scarcity rent and (C*® — CP) accounts for the flow externality. Remember that a
corrective tax implemented as a unit tax or an advalorem tax can only be collected

in the initial phase with positive production.

Zero discounting

In order to study the optimal paths of the control variable x and the corresponding
per unit tax and ad valorem tax, it is useful to derive the optimal control as an
explicit function of the state variable(s); that is, as a feedback control law. A feedback
control law represents true adaptive regulation as the optimal tax is directly affected
by changes in the environment.

We start with the case of a zero discount rate. The results in this section are
less complicated and are of general interest as introduction of a non-zero discount
rate only implies small perturbations of the qualitative (and quantitative results).
This is in accordance with Nordhaus’ (1991a) claim that discounting is of second-
order importance and can be ignored. To do a complete dynamic analysis, however,
discounting is included in the next section. When it comes to numerical implemen-
tations of the model it is more worthwile trying to estimate the correct non-linearity
coefficient, v, than finding the ”correct” social discount rate.

In the case of zero discounting, the optimal feedback rule for the control variable,

x, 1s readily derived (see Appendix for details). Let

be defined as the level of social welfare obtained by fixing the level of COs; that is,

12



keep production at the level z = f such that @ = 0. Let M be defined by

_ B + nof(a) —5(a)

M@ 7@

(12)

Assuming an interior solution, that is M non-negative, the following theorem can be

stated:

Theorem 1 The feedback control law for the optimal extraction path in the case of

zero discounting 18 given by

z(a) = f(a) £/ M(a). (13)

The corresponding optimal unit tax and ad valorem tax can be found by substitutuing

this into (5) and (7) respectively.

Proof: Using ém — n = — B, from Table 1 the optimal Hamiltonian can be written
H=25—nof +~(z— f)? Combining H = Bfor t > T from (8) with the definition
of M then gives (13)H

Eq. (13) represent an explicit solution to a large class of dynamic optimisation
problems. Plus is chosen if ag < a7 and minus is chosen if ag > ar, where aq is the
exogenously-given level of COy at ¢ = 0 and a7 is the endogenously determined level
at T'. The time derivative, a = VM , will not change sign along an optimal path
fort <T.

One question remains, and that is how ar, xp, ng, mp and T" are determined. The

requirement that H and m are continuous at T’ yields

Blar, 2r) — 27 Bs(ar, 1) = v(ag)z2 = B

which gives us xr as a function of ar :




The state equation @ = 6(z — f(a)) yields

and the shadow value is given as a function, mr(ar), by

1

T(CL(),CLT) = 5

I

émr f(ar) = — /OaT o (y)dy = —a(ar)

from (9) This value inserted in
Smyp — np = —By(ap, xp) = —B(ar) + 2y(ar)xr,

from Table 1, yields

a(ar)

f(aT)

Now we have found T', 7, ms and ng as functions of ar. The only thing that remains

nr(ar) = Blar) —

— 2v(ar)zr = no.

to determine is ar itself, and this is given by the resource constraint

foms=As= /OT“” - / ; [af(aa;<i)f(a)]da

when sg and s are known. More specifically we have

8As = ag — ar + sgn(ar — ap) /aT Mda.
aw +/M(a)

From this we see that T, zp, mpr and ng are determined endogeneously by the
optimisation. In particular the resource rent, ng, is determined endogeneously and
is not given exogeneously as is often assumed in the literature. The reason this can
be done here is that the flow externality (the difference between social and private
costs) has been specified from the beginning and has not been disguised in the social
benefit function, B. Next we find an explicit feedback control law for the case with

positive disconting.
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Discounting

Also in the case of a positive discount rate it is possible to derive explicitly analytical
asymptotic expressions for the optimal production level as a feedback control law. As
discounting is of second-order importance this is only done to establish a complete
dynamic analysis. In order to do so, we have to resort to perturbation methods, and
the analysis becomes slightly more complicated. The technical details can be found
in the Appendix. It is of course always possible to derive the optimal production
as a feedback rule numerically both for the case of zero and positive discounting.
Numerical analysis cannot, however, yield general conclusions about the optimal time

paths of the corrective taxes, so emphasis best placed on analytical expressions.

By defining
S= S—I—T/ p(z)dz,
aQ
where p = %—f . [ — 2vf, an explicit expression for the optimal production level

is given in the following theorem:

Theorem 2 The feedback control law for the optimal extraction path in the case of

positive discounting is given to the lowest order by

B\GQT& + noerétf<a) _ g
V(a)

z(a,r,t) = fla) £ \/ (14)

The corresponding optimal unit tax and ad valorem tax can be found by substitutuing

this into (5) and (7) respectively.

The proof for and derivation of (14) is in the Appendix. Note that the difference
between S and S has an interesting interpretation. As g is the marginal change in
benefit when the aggregate level of COj is fixed, that is when & = f(a), the integral
[ pda can be interpreted as the benefit of the change in a when it changes at the rate

a = f(a), but that is when there is no extraction. Hence the finite integral f;; pdz

15



represents the benefit of a change in a from aq to a with zero extraction, or, in other
words, an investment in the environment by stopping extraction. The term r f;; pdz
is simply the alternative rate of return on this investment. The function S can now
be interpreted as the difference between the benefit accruing from fixing the level
of COy, S, and the alternative rate of return on an investment in the environment

accruing from stopping all extraction immediately.

A NUMERICAL EXAMPLE.

The feedback rule derived in the previous sections can be used to determine the
optimal extraction path both as a function of the aggregate level of COs and as a
pure function of time. The former seems, however, to be more interesting from a
regulators point of view.

In this section the model is illustrated by a numerical example using quasi-realistic
data. In this example a zero discount rate is assumed as reasonably small discount
rates only imply small perturbations to the results. Further, linear decay and a
quadratic damage function (stock externality) are assumed. The linear decay function
may be of more general interest, as one way of approaching nonlinear decay functions

is to use piece-wise linear functions.

A special class of models

Before we go on to the numerical specifications of the model, some general com-
ments can be made on the following special class of models. Assuming linear decay,

f(a) = ¢a, and quadratic damage, a(a) = apa?, it is relatively easy to show that

<Z—f_>2=<a—£>2+<
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where
¢(8—n)
2(co + 79”)
B

= —_52
o + 7P

and 7 = 61/ g + y¢* -1 is the new time-scale. This is the standard representation of a
hyperbola. In other words, with these assumptions the phase-plane for a will always
consist of hyperbolae. The optimal path is given by one or multiple hyperbolae for
linear and piece-wise linear decay functions respectively. This also makes it possible

to derive the optimal development in a(t) as an explicit function:

£+ |¢)Y2sinh [r — 7], ¢ >0,
a(t)=1{ ¢+|¢|"*cosh [t — 7], (<0,
{t+exp[E(r—T17)], (=0,

where 7* is a reference time (constant of integration). The saddle-point is character-
ized by a = £ and @ = 0. This also explains why the optimal tax is decreasing or
increasing over time depending upon whether we start below or above ar, see Sin-

clair (1992) and Ulph and Ulph (1994). Now the optimal extraction path, and the

corresponding tax, can be found as explicit functions of time by substituting into

ﬂw:%a+ﬂ@.

Numerical results

Next we look at the numerical specifications of the model. The aggregate level as
well as emissions of COs are measured in giga tonnes COy (Gt-COy). One Gt-CO,
corresponds to 7.81 parts per million (p.p.m.) which is another common measure of
carbon. The year 1997 is used as the base year, { = 0, and the meteorological data

are given in Table 2. The value a is the pre-industrial level which is a natural steady
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state without extraction. This level is estimated to 2187 and the current level, ay,

is 2812. The parameter ¢ has been calculated according to a9 = & [xg — f(a)] where
f(a) = ¢(a - a).

Table 2. Meteorological data

Parameter Value Parameter Value
a 2187  ayp 2812
o 21.9 Qg 11.7
1 B 75
10 0.016 As 3000
El 0

The data in Table 2 has been provided by the Nansen Fnvironmental and Remote
Sensing Centre in Bergen, Norway, except E, which is a guesstimate. The parameter
6 has been set to one such that a and z are measured in the same units. Also the
stock of fossile fuels, s, are measured in the same units. The economic data given in

Table 3 are guesstimates.

Table 3. Fconomic data

Parameter Value Parameter Value
Do 11.95 P1 0.5
Cop 1 Cip 0

Cos 1 Clg 0.05
a(a) 1.5:107° - a®

It is seen from Table 3 that the current private marginal cost of extraction is as-
sumed to be constant and has been normalized to one. Further, a price approximately

twelve times higher than the current private marginal cost is assumed to choke all
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demand. The market equilibrium level with these parameter values is equal to cur-
rent emissions, and the social marginal cost at this level is about twice the private
marginal cost. The stock externality is assumed to be quadratic in a. Due to the nor-
malisation and the constant private marginal cost, there will be no difference between
the unit tax and the ad valorem tax in this example.

Some key results conditional on these assumptions are: 1" = 193 and a(T") ~ 3158.
The optimal extraction path as a function of a from ag to ar is illustrated in Figure
1. This shows that optimal extraction should initially drop from the current level
(21.9) to 15.5 and then follow the curve based on continuous measurements of COs.
Figure 2 illustrates the corresponding time path of the corrective ad valorem tax in
a deterministic world. Optimality requires an ad valorem tax that is initially 218 per
cent and first increases and then decreases over the period to 169 per cent. Figure
3 illustrates the development in a over time with and without optimal regulation. It
is seen that with regulation a increases until T’ and then decreases towards the pre-
industrial steady state level. Without regulation annual emmissions are 21.9, and a
increases to 3473 in year 137 and declines thereafter. Again it must be emphasized
that the example in this section does not pretend to describe reality but is only meant

to illustrate the use of the model.
CONCLUSIONS

In this paper we have derived an explicit feedback control law which can be used to
control the production of fossile fuel products in the presence of both flow and stock
externalities associated with emissions of greenhouse gases (CO3). Flow externality
refers to the instantaneous externality associated with extraction and consumption
which is the difference between social and private marginal costs. Stock externality
refers to the disutility associated with the aggregate level of COy in the atmosphere;

for example global warming. Production can be controlled directly through quotas
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or indirectly through corrective taxes such as a unit tax or an ad valorem tax.

The total time horizon in the optimization problem is divided in two periods, one
with extraction and emissions and one without extraction after the stock of fossile
fuels has been depleted. The feedback law derived here can be used to analyse the time
path of the corrective tax in the period with extraction but taking into account the
stock externality both in this period and in the remaining period. Such an analysis,
however, has at the same time been made somewhat obsolete as the corrective tax
can be formulated as an explicit function of the COy-level.

Including both flow and stock externalities simultaneously in a dynamic model
results in a corrective tax that is different from a tax based on the shadow cost
of pollution, defined as the costate variable in the dynamic problem. A tax based
on the shadow cost can only correct for the stock externality and not for the flow
externality. The tax derived here can be separated in three parts, namely the part
that corrects for the flow externality, the part that corrects for the stock externality
and the scarcity rent of the resource (fossile fuels). The parts correcting for the flow
and stock externalities will be increasing or decreasing over time depending upon the
shape of the decay function and other conditions.

In the model presented here the optimal period with extraction, the shadow cost
of COs and the scarcity rent of the resource are all determined endogeneously. This

is in contrast to most of the existing literature.
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APPENDIX.
Finding the feedback rule

In this appendix the feedback rule with positive discounting, eq. (14), is derived.
The method used here is perturbation theory, see for example Nayfeh (1973). To
simplify notation time units are rescaled such that 6 = 1, that is { — 61, and we
define n = x — f = a. Together with the definition p = 8 — 2vf we have from (8)
and Table 1

H=r(2yn" — pn —nf) (15)
For simplicity, let us denote 1z = f;; p(2)dz and note that 7i=pn. Let P be defined

as P =yn?+ S—n f, and note that P is equal to the optimal Hamiltonian expressed
as a function of S instead of S. Inserted into (15) this yields

P =r(2yw* —nf). (16)
Next 7 can be eliminated from the right-hand side of (16) using the definition of P:
. N d -
P=r |:2 (P — S) —I—?’Lf:| <~ % <€72MP> — 7"@72” (nf — 25) X

Using the information in Table 1 it can be seen that P = H when r = 0. From
optimal control theory it is well known that the Hamiltonian is constant when r = 0.
Therefore, P is constant when r — 0. Next we make an asymptotic series expansion

of P at this value. Remember that €** = (n/ng)%. This yields
P=[P+rwt)]e™, w) <O0(1).

The variables n, f, a, and S are treated as first-order, O(1). Let n be perturbated
by the expansion

n="1o+rn +r’n+ -
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Then we get

yng + S — nf = Py, Pyis constant, (17)
w o= e (nf - 25)

w = 7 [2n9n +r (03 + 200m) + 2% (N3 + 1) + -]

By solving the first equation (1, = @) it is possible to find a = a(t), and this enables
us to solve the second equation in (17). Then it is possible to determine 7 to any
order from the last equation, for example by letting the terms in ordinary brackets

be zero. This yields

w __ﬁ P

= ) 7] - ) - PR
29" P 2my Mo

M

Having determined all the n’s we have also determined the optimal control (z =
f(a)+n). The lowest order is sufficient to comprise the main correction. From earlier

we remember that H(r =0) = Py = B. The feedback solution is then given by

B\Qrt _q
a::fj:\/ ‘ +7nf S—I—O(T).

This is the feedback solution given in Theorem 2. It is also easily seen from the

formula that when r = 0, we have the feedback rule in Theorem 1.
Matching conditions

In this section the endogeneous variables ar; xp; the resource rent, n, and the
time horizon, T', is determined. This analysis is quite analogous to the case with zero
discounting. Continuity in the Hamiltonian, H, and the shadow cost of COs, m,

vields B(z,a) + (6m — n)z = B at time T. This implies




In the period after extraction has terminated (t > T), we have
b= —6f(a), T=lr+6f(@)m+ ()

Recall that the function v given by
1 [* da
6 Jop fla)

is known. The shadow cost, m, can now be expressed by :

(a) =—(t=T)

1 a
mfe™ =mpfr — 5/ o/ (a)e™ 9da. (18)
ar

It is seen that t — oo implies ¢ — —oo, and the lefthand-side of (18) approaches zero
(assuming that the rest does not approach infinity, which is a reasonable assumption
as a = 0 is the closest steady state). This implies that f — 0 because a — 0. It is
now possible to determine the shadow cost at time T as a function of ar:

0
6mTfT:/ o (a)e™Wda.

ar

With zero discounting émrfr = —ar. In the present case we apply the information

that the Hamiltonian is maximized and that the costate variables must be continuous:

émr — ny = ——B(xr, ar) = 2270 — B

ox
This yields the resource rent as a function in ap through 8,, v,, zr and my:
nr = nge™ = my + B — 2.

It now remains to determine T" and ap. The evolution of a in the initial phase (with

ar da
“"‘Lox—fmy

In addition, in order to determine ar, we have the equation for the evolution in fossile

T ar aT
6As = / bxdt = / — % da= ar — ap + /(a)da
0 ao T — f(a’) ao n

where As is the exogeneously given amount of fossile fuels to be extracted.

positive extraction) is

fuel:
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