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Abstract 
A flexible load contract is a type of swing option where the holder has the right to receive a 
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both use price information from the forward market. For 10 contracts traded in the period 
1997-2001, we calculate the performance of the two strategies and compare with the 
reported performance of one complex dynamic programming approach as well as the actual 
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simple computer-efficient strategies perform better on average and produces more stable 
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Managing Flexible Load Contracts: 
 Two simple strategies 

 
 
 
1. Introduction 
 
The holder of a flexible load contract has the right to receive a given quantity of electricity 
within a specified period, at a fixed maximum effect (delivery rate). The contract is flexible, 
in the sense that delivery (the take hours) is called one day in advance. Consequently, the 
flexible load contract can be considered as a type of swing option. 
 
Flexible load contracts have a long history in the Nordic “physical” electricity market. 
Initially, this type of contract was used by the energy intensive industry to manage supply 
risk. With the development of liquid forward markets, however, market prices has become 
the benchmark for both valuation and risk management, whereas the actual physical need is 
covered in the spot market. Consequently, it can be argued that market value is the relevant 
context for analyzing the flexible load contract. 
 
The competitive forces of a dynamic market call for fast responses from the market 
participants. Solving complex realistic problems by dynamic programming will typically 
require a considerable computation time. Consequently, there is a need for decision 
support tools that produces approximate simple strategies in real time.  
 
The purpose of this paper is to consider two simple strategies for managing flexible load 
contracts. For 10 historic cases, the performance of these simple strategies are compared 
with the performance of a complex and time-consuming dynamic programming model, as 
well as the actual performance of three market participants. Our numerical investigations 
indicate that our simple strategies on average outperform the alternatives. 
 
 
2. An illustration 
 
Consider a flexible load contract where the holder has the right to receive delivery two 
out of three days, where delivered quantity is 1 (if any) per day. In the following, we 
focus on the management of the contract, and in particular on the decision whether to 
take delivery at day 0 or not. 
 



 2

The daily spot price is uncertain, and represented by the following simple binomial tree: 
 
Figure 1: A binomial spot price tree 
 
Day 0  Day 1  Day 2 
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To simplify, we disregard interest. Furthermore, we assume a competitive and frictionless 
market with no risk premium, which gives a forward price equal to the expected spot 
price. Consequently, the current spot price is 100, whereas the current forward prices for 
day 1 and day 2 are 101 and 105, respectively.1  
 
Consider a simple strategy, where the quantity delivered at day 0 follows from 
maximizing the net present value of the contract where we restrict our attention to 
deterministic strategies. Observe that the current spot price (100) is less than the current 
forward prices for day 1 (101) and day 2 (105). The best deterministic plan is to lock in 
delivery at day 1 and day 2, and hence the decision is not to take delivery at day 0. The 
expected contract value from following this strategy is 206.2 Note that this strategy is 
feasible, but not necessarily optimal. Consequently, the contract value of 206 is a lower 
bound to the “true” value. 
 
Consider an alternative simple strategy, where quantity delivered at day 0 follows from 
maximizing the value of the contract with respect to a stochastic delivery plan. In 
particular, consider a non-feasible stochastic strategy with delivery if the spot price 
exceeds (or equals) some critical level K . The critical level K  is chosen today such that 
the expected delivery equals 2. It can be seen from the binomial tree above that with 

100=K , the strategy is to receive delivery today (with probability 1) since K≥100 . 
Furthermore, the strategy is to receive delivery at day 1 with probability 2

1  (in case of 
K≥112 ) and at day 2 with probability 2

1 (in case of K≥160  or K≥102 ). 
Consequently, the total expected delivery adds up to 2. The contract value from this 
stochastic but non-feasible strategy is 221.5.3  
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The optimal decision can be derived from dynamic programming, where the optimal 
strategy and contract value are obtained simultaneously. Suppose that we follow the 
strategy to take the first delivery at day 0. At day 1, one scenario is that the spot price is 
112 and the forward price for delivery day 2 is 129.4  In this case, it is optimal to defer 
the last delivery until day 2. The other scenario is that the spot price is 90 and the forward 
price for delivery at day 2 is 81.5 In this case, it is optimal to take the last delivery at day 
1. The expected value from following this optimal strategy is 210.6  
 
The competitive forces of a dynamic market call for fast responses from the market 
participants. Solving more realistic problems by dynamic programming will typically 
require considerable computational resources. Consequently, there is a need for decision 
support tools that produces approximate simple strategies in real time.  
 
Observe that in the above example, the decision to take delivery at day 0, which is 
obtained by the simple stochastic strategy, in fact is the optimal one. For more realistic 
examples, it may very well be the case that the value of following a simple strategy is 
very close to the value of following the optimal one.  
 
 
3. A simple deterministic strategy 
 
To formalize the above ideas, represent the time dimension by time steps (hours) 

{ }L,1,0∈i  where tΔ  is the step size of one hour measured in years. Denote the riskless 
interest rate (continuous, per annum) by r , and let if ,0  represent the forward price quoted 
at time 0 for delivery at the future time step i . Consider a flexible load contract with 
expiration at time step M , where the remaining delivery hours at time step i  is denoted 
by iH .  
 
In words, we want to find the delivery plan that maximizes the net present value (NPV) 
of the contract, such that each hour is fully taken or not, and such that all available hours 
are taken. One interpretation may be that the economy is deterministic. Another 
interpretation may be that the economy is stochastic, but that the decision is irreversible 
and must be taken once and for all. This means that the delivery plan disregards the 
flexibility to reschedule production in the future as new information arrives. 
 
The deterministic decision problem can be stated as follows 
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where i,0δ  represents the scheduled delivery for time step i . It is easy to see that the 
optimal production plan ( )M,02,01,0 ,,, δδδ L  can be represented by  
 
 ( ) MikefI tir

ii ,,2,1;0,0,0 L=≥= Δδ      (2) 

 [ ]+−∈ 000 ,kkk          (3) 
 
where ( )I  is the indicator function (assuming the value of 1 if the argument is true and 0 
otherwise). The critical value 0k  is the value of the marginal hour, and satisfies 
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Observe that +

0k  represents the NPV of the least valuable take hour, whereas −
0k  

represents the NPV of the most valuable hour that is not taken. 
 
In optimum, i.e., 0kk = , the value of the contract can be expressed as (see Appendix A) 
 

 ( ) ( )∑
=

ΔΔ− −+⋅=
M

i
i

tri
i

tri kefekHk
1

,00,0000 δl      (6) 

 
The first term represents the total take hours multiplied by the value of the marginal take 
hour, whereas the second term represents the additional value due to the time structure of 
current forward prices.  
 
The above result presumes that the entire production plan is deterministic and that the 
decision is taken once and for all. In the case of a flexible load contract, however, the 
relevant decision at each decision point (trading day) is to determine the take hours for 
the following trading day (and intermediate non-trading days, if any). Consequently, we 
suggest that the above procedure is applied sequentially for each trading day, where 
forward prices are updated as well as time to expiration and remaining take hours of the 
contract. 
 
 
4. A simple stochastic strategy 
 
Observe that the above deterministic decision rule itself disregards the value of flexibility 
(even though the option value will partially taken into account through the sequential 
procedure). In practice, we have to fix the take hours for a flexible load contract for the 
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next trading day (and intermediate holidays, if any), say the first m  hours. In order to 
capture some of the option value within the decision rule, consider the following 
probabilistic problem 
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Consequently, (7)-(8) may be interpreted as maximizing the expected net present value of 
future production, assuming that each hour is taken if and only if the spot price exceeds 
the future value of K , subject to the constraint that the total take hours holds in 
expectation. We argue that (7)-(8) represents a relaxation of (1)-(5), as the integer 
restrictions on the decision variables (production) are removed and that the production 
constraint is required to hold in expectation only. Given a probabilistic setting, the 
exponentially growing trigger price Ke tir Δ  just above is in fact optimal for a wide class 
of forward price processes (see Appendix B). 
 
In the following, we invoke the usual assumptions from finance of lognormal future spot 
prices, where forward prices are represented by expectations with respect to risk-adjusted 
probabilities. In particular, we model the future uncertain spot price iif ,

~  by 
 
 ( ){ }ε~exp~

,0
2

,02
1

,0, tivtivff iiiii Δ+Δ−=      (9) 
 
where ε~  is standard normal, [ ]iii fEf ,0,0

~= , and iv ,0  represents the volatility (per 
annum).7 It follows from Black76 that the value of the uncertain future production at time 
i  is 
 
 ( )[ ] ( ))(~~
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iiii
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and that the production probability is 
 
 ( )[ ] ( ))(~

,2,0 KdNKefIE i
tir

ii =≥ Δ       (11) 
 
where ( )N  is the standard normal cumulative probability function, and 

                                                 
7 The volatility iv ,0  is defined implicitly from the annualised variance of the log-return during ti Δ  as 

follows: ( )[ ]iiii fftiv ,0,0
2

,0
~lnvar=Δ  
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We observe that (10) and (12) correspond to the first factor and (11) and (13) enter in the 
second term of the Black76 formula for the case of a Black76 call with strike Ke tir Δ . In 
the literature, ( )1dN  is known as the option delta, whereas ( )2dN  is often interpreted as 
the call exercise probability. 
 
Consequently, given our additional assumptions, we obtain the critical 0K  from 
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In optimum, we can express the contract value as (c.f. Appendix C) 
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The first term represents the available take hours )( 0H multiplied by the marginal take 
hour value )( 0K , whereas the second and the third term represents the additional value 
due to the term structure of the current forward prices as well as the value of flexibility. 
Observe that the third term may be interpreted as the value of a portfolio of Black76 
HSOs (Hourly Settlement Options) with strikes 0Ke tir Δ  depending on time to exercise. 
 
As in the previous section, the result just above presumes that the production strategy is 
fixed once and for all. In the case of a flexible load contract, however, the relevant 
decision at each decision point (trading day) is to determine the take hours for the 
following trading day (and intermediate non-trading days, if any). Consequently, we 
suggest that the above procedure is applied sequentially for each trading day, i.e., that 
forward prices are updated as well as time to expiration and remaining take hours of the 
contract. Note that this sequential procedure ensures that the total production constraint 
will hold with probability one, which means that the strategy is feasible. 
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5. Market information 
 
Contracts with variable duration are traded on the NordPool forward market. The product 
structure is comprised of day, week, block, season and year contracts. For more information 
please refer to the NordPool web site.  
 
Based on market price quotations, we construct a smooth forward curve every day. We use 
the closing prices of traded product, such as forward and future contract on the exchange, to 
construct a forward curve on that day (see Figure 2 for an example). 
 
Figure 2 - Forward curve for 30 April 1997 

 
 
The forward market does not contain information about the level of the hourly prices, 
however. Consequently, we use some standard shapes over the week to construct hourly 
forward prices (see Figure 3 for an example). Historical spot prices were used to create a 
weekly profile of the relative hourly prices. 
 
Figure 3 – Hourly Price Profile over the Week 
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We have used available forward market prices for the period 1997-2002 and created a set of 
forward curves for the required period using the Elviz Front Manager software. This profile 
is then applied along the forward curve using the same profile for all the weeks. The 
smoothing algorithm ensures that the jumps between the weeks are minimized. With the 
hourly forward curves in place we can simulate how a holder of a swing contract would have 
acted if he were using this simple rule to decide which hours he should execute. 
 
In the case of the simple deterministic strategy, we pick the best hours next day if they are 
among the overall best hours. Next day we construct a new forward curve, and so on. In this 
way we capture some of the option value of the contract. Recall that each day only the take 
the next day is decided. This means that we examine a flexible strategy.  
 
In the case of the simple stochastic strategy, we need some additional information on the 
volatility. Following Bjerksund, Rasmussen and Stensland (2000), we model the 
instantaneous volatility at time i  of the forward price with delivery at time j  by 
 

( ) ijc
tijb

a
ji >+

Δ−+
= ;,σ  

 
where positive constants a , b , and c  ensure that the instantaneous volatility is a positive, 
decreasing, and convex function of time to delivery. We use the following constants 

73
613=a , 21

1=b , and 10=c , which translates into a spot volatility of 90%, a volatility of 
17% for delivery in ½ year, and approaching 10% in the long end. The instantaneous 
volatility curve is illustrated in Figure 4. 
 
Figure 4: Instantaneous volatility vs. time to delivery 
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In an efficient market, successive forward price changes are independent. Consequently, the 
forward price volatility jv ,0  from time 0 to time of delivery j  is related to the instantaneous 
volatility structure by 
 

∑
=

=
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i
jij j

v
1

2
,,0

1 σ  

 
 
6. Example 
The experiment was conducted for the same periods as Lund and Ollmar (2003). In our 
calculations, we have considered flat trigger price strategies. As an illustration, we use the S-
1997 contract as an example. This contract has a settlement period from 1st May 1997 to 30th 
September 1997 and gives us a right to pick 1667 hours out of a total 3672 hours. The 
maximum effect (delivery rate) of the contract was 5MW. We start with the forward curve 
for the 30th April 1997 which is the trading day preceding the first settlement date. Input to 
the forward curve are the quoted prices of the traded NordPool products and the hourly 
price profile over the week described previously. In addition the spot price for the 30th April 
is set the 29th April and forms the starting point of the forward curve.  
 
Figure 5: Forward curve and 1667 best hours of S-1997 as of  30th April 1997.   
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Figure 5 shows the forward curve as of 30th April 1997 for the life time of the contract. 
The bars in figure 5 indicate the 1667 best hours on the forward curve given this price 
information, i.e., the hours we would call if we were to declare all the call hours up front.  
In the figure above we use zero interest rate. In this case the trigger price is flat. See 
Equation (2). 
 
However, in the case of a flexible load contract, the delivery hours are called one day in 
advance. 
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Figure 6: Forward curve and called hours next day of S-1997 as of 30th April 1997 
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Figure 6 shows the forward curve as of 30th April 1997 for the next day (1st May), as well 
as the called hours next day. Observe all hours on 1st May are among the 1667 best. 
Consequently, we decide to take delivery for all of the 24 hours on 1st May, which adds 
up to a total quantity of 120 MWh (recall the delivery rate 5 MW). The remaining 
quantity of the contract is 8335 MWh – 120 MWh = 8215 MWh.  
 
As new price information by assumption arrives on trading days, we use the updated 
price information on a given trading day to determine the delivery hours for the 
subsequent trading day (and intermediate non-trading days, if any). The procedure is 
repeated for each subsequent trading day, until the contract period expires or the total 
delivery is exhausted. 
 
7. Results 
 
In order to evaluate the two proposed strategies we have performed a backtesting on 10 
contracts. To simplify the analysis we have set the interest rate equal 5% for all the cases.  
In addition we use the time homegeneous volatility function described in Figure 4 for all 
historical dates. These simplifying assumptions are done in order to reduce the amount of 
work when performing this test. We guess but do not know that more detailed information 
on volatility and forward interest rates on each date should improve the performance of 
both the suggested methods.  
  
Table 1 considers 10 contracts, and shows the excess revenue base load from following 
Lund & Ollmar (L&O), our simple deterministic strategy (Elviz), and our simple stochastic 
strategy (delta). In addition, the table shows the actual excess revenue obtained by three 
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anonymous market participants (C1, C2, and C3) for these contracts, c.f. Lund and Ollmar 
(2003). Observe that in this case study, our delta-strategy on average provides the highest 
and most stable excess revenue. 
 
Table 1: A comparison of the performance (excess revenue) from following 6 alternative strategies 
for 10 historic contracts.  
 Alternative strategies 
Contract L&0 Elviz Delta C1 C2 C3 
S-1997 79 935 100 292 109 514 108 075 98 300 105 110
W-1997 185 980 103 543 129 809 59 595 54 740 38 765
S-1998 -35 590 114 337 127 940 49 245 133 155 90 620
W-1998 185 315 100 589 142 296 122 885 183 210 51 650
S-1999 155 200 104 592 89 304 177 770 175 450 181 755
W-1999 157 985 106 240 132 242 67 340 40 175 7 565
S-2000 99 020 148 506 115 292 157 430 155 425 180 755
W-2000 -64 995 131 519 91 602 125 820 113 525 49 450
S-2001 152 530 128 907   142 653 111 875 101 030 24 870
W-2001 207 815 157 657 171 696 162 452 143 243 91 386
Total 1 123 195 1 196 182 1 252 448 1 142 487 1 198 253 821 926
Std.dev. 94 256 20 913 24 940 44 582 47 775 60 603
 
 
8. Conclusions 
 
Obviously our results are not sufficient to conclude that the simple model is the best model. 
First of all (L&O) might improve their model by including more information from the 
forward market instead of focusing on the spot price process. In addition it is hard to make 
any statistically significant statements based on 10 cases.  
 
Still we find our findings interesting. Recall that market participants use a lot of effort to 
model all water reservoirs, estimate the amount of snow and so on before any decision is 
reached. Our message is that most of this information is already present in the forward 
curve. In addition we believe that the option value of these contracts is small. Recall that 
option value is the value additional to the simple forward curve valuation. Non-parallel shift 
in the forward curve will increase this option value. An example is a situation where summer 
prices increases substantially and the rest of the year is unchanged. We cannot rule out these 
kinds of movement, but we might say that based on our data it is probably not profitable to 
save hours during late winter in case of such seldom events.  
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Appendix A: Contract value – deterministic strategy 
 
The contract value with the deterministic strategy can be represented as the solution to 
the following optimization problem 
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Appendix B: Characterization of the optimal stochastic strategy 
 
Recall the myopic stochastic decision model above, and consider the following slightly 
generalized optimization problem 
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We want to find the optimal iK ,0 . 
 
Given some regularity conditions (forward prices continuous random variables), which 
for instance are satisfied with lognormal forward prices, the partial of Lagrangian with 
respect to iK ,0  is 
 

( )[ ] ( )[ ]
( )[ ] ( )[ ]

{ } ( )[ ]iiii
tir

iiiiiii
tir

iiiiiiii
tir

i

KfEKe

KfEKfKeE

KfEKffeE
K
L

,0,0,0

,0,0,0,,00

,0,0,0,,0
,0

~)1(

~)1(~)1(

~)1(~)1(~

=−−=

=−−=−=

=−−=−=
∂
∂

Δ−

Δ−

Δ−

δλ

δλδ

δλδ

 

 
where ( )Kf ii =,
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consequently, we have λtir
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Appendix C: Contract value – stochastic strategy 
 
The contract value with the stochastic strategy can be expressed as the solution to the 
following optimization problem 
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In optimum, we have 
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Appendix D:  
 
Consider the following forward price dynamics 
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It follows from the definition of volatility and the independence of successive price 
returns that 
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