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Abstract

A standard result states that under decreasing absolute risk aver-
sion the indifference premium of the insured is a decreasing function
of wealth. This has been interpreted to mean that insurance is an
inferior good, which has been considered as a puzzle in insurance the-
ory, in particular since the result does not seem to explain observed
behavior in insurance markets.

We reformulate the standard model of risk sharing to incorporate
the amount invested in the insurable asset. From this we identify
two wealth effects, one direct and one indirect. The direct one is
explained by the classical result, and is negative when risk aversion
is decreasing. The indirect effect is positive when the insurable asset
is a normal good, and we find conditions when insurance is a normal
good, and when it is not.

The analysis is extended to Pareto optimal risk sharing, where
we also analyze the joint problem of finding an optimal amount in the
insurable asset, as well as a Pareto optimal insurance contract. In this
latter case insurance turns out to be inelastic to changes in wealth of
the insurance customer, provided the insurer’s reserves are held fixed,
but a normal good if this assumption is relaxed.

∗
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I Introduction

In a seminal paper Mossin (1968) analyzed several aspects of insurance pur-
chasing. Among other things he showed that under decreasing absolute risk
aversion (DARA), the indifference premium of the insured is a decreasing
function of wealth. This has been later interpreted as insurance is an inferior
good. This result became well known for various reasons. The technique
of proof was elegant, although he only considered risks that could take on
two values, and it was mimicked in many subsequent papers dealing with the
microeconomics of risk theory. The result also had an intuitive appeal: The
wealthier a person is, the greater his ability to bear the risk on own accounts.
In financial economics there is a well known result in portfolio theory (Arrow
(1970)) involving one risky and one risk-free asset stating that, if the investor
has DARA, the demand for the risky asset increases as the investor’s wealth
level w increases. Turning this result around to insurance, the risky asset
can be interpreted as accepting the ”perils of the sea” (without insurance),
and demanding more of this ”asset” is interpreted as demanding less insur-
ance. Thus Mossin’s result seems well in accordance with this fact as well.
Finally, the assumption of DARA seems so natural that the implications for
insurance demand looked unquestionable. Mossin’s results are widely taught
and used in academic circles. Since inferior goods may also be Giffen goods,
Hoy and Robson (1981), Briys, Dionne, and Eeckhoudt (1988), Borch (1990)
i.a., have analyzed the conditions under which insurance might belong to this
category as well.

However, skepticism has been expressed, both in the insurance profession
and among researchers, about the validity of this result. Insurers, for exam-
ple, typically prefer to target their products to high income groups on the
ground that they have a greater capacity of paying the premiums. Presum-
ably these individuals also have more assets and other belongings subjected
to risk. In the same vein, empirical studies indicate that the elasticity of
insurance demand with respect to wealth is positive, whether the problem is
studied cross-sectionally as by Beenstock et.al. (1988), or as a time series,
as in Szpiro (1986).

Researchers have developed some alternative models in which insurance
may not be inferior. For example, while remaining in the single period con-
text of Mossin, a distinction can be made between two sources of total wealth;
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a safe (hence non-insurable) component and a risky, insurable one. Under
those conditions Beenstock, Dickinson and Khajuria (1988) showed that for
a particular utility function the demand for insurance varies directly with the
value of the property at risk, so that insurance is a normal good with regard
to the relevant component of wealth. Doherty and Schlesinger (1990) use
a model very similar to that of Mossin, but assume the insured has doubts
about the insurer’s ability to pay valid claims in full. In that context they
show that insurance might be a normal good with respect to the amount of
sure wealth. Dionne and Eeckhoudt (1984) have shown that in a two period
model, even with temporal DARA, the normality of insurance cannot be ex-
cluded a priori. Eeckhoudt and Venezian (1990) consider the simultaneous
decision of the level of investment in a risky asset and the level of the in-
demnity against destruction of the asset. Under certain credit market and
insurance market restrictions they find that insurance is a normal good. This
is the approach that is closest in spirit to ours. Section 5 has a model that re-
sembles the one by these authors, but our perspective is somewhat different.
Dreze (1987) considers a simple term insurance where where a compensation
is paid only in the case of death, in a model with state dependent utility.
The demand for insurance is found to be an increasing function of wealth in
the case of life, and a decreasing function wealth in the case of death. This
result depends on the fact that the wealth parameter is unrelated in the two
different states.

We reexamine the conditions behind Mossin’s result, and find that a crit-
ical assumption is that the risk under consideration does not depend upon
the wealth. Thus, increasing the wealth amounts to increasing only the safe
component, leaving the risky part unaltered. This assumption turns out to
be indispensable for the derived result, a feature we do not find entirely satis-
factory. Increasing individual wealth normally means that both the safe and
the risky component increases. A well-off person typically has more belong-
ings subject to potential losses than a less wealthy individual. An increase
in wealth may, for example, be partly invested in real estate, furniture, cars,
art, etc., and this could lead to more demand for insurance, not less.

In this paper we reformulate the standard model of risk sharing to in-
corporate the amount invested in the insurable asset. From this we identify
two wealth effects, one direct and one indirect. The direct one is explained
by the classical result, and is negative when risk aversion is decreasing. The
indirect effect is positive when the insurable asset is a normal good, and we
find conditions when insurance is a normal good, and when it is not.

The paper is organized as follows: First we recall the standard result
that the indifference premium is a decreasing function of wealth, if the in-
surance customer has a decreasing absolute risk aversion function. This is
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the direct effect, and here we generalize the originally published proof from
the special case with a random loss that can only take two values, to the
situation of any non-negative random loss Y ≥ 0. Since the concept of
an inferior/normal good established via the indifference premium is not the
standard in economics, in Section 3 we present an alternative model where
the optimal indemnity function is derived, when the insurance premium is
defined in the standard way by a loading of the expected loss. By keeping
the premium per unit of risk fixed, we show that the demand for insurance is
a decreasing function of wealth when the absolute risk aversion is decreasing
over its entire domain, a different and independent derivation of the direct
wealth effect of Mossin.

We then modify the standard model of insurance to include the amount
invested in the insurable asset. This allows us to also derive an indirect
wealth effect which is shown to be positive if the insurable asset is a normal
good. Conditions when insurance is a normal good are found for both the
models mentioned above. We investigate two different scenarios throughout,
one where the amount in the insurable asset is taken as given, and one when
this amount is a decision variable together with the amount of insurance. In
the latter case both insurance and the risky asset are typically normal goods.

We also incorporate the supply side of insurance, and identify the two
wealth effects for Pareto optimal insurance contracts. Here we solve the
problem of finding both the optimal amount in the insurable asset, as well as
the Pareto optimal insurance indemnity, and show that insurance is inelastic
to changes in wealth provided the reserves of the insurer is kept fixed. When
this assumption is relaxed, both a Pareto optimal insurance contract and the
optimal amount in the risky asset are normal goods.

II The standard result for any random loss

In order to better be able to put the standard result under scrutiny, we now
reexamine the proof of this result. By doing so, we are able to generalize
Mossin’s proof to an arbitrary, non-negative random variable Y representing
the loss of the insurance customer.

Under risk aversion the agent has a decreasing marginal utility in wealth.
Suppose that his absolute risk aversion function R(w) decreases with wealth
w, which as been argued to be a natural property of behavior in the presence
of risk: As the consumer becomes wealthier, he becomes less and less risk
averse (DARA). Under this assumption Mossin (1968) showed that the reser-
vation premium is a decreasing function of wealth. He showed his result for
a risk Y that could take two different values; Y = 0 with probability (1− q)
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and Y = y with probability q, where w ≥ y > 0. Full insurance is available,
and the indifference premium pr satisfies

u(w − y)q + u(w)(1− q) = u(w − pr)

where w is the wealth of the insurance purchaser. The proof presented by
Mossin was largely graphical in flavor.

Below we present a simple proof, maintaining his assumptions, but for
any non-negative random loss Y having cumulative distribution function F .
By EY we thus mean

∫ M

0
ydF (y), for some M < ∞.

The reservation premium pr(w, F ) := pr(w) defined for any non-random
initial wealth w by

Eu(w − Y ) = u(w − pr(w)). (1)

Theorem 1 Consider the following assumptions: (i) R(x) is a strictly de-
creasing function in x. (ii) The distribution F does not depend upon the
initial wealth w. (iii) the random loss Y has a non-degenerate distribution.
(iv) the utility function u satisfies u′ > 0, u′′ < 0.
Then the reservation premium is a strictly decreasing function of wealth, or

∂pr(w)

∂w
< 0.

Proof: Differentiating the equation (1) with respect to w yields

Eu′(w − Y ) = u′
(
w − pr(w)

)(
1− ∂pr(w)

∂w

)
,

which gives that

∂pr(w)

∂w
= −

Eu′(w − Y )− u′
(
w − pr(w)

)
u′

(
w − pr(w)

) .

Since the marginal utility u′ > 0, the conclusion will follow if we can show
that

θ := Eu′(w − Y )− u′
(
w − pr(w)

)
> 0.

To this end, define the random variable Z := u(w − Y ). Clearly Z is non-
degenerate if Y is. Since (w − Y ) = u−1(Z) , the constant θ can be written,
using the definition (1)

θ = Eu′
(
u−1(Z)

)
− u′

(
u−1

(
Eu(w − Y )

))
=

Eu′
(
u−1(Z)

)
− u′

(
u−1(EZ)

)
.
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The conclusion of the theorem will follow if we can show that the composite
function f(z) := u′(u−1(z)) is strictly convex, since by Jensen’s inequality we
then get that

Eu′
(
u−1(Z)

)
> u′

(
u−1(EZ)

)
with strict inequality for any non-degenerate random variable Z, which means
that θ > 0.

So it remains to prove that f is strictly convex. To this end, consider
f ′(z) = d

dy
u′(u−1(z)). By virtue of the rule for differentiating the inverse of

a function, we get

f ′(z) =
u′′(u−1(z))

u′(u−1(z))
.

Since the marginal utility u′ > 0, the inverse function u−1(z) is a strictly
increasing function in z, since

d

dz
u−1(z) =

1

u′(u−1(z))
.

Denote by u−1(z) := v. The function

u′′(v)

u′(v)
= −R(v),

and from our assumptions R(v) decreases as v increases. Thus u′′(v)/u′(v)
increases as v increases, or

u′′(u−1(z))

u′(u−1(z))
↑ as z ↑

by the above observation. In other words, the function f(z) = u′(u−1(z))
has a derivative which is strictly increasing in z, so f is accordingly strictly
convex. This finishes our proof. �

Notice that the assumption (ii) is utilized already in the first line of the
proof; the differentiation of (1) with respect to w leaves the distribution
function of Y unaltered.

If we do not require that the risk aversion function is strictly decreasing,
the conclusion would be that the function pr(w) would only be decreasing, not
necessarily strictly decreasing. This is, perhaps, the most natural formulation
of this theorem.

In investment theory a well known result tells us that the optimal amount
invested in the risky asset is an increasing function in wealth when the in-
vestor’s absolute risk aversion function is decreasing (in wealth), assuming
there is only one risky asset and one risk-less one. If two fund separation
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applies, the result is true also if there are more than one risky assets. Thus
the demand for the risky asset is, under these special circumstances, an in-
creasing function of wealth, and hence a normal good see e.g., Arrow (1970).
By the same reasoning the insurance contract, under the above conditions
of Theorem 1, is often termed an inferior good, since the ”demand” for in-
surance, as reflected in the reservation premium pr(w), is decreasing in the
customer’s wealth.

In view of the property of demand for a risky security in a market for
securities, the interpretation of an insurance contract as an ”inferior good”
may not appear all that odd, at least at first sight, since it could, perhaps,
be interpreted as just the other side of the financial result. As the insurance
customer gets more wealthy, he will demand more of the ”risky asset”, here
interpreted as just nature itself, hence less insurance. There seems to be
nothing pathological about the insurance contract derived from Theorem
1, in light of this interpretation. In fact, this seems like every insurer or
reinsurer’s dream, to be able to retain more of the risk on own accounts.
As it turns out, this interpretation is still valid for insurers. For insurance
customers, however, who hold insurable assets as consumption goods, this
turns out to be only one side of the issue.

III An alternative model

The standard definition of an inferior good in microeconomics comes from
holding prices fixed and allowing income to vary. In the interpretation in
last section we have in mind a unit price of insurance at level of risk Y , so
that the reservation premium is somehow interpreted as this unit price times
”quantum of risk”. Keeping this unit price fixed, the quantum demanded
must be decreasing in the wealth parameter w, allowing the result of the last
section to be consistent with this standard formulation.

Since it is not transparent how the premium pr may decomposed into a
unit price times quantum of risk, we now check if the above result is sen-
sitive to the special interpretation of considering the wealth effect on the
indifference premium. To this end consider the following simple two-state
model. The individual’s loss Y can take two values, 0 and y with probabil-
ities (1− q) and q respectively. The individual can purchase insurance that
pays indemnity I if a loss has materialized, and nothing in the good state,
against a premium p = (1 + λ)qI. Here the factor (1 + λ) is the traditional
loading, λ ≥ 0, so the premium is actuarially fair if λ = 0. We assume
(1− (1 + λ)q) > 0.

The individual has a strictly increasing and strictly concave utility func-
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tion u. His objective is to select the amount of indemnity I so as to maximize
the expected utility of his income. Thus he seeks the optimal indemnity level
I∗, where

U(I∗) = max
I≥0

U(I)

and
U(I) = (1− q)u(w − p) + qu(w − y + I − p).

The strict concavity of u induces U to be strictly concave. Consequently,
insurance will be purchased if and only if U ′(0) > 0. In this case the optimal
indemnity I∗ is a solution of the first order condition

u′(w − y + I − p)

u′(w − p)
=

(1 + λ)(1− q)

1− (1 + λ)q
. (2)

Let us consider the wealth effect by keeping the premium fixed. By this we
mean that the right-hand side of (2) is constant. Since the loss y is exogenous,
this relation defines the optimal indemnity I∗ := I∗(w) as a function of wealth
w. By differentiating (2) in w along the optimal contract, and then dividing
the result by the first order condition, by the implicit function theorem we
then obtain

d

dw
I∗(w) =

R(w − p)−R(w − y + I∗(w)− p)

A
, (3)

where

A = (1 + λ)q
(
R(w − p) + (1− (1 + λ)q)R(w − y + I∗(w)− p)

)
.

Since A > 0, it follows that the optimal demand for insurance I∗ is increasing
in wealth parameter w, or decreasing, depending upon the sign of the nu-
merator on the right-hand side of (3). If the absolute risk aversion function
R(·) is decreasing in its entire domain, it follows that insurance is an inferior
good, and if the absolute risk aversion function is an increasing function in
its entire domain, insurance is a normal good.

These conclusions follow from our assumptions, since the optimal insur-
ance is either full (i.e., I∗ = y) if the loading (1 + λ) = 1, and less than full
(i.e., I∗ < y) if λ > 0. Consequently, (w − p(w)) > (w − y + I∗(w) − p(w))
in the latter case. We have shown

Theorem 2 If less than full insurance is optimal, then d
dw

I∗(w) < 0 under
strictly decreasing risk aversion, and d

dw
I∗(w) > 0 under strictly increasing

risk aversion.
If full insurance is optimal, then d

dw
I∗(w) = 0, so insurance demand is

inelastic to changes in wealth.
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As a consequence of this, Mossin’s (1968)-result is not sensitive to his
special formulation in terms of the indifference premium pr(w). Notice that
in his model, full insurance is the only alternative, while in the present model,
under full insurance the wealth effect turns out to be zero, which is the main
difference between these two models. This is not an important difference,
since the case where the loading λ > 0 is the one of practical interest in the
present formulation, in which less than full insurance is optimal.

Returning to the financial result mentioned in the last section, the amount
invested in the risky asset becomes a function of w, which is increasing if
R(·) is decreasing. In the insurance model considered so far we do not have
any analogue to this amount in the insurable asset. The above insurance
results only say that if the wealth increases, and the individual keeps the
wealth in insurable assets unaffected by this change, then the demand for
insurance decreases. Thus the insurance model is not really capturing the
possibility that the insurable good is itself a normal good. In the next section
we reformulate the insurance model such that this aspect can be taken into
account. First we study the situation with an indifference premium, and
later we return to the less than full insurance scenario of this section.

IV The amount in the insurable asset depends

on wealth

IV-A Introduction

In our first attempt at explaining the wealth puzzle, consider a simple model
where an increase in wealth means that the amount in the insurable asset
also changes. In order to analyze this, we need to introduce the amount in
the insurable asset in the model.

Recalling assumption (ii) in Theorem 1, it clearly ignores the effect of
increasing wealth on the risky part of the customer’s wealth. Casual obser-
vations suggest that the more wealth an insurance customer possesses, the
larger is the potential loss that he may suffer. Thus an increase in w should
typically go along with an increase the insurable asset, at least if this is a nor-
mal good. On one side the customer has become wealthier and thus better
equipped to carry a potential loss, but on the other side his or her prop-
erty that is subject to damage has also increased in value and may require a
larger insurance cover. Under these circumstances it is far from obvious that
the insured’s reservation premium is decreasing in wealth, even if the person
has a decreasing risk aversion, or that the optimal insurance coverage is a
decreasing function of wealth.
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The insurance customer has wealth w as before, where the amount (w−a)
is invested in a safe asset having return (1 + rf ) and the remaining amount
a > 0 is invested in a risky asset having return (1+X), where X is a random
variable with support [−1,∞). In the present context the risky asset can be
thought of as a house or another insurable asset, in which case the rate of
return is

X =

{
x, with probability (1− q)

−1, with probability q,

where x > −1. We may interpret the constant x as the conditional expected
rate of return on the insurable asset, given that the good state prevails. 1

For our first result we shall assume that

E(X) = (1− q)x− q > 0, (4)

or that x > q
1−q

, the fair-odds-ratio.
The insurable event, or the bad state, has probability q, the good state

has probability (1 − q). The insurance customer’s uncertain end of period
wealth

W = (w − a)(1 + rf ) + a(1 + X) = w(1 + rf ) + a(X − rf )

and his expected utility is

Eu(X) = u(w(1 + rf ) + a(x− rf ))(1− q) + u((w − a)(1 + rf ))q.

Since the risk-less rate will play no role in what follows, we set rf = 0 without
loss of generality. The associated loss Y has accordingly two values

Y =

{
0, with probability (1− q)

y, with probability q,

where y := a(x + 1).
First let us demonstrate that the optimal amount a∗ invested in the risky

asset is an increasing function of w under decreasing risk aversion.

Theorem 3 Assume that (4) holds. Then the optimal amount a∗(w) held
of the insurable asset as a function of wealth w is an increasing function if
the absolute risk aversion function R(·) is decreasing over its entire domain.
On the other hand, a∗(w) is decreasing in wealth if R(·) is increasing over
its entire domain.

1This conditional rate of return may be subject to a probability distribution of its own,
determined e.g., in the market for real estate if the risky asset is a house, etc., uncertainty
which we ignore here for reasons of parsimony.

10



Proof: First we find the optimal amount invested in the risky asset. The first
order condition for this is

dEu(W )

da
= u′(w + ax)(1− q)x− u′(w − a)q = 0. (5)

The equation (5) defines the amount a as a differentiable function of wealth
w in a suitable neighborhood. Differentiating the equation with respct to w
along the optimal a∗ we get (with a slight abuse of notation)

(1− q)u′′(w + ax)x(1 + xa′(w))− qu′′(w − a)(1− a′(w)) = 0

for all w in this neighborhood. Dividing by the first order condition we get

R(w + ax)(1 + xa′(w)) = R(w − a)(1− a′(w))

which can be solved for a′(w) to give

da∗(w)

dw
=

R(w − a∗)−R(w + a∗x)

R(w − a∗) + xR(w + a∗x)
. (6)

The denominator of the right-hand side of (6) is positive, so the sign of the
derivative of a∗ is determined by the numerator. Since the optimal a∗ > 0
when x > q

1−q
, we see that (w − a∗) < (w + a∗x), and the conclusions of

the theorem follow from our assumptions about the absolute risk aversion
function R(·). �

The result of this theorem seems rather plausible, and corresponds well
with how we interpret decreasing risk aversion. However, some care is called
for, since the name of R may be too well chosen.

Notice that the standard model tells us that a′ > 0 and p′ < 0 or a′ > 0
and I ′ < 0 in the decreasing risk aversion case, with all inequalities reversed
when R increases over its entire domain.

Example 1. Suppose the insurer has power utility, i.e., u(w) = 1
1−ρ

w1−ρ.
The parameter ρ > 0, ρ 6= 1 signifies the relative risk aversion of the insurance
customer, here a constant (if ρ = 1, use u(w) = ln(w)). Here R(w) = ρ

w
,

which is decreasing in wealth. From the first order condition we readily derive
the expression for the optimal amount a∗. It is

a∗(w) =
w

((
q

(1−q)x

)− 1
ρ − 1

)
x +

(
q

(1−q)x

)− 1
ρ

. (7)

It is seen that the optimal amount in the risky asset increases in w, consistent
with the above theorem. Furthermore (i) a∗; decreases when q increases, (ii)
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increases when x increases, (iii) decreases when ρ increases, all according to
intuition. We notice a∗ > 0 only if x > q/(1− q). �

When the insurable good is both a durable consumption good and at the
same time can be considered as an investment, then a condition like (4) seems
reasonable. This could include real estate, art, or any other items that could
be expected to increase in price. In this case Theorem 2 tells us that the
insurance item is a normal good. However, there exist many insurance items
that are durable consumption goods which can not be expected to increase
in price. For these items x < 0 and yet, they may very well be normal goods.
An example could be cars or furniture; a car, for example, would normally
decrease in value, but affluent people typically have expensive cars. In our
model we allow the agent to hold the risky asset even if (4) is not satisfied,
for reasons of consumption. For the discussion to follow we therefore do not
require that (4) holds in general, only when a is a decision variable.

IV-B Insurance as a normal good

We now assume that full insurance is available, and want to investigate how
the indifference premium p depends on the wealth parameter w in the model
of this section. Let us start by defining the indifference premium p in our
model.

Eu(W ) = (1− q)u(w + ax) + qu(w − a) := u(w + ax− p). (8)

Thus insurance will leave the customer indifferent between expected utility
without insurance and and utility of wealth in the good state less the in-
surance premium, providing full insurance against the consequences in the
bad state. Proceeding as in the proof of Theorem 1, we find by the implicit
function theorem that

dp(w)

dw
= − θ1 + θ

u′(w + ax− p)
, (9)

where
θ = (1− q)u′(w + ax) + qu′(w − a)− u′(w + ax− p),

and

θ1 = (1− q)xa′(w)u′(w + ax)− qa′(w)u′(w − a)− a′(w)xu′(w + ax− p).

With these preparations we can now show the following.

Theorem 4 Consider the following assumptions in the model of this section:
(i) u′(·) is a strictly decreasing function in its entire domain, (ii) u′(·) > 0
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in its entire domain, (iii) the absolute risk aversion function is a decreasing
function in its entire domain, and (iv)

da(w)

dw
>

θ(
qu′(w − a)− θ

)
x + qu′(w − a)

. (10)

Then full insurance is a normal good, or dp(w)
dw

> 0.

Proof. Starting from the expression (9) for the derivative of p with respect
w, notice that

θ + θ1 = θ(1 + xa′(w))− qa′(w)(1 + x)u′(w − a).

The right-hand side above can can also be written

(1 + xa′(w))
(
θ − qu′(w − a)

)
+ q(1− a′(w))u′(w − a).

If insurance is to be a normal good, (θ + θ1) < 0, which is seen to hold if

(1 + xa′(w))
(
θ − qu′(w − a)

)
+ q(1− a′(w))u′(w − a) < 0,

or, if
a′(w)

((
qu′(w − a)− θ

)
x + qu′(w − a)

)
> θ.

The term

θ − qu′(w − a) =

((
u′(w + ax)− u′(w + ax− p)

)
− qu′(w + ax)

)
< 0,

by our assumptions of risk aversion and increasing utility, since the first
parenthesis on the right-hand side is negative as the marginal utility function
u′(·) is a strictly decreasing function over its entire domain, and the second
term on the right-hand side is negative since u′ > 0. From this it follows
that, as long as θ > 0, the term(

qu′(w − a)− θ
)
x + qu′(w − a)a′(w) > 0 (11)

as long as x > −1, the latter following from the definition of x. The condition
θ > 0 follows from our assumption of decreasing risk aversion by the result
of Theorem 1. Accordingly, (11) implies the inequality (10) if (θ + θ1) < 0 is
to hold. �

In the interesting case when the risk aversion R(·) is a decreasing function
in wealth, the quantity θ > 0 by Theorem 1, and the denominator on the
right-hand side of (10) is also positive as shown in the above proof, so a
positive lower bound on a′(w) is implied. This theorem simply says that
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depending on to what extent the insurable asset is a normal good, insurance
may or may not be a normal good. If an increase in wealth implies an
increase spent on the insurable asset a′ which is larger than the right-hand
side of (10), then insurance is a normal good.

Notice that the theorem gives inequalities for a′ and p′ that point in the
same direction, contrary to the standard model.

When the absolute risk aversion function is a constant, as e.g., for ex-
ponential utility, then θ = 0, and it follows from modifying the above proof
that insurance is a normal good if the insurable asset is.

If the absolute risk aversion is an increasing function, then the right-hand
side of (10) is negative, but the inequality (10) is still valid if

x > − qu′(w − a)

qu′(w − a)− θ
, (12)

which means that the expected return of the insurable asset x has a lower
bound larger than −1. When this is satisfied insurance will be a normal
good even if the insurable asset is an inferior good as long as (12) holds. The
inequalities for a′ and p′ are still in the same direction. In the case when
−1 < x < − qu′(w−a)

qu′(w−a)−θ
the inequality (10) is reversed, and the right-hand

side becomes positive. In this case there is an upper bound on a′(w) in order
for insurance to be a normal good, but this case is of less interest.

Returning to the situation of decreasing risk aversion, the theorem nat-
urally becomes ”stronger” the smaller the right-hand side of (10) is. Fur-
thermore, the inequality (10) is consistent with Theorem 2 in the following
sense:

Corollary 1 Suppose that (4) is satisfied, and the absolute risk aversion is
decreasing in its entire domain. If the insurance customer holds the optimal
amount a∗ of the insurable asset before insurance, and if da∗(w)

dw
is larger that

the right-hand side of (10), then full insurance is a normal good.

Proof. We see from the definition of the indifference premium

Eu(W ) = (1− q)u(w + ax) + qu(w − a) := u(w + ax− p)

that if a∗ > 0 optimizes the left hand side, it will satisfy

da∗(w)

dw
=

R(w − a∗)−R(w + a∗x)

R(w − a∗) + xR(w + a∗x)
> 0

by Theorem 2. By our assumptions condition (iv) of Theorem 3 is satisfied,
and the conclusion follows. �
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To sum up the conclusions of this section, consider the following inter-
pretation of our results. Notice first that the loss y in the bad state can be
written y = a(x + 1), so that θ1 can alternatively be written as a function of
y. As a consequence we may consider the indifference premium as a function
of y and w, where y is a function of w (since a is), or p(w) = pr(y(w), w).
From (9) we see that

dp(w)

dw
=

∂pr(y, w)

∂y

dy(w)

dw
+

∂pr(y, w)

∂w
, (13)

where
∂pr(y, w)

∂w
= − θ

u′(w + ax− p)
,

and
∂pr(y, w)

∂y

dy(w)

dw
= − θ1

u′(w + ax− p)
.

The wealth effect can accordingly be separated into two parts, one direct
and one indirect. The direct part is represented by the last term in the (13),
and is negative under decreasing risk aversion, since then θ > 0. This is the
effect described in Theorem 1, the one found by Mossin. The indirect effect
is represented by the first term in (13) and is composed of two factors. One
is the effect from increasing the loss, the other is the effect on the loss from
an increase in the wealth.

Since y = a(x + 1), the latter factor y′(w) = a′(w)(x + 1) > 0 if the
insurable asset is a normal good. Also the first factor is positive, since the
indifference premium must increase if the potential loss increases. This is
seen by observing that

θ1 =
(
(1− q)xu′(w + ax)− qu′(w − a)− xu′(w + ax− p)

) dy(w)
dw

x + 1
.

The term in parenthesis is negative because of risk aversion, since then u′(w+
ax−p) > u′(w+ax), and (1−q) < 1 is always true. Furthermore u′(w−a) > 0
because of increasing utility.

As a consequence, the indirect effect is positive when the insurable good is
a normal good. Weather or not insurance is a normal good, thus depends on
which one of these two terms has the largest absolute value. The conclusion
of Theorem 4 is that so long as condition (iv) is satisfied, the indirect wealth
effect dominates. We have shown

Corollary 2 Suppose that either (4) holds, or that the insurable asset is
held for consumption purposes and is a normal good. In each case insurance
is a normal good provided |θ1| > θ, i.e., provided the indirect wealth effect
dominates the direct one.
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With this interpretation, Mossin’s result is not ”wrong”, but only provides
us with ”half the story”.

V The alternative model and variable insur-

able wealth

Instead of investigating the wealth effect on the indifference premium, we
now consider the model of Section III, where we can study the wealth effect
on the demand of insurance directly. With the same assumptions as in the
previous section, the end of period wealth W can be written

W =

{
w(1 + rf ) + a(x− rf ), with probability (1− q)

(w − a)(1 + rf ), with probability q.

As before we set rf = 0 without loss of generality, and consider the utility
U(I, a) of the customer after insurance cover I at premium p = (1 + λ)qI,
where the factor (1+λ) is the usual insurance loading, for some λ ≥ 0. With
these assumptions it follows that

U(I, a) = u(w + ax− (1 + λ)qI)(1− q) + u(w − a + I − (1 + λ)qI)q,

where we consider a(w) as a given function of w, but not as a decision
variable. The first order condition for an optimal indemnity I∗, holding a
fixed, is

∂U(I, a)

∂I
= 0,

which is equivalent to the following condition

u′
(
w − a + I(1− (1 + λ)q)

)
u′

(
w + ax− (1 + λ)qI

) =
(1 + λ)(1− q)

1− (1 + λ)q
. (14)

The relation (14) defines a and I as differentiable functions of w is a
suitable neighborhood. Assuming that u′′(·) exists, we may differentiate the
relation (14) in this w-neighborhood. After dividing by the first order con-
dition, we obtain the following relationship

R
(
w + ax− (1 + λ)qI

)(
1 + xa′(w)− (1 + λ)qI ′(w)

)
=

R
(
w − a + I(1− (1 + λ)q)

)(
1− a′(w) + I ′(w)(1− (1 + λ)q)

)
.

(15)

From equation (15) we find that

dI∗(w)

dw
=

R2

(
1 + xa′(w)

)
−R1

(
1− a′(w)

)
R2

(
(1 + λ)q

)
+ R1

(
1− (1 + λ)q

) , (16)
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where R1 := R
(
w− a + I∗(1− (1 + λ)q)

)
and R2 := R

(
w + xa− (1 + λ)qI∗

)
.

Let us denote by b = R2

R1
. Below we consider the case where the absolute risk

aversion is a decreasing function in its entire domain, so that 0 < b < 1. We
are then in position to prove the following.

Theorem 5 (i) Suppose that full insurance is optimal (λ = 0). If a′(w) > 0,
then

dI∗(w)

dw
> 0, (17)

or, full insurance is a normal good.
(ii) Suppose that less than full insurance is optimal (λ > 0). If a′(w) > 1−b

1+bx
,

then the inequality (17) holds as well, and less than full insurance is a normal
good.

Proof. We first observe that the denominator on the right-hand side of equa-
tion (16) is positive since 1 > (1+λ)q (if this were not the case, the premium
would exceed the compensation in the bad case). Also, since

w + xa− qI∗ = w − a + I∗ − qI∗

when full insurance is optimal, R1 = R2 and we see that in the latter case the
numerator in the right-hand side of equation (16) is strictly positive when
(1 + a′(w)x) > (1− a′(w)), which holds if and only if a′(w) > 0, proving the
first part of the theorem.

The numerator on the right-hand side of equation (16) is positive if and
only if b(1+xa′(w)) > (1−a′(w)) which is equivalent to a′(w)(1+bx) > (1−b).
By our assumption that the risk aversion is a decreasing function, (1+xb) > 0
for any x > −1, in which case it follows that

a′(w) >
1− b

1 + bx
,

verifying the second part of the theorem. �
Also this theorem says that depending on to what extent an increase in

wealth is spent on the insurable asset, insurance may or may not be a normal
good. If an increase in wealth implies an increase spent on the insurable asset
a′(w) > 1−b

1+bx
, then insurance is a normal good.

Again we notice that the inequalities for a′ and I ′ point in the same
direction. The observation in part (ii) that if the customer has a decreasing
absolute risk aversion in its entire domain then 0 < b < 1, and if R is
increasing in its entire domain b > 1, follow since

w + xa− (1 + λ)qI∗ > w − a + I∗((1− (1 + λ)q)

17



when the optimal insurance is less than full. Thus the lower bound 1−b
1+bx

is
smaller in the latter case than in the former provided x is such that (1+bx) >
0. In this case the lower bound is negative, and the inequalities for a′ and I ′

are still in the same direction. However, if −1 < x < −1
b

then the reversed
inequality a′(w) < 1−b

1+bx
is the relevant sufficient condition for less than full

insurance to be a normal good. In this situation the upper bound on a′(w)
is strictly positive, similar to the observations of the previous section. This
case has of course less interest. If the risk aversion is constant, b = 1, and we
obtain that a′(w) > 0 is the sufficient condition for less than full insurance
to be a normal good, the same condition as in part (i).

The result in (i) is quite intuitive, since when full insurance is optimal
and the insurable asset is a normal good, then insurance should also be a
normal good.

Notice that the lower bound 1−b
1+bx

is strictly positive in the decreasing risk
aversion case. If the utility in the bad state after insurance is sufficiently low
compared to the good state, for insurance to be a normal good a′(w) must
be bounded below by some positive fraction, which also seems intuitive. The
result is of course stronger the smaller this fraction is.

Regarding case (i) of Theorem 5, note that if full insurance is optimal,
then λ = 0 and

U(I, a) = U(a(x + 1), a) = u(EW ) = u
(
w + a(x(1− q)− q)

)
.

The associated optimal a is here either a∗ = w if x > q
1−q

or a∗ = 0 if x < q
1−q

assuming no borrowing possibilities.
Also for the model of this section we can interpret our results in light of

a direct and an indirect wealth effect. We can write

dI∗(y; w)

dw
=

∂I∗(y; w)

∂y

dy

dw
+

∂I∗(y; w)

∂w
. (18)

The last term in this equation gives the direct effect, holding the loss y fixed.
This corresponds to our result in Theorem 2, and can here be written

∂I∗(y; w)

∂w
=

R2 −R1

R2((1 + λ)q) + R1(1− (1 + λ)q)
,

which is negative since R2 < R1 under decreasing absolute risk aversion. The
direct wealth effect can be written

∂I∗(y; w)

∂y

dy

dw
=

R2
x

x+1
+ R1

1
x+1

R2((1 + λ)q) + R1(1− (1 + λ)q)
· dy(w)

dw
,

where dy(w)
dw

= (x + 1)da(w)
dw

. We notice that ∂I∗(y;w)
∂y

> 0, so the indirect effect
is positive if the insurable asset is a normal good. Insurance it then a normal
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good provided the indirect effect is larger than the direct effect, which is
the contents of part (ii) of Theorem 5. Part (i) is explained by Theorem 2,
since when full insurance is optimal in this model, the direct wealth effect is
zero, and only the indirect effect remains, which is strictly positive when the
insurable asset is a normal good.

One may wonder if there is an analogue of Corollary 1 in the present
model. Considering both a let I as decision variables, the second of the first
order conditions is

∂U(I, a)

∂a
= (1−q)u′(w+ax−(1+λ)qI)x+qu′(w−a+I−(1+λ)qI)(−1) = 0.

The two first order conditions admit a unique solution (a∗, I∗) only if

λ 6= x(1− q)− q

q(1 + x)
. (19)

Differentiating the equation ∂U(I,a)
∂a

= 0 in w along the optimal a∗ and I∗

however, we again recover the relation (14), suggesting that this model is not
a straight-forward one to analyze. 2 Here we can show the following:

Corollary 3 We consider the decreasing risk aversion case. If

dI∗(w)

dw
>

b− 1

1− (1 + λ)q(1− b)
, (20)

then da∗

dw
> 0, so that the insurable asset is a normal good at the optimum.

Proof. Let R1 := R
(
w−a+I∗(1−(1+λ)q)

)
and R2 := R

(
w+xa−(1+λ)qI∗

)
,

where b = R2

R1
as before. From (14) we find that

da∗

dw
=

R1

(
1 + dI∗(w)

dw
(1− (1 + λ)q)

)
−R2

(
1− (1 + λ)q dI∗(w)

dw

)
xR2 + R1

.

By our assumption, 0 < b < 1, so the denominator (R2x + R1)= (bx + 1)/R1

is seen to be positive since x > −1 (recall that x > q
1−q

> 0). It remains to
check the sign of the above numerator.

R1

(
1 +

dI∗(w)

dw
(1− (1 + λ)q)

)
−R2

(
1− (1 + λ)q

dI∗(w)

dw

)
> 0

is equivalent to
dI∗

dw

(
1− (1 + λ)q(1− b)

)
> b− 1.

2This is the model analyzed in detail by Eeckhoudt and Venezian (1990), which we
refer the interested reader to for further details.
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Since (1 − (1 + λ)q) > 0 by assumption, otherwise the insurance benefit
would be exceeded by the premium payment in the bad state, it follows that
(1−(1+λ)q(1−b)

)
> 0, since risk aversion is decreasing. Thus the inequality

(20) is sufficient for da∗(w)/dw > 0. �
This result says that if an increase in wealth implies a change in the

optimal demand for insurance that is bounded below by the right-hand side
of (20), then the optimally held insurable asset is a normal good.

Although the right-hand side of the inequality (20) is negative, the in-
equalities for a′ and I ′ still point in the same direction, contrary to the
standard model, and the optimally held insurable asset may be a normal
good. However, if at the optimum

da∗

dw
>

1− b

1 + bx
> 0,

then (less than full) insurance is a normal good by Theorem 5, in our new
interpretation. We provide an example indicating that more can be said:

Example 2. Suppose the insurance customer has power utility, i.e., u(w) =
1

1−ρ
w1−ρ, u(w) = ln(w) when ρ = 1. Here we can solve the two FOC when

there is a unique solution, i.e., provided the condition (19) is satisfied. This
solution is

I∗(w) =
(d− 1)(x + c)− (c− 1)(x + d)

(1 + λ)q(d− c) + (1− (1 + λ)q)x(c− d)
w

and

a∗(w) =
d(1− (1 + λ)q) + (1 + λ)q

x + d
I∗ +

d− 1

x + d
w,

where

c =
((1− q)x

q

)1/ρ

and d =

(
(1 + λ)(1− q)

1− (1 + λ)q

)1/ρ

.

It is easy to see that when d > c, then x < 1+λ)q
1−(1+λ)q

and both the numerator
and the denominator in the expression for I∗ are positive. Similarly, when
d < c, then x > 1+λ)q

1−(1+λ)q
and both the numerator and the denominator are

negative. Consequently I∗(w) is an increasing function of wealth in either
case, so insurance is invariably a normal good. Since d > 1, this is also the
case for the insurable asset provided x > q/(1− q).

In the case when (19) does not hold, c = d and the above solution breaks
down. In this particular case the unit price of insurance is determined by
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x and q and given by λ = x(1−q)−q
q(1+x)

, and λ > 0 if x > q
1−q

. 3 Second
order considerations now suggest that the optimal solution is located along
a straight line in (a, I)-space. If no borrowing is allowed, a∗ ∈ ( (d−1)w

x+d
, w)

ensures that I∗ ∈ (0, (x+1)w
(1+λ)q(1−d)+d

), which follows from the fact that the line
is given by

I∗(a∗) =
x + d

(1 + λ)q(1− d) + d
a∗ +

1− d

(1 + λ)q(1− d) + d
w,

and the fact that we do not accept a negative indemnity. This gives rise to
a deductible, meaning that when y ∈ [0, (d−1)w

(x+d)(1+x)
), the optimal indemnity

I∗(y) = 0. Since less that full insurance is optimal, it is clear that I∗(a∗) <
a∗(x + 1) for all a∗. Consider e.g., the particular case of ρ = 1. Then
I∗(w) = 1

1−q−λq−λ2 w > w and w < I∗(w) < w(x + 1). This means that when

w increases, this line gets tilted, such that for values of a∗ to the left (close
to the no-insurance point), I∗(a∗) decreases, and for values of a∗ close to the
upper value w, the optimal insurance I∗(a∗) increases. Thus depending upon
the optimal value of the insurable asset, insurance may be an inferior good,
an indifferent good or a normal good. �

From this example we may conjecture that in the situation that the two
first order conditions have a unique solution, insurance is a normal good,
and when the solution is not unique, but located along some locus in the
(a, I)-space, the all three situations may occur.4

The above example shows a situation where deductibles occur in insurance
without resorting to asymmetric information costs, or other frictions (see e.g.,
Holmström (1979), Raviv (1979), Rothschild and Stiglitz (1976)). When the
optimal amount in the insurable asset is below a certain limit, the customer
would like to short the insurance contract, but since this is not allowed, a
deductible arises, which here means no insurance. As the optimal value a∗

varies, the value (d−1)w
(x+d)(1+x)

may be considered as a deductible across different
insurance contracts. If the range of the different losses that can happen is
enlarged from one value to several, a deductible per contract, i.e., in its usual
meaning, is likely to result.

Finally notice in this example how the wealth effect can be spit into the
negative direct effect, and the positive indirect effect, as explained earlier.

3Normally this is not enough to determine a market premium, as it should also depend
on marginal utility, but since the insurance industry avoids utility considerations in general,
this information may be considered enough.

4Eeckhoudt and Venezian (1990) do not seem aware of the unique solution case analyzed
in this example. They claim that unless λ = x(1−q)−q

q(1+x) in our terminology, ”the two first
order conditions cannot hold simultaneously and the solution will therefore be an edge or
corner solution”.
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In the next section we study Pareto optimal indemnity functions when
the supplier of insurance is also included in the model.

VI Pareto optimal contracts

VI-A Introduction

So far only the demand side of insurance has been considered. Results are
sometimes altered when also the supply side is brought into the model. In this
section we discuss the situation with one insurer and one insurance customer.

Consider a policy holder having initial capital w, a positive real number,
and facing a risk Y , a non-negative random variable. The insured has utility
function u, where u′ > 0, u′′ < 0. The insurer has utility function u0, u′0 > 0,
u′′0 ≤ 0, and initial reserves w0, also a positive real number. These parties can
negotiate an insurance contract, stating that the indemnity I(y) is to be paid
by the insurer to the insured if claims amount to y ≥ 0. It seems reasonable
to require that 0 ≤ I(y) ≤ y for any y ≥ 0. Notice that this implies that no
payments should be made if there are no claims, i.e., I(0) = 0. The premium
p for this contract is payable when the contract is initialized.

This model can be analyzed by the general theory developed by Borch
(1960-62). There is no simple result saying that insurance is an inferior good
when the absolute risk aversions of the participants are decreasing. In this
section we want to establish that this is indeed the case for a standard Pareto
optimal sharing rule.

It follows from the first order conditions of Pareto optimality that the real
indemnity function I: R+ → R+, satisfies the following nonlinear, differential
equation

∂I(y)

∂y
=

R(w − p− y + I(y))

R(w − p− y + I(y)) + R0(w0 + p− I(y))
, (21)

where the functions R = −u′′

u′ , and R0 = −u′′
0

u′
0

are the absolute risk aversion

functions of the insured and the insurer, respectively. This analysis is con-
ditional upon the premium p being taken as some given constant. In the
case where the insurer is risk neutral, we notice that the contract I(y) = y
for all y ≥ 0 results, which means full insurance is Pareto optimal. Let us
consider the case where less than full insurance becomes Pareto optimal. In
the example presented below both parties have power utility functions, but
unequal initial values of wealth.

Example 3. Assume that u1(y) = u2(y) = 1
1−ρ

x1−ρ, where ρ > 0; ρ 6= 1.

In this case the solution of the differential equation (21) is given by (see e.g.,
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Aase (1993, 2002))

I(y) =
w0 + p

w + w0

y, (22)

i.e., full coverage is Pareto optimal only if p = w. Since it is highly unlikely
that the customer is willing to pay all his fortune in premium, we may safely
conclude that less than full coverage is here Pareto optimal, or, since p < w
would normally hold, coinsurance typically results. Notice that normally w0

is much larger than w. The problem is well-posed for these utility functions
only if the loss Y ≤ min{w, w0} with probability one.

So far we have said nothing about the premium p. Suppose we would
like to employ the premium p = (1 + λ)qI as previously. Then, mechanically
inserting this in the above equation for I yields an expression which is seen
to be a decreasing function of w for each value of the loss y. Thus, it seems
as if insurance becomes an inferior good under these assumptions. However,
this is not really a valid procedure, since it violates the premises upon which
the equations (21) and (22) have been derived. �

As the last example shows, we have to start afresh on the problems of
this section. To this end, consider the assumptions of sections 4 and 5. In
this case the loss Y can take the two values; y = a(x + 1) with probability
q and y = 0 with probability (1 − q). The insurance customer’s expected
utility is given by

U(I, a) = u(w + ax− y − p + I)q + u(w + ax− p)(1− q)

and the insurer’s utility is similarly given by

U0(I) = u0(w0 + p− I)q + u0(w0 + p)(1− q),

where we assume that p = (1 + λ)qI. From Borch’s Theorem it does indeed
follow that the first order conditions for Pareto optimal risk exchange are
given by

u′(w + ax− y − p + I) = ku′0(w0 + p− I) (23)

u′(w + ax− p) = ku′0(w0 + p), (24)

where k is some positive constant. Notice that the marginal utilities of the
two agents are are equalized, except for a constant, at each state. This fact
is very useful for us in what follows.

First we assume that the risky asset is unaffected by w. We then dif-
ferentiate the first order conditions in w along the optimal I, keeping the
premium per unit of risk fixed, divide by the first order conditions and add
the resulting equations. This gives

dI(w)

dw
=

R(w + ax− p)−R(w − a− p + I)

S
, (25)
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where

S = (1− (1 + λ)q)
(
R(w − a− p + I) + R0(w0 + p− I)

)
+(1 + λ)q

(
R(w + ax− p) + R0(w0 + p)

)
.

Since S > 0 we see that I ′(w) < 0 if the absolute risk aversion function
R(·) is strictly decreasing over its entire domain, which is analogous to the
classical result of sections 2 and 3. A Pareto optimal insurance contract is
accordingly seen to be an inferior good in the standard model as well.

VI-B When is a Pareto optimal contract a normal
good?

In this part we assume that the insurable asset depends upon wealth w so
that a(w) is a function of w, but a is not a decision variable yet. For example,
we may assume that the risky asset is a normal good.

We now differentiate the first order conditions in w along a Pareto optimal
I, keeping the price per unit of risk fixed. This gives us the following two
equations.

R(w − a− p + I)
(
1− da(w)

dw
+

dI(w)

dw
(1− (1 + λ)q)

)
(26)

= R0(w0 + p− I)
(
(1 + λ)q − 1)

dI(w)

dw
,

and

R(w + ax− p)
(
1 + x

da(w)

dw
− (1 + λ)q

dI(w)

dw

)
(27)

= R0(w0 + p)(1 + λ)q
dI(w)

dw
.

Then we add these equations, and solve for I ′(w) in terms of a′(w), the latter
being taken as given. The result is

dI(w)

dw
=

da(w)
dw

(A + α)− (C − γ)

B + β
, (28)

where

A = R(w−a−p+I), B = (1−(1+λ)q)
(
R(w−a−p+I)+R0(w0+p−I)

)
,

C = R(w − a− p + I), α = xR(w + ax− p),

β = (1 + λ)q
(
R(w + ax− p) + R0(w0 + p)

)
, and γ = R(w + ax− p).

Here A, B, C, β and γ are all positive, and the sign of α is the same as the
sign of x. We then have the following.
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Theorem 6 Suppose that the absolute risk aversion function R(·) is strictly
decreasing over its entire support. Then a Pareto optimal insurance contract
is a normal good, or dI(w)

dw
> 0, provided

da(w)

dw
>

R(w − a− p + I)−R(w + ax− p)

R(w − a− p + I) + xR(w + ax− p)
. (29)

The expression on the right-hand side of this inequality is strictly positive.

Proof. From equation (28) we notice that I ′(w) > 0 if (da(w)
dw

(A + α)− (C −
γ)) > 0, since (B+β) > 0. Since (A+α) = R(w−a−p+I)+xR(w+ax−p) >
0 follows from our assumption of decreasing risk aversion since x > −1, we
obtain the inequality of the theorem, because (C − γ) = R(w− a− p + I)−
R(w+ax−p). That this latter quantity is strictly positive, also follows from
the decreasing risk aversion of the insurance customer. �

The theorem says that for a Pareto optimal insurance contract I, insur-
ance is a normal good as long as the risky asset is a normal good with a′(w)
bounded below by the strictly positive quantity given on the right-hand side
of (29).

We may split the wealth effect into a direct and an indirect part also for
Pareto optimal contracts. In order to do this, we need to study the indemnity
function I(y; w) in some more detail.

VI-C The indemnity as a function of the loss

In the present model the equation (21), describing how I(y) varies with the
loss y, does not hold, since its derivation takes as given that the premium p
is constant as w varies. In addition we have the amount a in the risky asset
in our model, that is connected to the loss y through y = a(x + 1). Starting
with the first order conditions (23) and (24), we differentiate these in y along
a Pareto optimal contract I. Using that y = a(x + 1), we may carry out this
differentiation in a at first. This gives the two equations

u′′(w+ax−y−p+I)(−1−((1+λ)q−1)
∂I

∂a
) = ku′′0(w0+p−I)((1+λ)q−1)

∂I

∂a
,

and

u′′(w + ax− p)(x− (1 + λ)q
∂I

∂a
) = ku′′0(w0 + p)(1 + λ)q

∂I

∂a
.

Dividing these two equations by (23) and (24) respectively, we get

R(w − a + I − p)(−1 +
∂I

∂a
(1− (1 + λ)q) = R0(w0 + p− I)((1 + λ)q − 1)

∂I

∂a
,
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and

R(w + ax− p)(x− (1 + λ)q
∂I

∂a
) = R0(w0 + p)(1 + λ)q

∂I

∂a
.

By adding these latter two equations, we find the required differential equa-
tion for I.

∂I(y)

∂y
=

1

1 + x

R(w − a + I − p) + xR(w + ax− p)

D
, (30)

where

D = (1− (1 + λ)q)
(
R(w − a + I − p) + R0(w0 + p− I)

)
+(1 + λ)q

(
R(w + ax− p) + R0(w0 + p)

)
= B + β.

The equation (30) is seen to differ somewhat from the standard one given in
(21), but still describes some of the same basic properties of Pareto optimal
risk sharing, which include; (i) under strict risk aversion (R > 0) of the
insurance customer the indemnity is an increasing function of the loss, (ii)
when the insurance customer is risk neutral (R ≡ 0), no insurance is Pareto
optimal, and (iii) when the insurer is risk neutral (R0 ≡ 0), full insurance is
Pareto optimal is consistent with the equation (30).

In order to check the claim (iii), note first that the differential equation
(30) becomes

∂I(y)

∂y
=

1

1 + x
· R(w − a + I − p) + xR(w + ax− p)

(1− (1 + λ)q)R(w − a + I − p) + (1 + λ)qR(w + ax− p)
,

when the insurer is risk neutral. In this case full insurance is known to be
Pareto optimal, implying that (w − a + I − p) = (w + ax − p). To check
wether this is consistent with the above result, notice that the above version
of (30) now becomes

∂I(y)

∂y
=

1

1 + x
· R(w − a + I − p)(1 + x)

R(w − a + I − p)
≡ 1,

which, together with I(0) = 0 implies that I(y) = y for all y ≥ 0, or, full
insurance is Pareto optimal is indeed consistent with the equation (30) in
this situation. Notice that we need no requirement about the loading λ for
this result to hold.

However, we have no guarantee that ∂I(y)
∂y

< 1 as in the standard case,
when the insurance customer has decreasing risk aversion and when less
that full insurance is optimal. Accordingly, when the customer increases his
position in the risky asset by a certain amount, it could be optimal to increase
the insurance coverage by more than this amount.
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By inspection of the equation (28), and comparing this to equation (25),
we notice that the direct wealth effect is given by the term

∂I(y; w)

∂w
= −C − γ

B + β
,

where S = B + β, and the indirect wealth effect is accordingly given by

∂I(y; w)

∂y

dy(w)

dw
=

1

x + 1
· A + α

B + β
· dy(w)

dw
,

since y = a(x + 1) as before. We notice that these two latter expressions are
also consistent with equation (30), since D = B + β.

From our result in part A of this section, the direct wealth effect is neg-
ative, and from the above analysis the indemnity I(y; w) is an increasing
function in the loss y. Thus, if the insurable asset is a normal good, the
indirect effect is strictly positive and the interpretation of Theorem 6 is that
when the indirect wealth effect dominates the direct one, insurance is a nor-
mal good.

VI-D Both a and I are decision variables

In order to properly study the problem where the insurance customer opti-
mally selects the amount in the risky, insurable asset, and jointly determines,
together with the insurer, a Pareto optimal insurance contract I, we consider
the following problem.

sup
a,I

{
u(w − a− p + I)q + u(w + ax− p)(1− q)

}
(31)

subject to
u0(w0 + p− I)q + u0(w0 + p)(1− q) ≥ ū0, (32)

where ū0 is the alternative utility of the insurer. The Lagrangian L(a, I; k)
for the problem is

L(a, I; k) = u(w − a− p + I)q + u(w + ax− p)(1− q)

+ k(u0(w0 + p− I)q + u0(w0 + p)(1− q)− ū0), (33)

where k is the Lagrange multiplier. In order to solve our problem we have to
find ∂L(a,I;k)

∂a
= 0 and ∂L(a,I;k)

∂I
= 0. This gives us the following two equations

u′(w − a + I − p)q = u′(w + ax− p)(1− q)x, (34)

27



and

u′(w − a + I − p)q(1− (1 + λ)q) + u′(w + ax− p)(1− q)(−(1 + λ)q)

+ k(u′0(w0 + p− I)q((1 + λ)q − 1) + u′0(w0 + p)(1 + λ)q(1− q) = 0. (35)

From equation (34) we see that under strict risk aversion of both agents the
optimal a∗ > 0 only if x > q

1−q
, which we assume to hold from now on.

From equation (34) we derive the following equation in da∗(w)
dw

and dI∗(w)
dw

by differentiation in w along the optimal a∗ and I∗, and then dividing through
by (34)

da∗(w)

dw

(
R(w − a∗ + I∗ − p) + xR(w + a∗x− p)

)
− dI∗(w)

dw

(
(1 + λ)qR(w + a∗x− p) + (1− (1 + λ)q)R(w − a∗ + I∗ − p)

)
= R(w − a∗ + I∗ − p)−R(w + a∗x− p). (36)

Equation (35) obviously holds true if the two equations (23) and (24) are
satisfied. It is the contents of Borch’s theorem that the other implication is
also true under our assumptions. From our previous work we conclude from
equation (28) that the first order condition (35) implies that

dI∗(w)

dw
(B + β)− da∗(w)

dw
(A + α) = −(C − γ). (37)

Since the two equations (36) and (37) must hold simultaneously, we solve

these in order to find da∗(w)
dw

and dI∗(w)
dw

. By adding these two equations we
first obtain

dI∗(w)

dw

(
(1 + λ)qR0(w0 + p) + (1− (1 + λ)q)R0(w0 + p− I∗)

)
= 0. (38)

From this we conclude that unless R0 ≡ 0, it must be the case that dI∗(w)
dw

≡ 0.
Second, it follows that

da∗(w)

dw
=

R(w − a∗ + I∗ − p)−R(w + a∗x− p)

R(w − a∗ + I∗ − p) + xR(w + a∗x− p)
. (39)

We have then shown the following

Theorem 7 Suppose that both agents are risk averse and the customer has
decreasing risk aversion. When the customer chooses a∗ optimally, then a
Pareto optimal insurance indemnity is inelastic to changes in wealth, provided
the insurer’s reserves are kept fixed. The insurable asset is a normal good in
a Pareto optimum.
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We remark that from equations (28) and (39) it alternatively follows that
dI∗(w)

dw
= 0.

In order to interpret the result of this theorem, consider again the direct
and the indirect wealth effects: The direct effect, holding the loss y fixed, is
here negative. This stems from the decreasing risk aversion of the insurance
customer as shown in part A of this section.

The indirect effect is under our assumptions positive, since ∂I(y;w)
∂y

> 0

follows from risk aversion as explained in remark (i) of the previous section,
and dy

dw
> 0 since the insurable asset is a normal good under decreasing risk

aversion, as can be seen from equation (39), recalling that y = a∗(x + 1).
The conclusion of our last theorem is that these two effects, the indirect and
the direct one, exactly cancel out under strict risk aversion of both agents,
in the case when both I and a are decision variables.

In contrast to the model of Section 5, we here obtained two equations after
differentiation in wealth w. The inclusion of the insurer in the model made
this possible. When a contract (I∗, a∗) is Pareto optimal at a certain level of
wealth w of the insurance customer, it follows that an increase in wealth does
not lead to an increase in the Pareto optimal insurance indemnity I∗, even if
such an increase would follow for the optimal indemnity in the model of the
previous section. The reason is that the insurer’s reserves are not increased,
and an increase in I∗(w) would simply leave the insurer worse off at a given
level of w0, hence not satisfy the criterion of being Pareto optimal. In the
final paragraph we return to this issue.

Finally we investigate what happens when the insurer is risk neutral.
Let us assume that the insurance customer can not borrow, so the maximal
amount a in the risky asset equals w.

Theorem 8 When the insurer is risk neutral and the insurance customer is
risk averse, a Pareto optimal insurance contract is a normal good provided
x > (1+λ)q

1−(1+λ)q
.

Proof. We know that when the insurer is risk neutral, full insurance is Pareto
optimal, so I∗(y; w) = y = a∗(w)(1 + x). In this situation the first order
condition (34) is not satisfied unless x = q

1−q
, so a direct argument is required.

To find the optimal a in this situation, the customer maximizes

U(a) = u(w − a + I − p)q + u(w + ax− p)(1− q),

which in this case can be written

U(a) = u
(
w + a

(
x(1− (1 + λ)q)− (1 + λ)q

))
.
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Clearly, if
(
x(1−(1+λ)q)−(1+λ)q

)
) > 0 the function U(a) has its maximum

in a at a∗ = w, and when x < (1+λ)q
1−(1+λ)q

then a∗(w) = 0 for all w, implying that

I∗(y) = 0. In the first case dI∗(w)
dw

= (1 + x) > 0, which gives the conclusion
of the theorem. �

For this corner solution ∂I∗(y;w)
∂w

= 0, so the direct wealth effect is here
zero.

VI-E A simultaneous wealth effect

Finally we turn to the situation of simultaneously changing the wealth of both
the customer and the insurer. We denote the total wealth by w1 = w + w0,
and investigate how a unit change in both w and w0 affect a Pareto optimal
contract (I∗(w, w0), a

∗(w, w0)). In the following ∂I∗

∂w1
= ∂I∗

∂w
+ ∂I∗

∂w0
and similarly

for ∂a∗

∂w1
. We then have the following.

Theorem 9 Suppose that both the insurer and the insurance customer are
risk averse and have decreasing risk aversions. When the insurance customer
chooses a∗ optimally, then a Pareto optimal insurance indemnity is a normal
good, provided the insurer’s wealth is increased accordingly. Similarly, the
insurable asset is a normal good in a Pareto optimum.

Proof. Proceeding as in the previous section, we now get the following two
equations, stemming from the two first order conditions:

∂I∗(w1)

∂w1

(B+β)−∂a∗(w1)

∂w1

(A+α) = γ−C+R0(w0+p−I∗)−R0(w0+p) (40)

and

∂a∗(w1)

∂w1

(
R(w − a∗ + I∗ − p) + xR(w + a∗x− p)

)
− ∂I∗(w1)

∂w1

(
(1 + λ)qR(w + a∗x− p) + (1− (1 + λ)q)R(w − a∗ + I∗ − p)

)
= R(w − a∗ + I∗ − p)−R(w + a∗x− p). (41)

Adding these two equations gives

∂I∗(w1)

∂w1

(
(1 + λ)qR0(w0 + p) + (1− (1 + λ)q)R0(w0 + p− I∗)

)
= R0(w0 + p− I∗)−R0(w0 + p),
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or

∂I∗(w1)

∂w1

=
R0(w0 + p− I∗)−R0(w0 + p)

(1 + λ)qR0(w0 + p) + (1− (1 + λ)q)R0(w0 + p− I∗)
. (42)

From equation (42) it follows that ∂I∗(w1)
∂w1

> 0 since the insurer has decreasing

risk aversion, and from equation (41) it follows that ∂a∗(w1)
∂w1

> 0 from the pre-
vious result and the assumption that the insurance customer has decreasing
risk aversion. Thus the conclusion of the theorem folows. �

The explanation of this result follows from the following decomposition:

∂I∗(w1)

∂w1

=
∂I∗(y; w, w0)

∂w
+

∂I∗(y; w,w0)

∂w0

=

∂I∗(y; w, w0)

∂y

∂y

∂w
+

∂I∗(y; w, w0)

∂w
+

∂I∗(y; w, w0)

∂w0

.

The two first terms on the right-hand side follow from Theorem 7, the first
stemming from the indirect wealth effect, the second from the direct effect of
increasing the wealth of the insurance customer. As before this latter term
is negative, and together these two terms exactly cancel. The last term also
stems from a direct effect, this time of the insurer, and it has the opposite
sign of the customer term. This is because the insurer has a decreasing risk
aversion, so an increase in the reserves w0 makes the insurer less risk averse,
so he will be inclined to take more risk. As a consequence it will be Pareto
optimal that I∗(w, w0) increases when both w and w0 increase.

VII Conclusions

We have questioned the famous wealth effect on insurance purchasing. In
the first part of the paper we considered two different models, both of which
conclude that insurance is an inferior good in the standard formulation. By
allowing the amount in the insured asset to depend upon wealth, we have
demonstrated that insurance can be a normal good under plausible assump-
tions in both these models. This is true if the amount invested in the insur-
able asset is optimally determined, and it is also true if the insurable asset
is held for consumption purposes only, provided it is a normal good.

In the second part we considered Pareto optimal insurance contracts by
also taking the insurer into account. First, we found conditions when a Pareto
optimal indemnity is a normal good, provided the amount in the insurable
asset is taken as given. Second, we showed that a Pareto optimal indemnity
is inelastic to changes in the wealth of the insurance customer, when both

31



the indemnity and the amount in the insurable asset are decision variables.
The crucial assumption behind this result is that the insurer’s reserves do
not change.

When this latter assumption is relaxed, we finally demonstrated that a
Pareto optimal insurance indemnity is a normal good, provided the optimal
amount in the insurable asset is also a normal good.

Two wealth effects were identified, one direct and one indirect. When the
amount in the risky asset is an increasing function in the customer’s wealth,
these two effects have the opposite sign. Therefore the classical effect, the
direct one, can be counterbalanced by the indirect one, and insurance is,
more often than not, a normal good.

Finally, for an insurer or reinsurer only the direct wealth effect is of rel-
evance, so, for example, the classical result that an insurer can retain more
risk on own accounts as the reserves increase, is still valid.
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