
A branch and price algorithm for the combined

vehicle routing and scheduling problem with

synchronization constraints

David Bredströma and Mikael Rönnqvistb

aLinköping University, Linköping, Sweden
bNorwegian School of Economics and Business Administration,

Bergen, Norway

Abstract

In this paper we present a branch and price algorithm for the com-
bined vehicle routing and scheduling problem with synchronization
constraints. The synchronization constraints are used to model sit-
uations when two or more customers need simultaneous service. The
synchronization constraints impose a temporal dependency between
vehicles, and it follows that a classical decomposition of the vehicle
routing and scheduling problem is not directly applicable. With our
algorithm, we have solved 44 problems to optimality from the 60 prob-
lems used for numerical experiments. The algorithm performs time
window branching, and the number of subproblem calls is kept low by
adjustment of the columns service times.

Keywords: Routing, Scheduling, Synchronization, Branch and Price

1 Introduction

Combined vehicle routing and scheduling with time windows arises in many
applications and there is an extensive and wide research literature on Op-
erations Research (OR) models and methods Temporal constraints within a
route for one vehicle, in addition to time windows, frequently occurs in well

1

known problems such as the dial-a-ride and the pickup and delivery prob-
lems. However, the problem with vehicle dependencies has been given much
less attention in the literature despite its wide range of practical applications.
A typical application is when two vehicles must meet at a specific point at
the same time or when a vehicle cannot pick up a load until another vehicle
has delivered that same load. The main goal of this paper is to develop
a general branch and price framework for the routing and scheduling with
time windows and synchronization constraints based on column generation
and time window branching. The synchronization constraints introduced
allow for imposing pairwise synchronization between customer visits. Ad-
ditional temporal constraints in the form of vehicle independent precendece
constraints can be modeled and considered in the framework without any
major modifications.

Given a fleet of vehicles available in a depot, and a set of customers to
be serviced within their respective prescribed time window, the objective
for the vehicle routing and scheduling problem (VRSP-TW) is for example
to minimize the total traveling time. Both heuristic and exact solution
methods have been suggested for solving applications of the VRSP-TW,
see e.g. the survey in Desrosiers et al. (1995). The VRSP with a single
vehicle and precedence constraints is commonly seen as a traveling salesman
problem with precedence constraints. Fagerholt and Christiansen (2000) use
the single vehicle VRSP-TW with additional allocation constraints to solve a
subproblem arising in a ship scheduling application. If we introduce capacity
constraints to the VRSP-TW, depending on the precedence constraints, we
get a pickup and delivery problem with time windows (PDP-TW) which is
an exhaustively studied problem, see e.g. Desrosiers et al. (1995). Sigurd
et al. (2004) use precedence constraints for an application that arises in live
animal transport.

In the pickup and delivery and the dial-a-ride problems, the precedence
constraints are limited to precedence within a route for a single vehicle. A
related problem is the job shop scheduling problem (JSP), where each job
is defined by a set of ordered activities and each activity is normally to
be executed on one predefined resource. All activities for one job are not
bound to one resource and the precedence constraints therefore span over
multiple resources, as opposed to the pickup and delivery and the dial-a-
ride problems. Beck et al. (2003) study the differences between VRP and
JSP and apply both vehicle routing and scheduling techniques to VRPs. In
their study, they include vehicle independent precedence constraints to the
VRP and observe that the routing techniques they use have difficulty finding
feasible solutions, while the scheduling techniques find feasible solutions to

2

all the studied problem instances.
In the combined vehicle and crew scheduling problem for urban mass

transit systems, drivers are allowed to change bus at so called relief points.
Commonly, as seen in Haase et al. (2001) and the work of Freling et al.
(2003), the arrival time at a relief point is defined by a timetable and there-
fore the synchronized arrival of bus drivers is implicitly considered. In the
homecare scheduling problem presented in Eveborn et al. (2006) there is a
required synchronization of staff visits to customers. The model for the pe-
riodic routing and airline fleet assignment problem, presented in the paper
by Ioachim et al. (1999), has temporal constraints that define the same de-
parture time for pairs of flights, which is a set of synchronization constraints
in the sense used in this paper.

Bredström and Rönnqvist (2006) emphasize the importance of the tem-
poral synchronization and precedence constraints found in several real world
applications. In this paper we develop a branch and price algorithm in-
fluenced by the algorithm introduced for the fleet assignment and routing
problem in the paper by Ioachim et al. (1999). Ioachim et al. develop a
multi-commodity flow formulation and a solution method based on a side
constrained set partitioning formulation, which they solve with column gen-
eration in a branch-and-bound framework. The synchronization require-
ments are for schedules to have the same departure time for certain groups
of flights, but on different days over a weekly horizon. The side constraints
formulate the requirements using coefficients for departure times. They
experience the disadvantage that “a large number of column generation it-
erations was used for very small variations on the synchronized departure
times”. To reduce the number of iterations, they introduce a tolerance in
the side constraints to allow for limited asynchronous departures. They note
that too large tolerance values may result in suboptimality and smaller val-
ues may require longer CPU time. The dual prices from the side constraints
in their formulation give rise to linear node costs (for the time variables)
in the column generator subproblem. To solve the subproblem, they use
the exact algorithm presented in Ioachim et al. (1998). The branching is
performed firstly on the time windows, and secondly on the flow variables
in the subproblem.

In this work, we relax the synchronization constraints from the set par-
titioning model and satisfy these constraints implicitly in the branch and
bound framework. This is done by repeated adjustment of the schedule
times (in this case arrival times) and by branching on time windows. The
motivation for this is twofold. First, with one column only, we cover several
arrival times and avoid the problem with column generations with only small

3

variations in arrival times. Second, with the synchronization constraints re-
laxed, the master problem is solvable with a wide range of well established
solution methods. We use the algorithm to solve a set of test problems in-
troduced in Bredström and Rönnqvist (2006) to optimality in 44 out of 60
cases within the time limit of one hour.

The main contributions of this work are:

• An optimal branch and price algorithm for the vehicle routing problem
with synchronization constraints.

• A discussion of the advantages of including and excluding the synchro-
nization constraints in the decomposition.

• Implicit treatment of the synchronization constraints which makes the
algorithm applicable on a wide range of routing and scheduling prob-
lems, including capacitated vehicles.

The outline of this paper is as follows. In Section 2 we present a general
mixed integer formulation for the synchronization problem. In Section 3 we
introduce an equivalent set partitioning formulation and the relaxation of
the synchronization constraints, followed by a discussion of the advantages
and disadvantages of the relaxation. The branch and price algorithm is
developed in Section 4. In Section 5 we present the results from runs on
the test problems. We motivate the choice of branching and present an
alternative branching rule. In this section we also study the integrality gap.
Finally we make some concluding remarks in Section 6.

2 Problem formulation

In this paper, we concider the following variant of the vehicle routing and
scheduling problem with time windows. We assume that we have a fleet of
vehicles available in a depot, and a set of customers to be visited and serviced
within their respective prescribed time windows. Let K denote a set of
vehicles and let G = (N̄ , A) be a directed graph, where N̄ = {o, d, 1, . . . , n}
is the node set and A = {(i, j) | i 6= j, i ∈ N̄ \{d}, j ∈ N̄ \{o}} is the arc set.
The nodes o and d both represent the depot and the nodes N = {1, . . . , n}
are the customers to be visited. Each customer i ∈ N has an associated
time window [ai, bi] for the arrival time, and a duration Di for the visit and
for i ∈ {o, d} the time windows [ak

i , b
k
i] define the availability for the vehicle

k ∈ K. For an arc (i, j) ∈ A, we define the positive traveling time with Tij .

4

We denote the set of pairwise synchronized visits with P sync ⊂ N × N
and call a customer i2 virtual in a pair (i1, i2) ∈ P sync when i1 and i2 refer
to one customer. In graph G, i2 is virtual when i2 is a duplication of the
node i1 and for each each arc to or from i1 there is an arc to or from i2 with
equal traveling time.

The model involves two types of variables: the binary routing variables
xijk ∈ {0, 1} and the scheduling variables tik ≥ 0. The routing variable xijk

is one if the vehicle k ∈ K traverses the arc (i, j) ∈ A. The scheduling
variable tik is the time the vehicle k arrives at the customer i ∈ N and is
zero if the vehicle k does not visit the customer i. The formulation is as
follows.

[P] min
∑

k∈K

∑

(i,j)∈A

(CPrefs
ik + CT ime

ij)xijk (1)

s.t.

∑

k∈K

∑

j:(i,j)∈A

xijk = 1 ∀i ∈ N (2)

∑

j:(o,j)∈A

xojk =
∑

j:(j,d)∈A

xjdk = 1 ∀k ∈ K (3)

∑

j:(i,j)∈A

xijk −
∑

j:(j,i)∈A

xjik = 0 i ∈ N ∀k ∈ K (4)

tik + (Tij + Di)xijk ≤ tjk + bi(1 − xijk) ∀k ∈ K ∀(i, j) ∈ A (5)

ai

∑

j:(i,j)∈A

xijk ≤ tik ≤ bi

∑

j:(i,j)∈A

xijk ∀k ∈ K ∀i ∈ N (6)

ak
i ≤ tik ≤ bk

i ∀k ∈ K ∀i ∈ {o, d} (7)

∑

k∈K

ti1k =
∑

k∈K

ti2k ∀(i1, i2) ∈ P sync (8)

xijk ∈ {0, 1} ∀k ∈ K ∀(i, j) ∈ A (9)

The objective, as seen in (1), is to minimize the sum of preferences and

traveling time. The preferences CPrefs
ik are arbitrary real values defining a

weight for a specific vehicle k to service customer i. The constraints (2)-(6)
form the constraint set for a multiple traveling salesman problem, where,

5

if we use the vocabulary of the VRSP, the constraints (2) ensure that each
customer is visited by exactly one vehicle, (3) and (4) define the routing
network, and the constraints (5) - (7) are the scheduling constraints. The
constraint (6) implies that tik = 0 if customer i is not visited by the vehicle
k. Therefore the arrival time for a visit i is defined by

∑
k∈K tik which is

the property we use to formulate the synchronization constraints (8). The
constraints (8) ensure that the vehicles that visit the customers i1 and i2 for
(i1, i2) ∈ P sync arrive simultaneously. Universally, we can model the demand
of s vehicles for one customer by introducing s−1 virtual customers i2, . . . , is
and the relations (i1, i2), (i1, i3), . . . , (i1, is) ∈ P sync.

3 Set partitioning formulations

We let (Aij , Rij)i∈N denote a schedule j ∈ J , where Aij = 1 when schedule
j includes a service of customer i at the time Rij , and Aij = Rij = 0 oth-
erwise. If Jk is the subset of schedules feasible for vehicle k at the cost cjk,
the side constrained set partitioning formulation of [P] is as follows.

[SCSP] f∗

SCSP = min
∑

k∈K

∑

j∈Jk

ckjzkj (10)

s.t.

∑

j∈Jk

zkj = 1 ∀k ∈ K (11)

∑

k∈K

∑

j∈Jk

Aijzkj = 1 ∀i ∈ N (12)

∑

k∈K

∑

j∈Jk

(Ri1j − Ri2j)zkj = 0 (i1, i2) ∈ P sync (13)

zkj ∈ {0, 1} ∀k ∈ K ∀j ∈ Jk (14)

Part from the constraints in (13), SCSP is a standard set partitioning
model. The constraints (11) imply that one schedule is used for each vehicle
and (12) that the selected schedules cover each customer exactly once. By
definition of Rij the arrival time at customer i equals

∑
k∈K

∑
j∈Jk

Rijzkj

in a feasible solution, and we can therefore formulate the synchronization
constraints with (13).

6

We denote with SP the relaxation of SCSP obtained when the (13)
are relaxed. In this paper, we aim to solve SCSP with a branch and price
algorithm, using the LP-relaxation SPLP of SP as master problem. The
feasabilty with respect to (13) is therefore treated in the branching strate-
gies. We have two motives for approaching the relaxed problem SP . One is
that with the synchronization constraints relaxed, the SP is solvable with
a wide range of established solution methods. The other is that the arrival
time Rij is only dependent on the schedule’s path and therefore we need
only one column to cover several columns otherwise needed in SCSP .

We make the assumptions that the time windows, durations and the trav-
eling times are integers. These assumtions imply that the variables tik in P
always take integer values in a feasible solution. With these assumptions we
have a valid SPP formulation of P when J is the set of all feasible schedules
on the graph G satisfying the time window and traveling constraints for at
least one vehicle.

3.1 The relationship between SP and SCSP

The formulation SCSP can be viewed as an application of the integer de-
composition principle (see e.g. Lübbecke and Desrosiers (2005)) on the
problem P , with the columns in Jk being an enumeration of points in the
bounded discrete set Γk of all (xijk, tik) satisfying the constraints (3)-(7),
(9) and tik integer. The constraints (8) couple the constraints of the Γk and
hence, an optimal solution to SPSC may include an interior point of the
convex hull conv(Γk) for some k. Therefore the extreme points of conv(Γk)
are not enough to guarantee a valid set partitioning formulation of the prob-
lem P .

We have included the arrival times for all nodes in the definition of Γk to
simplify the notation. This implies that for each subset N̄ ⊂ N , all feasible
paths for the vehicle k visiting all i ∈ N̄ are individually represented in Γk.
It should be noted that it is enough to consider the arrival times for those
customers included in a synchronization pair.

An example of the existance of an interior point follows. Let K = {1, 2},
N = {1, 2, 3} and P sync = {(1, 2)}. Let the vehicles have time windows such
that to1 = 4, td1 = 15, to2 = 0 and td2 = 10. Further let [a1, b1] = [a2, b2] =
[6, 10], [a3, b3] = [0, 5] and the durations Di = 0 for all customers. The
traveling time matrix is defined by To1 = T1d = To2 = T2d = 2, To3 = T3d = 2
and T31 = T32 = 6. We can assume that customer 1 and the virtual customer
2 are identical for both vehicles, and we can therefore decide for vehicle 1 to
service customer 1. Therefore, vehicle 1 cannot service customer 3 and the

7

only feasible paths are: o – 1 – d for vehicle 1 and o – 3 – 2 – d for vehicle
2. We can deduce that the customers 1 and 2 have to be serviced at time
8 from the unique schedule for vehicle 2. Thus, there is a feasible solution
where the schedule for vehicle 1 is a convex combination with weights 0.5 of
the two schedules with arrival time t11 = 6 and t11 = 10 respectively, and
hence not an extreme point to conv(Γ1).

The corresponding decomposition to obtain SP yields the sets of columns
Jk from the extreme points of conv(Xk), where Xk is the set of all (xijk) such
that there exists (tik) with (xijk, tik) ∈ Γk. There are no feasible interior
points in conv(Xk). This because of the fact that with only binary variables,
no interior point is integer, and all binary points are extreme. Therefore,
not more than one path for each subset N̄ ⊂ N for vehicle k is necessarily
contained in Jk.

If we use column generation to solve the LP-relaxation SCSPLP of
SCSP , we need to solve a shortest path problem with time windows (SPPTW)
for each vehicle, where the dual prices from the constraints (13) appear as
costs for the time variables. From the subproblem, we obtain an extreme
point of conv(Γk) for each k. In Ioachim et al. (1998), a dynamic program-
ming algorithm is presented to solve the SPPTW with linear node costs in
the non-elementary path case. Since the goal is to solve SCSP , the ad-
vantage with this approach, compared to using column generation on the
LP-relaxation SPLP of SP , is the possible generation of columns with mul-
tiple paths visiting the same set of customers, but with different sets of
arrival times. The computational expense is a master problem with more
constraints, and, if we use a node labeling algorithm to solve the subproblem,
there will be generally more labels to treat.

To obtain integer feasible solutions to SCSP using branch and bound,
independently if we use SCSPLP or SPLP for master problem, we need to
consider a branching rule that guarantees finding interior points of conv(Γk).
One natural approach is to branch on the time windows. With small enough
time windows, there are no alternate paths visiting one set of customers
(the network is acyclic). In the case of an acyclic network, any feasible
interior point j ∈ conv(Γk) can be obtained by adjusting the arrival times
by following the unique path for vehicle k that visits the customers in j. This
is a central part of the algorithm presented in this paper. Note that even
if we have an integer feasible solution to SP , it is not necessarily possible
to adjust the arrival times for the paths in the solution to obtain a feasible
solution to SCSP , even in the special case when the network is acyclic.

8

4 Branch and price algorithm

A branch and bound algorithm based on LP-relaxations solved with col-
umn generation is commonly refered to as a branch and price algorithm, a
concept formalized in the paper by Barnhart et al. (1998). What foremost
distinguishes a B&P algorithm from a classical B&B algorithm, is the need
to use branching rules that are applicable in the context of a column gen-
eration process. For the problem in this paper, we begin by looking at the
properties a solution to SPLP can possess.

Solution properties

Assume that we have an optimal solution (z̄kj) to SPLP with the objective
function value f̄LP . Denote the index set for positive variables with Z =
{(k, j) | z̄kj > 0, k ∈ K, j ∈ Jk}, and the index set for positive integer valued
variables I = {(k, j) | z̄kj = 1, k ∈ K, j ∈ Jk}. Let

V = {(i1, i2) ∈ P sync | ∃(k1, j1) ∈ Z,∃(k2, j2) ∈ Z : |Ri1j1 − Ri2j2 | > 0}

W = {i ∈ N | ∃(k1, j1) ∈ Z,∃(k2, j2) ∈ Z : |Rij1 − Rij2 | > 0}

In words, V is the set of synchronization pairs for which there are schedules
used in the solution with a deviation in arrival time, and W is the set of
customers for which there are schedules in the solution with a deviation in
arrival time. With this notation, the solution possesses one of the following
properties.

P1 (z̄kj) is feasible in SCSP , that is, Z = I and V = ∅.

P2 (z̄kj) is feasible in SP , but not in SCSP , that is, Z = I and V 6= ∅.

P3 (z̄kj) is fractional and V 6= ∅ and W 6= ∅.

P4 (z̄kj) is fractional and V 6= ∅ and W = ∅.

P5 (z̄kj) is fractional and V = ∅ and W 6= ∅.

P6 (z̄kj) is fractional and V = W = ∅.

Branching rules

The difficulty that arises when branching on time windows is to pick a
node with a time window where columns will be ruled out from the master
problem, not because of the generated Rij ’s, but because of the exclusion

9

of the column’s extreme point in Xk. Gélinas et al. (1995) introduce a
time window division such that a node has a candidate time window for
branching only if at least one path in a fractional solution is no longer
feasible in each of the obtained subproblems. If no such node is found,
branching is performed on flow variables. We choose a somewhat different
approach for the application in this paper. Suggested by our computational
experiments, the number of generated columns after a series of constraint
branches, over a vehicle / customer pair, can be significantly larger than after
a series of time window branches. Therefore we choose to branch on time
windows without requiring a guarantee that the first obtained subproblems
have ruled out columns from the master problem solution in the current
node. To achieve this, we adjust each column’s arrival time to the earliest
possible time, following its path, before ruling out a column in the current
node and before identifying a new time window branch. For the branching
in this application we define the following branching rules:

BR1 Branching on the time window for a customer i0 such that i0 =
arg maxi∈W {|Rij1 −Rij2 | | (k1, j1), (k2, j2) ∈ Z}. If the maximum value
is mW > 0 and is attained with j1 and j2, where Ri0j1 < Ri0j2 , then
the interval [ai0 , bi0] is divided in [ai0 , Ri0j1 + ⌊mW /2⌋] and [Ri0j1 +
⌊mW /2⌋ + 1, bi0]. The rule is applicable when W 6= ∅.

BR2 Branching on time windows for synchronized customers such that
(i01, i

0
2) = arg max(i1,i2)∈V {|Ri1j1 − Ri2j2 | | (k1, j1), (k2, j2) ∈ Z}. If the

maximum value is mV > 0 and is attained with j1 and j2, where
Ri0

1
j1

< Ri0
2
j2

, then the interval [ais , bis] is divided in [ais , Ri0
1
j1

+

⌊mV /2⌋] and [Ri0
1
j1

+⌊mV /2⌋+1, bis], for all s such that (is, i
0
2) ∈ P sync

or (i01, is) ∈ P sync. The rule is applicable when V 6= ∅.

BR3 Branching on the vehicle / customer pair (k0, i0) such that (k0, i0) =
arg maxk∈K,i∈N{

∑
j∈Jk

Aij z̄kj < 1}. This branching rule is applica-
ble for the properties P3-P6, and is performed over the constraints∑

j∈Jk
Ai0jzk0j ∈ {0, 1}.

Feasibility check

The arrival time at a customer does not affect the objective function value of
SCSP . In a solution with property P2, we have a unique schedule for each
vehicle but V 6= ∅. Following each column’s path we can therefore, with
xijk in P fixed accordingly, solve the resulting linear program. We refer
to this LP as the Feasibility Check (FC) problem. The FC problem has

10

one continuous variable for each node, with lower and upper bounds from
the constraints (6). It remains |N | + |K| constraints from (5) and |P sync|
constraints from (8). If FC returns a feasible solution, we have a feasible
solution to SCSP with the objective function value f̄LP .

Algorithm summary

1. Select a B&B-node to treat.

2. Rule out columns which are infeasible according to constraints from
BR3

3. Adjust arrival times on the remaining column set

4. Solve the master problem

5. Adjust arrival times for all new columns

6. Prune if: the master problem solution is infeasible, feasible in SCSP
or feasible in SCSP after applying FC. Go to 1.

7. For solutions with properties P2-P5, branch according to BR1 if mW >
mV and otherwise according to BR2. For P6, branch according to
BR3. Go to 1.

5 Computational results

5.1 Test problems

We use the algorithm developed in this paper to solve a set of problems intro-
duced in Bredström and Rönnqvist (2006). The test problems are generated
based on an application of the homecare staff scheduling problem, where on
average, ten percent of the customers need simultaneous service from two
staff members. The staff members are available throughout the planning
horizion of nine hours. The customer locations are uniformly distributed
over a square area with the depot located in the center. The durations are
randomized from a normal distribution with the goal of having a mean of five
hours workload (excluding traveling time) for each staff member. The trav-
eling time and durations are rounded to take integer values with the result
of a time discretization of less than one minute. A customer i1 with simul-
taneous service, is modeled with a virtual customer i2 and (i1, i2) ∈ P sync

and the i1 and i2 in all test problems are exchangable with no difference

11

in cost or in duration for any staff member. An overview of the problem
characteristics is found in Table 1. The table shows for each instance, the

Table 1: Problem instances overview.

Instance |N | |K| |P sync|
P

Di/|K| (h) AvTD (h) S (h) M (h) L (h)

1 20 4 2 4.9 0.22 1.5 2.1 2.9
2 20 4 2 4.2 0.20 1.7 2.2 3.0
3 20 4 2 5.3 0.21 1.5 2.4 3.0
4 20 4 2 5.9 0.29 1.8 2.9 3.9
5 20 4 2 5.0 0.21 1.3 2.1 3.2

6 50 10 5 4.7 0.25 1.4 2.3 3.1
7 50 10 5 5.0 0.23 1.6 2.5 3.4
8 50 10 5 6.2 0.23 1.5 2.4 3.2

9 80 16 8 6.1 0.21 1.5 2.3 2.9
10 80 16 8 5.1 0.17 1.6 2.6 3.6

number of customers |N |, the number of vehicles |K|, the number of synchro-
nized customers |P sync|, the average duration (hours) per vehicle calculated
with

∑
i Di/|K| and the average traveling time (hours) to depot AvTD. The

columns S, M and L the average time window size in hours. Looking at the
average duration per member of staff, we note that instances 4,8 and 9 allow
for much less waiting time than the other instances.

5.2 Experiment settings

The computational results were run on one Intel Xeon 2.67 GHz processor
on a computer equipped with 2 GB RAM. The branch and price algorithm
was implemented in the AMPL modeling environment. For all LP problems
we used the CPLEX 10.0 solver. The ESPPTW-solver is a C++ implemen-
tation of the algorithm presented in Feillet et al. (2004) which was made
available to AMPL as a shared library.

The master problem was solved by adding one column for all vehicles
in each column generation iteration when the subproblems for each vehicle
were identical. For our test problems, this is the case when we minimize
traveling time and when no constraints from BR3 are applied. Otherwise,
we solved one subproblem for each vehicle. The stopping criterion was for
all reduced costs to be greater than −10−6. The ESPPTW was only solved
to optimality when no column with negative reduced costs was found using
a simplified label dominance criterion, in which the labels are dominated
only by the costs and time resources.

12

We wanted to find feasible solutions for the larger problem instances
and optimal solutions if possible within the total time limit of 3600 seconds.
Therefore, when selecting a node in the B&B-tree, we followed the ’best first’
selection (lowest lower bound) of the next node to treat as long as no more
than |N |-nodes were left to treat. With |N | + 1 nodes or more, we made a
depth first search on the branch added last. When a node was pruned, we
picked the next node with the lowest LBD.

5.3 Results

In Tables 2 and 3 we present the results from the algorithm when the prefer-
ences and traveling time were minimized respectively. We use the following
column names in the tables

Prob. Name of problem instance from the test bed in Table 1.
LP The optimum value of the LP-relaxation of SP .
LBD The lower bound when time limit is reached.
UBD The objective function value for the optimal solution or

the best found solution.
nodes The number of treated nodes in the B&B tree
FC The number of times FC found a feasible solution to SCSP .
SUB tot. Total number of subproblem solver calls.
SUB root Number of subproblem calls in the root node.
Solve Time (s) used by solvers (CPLEX and subproblem-solver).
Total Total time (s), including AMPL user time. A * indicates that

there are nodes left in the B&B-tree after 3600 seconds.

With the suggested algorithm, when minimizing preferences, we have
solved problems 1–8 to optimality within the time limit of 3600 seconds.
When our objective is to minimize traveling time, we obtain a more dif-
ficult problem. With more than four times more B&B-nodes treated, we
have solved the problems 1-5, and three of the problems 6-9 to optimality.
For problems 9S, 10S and 10L, we found no feasible solution in the results
presented in Table 3. From Table 2, we observe that we have found feasible
solutions for all problems.

If we look at the problems we have solved to optimality, 54% of the
solution time is from the AMPL user time. An implementation in a non-
scripting language therefore has the potential of significantly reducing the
overall solution time.

In Table 3, we observe the relatively large number of B&B-nodes for
the problems 1M and 1L. An improved adjustment of the arrival times is

13

Table 2: Solution overview for the problems when preferences are minimized.

Prob. LP LBD UBD nodes FC SUB tot. SUB root Solve Total
1S -118.34 -114.03 4 1 228 152 0.73 1.27
1M -124.17 -117.80 7 2 263 155 0.98 1.68
1L -124.17 -118.51 8 1 306 178 1.50 2.55
2S -92.09 -92.09 1 0 153 153 0.34 0.60
2M -107.15 -104.81 8 2 282 170 1.36 2.30
2L -109.24 -107.64 21 2 508 164 3.84 6.44
3S -100.69 -99.49 13 1 242 124 1.00 1.66
3M -110.06 -106.59 5 1 280 161 1.19 2.01
3L -113.78 -107.87 9 1 329 162 1.64 2.63
4S -106.24 -100.00 8 2 261 124 1.00 1.72
4M -110.28 -106.72 9 2 300 152 1.42 2.36
4L -111.74 -109.27 18 1 459 158 2.95 5.04
5S -76.29 -76.29 1 1 139 139 0.34 0.64
5M -77.03 -76.29 3 2 225 180 0.72 1.28
5L -84.66 -84.21 6 1 275 164 1.30 2.21
6S -372.21 -370.06 51 1 1578 864 78.45 150.63
6M -386.86 -379.88 101 2 1861 875 126.48 247.88
6L -398.70 -387.20 154 5 2495 818 244.94 474.15
7S -404.85 -401.11 103 4 2066 775 146.26 291.29
7M -406.17 -406.17 22 1 1240 721 49.53 86.70
7L -414.76 -407.48 264 4 3030 731 368.32 714.62
8S -383.66 -380.76 112 1 1223 718 68.34 135.39
8M -405.87 -403.57 166 2 1851 796 148.11 290.77
8L -410.43 -407.48 206 2 2032 731 197.17 362.18
9S -639.26 -633.91 -552.65 414 0 5773 1922 1892.92 *
9M -664.08 -661.77 -463.82 412 0 6026 1808 1955.00 *
9L -675.61 -673.09 -663.47 368 3 5164 1901 1856.07 *
10S -680.53 -676.14 -675.81 796 1 3744 2167 1732.41 *
10M -694.97 -687.90 -685.31 328 9 5341 2091 1807.09 *
10L -700.03 -693.98 -691.34 433 3 4764 1973 1807.72 *

suggested in Section 5.5 which reduces the number of treated nodes.

5.4 Branching strategy

In Figures 1 and 2, we illustrate typical examples of the solution process
when, in case of a fractional solution, we choose to branch with BR3 first
and when we use the branching order the algorithm suggested in Section 4,
that is BR3 last. In both figures, the x-axis shows the number of B&B-nodes
and the y-axis the number of subproblem solver calls. In the case of mini-
mizing traveling time, when branching with BR3 first, the algorithm finds no
solution and terminates with an LBD of 8.145 after 8998 subproblem calls,
and a total of 152 B&B-nodes. With BR3 last, the algorithm terminates
with an LBD of 8.527 and a feasible solution with a value of 8.540. It had

14

Table 3: Solution overview for the problems traveling time is minimized.

Prob. LP LBD UBD nodes FC SUB tot. SUB root Solve Total
1S 3.548 3.548 17 1 159 83 1.01 1.96
1M 3.475 3.548 2192 0 595 83 103.85 221.93
1L 3.081 3.393 1059 1 568 96 50.27 107.41
2S 4.266 4.266 17 0 299 99 2.02 3.28
2M 3.546 3.575 56 1 417 96 4.64 8.12
2L 3.199 3.415 9 1 210 100 1.50 2.72
3S 3.526 3.628 87 2 533 75 7.80 14.17
3M 3.291 3.333 151 4 537 85 9.49 17.57
3L 3.227 3.295 420 4 768 89 22.46 42.78
4S 6.076 6.141 152 1 356 61 7.04 14.02
4M 5.387 5.670 214 4 530 74 13.88 27.53
4L 4.711 5.134 66 1 380 85 5.04 9.74
5S 3.724 3.929 18 1 209 80 1.56 2.84
5M 3.490 3.527 550 0 506 89 26.86 57.04
5L 3.176 3.339 66 2 352 88 4.78 9.11
6S 8.083 8.129 8.143 2887 2 1244 280 2500.79 *
6M 7.375 7.674 7.714 1250 0 1955 304 2468.43 *
6L 6.807 7.138 916 3 2242 341 1874.08 3279.48
7S 8.223 8.392 525 0 1782 287 805.25 1472.39
7M 7.112 7.355 7.673 1089 1 2229 278 2376.01 *
7L 6.537 6.871 6.885 804 2 2720 304 2104.61 *
8S 9.169 9.537 260 4 1656 266 487.74 931.95
8M 8.145 8.527 8.540 917 1 2342 263 2231.23 *
8L 7.624 7.913 8.616 894 0 2168 266 2377.05 *
9S 11.498 11.695 - 437 0 2252 281 1991.10 *
9M 10.635 10.792 11.745 403 0 2378 477 1931.61 *
9L 10.159 10.366 11.106 362 0 2686 471 1938.34 *
10S 8.204 8.398 - 304 0 2548 560 1840.07 *
10M 7.392 7.502 8.538 630 0 2626 565 1606.39 *
10L 6.876 7.054 - 215 0 3025 600 1592.40 *

made 2342 subproblem calls in a total of 917 treated B&B nodes.
In the case of minimizing preferences, both branching strategies found

the optimal solution. When branching with BR3 first, the optimalty was
proven after 2064 seconds in 158 B&B-nodes with 5278 generated columns.
When branching on BR3 last, the optimalty was proven after 291 seconds
in 166 B&B-nodes and 1851 calls to the subproblem solver.

5.5 Enhanced arrival time adjustment method

For some problems, we obtained a B&B-tree with a significantly above av-
erage number of nodes, without having a proportionally larger number of
subproblem calls. We therefore modified the algorithm to find a more sig-
nificant time window to branch on in each iteration. We replaced Step 5

15

Figure 1: Subproblem calls in each node for the problem 8M when minimiz-
ing traveling time.

01 0 0 02 0 0 03 0 0 04 0 0 05 0 0 06 0 0 07 0 0 08 0 0 09 0 0 01 0 0 0 0

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0

3 6 0 0 s
3 6 0 0 s

Figure 2: Subproblem calls in each node for the problem 8M when minimiz-
ing preferences.

01 0 0 02 0 0 03 0 0 04 0 0 05 0 0 06 0 0 0

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0

2 0 6 3 s
2 9 1 s

16

in the algorithm with an LP problem, with the objective of minimizing the
deviation of arrival time for each node. For this problem, we defined a time
variable δi for each node, and one time variable for each node serviced by a
column j, for each column j such that there is a (k, j) ∈ Z. The constraints
were that the columns were individually feasible given the current time win-
dows. With variables and constraints measuring the deviation from δi, we
minimize the sum of deviations, and the solution obtained is the adjusted
arrival times for the columns represented in Z.

The results of this modification used when we minimize traveling time
is presented in Table 4. With the exeption of the problems 2L and 5S, both

Table 4: Solution overview from the problems with service time adjusted
with LP before branching.

Prob. LP LBD UBD nodes FC SUB tot. SUB root Solve Total
1S 3.548 3.548 5 1 165 83 0.65 1.12
1M 3.475 3.548 31 2 223 83 1.59 3.69
1L 3.081 3.393 128 1 335 96 3.74 11.91
2S 4.266 4.266 1 1 99 99 0.28 0.56
2M 3.546 3.575 30 1 240 96 1.42 3.2
2L 3.199 3.415 32 2 470 100 3.58 7.41
3S 3.526 3.628 21 1 269 75 1.71 3.84
3M 3.291 3.333 18 1 350 85 2.17 4.31
3L 3.227 3.295 5 1 146 89 0.74 1.44
4S 6.076 6.141 10 1 149 61 0.67 1.54
4M 5.387 5.670 11 1 209 74 1.17 2.55
4L 4.711 5.134 38 1 363 85 3.19 7.69
5S 3.724 3.929 13 2 213 80 1.32 2.9
5M 3.490 3.527 152 0 254 89 2.68 9.1
5L 3.176 3.339 36 1 270 88 2.07 5.15
6S 8.083 8.143 58 1 1782 280 102.50 197.92
6M 7.375 7.701 2046 1 1728 304 1738.52 *
6L 6.807 7.125 7.138 994 1 2966 341 1680.51 *
7S 8.223 8.392 89 1 1304 287 85.52 169.3
7M 7.112 7.410 7.562 1413 1 2036 278 1908.59 *
7L 6.537 6.857 6.885 768 2 3534 304 1522.65 *
8S 9.169 9.537 286 2 1613 266 421.72 850.52
8M 8.145 8.540 946 2 2886 263 1780.48 3490.57
8L 7.624 7.939 8.105 1330 1 2491 266 1922.87 *
9S 11.498 11.682 12.209 358 0 3265 281 2172.11 *
9M 10.635 10.792 11.043 333 0 3323 477 2116.79 *
9L 10.159 10.366 10.893 489 0 2195 471 1948.49 *
10S 8.204 8.426 9.126 402 0 3653 560 1941.86 *
10M 7.392 7.516 8.104 308 0 3731 565 1761.80 *
10L 6.876 7.054 - 288 0 4300 600 1630.70 *

the number of B&B-nodes and the total time was reduced for problems 1–5.

17

Overall for these problems, the total solution time was reduced from 540 to
66 seconds. With the modification, we also found two new optimal solutions
among problems 6–8 and feasible solutions to 5 out of the 6 problems in
9–10.

5.6 Characteristics

We want to see the effect of the synchronization constraints in the problems
in our test bed. To do this, we compare the gap from the optimal value
of SPLP with the optimal integer solutions with and without the synchro-
nization constraints relaxed. The results from this comparison are shown
in Table 5. The columns VRP are the gap with relaxed synchronization,

Table 5: Integrality gap calculated as 100(f∗ − fLP)/fLP .

Problem Preferences Time
VRP Sync VRP Sync

1S 0.00 3.64 0.00 0.00
1M 0.00 5.13 2.11 2.11
1L 0.00 4.56 8.86 10.12
2S 0.00 0.00 0.00 0.00

2M 0.00 2.18 0.14 0.83
2L 0.00 1.46 0.19 6.74
3S 0.00 1.20 0.00 2.91

3M 0.00 3.15 1.29 1.29
3L 0.00 5.19 2.10 2.10
4S 0.00 5.87 0.80 1.07

4M 0.00 3.23 0.42 5.25
4L 0.00 2.21 1.72 8.97
5S 0.00 0.00 1.12 5.51

5M 0.00 0.97 1.08 1.08
5L 0.00 0.53 0.00 5.14

6S 0.00 0.58 0.58 0.75
6M 0.09 1.80 0.79 4.42
6L 0.00 2.88 0.54 4.87
7S 0.00 0.92 0.54 2.05

7M 0.00 0.00 1.08 *
7L 0.00 1.75 0.67 *
8S 0.00 0.76 0.80 4.01

8M 0.00 0.57 0.76 4.84
8L 0.00 0.72 * *

and the columns Sync the gap without relaxed constraints. We observe that
even when minimizing preferences, we obtain a significant integrality gap

18

even though in most cases the underlying VRPs have no gap at all. In 9 out
of 45 problems the gap is unchanged, but for the 24 preference problems the
average gap increase is 205% and the 21 time problems have an average gap
increase of 239%.

For the test problems in this paper we have the additional property that
the integrality gap equals the integrality gap for SCSP . This is because
the synchronization is for customers requiring identical multiple visits only.
That is, for all (i1, i2) ∈ P sync, i2 is a virtual customer with Di2 = Di1 and

CPrefs
i2k = CPrefs

i1k for all k ∈ K. In the subproblem solver, we exclude routes
with visits to both i1 and i2, for all (i1, i2) ∈ P sync. This is equal to including
the constraints

∑
(i1,j)∈A xi1jk +

∑
(i2,j)∈A xi2jk ≤ 1 for all (i1, i2) ∈ P sync

in the definitions of Γk and Xk. These constraints are redundant in the
formulation of P since they follow directly from (8) and the assumption
that all Tij > 0. Therefore, for any extreme point j to conv(Xk), there
exists an extreme point j′ to conv(Xk), where all customers i1 in j, that
have a virtual customer i2, are replaced with its virtual customer, and vice
versa. The corresponding columns to j and j′ in SP have equal costs for
each k, that is cjk = cj′k, and from any feasible solution (zkj) to SPLP we
can construct a feasible solution (z̄kj) to SPLP by replacing each j for j′. It
follows that the convex combination with weights 0.5 of the solutions (zkj)
and (z̄kj) is feasible in SPLP , and also in SCSPLP .

Since all feasible solutions to SPLP are feasible in SCSPLP , it follows
that the gap between SCSP and SPLP is not greater than the integrality
gap for SCSP , since SPLP is a relaxation of SCSPLP .

6 Concluding remarks

We consider the combined vehicle routing and scheduling problem with syn-
chronization constraints, which is motivated from the range of practical ap-
plications which have vehicle synchronization constraints. The results show
that synchronization can make a problem significantly harder, in the sense
of an increased integrality gap.

The algorithm’s performance is highly dependent on the branching strat-
egy. In the results, we find that for our test problems, time window branch-
ing is preferable to constraint branching as long as time window branches
can be found.

To further improve the algorithm, we introduce an enhanced method
to adjust the arrival times. The method successfully improved the solution
times and reduced the number of branch and bound nodes. The algorithm

19

introduced in this paper solved 44 out of the 60 test problems where two
were only found using the enhanced method.

It is worth noting that the synchronization constraints can be formulated
with two temporal precedence constraints with the offsets Si1i2 = Si2i1 = 0
defined by

∑

k∈K

ti1k ≤ Si1i2 +
∑

k∈K

ti2k ∀(i1, i2) ∈ P prec. (15)

The constraint says that for each pair (i1, i2) ∈ P prec the temporal offset
Si1i2 sets the requirement that i2 is visited at least Si1i2 time units after
i1. With minor modifications, the algorithm introduced in Section 4 can be
applied on the more general problem where (8) is replaced by (15).

References

C. Barnhart, E. Johnson, G. Nemhauser, and M. W. P. Savelsbergh. Branch-
and-price: Column generation for solving huge integer programs. Opera-
tions Research, 46(3):316–332, 1998.

J. Beck, P. Prosser, and E. Selensky. Vehicle routing and job shop schedul-
ing: What’s the difference? Proceedings of the Thirteenth International
Conference on Automated Planning and Scheduling (ICAPS03), 2003.

D. Bredström and M. Rönnqvist. Combined vehicle routing and scheduling
with temporal precedence and synchronization constraints. Technical re-
port, Scandinavian Working Papers in Economics, NHH Discussion Paper
18/2006, 2006.

J. Desrosiers, Y. Dumas, M. M. Solomon, and F. Soumis. Network Routing,
volume 8 of Handbook in Operations Research and Management Science,
chapter Time Constrained Routing and Scheduling, pages 35–139. North-
Holland, 1995.

P. Eveborn, P. Flisberg, and M. Rönnqvist. Laps care - and operational
system for staff planning of home care. European Journal of Operational
Research, 171(3):962–976, 2006.

K. Fagerholt and M. Christiansen. A travelling salesman problem with
allocation, time window and precedence constraints — an application to
ship scheduling. International Transactions in Operational Research, 7
(3):231–244, 2000.

20

D. Feillet, P. Dejax, M. Gendreau, and C. Guenguen. An exact algorithm for
the elementary shortest path problem with resource constraints: Applica-
tion to some vehicle routing problems. Networks, 44(3):216–229, 2004.

R. Freling, D. Huisman, and A. P. M. Wagelmans. Models and algorithms
for integration of vehicle and crew scheduling. Journal of Scheduling, 6:
63–85, 2003.

S. Gélinas, M. Desrochers, J. Desrosiers, and M. M. Solomon. A new branch-
ing strategy for time constrained routing problems with applications to
backhauling. Annals of Operations Research, 61:91–109, 1995.

K. Haase, G. Desaulniers, and J. Desrosiers. Simultaneous vehicle and crew
scheduling in urban mass transit systems. Transportation Science, 35(3):
286–303, 2001.

I. Ioachim, S. Gélinas, F. Soumis, and J. Desrosiers. A dynamic program-
ming algorithm for the shortest path problem with time windows and
linear node costs. Networks, 31:193–204, 1998.

I. Ioachim, J. Desrosiers, F. Soumis, and N. Bélanger. Fleet assignment and
routing with schedule synchronization constraints. European Journal of
Operational Research, 119:75–90, 1999.

M. E. Lübbecke and J. Desrosiers. Selected topics in column generation.
Operations Research, 53(6):1007–1023, 2005.

M. Sigurd, D. Pisinger, and M. Sig. Scheduling transportation of live animals
to avoid the spread of diseases. Transportation Science, 38(2):197–209,
2004.

21

