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Abstract

Motivated by the problems of the conventional model in rational-
izing market data, we derive the equilibrium interest rate and risk
premiums using recursive utility in a continuous time model. Two
ordinally equivalent versions are considered. The state price is not
Markov in any of the versions, so instead of using dynamic program-
ming we use the stochastic maximum principle. The resulting equilib-
riums are consistent with low values of the parameters of the utility
functions when calibrated to market data. One version is consistent
with preference for early resolution of uncertainty, the other for late
for the US-data. We therefore consider heterogeneity with recursive
utilities. Our resulting model rationalize data well, and can explain
both the Equity Premium Puzzle and the Risk-Free Rate Puzzle with
good margins.
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1 Introduction

Rational expectations, a cornerstone of modern economics and finance, has
been under attack for quite some time. Are asset prices too volatile relative
to the information arriving in the market? Is the mean risk premium on
equities over the riskless rate too large? Is the real interest rate too low? Is
the market’s risk aversion too high?

Mehra and Prescott (1985) raised some of these questions in their well-
known paper, using a variation of Lucas’s (1978) pure exchange economy
with a Kydland and Prescott (1982) ”calibration” exercise. They chose the
parameters of the endowment process to match the sample mean, variance
and the annual growth rate of per capita consumption in the years 1889 -
1978. The puzzle is that they were unable to find a plausible parameter pair
of the utility discount rate and the relative risk aversion to match the sample
mean of the annual real rate of interest and of the equity premium over the
90-year period.

The puzzle has been verified by many others, e.g., Hansen and Singleton
(1983), Ferson (1983), Grossman, Melino, and Shiller (1987). Many theories
have been suggested during the years to explain the puzzle, but to date there
does not seem to be any consensus that the puzzles have been fully resolved
by any single of the proposed explanations 1.

We utilize a continuous time setting, to take full advantage of the analytic
power of infinite dimensional analysis. We use the framework established by
Duffie and Epstein (1992a-b) and Duffie and Skiadas (1994) which elaborates
the foundational work by Kreps and Porteus (1978) of recursive utility in
dynamic models. This latter model is extended to a continuous time setting,
where future utility is a conditional expected time integral of a felicity index
minus a measure of Arrow-Pratt absolute risk aversion multiplied by the
variance rate of utility. When there is no uncertainty, the felicity index does
not depend upon risk aversion.

While Duffie and Epstein (1992a) use dynamic programming to find risk
premiums using a richer economic environment that we have, we employ the
stochastic maximum principle. An alternative is to use directional derivatives

1Constantinides (1990) introduced habit persistence in the preferences of the agents.
Also Campbell and Cochrane (1999) used habit formation. Rietz (1988) introduced fi-
nancial catastrophes, Barro (2005) developed this further, Weil (1992) introduced non-
diversifiable background risk, and Heaton and Lucas (1996) introduce transaction costs.
There is a rather long list of other approaches aimed to solve the puzzles, among them
are borrowing constraints (Constantinides et al. (2001)), taxes (Mc Grattan and Prescott
(2003)), loss aversion (Benartzi and Thaler (1995)), survivorship bias (Brown, Goetzmann
and Ross (1995)), and heavy tails and parameter uncertainty (Weitzmann (2007)).
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and utility gradients. Neither of these principles require the Markov property.
Our model for the financial market is standard, but imply no assumptions
about normal returns and lognormal prices. Also Epstein and Zin (1989-91)
base their results on dynamic programming in a diserete-time framework.

When calibrated to market data we find that the representative agent in
an ordinally equivalent version of our model prefers early to late resolution
of uncertainty, for plausible values of the parameters. The other, nonordi-
nal version of the model is consistent with preference for late resolution of
uncertainty for US 90-year dataset we employ. In another economy with a
higher volatility of the market portfolio this picture is turned around. To
our knowledge, this unordinal version has not been explored earlier in the
continuous-time setting.

We therefore suggest a heterogeneous model where the representative
agent is composed by the two ordinally equivalent versions. The resulting
model is found to explain well both the Equity Premium Puzzle as well as the
Risk-Free Rate Puzzle, and seems as a good description of many economies.
This model is also used to discuss the non-participating issue, as well as
optimal asset allocation.

Recursive preferences deviate from the separable time additive case in
several important ways, and it is not at all clear that dynamic programming,
an important tool for the conventional model, will give the correct answers.
To cite David Kreps (1988, p 175)

” ..when the uncertainty of the gambles being optimized over resolves at
dates in the future (after important decisions left out must be taken), then
use of the standard models is very suspect and often quite wrong.”

This seems to be the root of these puzzles. We know that the stan-
dard model does not fit well real data. In the conventional model, however,
dynamic programming works. In the new model, with recursive utility, re-
searchers have continued to use dynamic programming.

For recursive utility uncertainty is ”dated” by the time of its resolution,
and the individual regards uncertainties resolving at different times as being
different. For such a complex representation the dynamic programming ap-
proach may be too restrictive, at least for the application to the market data
that we have in mind.

As is well known recursive utility leads to separation of risk aversion from
the elasticity of intertemporal substitution in consumption, within a time-
consistent model framework. We adhere to the principle of Ockham’s razor,
namely to change only one single feature of the standard model. We demon-
strate that going from the standard time separable and additive expected
utility representation to recursive utility is sufficient for the resulting model
to rationalize data well.
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We have a similar analysis in discrete-time (Aase (2013), that also give rise
to two ordinally equivalent versions of recursive utility, which explain the data
as in the present paper. The discrete-time analysis gives a clear indication
why our results are different from those based on dynamic programming,
including why Weil (1989) found that recursive utility leads to even larger
values for the risk-free interest rate than the conventional model (the so-called
Risk-Free Rate Puzzle).

The respective risk premiums in the discrete-time version are analogous
to our present results, only the interest rates differ. In the discrete-time
models there is dependence on the consumption-wealth ratio in the expres-
sions for the interest rate, which does not occur in our framework. Since the
continuous-time model does not rely on approximations, it is likely to give
the best representation of the data.

In addition to giving new insights about these interconnected puzzles, our
model is likely to yield many other results that are difficult, or impossible, to
obtain using the conventional approach. One example is that it can explain
the empirical regularities for Government bills, and also for optimal asset
allocation.

For recursive utility in continuous time the volatility of the future utility
plays an important role. We show that this quantity is a linear combina-
tion of the volatility of the market portfolio and the volatility of aggregate
consumption, by market clearing in the financial market, and by using ba-
sic properties of the recursive utility function. It is at this point the two
ordinally equivalent versions differ.

There is by now a long standing literature that has been utilizing recur-
sive preferences. We mention Avramov and Hore (2007), Avramov et al.
(2010), Eraker and Shaliastovich (2009), Hansen, Heaton, Lee, Roussanov
(2007), Hansen and Scheinkman (2009), Wacther (2012), Bansal and Yaron
(2004), Campbell (1996), Bansal and Yaron (2004), Kocherlakota (1990 b),
and Ai (2012) to name some important contributions. Related work is also
in Browning et al. (1999), and on consumption see Attanasio (1999). A few
exceptions to late resolution exist in this literature. Bansal and Yaron (2004)
study a richer economic environment than we employ, as is typical of most
of the newer literature using recursive utility.

The paper is organized as follows: In Section 2 we explain the problems
with the conventional model, and give a preview of the results, focusing on
the ordinally equivalent version. In Section 3 we present a brief introduction
to recursive utility along the lines of Duffie and Epstein (1992a-b) and Duffie
and Skiadas (1994). In Section 4 we derive the first order conditions of
optimal consumption for both versions of recursive utility, where we employ
the stochastic maximum principle. In Section 5 we derive equilibrium risk
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premiums and the interest rate for the ordinally equivalent model. In Section
6 we we present the model for the financial market, and connect the volatility
of the future utility process, a quantity in the representation of preferences
in our approach, to a linear function of the volatility of the market portfolio
and the consumption growth rate. In Section 7 we discuss the results for the
ordinally equivalent model. In Section 8 we do the analysis for the nonordinal
model. In Section 9 w we solve the aggregation problem over agents, with the
two different versions of recursive utility. Here we address the limited market
participation issue. Section 10 treats the optimal asset allocation problem,
Section 11 points out extensions, and Section 12 concludes.

2 The problems with the standard model

2.1 The additive and separable Eu-model

The conventional asset pricing model in financial economics, the consumption-
based capital asset pricing model (CCAPM) of Lucas (1978) and Breeden
(1979), assumes a representative agent with a utility function of consump-
tion that is the expectation of a sum, or a time integral, of future discounted
utility functions. The model has been criticized for several reasons. First,
it does not perform well empirically. Second, the standard specification of
utility can not separate the risk aversion from the elasticity of intertemporal
substitution, while it would clearly be advantageous to disentangle these two
conceptually different aspects of preference. Third, while this representation
seems to function well in deterministic settings, and for timeless situations,
it is not well founded for temporal problems (e.g., derived preferences may
not satisfy the substitution axiom (Mossin (1969)).

In the conventional model the utility U(c) of a consumption stream ct is
given by

U(c) = E
{∫ T

0

u(ct, t) dt
}

(1)

where the felicity index u has the separable form

u(c, t) =
1

1− γ
c1−γ e−β t. (2)

The parameter γ is the representative agent’s relative risk aversion and β is
the utility discount rate, or the impatience rate, and T is the time horizon.
These parameters are assumed to satisfy γ > 0, β ≥ 0, and T ≤ ∞.
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In this model the risk premium (µR − r) of any risky security can be
shown to have the simple form

µR(t)− rt = γ σRc(t) (3)

where rt is the equilibrium real interest rate at time t, and the term σRc(t) =∑d
i=1 σR,i(t)σc,i(t) is, by the Ito-isometry, the covariance rate between returns

of the risky asset and the growth rate of aggregate consumption at time
t, a measurable and adaptive process satisfying standard conditions. The
dimension of the Brownian motion is d > 1. This is the continuous-time
version of Breeden’s consumption-based CAPM. Similarly, the expression for
the risk-free real interest rate is

rt = β + γ µc(t)−
1

2
γ (γ + 1)σ′c(t)σc(t). (4)

The process µc(t) is the annual growth rate of aggregate consumption and
(σ′c(t)σc(t)) is the annual variance rate of consumption growths, both at time
t, again dictated by the Ito-isometry. Both these quantities are measurable
and adaptive stochastic processes, satisfying standard conditions. The return
processes as well as the consumption growth rate process in this paper are
also assumed to be ergodic processes, implying that statistical estimation
makes sense.

Notice that in the model is the instantaneous correlation coefficient be-
tween returns and the consumption growth rate given by

κRc(t) =
σRc(t)

||σR(t)|| · ||σc(t)||
=

∑d
i=1 σR,i(t)σc,i(t)√∑d

i=1 σR,i(t)
2

√∑d
i=1 σc,i(t)

2

,

and similarly for other correlations given in this model. Here−1 ≤ κRc(t) ≤ 1
for all t. Note that with this convention we can equally well write σR(t)σc(t)
for σRc(t), and the former does not imply that the instantaneous correlation
coefficient between returns and the consumption growth rate is equal to one.

In Table 1 we reproduce from Mehra and Prescott (1985) the key summary
statistics of the real annual return data related to the S&P-500, denoted
by M , as well as for the annualized consumption data, denoted c, and the
government bills, denoted b. 2.

Here we have, for example, estimated the covariance between aggregate
consumption and the stock index directly from the data set to be .00223.
This gives the estimate .3752 for the correlation coefficient.3

2There are of course newer data by now, but these retain the same basic features. If
we can explain the data in Table 1, we can explain any of the newer sets as well.

3The full data set was provided by Professor Rajnish Mehra.
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Expectat. Standard dev. Covariances

Consumption growth 1.83% 3.57% cov(M, c) = .002226
Return S&P-500 6.98% 16.54% cov(M, b) = .001401
Government bills 0.80% 5.67% cov(c, b) = −.000158
Equity premium 6.18% 16.67%

Table 1: Key US-data for the time period 1889 -1978. Discrete-time com-
pounding.

Expectation Standard dev. Covariances

Consumption growth 1.81% 3.55% σ̂Mc = .002268
Return S&P-500 6.78% 15.84% σ̂Mb = .001477
Government bills 0.80% 5.74% σ̂cb = −.000149
Equity premium 5.98% 15.95%

Table 2: Key US-data for the time period 1889 -1978. Continuous-time
compounding.

Since our development is in continuous time, we have carried out stan-
dard adjustments for continuous-time compounding, from discrete-time com-
pounding. The results of these operations are presented in Table 2. This
gives, e.g., the estimate κ̂Mc = .4033 for the instantaneous correlation coef-
ficient κ(t). The overall changes are in principle small, and do not influence
our comparisons to any significant degree, but are still important.

Interpreting the risky asset as the value weighted market portfolio M cor-
responding to the S&P-500 index, we have two equation in two unknowns to
provide estimates for the preference parameters by the ”method of moments”.
Indeed, what we really do here is to use the assumption about ergodicity of
the various µt and σt processes. This enables us to replace ”state averages”
by ”time averages”, the latter being given in Table 2. The result is

γ = 26.37 β = −.015,

i.e., a relative risk aversion of about 26 and an impatience rate of minus 1.5%.
If we insist on a nonnegative impatience rate, as we probably should (but

see Kocherlakota (1990)), this means that the real interest rate explained by
the model is larger than 3.3% (when β = .01, say) for the period considered,
but it is estimated, as is seen from Table 2, to be less than one per cent.

We denote the elasticity of intertemporal substitution in consumption by
ψ, and refer to it as the EIS-parameter. In the standard model ψ = 1/γ,
so if the risk aversion is as large as indicated in the above, it means that
ψ = .037, which is considered to be too low for the average individual.
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2.2 Including Government bills

There is also another problem with the standard model. From Table 2 we
see that there is a negative correlation between Government bills and the
consumption growth rate. Similarly there is a positive correlation between
the return on S&P-500 and Government bills.

If we interpret Government bills as risk free, the former correlation should
be zero for the CCAPM-model to be consistent. Since this correlation is not
zero, then γ = 0 if Government bills are to be risk free, which is inconsistent
with the model. Since the Government bills used by Mehra and Prescott
(1985) have duration one month, and the data are yearly, Government bills
are not the same as Sovereign bonds with duration of one year. One month
bills in a yearly context will then contain price risk 11 months each year, and
hence the real risk free rate should, perhaps, be set strictly lower that .80%.
Assuming the risk premium of Government bills is about fourth of a per cent
(.0040) and using the expression for the equilibrium risk premium (3) also
for the bills,

µb(t)− rt = γ σcb(t), (5)

we solve this equation together with the equation for the real risk free interest
rate (now estimated to .0040), using the estimate of σcb(t) in Table 2. This
gives the calibrated values γ = −23.84 and β = .93, also inconsistent with
the above calibrated values (and very implausible).

Another version could be to insert the estimate for γ obtained above,
26.37, in this equation together with the estimate for σcb(t), which is−.000149
from Table 2. This gives a risk premium for Government bills of −.0039,
which is also implausible.

On the other hand, whatever positive value for the risk premium we
choose, the resulting value of γ is negative. With bills included, the standard
model does not seem to have enough ’degrees of freedom’ to match the data,
since in this situation the model contains three basic relationships and only
two ’free parameters’. Thus the standard model can not have the correct
state price deflator.

To better understand the problems with contemporary asset pricing, we
propose to consider recursive utility along the lines of Duffie and Epstein
(1992a-b), where risk aversion and consumption substitution can be sepa-
rated. This will have clear implications for risk premiums and the equilibrium
interest rate, as we shall demonstrate.
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2.3 Preview of our results

Let ρ the time preference of the individual. Our approach allows ρ = 1/ψ to
be different from risk aversion γ. Based on the analysis to be presented in
Section 6, the two relationships corresponding to (3) and (4) are, for ρ 6= 1
and with the same notation as above, given as follows:

µR(t)− rt =
ρ(1− γ)

1− ρ
σ′R(t)σc(t) +

γ − ρ
1− ρ

σ′R(t)σM(t) (6)

and

rt = β + ρµc(t)−
1

2

ρ(1− ργ)

1− ρ
σ′c(t)σc(t) +

1

2

ρ− γ
1− ρ

σ′M(t)σM(t) (7)

respectively.
The risk premiums in (6) are endogenously derived in (41) and the same

is true for the expression for the equilibrium interest rate in (42). Here
σM(t) signifies the volatility of the return on the market portfolio of the risky
securities, σ′R(t)σM(t) = σRM(t) is the instantaneous covariance rate of the
returns on any risky asset labeled R with the return of the market portfolio.
In the model these quantities are assumed to be measurable, adaptive, ergodic
stochastic processes satisfying standard conditions.

As can be readily seen from these two expressions a larger risk premium
can be explained by this model when γ > ρ and ρ < 1, while at the same
time the real interest rate may then be smaller than for the standard model.
This could explain the two most serious problems with the latter model.

This form of the model implies that it can be estimated by linear regres-
sion.

The risk premium of any risky asset in (6) is seen to be a linear combina-
tion of the market-based CAPM of Mossin (1966) and the consumption-based
CAPM of Breeden (1979). If γ = ρ risk premiums reduce to those of the
latter.

In particular all the µ and σ- processes are assumed to be ergodic so
that it makes sense to estimate them, as explained in the previous section.
Note that there is no contradiction in having these quantities assessed by
numerical values, although they are stochastic processes in the theory 4.

Indeed, we here make use of our assumption about ergodicity of the
drift and diffusion terms: These are defined as conditional expectations, i.e.,

4If these quantities are assumed to be constants also in the theoretical model, this
would lead to the usual contradiction, where the volatility of the market portfolio would
have to be the same as the volatility in the consumption growth. That this is not so is
evident from the summary statistics in Table 2.
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stochastic processes, and by ergodicity we may replace state averages by time
averages5

When calibrating we fix the time impatience rate β to some reasonable
number, say .027, and solve the two non-linear equations (6) and (7) using
the data summarized in Table 2, when when the risky security is the market
index (R = M). The results of this are

γ = 1.50 and ρ = 0.66 corresponding to EIS = 1.51.

as the estimates for the remaining two parameters in the recursive utility
function.

The numerical values of these parameters should not be taken literary,
but rather as an indication that this model rationalizes the data well. Never-
theless, a short discussion where values of this magnitude are taken as given
is of interest.

The relatively low value of the time preference ρ a representative agent
who does not require too much compensation for consumption substitution
in a deterministic world. This value of γ must be considered as low for the
relative risk aversion (in particular compared to 26 for the standard model).
An impatience rate of 2.7% is considered acceptable (in particular compared
to −1.5%).

In other words, with these values of the preference parameters of the
recursive-utility-representative-agent, the model can explain an equilibrium
interest rate and equity premium estimated to, respectively

r̂ = .0080 and (µ̂M − r̂) = .0598 (continuous time adjusted values)

for the consumption/market data used by Mehra and Prescott (1985), pre-
sented in Table 2. This is a solution of both the Equity Premium Puzzle
of Mehra and Prescott (1985) as well as the Risk-Free Rate Puzzle of Weil
(1989).

That the risk premium can be large in our model is illustrated by the
market based CAPM term, when γ > ρ and ρ < 1, explaining the ”missing
link” of the risk premium in the CCAPM-specification. The richer model
allows a reconciliation of the data in Table 2.

One challenge with the conventional model is that it provides too high
interest rates if β is constrained to be non-negative. It is lower in our model
for several intuitive reasons: The second term in (7) containing µc does not
contribute nearly as much any more any more since a reasonably low value of
ρ replaces a large value of γ. The ”precautionary savings” term works in the

5The spirit of this part is also contained in the research of Haavelmo (1944).
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right direction provided ρ < 1 and ργ < 1. If ρ < 1 and ργ > 1, but the ratio
ρ(1−γρ)/(1−ρ) is not to large, a small interest rate can result from the last
term provided γ > ρ and ρ < 1, both of which we find plausible. Together
this may explain an equilibrium real interest rate of less than one per cent
for the data summarized in Table 2, and with very reasonable parameters.
At the same time this may explain the large, observed equity risk premium
for a representative agent who favors early to late resolution of uncertainty
(γ > ρ).

Notice that the term corresponding to precautionary savings is negative
provided 1 > γρ and ρ < 1, which is then one requirement for the recursive
utility consumer to be ’prudent’. The other is 1 < γρ and ρ > 1.

If ρ is constrained to be zero, the model reduces to

µR(t)− rt = γ σRM(t), rt = β − γ

2
σ′M(t)σM(t).

The risk premium is that of the ordinary CAPM-type, while the interest rate
is new. This version of the model corresponds to ”neutrality” of consumption
transfers in some sense, to be explained later. Solving these two non-linear
equations consistent with the data of Table 2, we obtain

γ = 2.38 and β = .038.

In the conventional model this simply gives risk neutrality, i.e., γ = ρ = 0,
so this model gives a risk premium of zero, and a short rate of r = β.

Figure 1 illustrates the the feasible region in (ρ, γ)-space. For the conven-
tional model it is the 45◦-line shown (ρ = γ). For the recursive utility model
it is all of the first quadrant, including the axes. The points above the 45◦-
line represent late resolution of uncertainty, the points below correspond to
early resolution. As can be seen, both the point (ρ = .66, γ = 1.50, β = .027)
reported above, denoted Calibr 1, and the point corresponding to the market
based CAPM, called CAPM++ in the figure, (ρ = 0, γ = 2.38, β = .038), are
located in the early resolution part. The point denoted Calibr 3 is (γ = 1/2,
ρ = 1.29 and β = .01) and corresponds to late resolution of uncertainty, for
the utility function h(x) =

√
x. The point denoted Calibr 2 is associated

with the nonordinal model and will be explained later.
Estimates of the EIS-parameter seem difficult to obtain for several rea-

sons, and the results will naturally depend on circumstances. In e.g., Dagsvik
et al. (2006) an estimate of this parameter is suggested to be in the range
from 1 to 1.5.

The larger region for the (ρ, γ)-combinations permitted by our model is
not a frivolous generalization of the conventional model. Numerous gen-
eralizations have been presented without achieving fully acceptable resolu-
tions. That the richer structure of the recursive model is a modest extension
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Figure 1: Calibration points in the (γ, ρ)-space

is demonstrated by the interpretations and plausible results yielded in our
simple expressions. It is based on fundamental assumptions and axioms of
rational behavior.

The risk premium of any risky asset is seen to depend on other risky assets
through the volatility of the market portfolio, and the return rate on gov-
ernment bonds depends both on how aggregate consumption covariates with
the stock market as well as the size of the variance of the market portfolio.

Initially one would think that these features should be reflected also in
the corresponding formulas in the conventional model, but at the outset it is
hard to say if these aspects are internalized or not.

2.4 Fitting to the data including Government bills

In the above discussion we have interpreted Government bills as risk free.
As mentioned, this may not be entirely correct. Exactly what risk premium
bills command we can here only stipulate. With the same assumption as in
the previous section, for a risk premium of .0040 for the bills we have a third
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equation, namely

µb(t)− rt =
ρ(1− γ)

1− ρ
σb,c(t) +

γ − ρ
1− ρ

σb,M (8)

to solve together with the equations (6) and (7). With the covariance es-
timates provided in Table 2, we have three equations in three unknowns,
giving the following solution

β = .027, γ = 1.76 and ρ = .53 (EIS = 1.97).

The results of this calibration are somewhat sensitive to changes in the risk
premium for the Government bills.

Referring to the situation called CAPM++ discussed above, where we
constrained ρ to be zero, equation (7) and (8) give γ = 2.71 and β = .038 for
this situation. While this is not exactly the same values (γ = 2.38, β = .038)
as the ones obtained from the equations (6) and (7) with ρ = 0, it is not far
off in this regard (compare to the standard model of subsection 2.1).

3 Recursive Stochastic Differentiable Utility

In this section we recall the essentials of recursive, stochastic, differentiable
utility along the lines of Duffie and Epstein (1992a-b) and Duffie and Skiadas
(1994).

Despite the fact that the analysis naturally becomes more technically
involved once we depart from the additive and separable framework of the
expected utility representation, we obtain surprisingly simple and transpar-
ent results when we use the Kreps-Porteus specification for the felicity index.
The issue of when uncertainty is resolved is an important one in this theory,
as Figure 1 illustrates.

We are given a probability space (Ω,F ,Ft, t ∈ [0, T ], P ) satisfying the
’usual’ conditions, and a standard model for the stock market with Brownian
motion driven uncertainty, N risky securities and one riskless asset (Section
6 provides more details). Consumption processes are chosen form the space
L of square integrable progressively measurable processes with values in R+.

The stochastic differential utility U : L→ R is defined as follows by two
primitive functions: f : L×R→ R and A : R→ R.

The function f(ct, Vt) is a felicity index at time t, and A is a measure of
absolute risk aversion of the Arrow-Pratt type for the agent. In addition to
current consumption ct, the felicity index also depends on future utility.

13



The utility process V for a given consumption process c, satisfying VT = 0,
is given by the representation

Vt = Et

{∫ T

t

(
f(cs, Vs)−

1

2
A(Vs) σ̃V (s)′σ̃V (s)

)
ds
}
, t ∈ [0, T ] (9)

where Et denotes conditional expectation given Ft and σ̃V (t) is an Rd-valued
square-integrable progressively measurable volatility process. Here d is the
dimension of the Brownian motion Bt. We think of Vt as the remaining utility
for c at time t, conditional on current information Ft, and A(Vt) is penalizing
for risk.

If, for each consumption process ct, there is a well-defined utility process
V , the stochastic differential utility U is defined by U(c) = V0, the initial
utility. The pair (f, A) generating V is called an aggregator.

Since VT = 0 and
∫
σ̃V (t)dBt is a martingale, (9) has the stochastic

differential equation representation

dVt =
(
− f(ct, Vt) +

1

2
A(Vt) σ̃V (t)′σ̃V (t)

)
dt+ σ̃V (t) dBt (10)

If terminal utility different from zero is of interest, like for life insurance,
then VT may be different from zero. We think of A as associated with a func-
tion h : R → R such that A(v) = −h′′(v)

h′(v)
, where h is two times continuously

differentiable. U is monotonic and risk averse if A(·) ≥ 0 and f is jointly
concave and increasing in consumption 6.

The representation (9) is motivated from the discrete time model. The
common starting point for recursive utility is that future utility at time t
is given by Vt = W (ct,m(Vt+1)) for some function W , where m is a cer-
tainty equivalent at time t. If h is a von Neumann-Morgenstern index, then
m(V ) = h−1(E[h(V )]) and the preferences fall into the Kreps and Porteus
(1978) family. The certainty equivalent m is then assumed to satisfy some
smoothness properties. With Brownian information Vt is an Ito process, and
based on this Duffie and Epstein (1992b) demonstrate how (9) is justified.

Stochastic differential utility partly disentangles intertemporal substitu-
tion from risk aversion: In the case of deterministic consumption, σ̃V (t) = 0
a.s. for all t. Hence risk aversion A is then irrelevant, since it multiplies a zero
variance. Thus certainty preferences, including the willingness to substitute
consumption across time, are determined by f alone. Only risk attitudes are
affected by changes in A for f fixed. In particular, if

Ã(·) ≥ A(·)
6In the general case A(·) is associated with a local gradient representation (LGR)

M(v, x) of a certainty equivalent m. When m = h−1(E[h(V )]) for h a von Neumann-
Morgenstern index, then A(Vt) = −M1,1(Vt, Vt) where M1,1(v, x) = ∂2M(v, x)/∂v2.
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where U and Ũ are utility functions corresponding to (f, A) and (f, Ã) respec-
tively, then Ũ is more risk averse than U in the sense that any consumption
process c rejected by U in favor of some deterministic process c̄ would also
be rejected by Ũ . Thus

U(c) ≤ U(c̄)⇒ Ũ(c) ≤ Ũ(c̄). (11)

Here it is important that f(ct, Vt) at the outset does not depend on risk
aversion, only on time substitution.

The preference ordering represented by recursive utility is time consistent
in the sense of Johnsen and Donaldson (1985).

In this paper we consider two ordinally equivalent specifications: The
first has the Kreps-Porteus utility representation, which corresponds to the
aggregator with a CES specification

f1(c, v) =
β

1− ρ
c1−ρ − v1−ρ

v−ρ
and A1(v) =

γ

v
(12)

corresponding to two utility functions u(c) = c1−ρ

1−ρ and h(v) = v1−γ

1−γ , say. If,

for example, A1(v) = 0 for all v, this means that the recursive utility agent
is risk neutral.

Here ρ ≥ 0, ρ 6= 1, β ≥ 0, γ ≥ 0, γ 6= 1 (when ρ = 1 or γ = 1 it is
the logarithms that apply). The elasticity of intertemporal substitution in
consumption ψ = 1/ρ. The parameter ρ is the time preference parameter
referred to in Section 2.2. Here u(·) and h(·) are different functions, resulting
in the desired disentangling of γ from ρ.

An ordinally equivalent specification is the following: When the aggrega-
tor (f1, A1) is given corresponding to the utility function U1, there exists a
strictly increasing and smooth function ϕ(·) such that the ordinally equiva-
lent U2 = ϕ ◦ U1 has the aggregator (f2, A2) where

f2(c, v) = ((1− γ)v)−
γ

1−γ f1(c, ((1− γ)v)
1

1−γ ), A2 = 0,

and

U2 =
1

1− γ
U1−γ

1 . (13)

This is the second specification we work with, and it has has the CES-form

f2(c, v) =
β

1− ρ
c1−ρ − ((1− γ)v)

1−ρ
1−γ

((1− γ)v)
1−ρ
1−γ−1

, Ã2(v) = 0. (14)

Is should be emphasized that the reduction to a normalized aggregator (f2, 0)
does not mean that intertemporal utility is risk neutral, or that we have
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lost the ability to separate risk aversion from substitution (see Duffie and
Epstein(1992a)). The corresponding utility U2 retains the essential features,
namely that of (partly) disentangling intertemporal elasticity of substitution
from risk aversion.

Here it is instructive to recall the that the standard additive and separable
utility has aggregator

f(c, v) = u(c)− βv, A = 0. (15)

in the present framework (an ordinally equivalent one). As can be seen, even
if A = 0, the agent of the standard model is not risk neutral.

4 The First Order Conditions

In the following we look at the solution of the above problems. For any of
the versions i = 1, 2 formulated in the previous section, the representative
agent’s problem is to solve

supc̃∈LU(c̃)

subject to

E
{∫ T

0

c̃tπtdt
}
≤ E

{∫ T

0

ctπtdt
}
.

Here Vt = V c̃
t is the solution of the backward stochastic differential equation

(BSDE) {
dVt = −f(t, c̃t, Vt, σ̃V (t)) dt+ σ̃V (t) dBt

VT = 0.
(16)

Notice that (16) covers both the versions (12) and (14) that we intend to
analyze. For α > 0 define the Lagrangian

L(c̃;λ) = U(c̃)− αE
(∫ T

0

πt(c̃t − ct)dt
)

In order to find the first order condition for the representative consumer’s
problem, we use Kuhn-Tucker and either directional derivatives in function
space, or the stochastic maximum principle. Neither of these principles re-
quire the Markov property. The problem is well posed since U is increasing
and concave and the constraint is convex. In maximizing the Lagrangian
of the problem, we can calculate the directional derivative 5U(c;h), which
equals (5U(c))(h) where 5U(c) is the gradient of U at c. Since U is contin-
uously differentiable, this gradient is a linear and continuous functional, and
thus, by the Riesz representation theorem, it is given by an inner product.
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Because of the generality of the problem, let us instead utilize the stochas-
tic maximum principle (see Pontryagin (1972), Bismut (1978), Kushner (1972),
Bensoussan (1983), or Peng (1990)) : We then have a forward backward
stochastic differential equation (FBSDE) system consisting of the simple
FSDE dX(t) = 0;X(0) = 0 and the BSDE (16). The objective functional is

J(c̃) = V c̃
0 − αE

(∫ T

0

πt(c̃t − ct)dt
)

(17)

where α is the Lagrange multiplier. The Hamiltonian for this problem is

H(t, c̃, v, σ̃v, y) = yt f(t, c̃t, vt, σ̃v(t))− απt(c̃t − ct) (18)

and the adjoint equation is{
dYt = Y (t)

(
∂f
∂v

(t, c̃t, Vt, σ̃V (t)) dt+ ∂f
∂z

(t, c̃t, Vt, σ̃V (t)) dBt

)
Y0 = 1.

(19)

where we have used the notation Z(t) = σ̃V (t), and z as the generic variable.
If c∗ is optimal we therefore have

Yt = exp
(∫ t

0

{∂f
∂v

(s, c∗s, Vs, σ̃V (s))− 1

2

(∂f
∂z

(s, c∗s, Vs, σ̃V (s))
)2}

ds

+

∫ t

0

∂f

∂z
(s, c∗s, Vs, σ̃V (s)) dB(s)

)
a.s. (20)

Maximizing the Hamiltonian with respect to c̃ gives the first order equation

y
∂f

∂c̃
(t, c∗, v, σ̃v)− απ = 0

or

απt = Y (t)
∂f

∂c̃
(t, c∗t , V (t), σ̃V (t)) a.s. for all t ∈ [0, T ]. (21)

Notice that the state price deflator πt at time t depends, through the term
Yt, on the entire, optimal paths (cs, Vs, σ̃V (t)) for 0 ≤ s ≤ t, which means
that in general π(t) will not be a Markov process. This is the strength of the
stochastic maximum principle; it does not require the Markov property.

When γ = ρ then Yt = e−βt for the aggregator (15) of the conventional
model, so the state price deflator is a Markov process, and dynamic program-
ming (DP) is a possible technique to apply. If γ 6= ρ on the other hand, πt is
not a Markov process, and the requirements for DP are not satisfied. Instead
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we have uses directional derivatives in function space in the time-discrete ver-
sion, and the stochastic maximum principle in the continuous-time model of
this paper.

For the representative agent equilibrium the optimal consumption process
is the given aggregate consumption c in society, and for this consumption
process the remaining utility Vt at time t is optimal.

We now have the first order conditions for both the versions of recursive
utility outlined in Section 3. We start with the ordinally equivalent version
denoted 2 with aggregator given by (14).

5 The analysis for the ordinally equivalent

model

For this model the first order conditions are given by

απt = Yt
∂f

∂c
(ct, Vt) a.s. for all t ∈ [0, T ] (22)

where f(t, c, v, σ̃v) = f2(c, v) is given in (14), and where the adjoint variable
Y (t) is

Yt = exp
(∫ t

0

∂f

∂v
(cs, Vs) ds

)
a.s. (23)

As can be noted, for this version the adjoint process is of bounded variation7.
Aggregate consumption is exogenous, with dynamics on of the form

dct
ct

= µc(t) dt+ σc(t) dBt, (24)

where µc(t) and σc(t) are measurable, Ft adapted stochastic processes, satis-
fying appropriate integrability properties. This is also assumed for processes
representing returns. In addition we assume these processes to be ergodic,
so that we may replace time averages by state averages.

Similarly the process Vt is assumed to follow the dynamics

dVt
(1− γ)Vt

= µV (t) dt+ σV (t) dBt (25)

where

σ̃V (t) = (1− γ)VtσV (t), and µV (t) = − β

1− ρ

(c1−ρ
t − ((1− γ)Vt)

1−ρ
1−γ

((1− γ)Vt)
1−ρ
1−ρ

)
.

7Originally the author derived this FOC using utility gradients based on a result of
Duffie and Skiadas (1994).
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When γ > 1 utility V is negative so the product (1 − γ)V > 0 a.s., which
gives us a positive volatility of V provided σV (t) > 0 a.e. From the FOC
(43) we then get the dynamics of the state price deflator:

dπt = fc(ct, Vt) dYt + Yt dfc(ct, Vt). (26)

Using Ito’s lemma this becomes

dπt = Yt fc(ct, Vt) fv(ct, Vt) dt+ Yt
∂fc
∂c

(ct, Vt) dct + Yt
∂fc
∂v

(ct, Vt) dVt

+ Yt

(1

2

∂2fc
∂c2

(ct, Vt) (dct)
2 +

∂2fc
∂c ∂v

(ct, Vt) (dct)(dVt) +
1

2

∂2fc
∂v2

(ct, Vt) (dVt)
2
)
.

(27)

Here

fc(c, v) :=
∂f(c, v)

∂c
=

β c−ρ(
(1− γ)v

) 1−ρ
1−γ−1

,

fv(c, v) :=
∂f(c, v)

∂v
=

β

1− ρ

(
c1−ρ((1− γ)v

)− 1−ρ
1−γ (ρ− γ) + (γ − 1)

)
,

∂fc(c, v)

∂c
= − β ρ c−ρ−1(

(1− γ)v
) γ−ρ

1−γ
,

∂fc(c, v)

∂v
= β(ρ− γ) c−ρ

(
(1− γ)v

)− 1−ρ
1−γ ,

∂2fc
∂c2

(c, v) =
β ρ (1 + ρ) c−ρ−2(

(1− γ)v)
1−ρ
1−γ−1

,
∂2fc
∂c ∂v

(c, v) =
ρ β (γ − ρ) c−ρ−1(

(1− γ)
) 1−ρ

1−γ
,

and
∂2fc
∂v2

(c, v) =
β (γ − ρ) (1− ρ) c−ρ(

(1− γ)v
) 1−ρ

1−γ+1
.

Denoting the dynamics of the state price deflator by

dπt = µπ(t) dt+ σπ(t) dBt, (28)

from (27) and the above expressions we now have that the drift and the
diffusion terms of πt are given by

µπ(t) = Yt

( β2

1− ρ
(ρ− γ) c

2(1−ρ)−1
t ((1− γ)Vt)

− 2(1−ρ)
1−γ +1

− (1− γ)β2

1− ρ
c−ρt ((1− γ)Vt)

− 1−ρ
1−γ+1 − β ρ c−ρt ((1− γ)Vt)

− 1−ρ
1−γ+1 µc(t)

−β c−ρt (ρ−γ) ((1−γ)Vt)
− 1−ρ

1−γ f(ct, Vt)+
1

2
β ρ (1+ρ) c−ρt ((1−γ)Vt)

− 1−ρ
1−γ+1 σ′c(t)σc(t)

− β ρc−ρt (ρ− γ) ((1− γ)Vt)
− 1−ρ

1−γ+1σcV (t)

− 1

2
β (ρ− γ) (1− ρ) c−ρt ((1− γ)Vt)

− 1−ρ
1−γ+1 σ′V (t)σV (t)

)
, (29)
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and

σπ(t) = Yt β c
−ρ
t

(
(−ρ)σc(t) ((1− γ)Vt)

− 1−ρ
1−γ+1+

(ρ− γ) ((1− γ)Vt)
− 1−ρ

1−γ ((1− γ)Vt)σV (t)
)

(30)

respectively.

5.1 The risk premium for the ordinally equivalent ver-
sion

The risk premium is in general given by

µR(t)− rt = − 1

πt
σRπ(t), (31)

where σRπ(t) is the instantaneous covariance of the increments of R and π.
Interpreting πt as the price of the consumption good at time t, by the first
order condition it is a decreasing function of consumption c since fcc < 0.

Combining the FOC with the result in (30), the formula for the risk
premium in terms of the primitives of the model is accordingly given by

µR(t)− rt = ρ σRc(t) + (γ − ρ)σRV (t). (32)

This is a very basic result of our analysis, and turns out to be the same
also for the nonordinal version based on (12), as we demonstrate later. This
result can be seen to point to a potential solution to the Equity Premium
Puzzle: Provided the covariance rate between the index (R = M) and future
utility V is positive (and reasonable), the latter term on the right-hand side
of (32) is the candidate to fill the gap between the observed (large) risk
premium and the one explained by the CCAPM term.

Observe that when ρ = 0 the last term explains all of the risk premium,
in which case the utility function u of consumption in the CES-specification
of the felicity index f is of the form u(c) = c. This corresponds to neutrality
with respect to consumption transfers.

When ρ 6= γ the latter term in (32) may be positive or negative. It turns
out that the most reasonable situation for the data summarized in Table
2 is when γ > ρ for the present version, corresponding to early resolution
of uncertainty. This results in a higher equilibrium risk premium produced
by the recursive utility model than for the conventional model, as we shall
demonstrate.

We return to the equilibrium determination of the volatility term σV (t).
Before we do that, we give an expression for the equilibrium interest rate rt,
also in terms of σV (t).
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5.2 The equilibrium interest rate for the ordinally equiv-
alent version

The equilibrium interest rate rt is given by the general formula

rt = −µπ(t)

πt
. (33)

The real interest rate at time t can be thought of as the expected exponential
rate of decline of the representative agent’s marginal utility, which is πt in
equilibrium.

In order to find an expression for rt in terms of the primitives of the
model, we use the formula for f(ct, Vt) from (14) in the expression for µπ(t)
in (29). We then obtain the following

rt = β + ρµc(t)−
1

2
ρ
(
ρ+ 1

)
σ′c(t)σc(t)+

ρ(ρ− γ)σcV (t) +
1

2
(ρ− γ)(1− ρ)σ′V (t)σV (t). (34)

This is the second basic result of our analysis, and turns out to be the same
also for the nonordinal version based on (12) as well. This result can be seen
to indicate a potential solution to the Risk-Free Rate Puzzle: Provided the
covariance rate between the aggregate consumption growth rate and future
utility V is positive (and reasonable), the fourth term on the right-hand
side of (34) may lower the model interest rate relative to the standard model
provided γ > ρ. The latter term may also work in the same direction provided
ρ < 1. Again, these relationships between the parameters seem reasonable.

For the standard utility (ρ = γ) this reduces the interest rate to the
familiar expression in (4). We observe that it is the time substitution inter-
pretation that is the meaningful one in this new setting for terms two and
three on the right hand side. First and foremost it turns out to be the term
related to the growth rate of consumption that now contributes to a lower
value of r, because the parameter ρ turns out to calibrate to a reasonably low
value. The ”precautionary savings” term also works in the right direction
since it is negative, but is likely to be relatively small in magnitude. The two
last terms are likely to be negative provided ρ < γ and ρ ≤ 1.

In order to link the volatility term σV (t) to an observable (or estimable)
quantity in the market, we now specify a model for the financial market.
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6 A simple model for the financial market

Our model for the financial economy is standard, and merely a time-continuous
version of the model employed by Mehra and Prescott (1985). Thus we do not
change anything related to the standard Lucas model except the preference
structure.

Let ν(t) ∈ RN denote the vector of expected rates of return of the N given
risky securities in excess of the riskless instantaneous return rt, and let σ(t)
denote the matrix of diffusion coefficients of the risky asset prices, normalized
by the asset prices, so that σ(t)σ(t)′ is the instantaneous covariance matrix
for asset returns. Both ν(t) and σ(t) are progressively measurable, ergodic
processes.

The representative consumer’s problem is, for each initial level w of wealth
to solve

sup
(c,ϕ)

U(c) (35)

subject to the intertemporal budget constraint

dWt =
(
Wt(ϕ

′
t · ν(t) + rt)− ct

)
dt+Wtϕ

′
t · σ(t)dBt, (36)

Here ϕ′t = (ϕ
(1)
t , ϕ

(2)
t , · · · , ϕ(N)

t ) are the fractions of total wealth Wt held in
the risky securities.

Market clearing requires that (ϕt)
′σ(t) = (δMt )′σ(t) = σM(t) in equilib-

rium, where σM(t) is the volatility of the return on the market portfolio,
and δMt are the fractions of the different securities, j = 1, · · · , N held in the
value-weighted market portfolio. That is, the representative agent can only
hold the market portfolio in equilibrium, by definition.

6.1 The volatility of future utility for the ordinally
equivalent model

We recall the following: Recursive utility of the Kreps and Porteus type that
we use is homothetic, meaning that for any consumption processes c and c′

and any scalar λ > 0

U(λc′) ≥ U(λc)⇔ U(c′) ≥ U(c).

For our version of recursive utility this translates to (see Duffie and Epstein
(1992b): An aggregator (f2, A2) that generates a recursive utility function
U2 is homothetic if there exists an odinally equivalent aggregator (f1, A1)
satisfying (i) f1 is homogeneous of degree 1, and (ii) and the variance mul-
tiplier A1 is linearly homogeneous of degree -1, i.e., there is some k such
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that A1(v) = k/v for all v > 0. The nonordinal utility function U1 gen-
erated by the (f1, A1) of Section 3 is homogeneous of degree one, that is
U1(λc) = λU1(c) for all c and λ > 0.

Recall the connection between the two ordinally equivalent recursive util-
ity representations that we deal with. It follows from (13) that

5 U2(c∗; c∗) = U1(c)−γ 5 U1(c∗; c∗)

= U1(c∗)−γU1(c∗) = U1(c∗)1−γ = (1− γ)U2(c∗). (37)

The second equality follows, since by the definition of directional derivatives

5U1(c∗; c∗) = limα↓0
U1(c∗ + αc∗)− U1(c∗)

α
= limα↓0

U1(c∗(1 + α))− U1(c∗)

α

= limα↓0
(1 + α)U1(c∗)− U1(c∗)

α
= limα↓0

αU1(c∗)

α
= U1(c∗)

where the third equality uses that U is homogeneous of degree one. It follows
from the first order condition that

5Ũ(c∗; c∗) = E
(∫ T

0

πtc
∗
t dt
)

= W0π0

where W0 is the wealth of the representative agent at time zero. Let Ṽt(c
∗
t )

and Vt(c
∗
t ) denote future utility at the optimal consumption for our repre-

sentation and the nonordinal version of recursive utility, respectively. The
same, basic relationship holds here for the associated directional derivatives,
i.e.,

5Ṽt(c∗; c∗) = Et

(∫ T

t

πsc
∗
s ds
)

= Wtπt = V 1−γ
t = (1− γ)Ṽt.

This shows that

Ṽt := Ṽt(c
∗
t ) =

πtWt

1− γ
(38)

so that for recursive utility the optimal future utility is a function of both
wealth and the state price deflator πt. Since πt is not a Markov process,
dynamic programming does not seem appropriate.

This relationship says that the optimal future utility is proportional to
the nominal value of current wealth.

Note that the wealth at any time t is given by

Wt =
1

πt
Et

(∫ T

t

πsc
∗
s ds
)
,
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and thus depends on past consumption and utility from time zero to the
present time t.

From (36) it follows that σW (t) = WtσM(t), and since the Ito process
Ṽt is a function of the agent’s wealth and the state price deflator, it is a
consequence of Ito’s lemma that its diffusion term is

σ̃V (t) = Ṽw(t)WtσM(t) + Ṽπ(t)σπ(t) (39)

where σ̃V (t) is the diffusion term of Ṽ . By (25) we have the following rela-
tionship

σ̃V (t) = σV (t)(1− γ)Ṽt,

and form (38) it follows that Ṽw(t) = πt/(1 − γ) and Ṽπ(t) = Wt/(1 − γ).
Altogether this gives

σ̃V (t) =
πtWt

1− γ
σM(t) +

πtWt

1− γ
σπ(t)

πt
.

We now use the representations for for πt and σπ(t) in (30)-(32) to solve this
problem. This gives

σV (t)(1− γ)Ṽt =
πtWt

1− γ

(
σM(t)− ρσc(t) + (ρ− γ)σV (t)

)
.

By (38) we are left with

σV (t)(1− γ) = σM(t)− ρσc(t) + (ρ− γ)σV (t),

from which we can determine the unknown σV (t). This normalized volatility
is accordingly given by

σV (t) =
1

1− ρ

(
σM(t)− ρσc(t)

)
. (40)

In the expressions for equilibrium risk premiums and the real interest rate
this was the only unknown quantity. Inserting (40) into (32) and (33) we
finally obtain the expressions

µR(t)− rt =
ρ(1− γ)

1− ρ
σR(t)σc(t) +

γ − ρ
1− ρ

σR(t)σM(t), (41)

and

rt = β + ρµc(t)−
1

2

ρ(1− ργ)

1− ρ
σc(t)σc(t) +

1

2

ρ− γ
1− ρ

σM(t)σM(t). (42)
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Using dynamic programming with our model for a financial market does
not lead to the basic representations is Sections 5.1 and 5.2. In order to
determine the volatility of future utility σV (t), the dynamic programming
approach produces a different result from the one we have found. For the
simple case of a constant investment opportunity set we have found an exact
solution to the generalized Bellman equation for recursive utility. It says
that the optimal remaining utility as a function of wealth alone, the indirect
utility function, is of the form J(Wt, t) = h(t)wθ/θ for some deterministic
function h(·) and constant θ. Here θ = (1 − γ). This implies that σ̃V (t) =
σJ(t) = JwWt σM(t), and using the above it follows that

σV (t) =
σ̃V (t)

θVt
=
JwWt σM
θJ(W (t))

=
h(t)W θ−1

t Wt σM(t)

h(t)W θ
t

= σM(t)

which is not consistent with (40). Solving the Bellman equation with a non-
constant investment opportunity set is not likely to change this, since by
homotheticity it follows that J must be on the form given above.

This does not preclude the possibility that Ṽ (Wt, πt, t) = Ĵ(Wt, t) for
some function Ĵ for some other market structure than the simple one that
we have chosen. Duffie and Epstein (1992a) is an example of this. Other
examples include Ai (2012) and Bansal and Yaron (2004), who employ a
richer economic environment than we do. The problem with this is that by
changing too many features of the standard model, it may be hard to infer
what really solved the problem, (in which case we have not really learnt all
that much). In economics there is a long tradition with Ockham’s razor.

7 Discussion of the results for the ordinally

equivalent version

Returning to our earlier expression given in (32) for the risk premium of any
risky asset having return rate µR(t) and volatility of return σR(t), and the
equilibrium interest rate given in (34), we can now formulate one main result:

Theorem 1 In the ordinally equivalent model specified in Sections 3-6, there
exists an equilibrium in which risk premiums of risky assets and the real
interest rate are given by (41) and (42) respectively, where ρ is the time
preference, γ the relative risk aversion, and β the impatience rate.

As claimed risk premiums in the resulting model are linear combinations
of the consumption-based CAPM and the market-based CAPM at each time
t ∈ [0, T ].
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In order to study the flexibility of the model, Table 3 illustrates additional
calibrations to the ones presented in Section 2.2 for the recursive utility model
of this section, consistent with the consumption and equity data summarized
in Table 2. Here we consider the bills as risk free, and ignore the extra
equation for the Government bills.

The ”Kelly Criterion” means logarithmic utility in the standard model,
which here corresponds to γ = 1 8. We notice from (41) that γ = 1 can
not explain the observed risk premium. However, for values of γ close to 1
the model may give plausible results. If γ = 1.05 for example, we get the
calibrated values ρ = .97 and β = .04. Thus a relative risk aversion of γ
reasonably close to 1 can be consistent with data provided ρ is also close to
1 (from below), which is interesting and perhaps a bit surprising.

All the value sets presented in Table 3 represent exact fits to the con-
sumption and stock market data summarized in Table 2. The CAPM++
version has acceptable values for risk aversion and the impatience rate, as
we have seen before. By CAPM++ in Table 2 is meant the current ver-
sion in continuous time, with an associated level of interest rate attached,
and based on recursive utility. The original equilibrium model developed
by Mossin (1966) was in a one period (timeless) setting with consumption
only on the terminal time point, in which case wealth equals consumption.
Since there was no consumption on the initial time point, no intertemporal
aspects of consumption transfers arose in the classical model. This naturally
corresponds to u(c) = c for the the felicity index regarding consumption
transfers, meaning ρ = 0 and ψ = 1/ρ = +∞, and corresponding to perfect
substitutability of consumption across time.

When the instantaneous correlation coefficient κMc(t) of returns and the
aggregate consumption growth rate is small, our model handles this situation
much better than the conventional one. The extreme case when κMc(t) = 0 is,
for example, consistent with the solution presented above for ρ = 0, which
gives reasonable parameter values for the other parametes. The standard
model then breaks down. If this correlation is small, the discrepancy between
the standard model and the present one is even more striking than when
κ̂Mc = .4033 (as it is for this set of data).

For example, in the hypothetical situation that κMc(t) = .01, but the
rest of the summary statistics are as in Table 2, the conventional model gives
γ = 1063 and β = 694, while our model is consistent with β = .027, γ = 1.54,
ρ = .61 corresponding to EIS = 1.64. The reason for this is that the second
term in the equity premium is unaffected of κMc(t), and a decrease in κMc(t)

8The value of γ = 1 is not in the permissible range for this parameter, and formally
requires h(v) = ln(v).
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γ ρ EIS β

Standard Model 26.37 26.37 .037 - .014
β = .015 fixed .46 1.34 .74 .015
β = .020 fixed .90 1.06 .94 .020
β = .023 fixed 1.15 .90 1.11 .023
β = .030 fixed 1.93 .41 2.43 .030
β = .035 fixed 2.14 .18 5.56 .035
ρ = .90 fixed 1.15 .90 1.11 .023
ρ = .80 fixed 1.30 .80 1.25 .025
ρ = .50 fixed 1.72 .50 2.00 .030
ρ = .40 fixed 1.86 .40 2.50 .031
CAPM ++ 2.54 0.00 +∞ .040
γ = 0.50 fixed 0.50 1.29 0.79 .011
γ = 1.05 fixed 1.05 .97 1.03 .040
γ = 1.50 fixed 1.50 .66 1.51 .027
γ = 2.00 fixed 2.00 .30 3.33 .033
γ = 2.30 fixed 2.30 .07 14.30 .036

Table 3: Various Calibrations Consistent with Table 2

only leads to a slight increase in the difference (γ − ρ), while the expression
for the interest rate is unaffected by κMc(t).

Most of the plausible calibration points for this model are located in the
early resolution part of the (ρ, γ)-plane where γ > ρ. It is here that our results
deviate from earlier research on recursive utility applied to explaining the
historical equity premium and the interest rate, including the other empirical
regularities.

The model can also produce late resolution solutions at otherwise low
values of the parameters. As an example, if ρ = 1.1, this is consistent with
β = .02 and γ = .90. The square root utility function is used in many
examples in various textbooks; for γ = .5 the model calibrates to β = .01
and ρ = 1.29, i.e., late resolution but otherwise for reasonable values of the
parameters.

7.1 Some new features of the model

It is reassuring that the risk premium of any risky asset depends on other
investment opportunities in the financial market, and not just on this asset’s
covariance rate with consumption.

It is also satisfying that the return rate on government bonds depend
on more than just the growth rate and the variance rate of aggregate con-

27



sumption, but also on characteristics of other investment opportunities in
the financial market.

Faced with increasing consumption uncertainty, the ’prudent’ consumer
will save and the interest rate accordingly falls in equilibrium. This is precau-
tionary savings, and takes place in our model if (1− ργ)/(1− ρ) > 0, which
then becomes the natural definition of prudence for this version of recursive
utility. When the uncertainty of the return of the market portfolio increases,
the recursive utility agent will buy bonds and sell stocks provided γ > ρ and
ρ < 1, or if γ < ρ and ρ > 1, and will otherwise borrow and buy stocks.

This kind of analysis has no place in the conventional model, since there
is no direct connection to the securities market in the expression for the
equilibrium interest rate in (41), nor is there any direct connection to the
securities market for the risk premium in (42).

8 The analysis for the nonordinal model

For this model we use the stochastic maximum principle of Section 4. The
first order conditions are given by

απt = Yt
∂f

∂c
(ct, Vt) a.s. for all t ∈ [0, T ] (43)

where f = f1 is given in (12). If we normalize so that σ̃V (t) := σV (t)Vt, the
variable Z(t) is now Zt = σV (t) and the future utility process Vt satisfies the
following dynamics

dVt =
(
− β

1− ρ
c1−ρ
t − V 1−ρ

t

V −ρt

+
1

2
γVtσ

′
V (t)σV (t)

)
dt+ VtσV (t)dBt (44)

where V (T ) = 0. This is the backward equation.
The function f of Section 4 is given by

f(t, c, v, σv) = f1(c, v)− 1

2
A(v)v2σvσv,

and since A(v) = γ/v, from (19) the adjoint variable Y has dynamics

dYt = Yt
({
fv(ct, Vt) +

1

2
γ σV (t)σV (t)

}
dt− γσV (t) dBt

)
, (45)

where Y (0) = 1. From the FOC in (43) we get the dynamics of the state
price deflator. We notice that Y is no longer a bounded variation process,
and by Ito’s lemma

dπt = fc(ct, Vt) dYt + Yt dfc(ct, Vt) + dYtdfc(ct, Vt). (46)
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By the adjoint and the backward equations this is

dπt = Yt fc(ct, Vt)
(
{fv(ct, Vt) +

1

2
γσ′V (t)σV (t)dt} − γσV (t)dBt

)
+ Yt

∂fc
∂c

(ct, Vt) dct + Yt
∂fc
∂v

(ct, Vt) dVt + dYtdfc(ct, Vt)

+ Yt

(1

2

∂2fc
∂c2

(ct, Vt) (dct)
2 +

∂2fc
∂c ∂v

(ct, Vt) (dct)(dVt) +
1

2

∂2fc
∂v2

(ct, Vt) (dVt)
2
)
.

(47)

Here

fc(c, v) :=
∂f(c, v)

∂c
= βc−ρvρ, fv(c, v) :=

∂f(c, v)

∂v
= − β

1− ρ
(1− ρc1−ρvρ−1),

∂fc(c, v)

∂c
= −βρc−(1+ρ)vρ,

∂fc(c, v)

∂v
= βρvρ−1c−ρ,

∂2fc
∂c2

(c, v) = βρ(ρ+ 1)vρc−(ρ+2),
∂2fc
∂c ∂v

(c, v) = −βρ2vρ−1c−(ρ+1),

and
∂2fc
∂v2

(c, v) = βρ(ρ− 1)vρ−2c−ρ.

8.1 The risk premiums

Denoting as before the dynamics of the state price deflator by

dπt = µπ(t) dt+ σπ(t) dBt, (48)

from (47) and the above expressions we obtain the drift and the diffusion
terms of πt as

µπ(t) = πt
(
− β − ρµc(t) +

1

2
ρ(ρ+ 1)σ′c(t)σc(t)

+ ρ(γ − ρ)σ′c(t)σV (t) +
1

2
(γ − ρ)(1− ρ)σ′V (t)σV (t)

)
(49)

and
σπ(t) = −πt

(
ρσc(t) + (γ − ρ)σV (t)

)
(50)

respectively.
Recalling that the risk premium of any risky security with return process

R is given by

µR(t)− rt = − 1

πt
σRπ(t), (51)
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it follows immediately from (50) and (51) that the formula for the risk pre-
mium of any risky security R is

µR(t)− rt = ρ σRc(t) + (γ − ρ)σRV (t). (52)

which is seen to be the same expression as found for the ordinally equivalent
version in Section 5.1, given in (32) in terms of σV (t). Next we turn to the
equilibrium interest rate.

8.2 The equilibrium interest rate

The equilibrium short-term, real interest rate rt is given by the formula

rt = −µπ(t)

πt
, (53)

as noticed in Section 5.2. In order to find an expression for rt in terms of the
primitives of the model, we use (49). We then obtain the following

rt = β + ρµc(t)−
1

2
ρ(ρ+ 1)σ′c(t)σc(t)−

ρ(γ − ρ)σcV (t)− 1

2
(γ − ρ)(1− ρ)σ′V (t)σV (t). (54)

Again, this is the same expression for the equilibrium interest rate as was
obtained for the ordinally equivalent version based on (14), given in (34) in
terms of σV (t).

It follows from the discussion in Sections 5.1 and 5.2 that the potential
for these fundamental relationships to solve the puzzles is the same for the
present version of the recursive utility model.

We proceed to link the volatility term σV (t) to an observable (or es-
timable) quantity in the market.

8.3 The determination of the volatility of future utility

In order to determine σ̃Vt , i.e., to solve the adjoint equation, we proceed as
follows: By the definition of directional derivatives we have that

5 U(c∗; c∗) = limα↓0
U(c∗ + αc∗)− U(c∗)

α
= limα↓0

U(c∗(1 + α))− U(c∗)

α

= limα↓0
(1 + α)U(c∗)− U(c∗)

α
= limα↓0

αU(c∗)

α
= U(c∗),
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where the third equality uses that U is homogeneous of degree one. It also
follows from the linearity of the directional derivative that

5U(c∗; c∗) = E
(∫ T

0

πtc
∗
t dt
)

= W0π0

whereW0 is the wealth of the representative agent at time zero. Thus U(c∗) =
π0W0.

Let Vt(c
∗
t ) denote future utility at the optimal consumption for our repre-

sentation. Since this function is also homogeneous of degree one, the same,
basic relationship holds here for the associated directional derivatives, i.e.,

5Vt(c∗; c∗) = Et

(∫ T

t

πsc
∗
s ds
)

= Wtπt

and 5Vt(c∗; c∗) = Vt(c
∗). Together this shows that

Vt := πtWt (55)

at the optimal consumption path c∗, so that for recursive utility the optimal
future utility is a function of both wealth and the state price deflator πt.
Recall that πt is not a Markov process. Since the wealth at any time t is
given by

Wt =
1

πt
Et

(∫ T

t

πsc
∗
s ds
)
,

and thus depends on past consumption and utility from time zero to the
present time t, dynamic programming does not seem appropriate.

Since the Ito process Vt is a function of the agent’s wealth and the state
price deflator, it is a consequence of Ito’s lemma that its diffusion term is

σ̃V (t) = σπ(t)Wt + σW (t)πt. (56)

As before we use (50) and (36), and observe that in equilibrium ϕ′t · σ(t) =
σM(t), so that by (36), σW (t) = WtσM(t). This gives

σ̃V (t) = −πtWt(ρσc(t) + (γ − ρ)σV (t)) +WtσM(t)πt.

Since by (44) σ̃V (t) = VtσV (t), we get the following equation for σV (t)

σV (t) = σM(t)− ρσc(t)− (γ − ρ)σV (t),

from which it follows that

σV (t) =
1

1 + γ − ρ

(
σM(t)− ρσc(t)

)
. (57)
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By comparing with (40) for the ordinally equivalent model, at this point
the two versions are seen to differ. As with the expected utility model,
also recursive utility has reminiscences of cardinality. The unnormalized
aggregator (f1, A) is convenient for obtaining the desired disentangling by
changing A with f fixed. Such a change in risk aversion is much less readily
described in terms of the normalized aggregator (f2, 0).

8.4 The complete representation of the nonordinal ver-
sion

In the expressions for the equilibrium risk premiums and the real interest
rate σV (t) was the only undetermined quantity. Inserting (57) into (52) and
(54) we obtain the expressions

µR(t)− rt =
ρ

1 + γ − ρ
σR(t)σc(t) +

γ − ρ
1 + γ − ρ

σR(t)σM(t), (58)

and

rt = β + ρµc(t)

−
(1

2
ρ(1 + ρ)− ρ2(γ − ρ)

1 + γ − ρ
+

1

2

ρ2(γ − ρ)(1− ρ)

(1 + γ − ρ)2

)
σ′c(t)σc(t)

+
γρ(ρ− γ)

(1 + γ − ρ)2
σ′c(t)σM(t)− 1

2

(γ − ρ)(1− ρ)

(1 + γ − ρ)2
σ′M(t)σM(t). (59)

It can be verified that dynamic programming, with our simple model for
a financial market, does not lead to these expressions.

The main results in this section are then summarized as

Theorem 2 For the nonordinal model specified in Sections 3, 4 and 8, there
exists an equilibrium in which the equilibrium risk premium of any risky asset
R is given by (58) and and the equilibrium real interest rate by (59). Here
ρ is the time preference, γ the relative risk aversion, and β the impatience
rate.

Again the resulting model for risk premiums is a linear combinations of
the consumption-based CAPM and the market-based CAPM at each time
t ∈ [0, T ].

We now calibrate the model to the data summarized in Table 2. First
we solve equation (58) and (59) together with the analogous equation for the
Government bills. For a risk premium of Government bills equal to .50%,
the unique calibration point for the data summarized in Table 2 is

β = 0.036, γ = .63, ρ = 2.14 (EIS = .47),
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and is marked as Calibr 2 in Figure 1. The parameter values are all relatively
small, so both the Equity Premium Puzzle as well as the Risk-Free Rate
Puzzle seem less puzzling based on this model relative to both the standard
model, as well as the recursive model based on dynamic programming.

However, the results of the ordinally equivalent model are in addition con-
sistent with preference for early resolution of uncertainty. While preference
for late resolution may be rational for many consumers, the issue of early
resolution should play a major part in the solution of the puzzles.

We return to this issue in the Section 9, where we address heterogeneity
among the agents.

Also the discrete time model (Aase (2013)) has two ordinally equivalent
versions that match the data in a similar way to the two versions of this
paper.

The results in the discrete time model are derived by directional deriva-
tives, which give analogous results to those we get by the stochastic maximum
principle. For example are the coefficients in terms of the preference param-
eters in the asoicated risk premiums exactly the same for both versions. In
the discrete time model it is documented that these results are not the same
as when dynamic programming is used.

8.5 Discussion of the results for the nonordinal model

In Table 4 we illustrate additional parameter values to the one presented
above for the recursive utility model consistent with the data behind Table
2. The model appears to be very robust over a wide range of parameter
values, as can be seen from this table.

It seems fair to say that the calibration points correspond to plausible
values of the various parameters, but as noticed they are in the late resolution
part of the (ρ, γ)-plane where γ < ρ. The main difference between the two
ordinally equivalent versions is that the present model calibrates to values in
the range γ < ρ, and ρ > 1, while the ordinally equivalent version calibrates
to γ > 1 > ρ and accordingly EIS > 1, for the data summarized in Table
2. Moreover ρ = 0 does not make sense for the nonordinal model, while
this gives a reasonable calibration point for the ordinally equivalent version.
However, the ordinally equivalent version is also consistent with calibrations
in the region 0 < γ < ρ < 1, corresponding to late resolution.

According to the present version of recursive utility, we may interpret
the above calibration to mean that the typical consumer represented by the
data in Table 2 is not all that active in the stock market. It is probably
true that many people use the securities market for savings and long term
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γ ρ EIS β

Model (58)-(59):
β = .010 fixed .002 1.62 .78 .010
β = .020 fixed .345 1.94 .51 .020
β = .030 fixed .634 2.21 .45 .030
β = .040 fixed .877 2.44 .41 .040
β = .060 fixed 1.26 2.80 .36 .060
β = .080 fixed 1.56 3.08 .33 .080
β = .100 fixed 1.80 3.31 .30 .100
β = .350 fixed 3.25 4.67 .21 .350
γ = 0.00 fixed 0.00 1.62 .62 .01
ρ = 1.00 fixed -0.66 1.00 1.00 .04

Table 4: Various Calibrations Consistent with Table 2.

investments, without worrying about daily or more frequent trade. More on
this in Section 9.

We may then ask the hypothetical question: How large must the volatility
of the market portfolio be in order for the representative agent to be con-
cerned about early resolution? It can be seen from the expressions for the
equity premium and the interest rate that when the volatility of the market
portfolio increases, this will tend change the calibration points to the region
where γ > ρ.

The critical value of σM(t) for this data set is about .245. For example,
for a value of σM(t) corresponding to 27.4%, we get preference for early
resolution of uncertainty, ceteris paribus, for the values β = .00, γ = 4.48,
and ρ = .64.

For a market volatility of 28.3% the model is consistent with β = .01,
γ = 3.17, and ρ = .24, for σM(t) = .292 the model is consistent with β = .01,
γ = 2.71, and ρ = .27, e.t.c.

In some countries, this order of magnitude for the volatility of the market
portfolio is not uncommon. An example is Norway where this volatility has
been estimated to 35% for the period 1971-2012. When the market volatil-
ity is high, normally the risk premium is also high. Consider the following
example.

Example 1. The data for Norway for the period 1971-20129 are: In real
terms σM(t) = 0.35, risk premium = 8.71% and the risk-free rate is 2.25%.
Assuming the rest of the summary statistic in real terms for Norway for the
period indicated (σM,c(t) = .00048, σc(t) = .024, µc(t) = .0311, µM(t) = .11),

9Data made available by Thore Johnsen, based on http://www.ssb.no/statistikkbanken
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this gives the calibrated values for the nonordinal model of this section

β = .01, γ = 3.03 and ρ = .58 (EIS = 1.72)

i.e., preference for early resolution. By fixing ρ = .8, we get

β = .001 and γ = 3.25 (EIS = 1.25).

For the US-economy this value of ρ calibrates to negative values of β, and
γ for this model. For the ordinally equivalent model we find the following
calibration:

β = .01 γ = 1.21 and ρ = 1.73

i.e., preference for late resolution at low parameter values. (There is also a
calibration point γ = 1.01, and ρ = 1.02 for this value of β.)

This magnitude of the volatility of the market portfolio is common in
many countries, but Norway has the highest stock market volatility in the
following group: France, Germany, The Netherlands, Sweden, Switzerland,
UK, Japan and US. �

This example demonstrates that the representative agent may be of the
type of this section, and calibrate to data consistent with preference for early
resolution.

In the real market places there may be people favoring early resolution
of uncertainty, and others preferring late. We therefore consider a hetero-
geneous model with agents of the two different kinds of recursive utilities
studied in this paper, which is the topic of our last section.

9 Heterogeneity in preferences

From the above results, it seems reasonable to study a model with hetero-
geneity containing two agents, one of each kind of recursive utility studied
in this paper. Since each agent fits the data in isolation with reasonably
low parameter values, it would seem likely that so would a model with a
representative agent. This would allow us to present an economy consisting
of two groups of people, one more concerned with stock market uncertainty
than the other. This is what we formalize next.

9.1 The Arrow-Debreu economy

In this section we derive an Arrow-Debreu markets equilibrium in which each
agent has a recursive utility function Ui of the type we have considered in this
paper. As in Duffie (1986) there exists an implementation of such equilibria
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is the setting with security and spot markets only, given an appropriate
set of admissible trading strategies and a spanning assumption on nominal
cumulative dividend processes.

As we shall simply calculate the relevant equilibrium, we do not really
employ the theorems for such equilibria to exist, but there is a theory for
recursive preferences in this regard that should be consulted (Duffie, Geoffard
and Skiadas (1994)).

The situation is as follows: Given an initial allocation (e1, e2, . . . , em) ∈
Lm, an m-dimensional Ito process, with e =

∑
i e

i, an equilibrium is a feasible
allocation (c1, c2, . . . , cm) and a non-zero linear price functional Π : L → R
such that, for all i, ci solves the problem

maxc∈LUi(c) subject to Π(c) ≤ Π(ei) (60)

By assuming there is no arbitrage possibilities in this market of Arrow-Debreu
securities, the price functional is strictly positive on L, hence it is bounded,
and thus also continuous. By the Riesz’ Representation Theorem there is an
element π ∈ L, the Riesz Representation, such that Π(c) = E

( ∫ T
0
πtct
)

for
any c ∈ L.

Under certain smoothness conditions on the aggregator (f, A), there ex-
ists an Arrow-Debreu equilibrium (Π, (c1, c2, . . . , cm)) having the following
properties:

(i) (c1, c2, . . . , cm) is Pareto optimal. (ii) For each i, Ui has a gradient
at ci with a Riesz Representation πi(c

i) given by the stochastic maximum
principle in (21) for our models (m = 2), or

αiπ
i
t = Y i

t

∂f i

∂c
(cit, V

i
t ) a.s. for all t ∈ [0, T ], i = 1, 2. (61)

(iii) The state price deflator πt = αiπ
i
t for some constants αi > 0, i = 1, 2.

The condition (iii) can be considered as a version of Borch’s characteri-
zation of Pareto optimality (Borch (1960-62)).

Equality in the budget constraints determine the constants αi as a func-
tion of the preferences of the agents and the joint probability distributions
of the initial endowments. Defining the agent weights λi = α−1

i for i =
1, 2, . . . ,m, the function Uλ(c) =

∑m
i=1 λi Ui(c

i) can be thought of as the
utility function of the representative agent, here as a generalized recursive
utility function, where ct =

∑m
i=1 c

i
t = et. In the following section we consider

the case of m = 2.
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9.2 Heterogeneity with U1 and U2

Inspired by the calibrations of the previous sections, we imagine that the mar-
ket consists of two groups of people, one with recursive preferences belonging
to the ordinally equivalent specification, the other group having preferences
belonging to the nonordinal version, and want to characterize the resulting
Pareto optimal equilibrium.

The following results are proven in Appendix 1. We denote c
(i)
t /ct as the

optimal fraction of the aggregate consumption consumed by agent i at time
t, i = 1, 2.

9.3 The risk premium with heterogeneity

The risk premium of a risky asset denoted R has the following representation

µR(t)− rt =
1

ψ̄t

(
σc(t)σR(t) +

(c(1)
t

ct

)γ1 − ρ1

ρ1

σV1(t)σR(t)

+
(c(2)

t

ct

)γ2 − ρ2

ρ2

σV2(t)σR(t)
)
, (62)

where the average value of the population EIS (ψi = 1/ρi) is

ψ̄t :=
1

ρ1

(c(1)
t

ct

)
+

1

ρ2

(c(2)
t

ct

)
. (63)

and the average time preference is

ρ̄t := ρ1

(c(1)
t

ct

)
+ ρ2

(c(2)
t

ct

)
.

Since the harmonic mean is smaller than or equal to the arithmetic mean,
note that 1/ψ̄t ≤ ρ̄t. Also

σV1(t) =
σM(t)− 1

ψ̄t
σc(t)

1 + 1
ψ̄t

(
γ1−ρ1
ρ1

(
c
(1)
t

ct
) + γ2−ρ2

(1−γ2)ρ2
(
c
(2)
t

ct
)
) . (64)

and

σV2(t) =
σM(t)− 1

ψ̄t
σc(t)

1− γ2 + 1
ψ̄t

( (γ1−ρ1)(1−γ2)
ρ1

(
c
(1)
t

ct
) + γ2−ρ2

ρ2
(
c
(2)
t

ct
)
) . (65)

Remark 1: As a consistency check, notice that when c
(1)
t = ct for all t a.s.,

then (62) reduces to the risk premium of model 1 in Section 4, the nonordinal
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version, and when c
(2)
t = ct, for all t a.s., then (62) reduces to the correspond-

ing risk premium of model 2 in Section 4, the ordinally equivalent one. When
γ1 = ρ1 and γ2 = ρ2 (62) reduces to the risk premium of the standard model
with two heterogeneous agents. �

Remark 2: Note that when σV1(t) ≡ 0 it is not the case that we get the
risk premiums of the model 2, and vice versa. This stems from the market
clearing condition for the representative agent, and both σV1(t) and σV2(t)
depend on all the preference parameters in the model (except the β’s) and
in a non-symmetrical way. �

9.4 The equilibrium interest rate with heterogeneity

The equilibrium short rate for the heterogeneous model is given by the fol-
lowing expression

rt = β̄
(ρ)
t +

1

ψ̄t
µc(t)

−1

2

1
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t

ct

) 1
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ct
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(66)

where

β̄
(ρ)
t :=

∑2
i=1(

c
(i)
t

ct
)(βi
ρi

)

ψ̄t
. (67)

Note that when β1 = β2 := β, then β̄
(ρ)
t = β for all t.

Remark 3: As with the risk premium, one can see that when c
(1)
t ≡ ct,

then (66) reduces to the interest rate in model 1 of Section 4, the nonordinal

version, and when c
(2)
t ≡ ct, then (66) reduces to the corresponding interest
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rate in model 2 of Section 4, the ordinally equivalent one. When γ1 = ρ1 and
γ2 = ρ2, then (66) reduces to the equilibrium interest rate in the standard
model with two heterogeneous agents. �

Remark 4: Consistent with the results in Sections 8.1-2, at this level the
interest rate looks symmetric in the two agents, but market clearing for the
representative agent implies that this symmetry does not carry over to the
two volatilities σV1(t) and σV2(t). �

We summarize our results as

Theorem 3 For the heterogeneous model there exists an equilibrium in which
the equilibrium risk premium of any risky asset R is given by (62) and and the
equilibrium real interest rate by (66). Here ρ̄t is time preference, ψ̄t the EIS,

and β̄
(ρ)
t the impatience rate of the representative agent, where 1/ψ̄t ≤ ρ̄t.

9.5 Applications of the heterogeneous model

To demonstrate these results, assume that agent 1 consumes 11/12 of the
total consumption, and consider a situation where ρ1 is to be determined
together with β̄

(ρ)
t such that (62) matches the estimated equity premium of

5.98% and (66) matches the short rate of .0080 for the period considered,
together with the rest of the summary statistics of Table 2, when the other
parameters are as follows: γ2 = 2.3, ρ2 = .60 and γ1 = 1.8. The result is
ρ1 = 3.70 and β̄

(ρ)
t = .033.

This implies preference for early resolution of uncertainty for agent 2, and
late for agent 1. According to Table 4 agent 1 would in isolation calibrate
to the same data with a value of ρ1 = 3.31 and an impatience rate β1 = .10.
Increasing the parameter γ1, increases ρ1 and decreases the parameter β̄

(ρ)
t .

For example, when γ1 = 2.3 we obtain ρ1 = 4.0 and β̄
(ρ)
t = .025. In this

situation σV1,M(t) = −.12, and σV2,M(t) = .12.
Let us think of agent 1 representing ”the public at large”. Since agent 1

dominates in numbers ( = aggregate consumption), an interpretation of the
above is that when these two groups represent the market together, the mar-
ket as a whole will prefer late resolution of uncertainty, at about the same
impatience rate as if agent 1 alone represents the market. This group, less
concerned with the stock market uncertainty, has more problems with con-
sumption substitution (ψ1 < 1) than the other group (ψ2 > 1). This means
that at least this group could benefit from the existence of a well functioning
pension insurance market. In real life individuals with a finite life span can
in general not time diversity, so the people in group 2 will also presumably
benefit from such a market, provided, for example, the insurance market
takes the role of time diversification seriously. There should in principle be
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no problems with this, since a stable, long term risk premium of around 6%
is consistent with the model. Agent 1 is not much risk averse in this example
(γ1 = 1.8 < γ2 = 2.3). In real life the means to invest typically resides with
the agent 2. With a low interest rate, ordinary people may then be inclined
to borrow, given that credit is provided.

The preference parameters of the representative agent may, for this illus-
tration, be summarized as

ρ̄t = 3.26, ψ̄t = .49, γ̄t = 1.84 and β̄
(ρ)
t = .039,

where ρ1 = 3.50, γ1 = 1.8, β1 = .039 and ρ2 = .60, γ2 = 2.3, and β2 =
.039. Note that 1/ψ̄t = 2.04 < ρ̄t = 3.26. Group 2 manages consumption
substitution well (ψ2 > 1), and early resolution holds for this group (γ2 > ρ2).

Another calibration is: ρ1 = 3.58, γ1 = 2.0, β1 = .042 and ρ2 = .60, γ2 =
1.76, and β2 = 0.042. In this case σV1,M(t) = −.035, and σV2,M(t) = .046.
For asset allocation, the latter volatilities are reasonable.

Naturally, if group 2 represents the majority in the market, results would
look different. If this is the case, also the representative agent is likely to
prefer early resolution of uncertainty, depending on the composition of the
population.

In conclusion, a variety of scenarios are possible, and the above illus-
trations may seem like plausible descriptions of an economy with statistics
summarized in Table 2 for the period considered, consistent with the data.
The advantage with our heterogeneous model is that the representative agent
does not point to a monolithic type of preference, but gives room for a more
realistic composition of the population.

9.6 Limited stock market participation

It is known that in the economy only a certain fraction of the population
owns stock. As an illustration, suppose that this fraction is about 8-9% (see
e.g., Vissing-Jørgensen (1999)). We suggest to use our heterogeneous model
to see if the resulting model still explains the data with this added limitation.
Let agent 2 represent the fraction that participates in the stock market, and
agent 1 the non-participating fraction. We propose to capture this by setting
to zero agent 1’s part of future utility volatility that depends on the stock
market. This means that in the expression for σV1,M(t), which is given by

σV1,M(t) =
σM(t)σM(t)− 1

ψ̄t
σc(t)σM(t)

1 + 1
ψ̄t

(
γ1−ρ1
ρ1

(
c
(1)
t

ct
) + γ2−ρ2

(1−γ2)ρ2
(
c
(2)
t

ct
)
)
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the part σM,M(t) = 0 for all t. This means that in the market clearing, only
agent 2 holds the market portfolio.

Whether the second term in the numerator should also be changed can
be questioned, since after all the agent 1 is still consuming (e.g., Vissing-
Jørgensen (1999)). One view is that the consumption growth of non-stockholders
covaries with the stock return in the same way as the consumption growth
of stockholders. There are also arguments why consumption growth of non-
stockholders is less correlated with stock returns than that of stockholders.
In the present setting this argument becomes partly irrelevant, since there is
no index i = 1 on the consumption correlation σc(t)σM(t) in this expression.

The question is here if the future utility growth of non-stockholders co-
varies with the stock return in the same way as the future utility growth of
stockholders. In our model these covariance rates are not equal to start with,
as can be seen when comparing (64) to (65).

With the parameters similar to the above illustration, the model fits the
data for a range of values for the relative risk aversion γ1: Consider a situation
where γ1 = 1.2 and ρ2 = .9. When γ2 = 2.8 then ρ1 = 2.2 and β̄

(ρ)
t = .095.

When γ2 increases, ρ1 stays the approximately same, and β̄
(ρ)
t decreases. For

example, when γ2 = 3.2, then β̄
(ρ)
t = .06, and when γ2 = 3.7, then β̄

(ρ)
t = .024.

In this situation, when γ2 = 3.7, then σV1,M(t), and σV2,M(t) are too large to
be reasonable.

The basic conclusions from the illustration in the last section remain.
The major changes are that the the stockholders are more risk averse if they
alone have to clear the financial market, and the time preference of agent 1
now appears smaller. The representative agent’s impatience rate varies from
1.7% to about 10% when γ2 varies from 3.8 to 2.7.

An alternative set of parameters is γ2 = 1.76 and ρ2 = .60, γ1 = 2.00 and
ρ1 = 2.93, with β̄

(ρ)
t = .21. In this case σV1,M(t) = −0.18, and σV2,M(t) =

0.23. Here the volatilities are more reasonable, while the impatience rate
seems high.

According to Vissing-Jørgensen (1999), the postwar participation ratio
has been higher than 8%, more of the order of 20%. Since parts of the data
in Table 2 is postwar, we also check for this modification. Some results of the
calibration are then: ρ1 = 2.87, γ1 = 1.2, ρ2 = .80 and γ2 = 2.8. The time
impatience parameter β̄

(ρ)
t stays around 10%, when γ2 varies between 2.8 and

3.8, with the rest of the parameters essentially as above. In this example the
representative agent has parameters

ρ̄t = 2.46, ψ̄t = .53, γ̄t = 1.6 and β̄
(ρ)
t = .10,

The associated impatience rate of the representative agent could result from
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about 15% in group 1, and about 4.4% in group 2. Here σV1,M(t) = .010,
and σV2,M(t) = −.012.

Except from the impatience rate, and the change in the covariance rates
of the future utilities with the market, this scenario is in many ways similar
to the one with 8% participation10, and the basic conclusions seem to remain.

10 Optimal asset allocation with recursive util-

ity

From the results is Section 6.1, 8.3 and Appendix 1, the following results are
immediate:

Corollary 1 The optimal portfolio fractions for the nonordinal model are
given by

ϕ1(t) = (σtσ
′
t)
−1νt + σV1(t)σ

−1
t ,

for the ordinally equivalent model by

ϕ2(t) = (σtσ
′
t)
−1νt + (1− γ2)σV2(t)σ

−1
t ,

and for the heterogeneous model by

ϕ(t) = (σtσ
′
t)
−1νt +

(c(1)
t

ct

)
σV1(t)σ

−1
t +

(c(2)
t

ct

)
(1− γ2)σV2(t)σ

−1
t ,

assuming the matrix σt is invertible.

Proof: Use that σM(t) = ϕ′(t)σ(t). �
Notice that the first term in these fractions is the one of the standard

model having γ = 1. The optimal factions with recursive uility depend on
both risk aversion and time preference through the terms σVi(t).

As an illustration, consider the standard situation with one risky and
one risk-free asset for the following parameter values in the heterogeneous
model: γ1 = 2.00, ρ1 = 2.77, γ2 = 1.76 and ρ2 = .60. For the data of Table
2 (σM(t) = .16, σc(t) = .0355), we obtain the following fractions: ϕ1 = .069,
ϕ2 = .80 and ϕ = .13. Here σV1(t) = −.3633 and σV2(t) = .3234. This seems

10In this connection it can be of some interest to note that Andersen et. al. (2008)
use controlled experiments with field subjects in Denmark to elicit the impatience rate
and risk preference, ignoring the subject of time preferences. First, an estimate of β
around 25% is reached assuming risk neutrality, second, a new estimate of β around 10%
is obtained assuming risk aversion, with an associated estimate of γ around .74, both based
on arithmetic averaging.
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like a fair description of empirical regularities, since the typical household
is stipulated to hold between 6% and 20% in equities. Instead of assuming
that people in group 1 do not hold stock, with these parameter values they
hold about 7% on average in equities, while people in the other group hold
about 80% on average, in which case the ”typical hosehold” holds about 13%
in equities, on average. Again people in group 1 consume about 91-92% of
total consumption in this illustration11.

11 Extensions

There are many important issues to explore, based on the framework of
this paper. The life cycle model, for instance, can be better understood
once time preference is separated from risk aversion. This gives new insights
in the comparisons of defined benefit to defined contribution pension plans.
Starting with the life cycle model, and using market clearing, we have derived
results identical to the ones in this paper, but from a very different starting
point. This shows that our results are robust. We also have an application
to the economics of climate change. Other applications are plentiful.

12 Conclusions

We have addressed the well-known empirical deficiencies of the conventional
asset pricing model in financial and macro economics. It is known that the
standard model with a separable and additive utility representation does
not necessarily work all that well for temporary problems. In particular
the standard model does not fit real data for plausible parameter values of
the utility function. Our approach is to change only one feature with the
conventional model, the preference structure. This solves both puzzles. It
is the property with low values of the parameters in the preference relation
that is new.

Recursive preferences deviate from the separable time additive case in
several important ways, and it is not at all clear that standard methods
work the way we are used to.

We use a general method of optimization, the stochastic maximum prin-
ciple, which give the same results as directional derivatives in function space.
For the standard model the results of this procedure coincides with those of
dynamic programming. As this paper clearly demonstrates, this is not so

11In contrast, the standard one-agent model prescribes 117% in equities with γ = 2 for
the average household. In order to get to a level of 13%, γ has to be of the order of 18.
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with recursive utility. The stochastic maximum principle does not require
the Markov property, and neither does the utility gradient method. Our
approach is thus more generally applicable, and this supports our results.

An important limitation with the conventional model is the equality be-
tween risk aversion and time preference. With recursive utility properly
defined, these inherently different properties of an individual are partly dis-
entangled.

We present two ordinally equivalent versions of recursive utility. For the
US-data one version calibrates to preference for early resolution of uncer-
tainty, the other to late. It is demonstrated that for other sets of data this
may be different. We suggest a heterogeneous model where the representa-
tive agent is derived from the two ordinally equivalent versions. The resulting
model is found to explain well both the Equity Premium Puzzle as well as
the Risk-Free Rate Puzzle.

Our models, both the one in continuous time as well as the discrete time
version, are able to fit the high estimate of the equity premium of 6.18%
related to the return on the S&P-500 index in the USA for the period of
1889-1978, the low estimate of .8% for the risk free real interest rate, the low
estimate of the consumption volatility for the same period, the high volatility
estimate of the market equity index, and the low estimate of the covariance
between returns on equity and the growth rate of aggregate consumption,
for reasonable parameter values of the utility function of the representative
agent. The models also explain the covariances of Government bills with
consumption and equity, for a moderate risk premium for the bills. Here
the standard model can offer no reasonable answers at all. Our model with
heterogeneity yields an explanation of the limited market participation issue,
as well as the problem of optimal asset allocation.

One important aspect left out of this paper is about incomplete markets.
Our findings are likely to have broad economic implications.

13 Appendix 1

1. THE RISK PREMIUMS AND THE SHORT RATE FOR THE HET-
EROGENEOUS MODEL.
In this section we prove the results for the risk premiums and the short
rate for heterogeneous model. The methods used here are somewhat differ-
ent from the ones used in the rest of the paper, since we have to find the
optimal consumption for both agents separately. To this end, consider the
expression for the aggregate consumption ct = c

(1)
t + c

(2)
t , where the optimal
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consumptions for each of the agents are given in

ct = (β1 Y
(1)
t )

1
ρ1 V1(t) π

− 1
ρ1

t + (β2 Y
(2)
t )

1
ρ2 ((1− γ2)V2(t))

ρ2−γ2
ρ2(1−γ2) π

− 1
ρ2

t . (68)

This follows from the first order conditions of optimal consumption in (61).
We now use Ito’s lemma to obtain the dynamic equation for the aggre-

gate consumption, taking into account that Y
(2)
t is of bounded variation on

compacts, but Y
(1)
t is not. This gives
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Also, by Ito’s lemma
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We now use the dynamics of the utility processes Vi(t) and the adjoint pro-

cesses Y i
t given in Sections 5 and 8 together with the dynamics for π

− 1
ρi

t

given in (69). This results in a stochastic differential equation for c, where
the drift consists of 14 terms and the diffusion of 5. If we use the expres-
sions given above for the optimal consumptions of the two agents c

(1)
t and

c
(2)
t respectively, this reduces to the following

dct = ctµc(t)dt+ ctσc(t)dBt ={
c

(1)
t

[
− β1

ρ1(1− ρ1)
+

1

2

γ1

ρ1

σ2
V1

(t) +
1

2

1

ρ1

(
1

ρ1

− 1)γ2
1σ

2
V1

(t) +
β1

1− ρ1

+
1

2
γ1σ

2
V1

(t)

45



− 1

ρ1

(π−1
t µπ(t))+

1

2

1

ρ1

(
1

ρ1

+1)(π−1
t σπ(t))2−γ1

ρ1

σ2
V1

(t)+(
γ1

ρ2
1

− 1

ρ1

)(π−1
t σπ(t))σV1(t)

]
+c

(2)
t

[ β2

1− ρ2

γ2 − 1

ρ2

+
1

2

(ρ2 − γ2)

ρ2

γ2(ρ2 − 1)

ρ2

σ2
V2

(t) +
β2

1− ρ2

ρ2 − γ2

ρ2

− 1

ρ2

(π−1
t µπ(t)) +

1

2

1

ρ2

(
1

ρ2

+ 1)(π−1
t σπ(t))2− 1

2

1

ρ2

ρ2 − γ2

ρ2

(π−1
t σπ(t))σV2(t)

]}
dt

+
{{
c

(1)
t

[
(1−γ1

ρ1

)σV1(t)−
1

ρ1

(π−1
t σπ(t))

]
+c

(2)
t

[ρ2 − γ2

ρ2

σV2(t)−
1

ρ2

(π−1
t σπ(t))

]}
dBt

Using this representation and applying diffusion invariance, we obtain two
relationships from which we can determine π−1

t σπ(t) and π−1
t µπ(t) in terms

of the primitives of the economy. The first equation determines the diffusion
of the state price deflator: It is
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.

From this we obtain the risk premium of any risky asset denoted R as follows
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This proves (62).
Turning to the equilibrium short rate, from the drift of the aggregate

consumption we obtain that
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From this it follows that rt is given by (66).

2. THE VOLATILITIES σV1(t) AND σV2(t).
In order to show (64) and (65, first notice that the Gateaux derivative
5V (t)(c∗; c∗) is not equal to πtWt since the future utility Vt of the represen-
tative agent is not homogenous of degree one. We first check the individuals
one by one: The wealth of the two agents aggregate to the total wealth, so
W (t) = W1(t) +W2(t). By the first order conditions in Sections 6.1, 8.3 and
9.1 it follows that

5V1(t)(c(1∗); c(1∗)) = α1π
(1)
t W1(t) = V1(t) (71)

and
5V2(t)(c(2∗); c(2∗)) = α2π

(2)
t W2(t) = (1− γ2)V2(t). (72)

From this we obtain

πtW1(t) + πtW2(t) = πtWt = V1(t) + (1− γ2)V2(t). (73)

Thus

σ̃V1(t) + (1− γ2)σ̃V2(t) = πtWt

(σπ(t)

πt
+ σM(t)

)
, (74)

where σ̃V1(t) = V1(t)σV1(t) and σ̃V2(t) = (1− γ2)V2(t)σV2(t) follow from Sec-
tions 6.1 and 8.3. Using (73) and (74) we have the following two equations

V1(t)σV1(t) = πtW1(t)
(σπ(t)

πt
+ σM(t)

)
and

(1− γ2)V2(t)
(
(1− γ2)σV2(t)

)
= πtW2(t)

(σπ(t)

πt
+ σM(t)

)
for the determination of σV1(t) and σV2(t). Using the first order conditions
(71) and (72), where αiπ

(i)(t) = πt for i = 1, 2, we get

σV1(t) =
σπ(t)

πt
+ σM(t)

and

σV2(t) =
(σπ(t)

πt
+ σM(t)

)
/(1− γ2)
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This means that

σV1(t) = − 1

ψ̄t

{
σc(t) +

(c(1)
t

ct

)γ1 − ρ1

ρ1

σV1(t) +
(c(2)

t

ct

)γ2 − ρ2

ρ2

σV1(t)

1− γ2

}
+ σM(t)

where ct, c
(1)
t and c

(2)
t denote optimal consumption for the representative

agent, agents 1 and 2 respectively. Thus we get

σV1(t) =
σM(t)− 1

ψ̄t
σc(t)

1 + 1
ψ̄t

(
γ1−ρ1
ρ1

(
c
(1)
t

ct
) + γ2−ρ2

(1−γ2)ρ2
(
c
(2)
t

ct
)
) .

and

σV2(t) =
σM(t)− 1

ψ̄t
σc(t)

1− γ2 + 1
ψ̄t

( (γ1−ρ1)(1−γ2)
ρ1

(
c
(1)
t

ct
) + γ2−ρ2

ρ2
(
c
(2)
t

ct
)
) .

This proves (64) and (65). �
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