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Abstract

We consider a dynamic general equilibrium model with incomplete mar-
kets in which we derive conditions for separating the savings decision from
the asset allocation decision. It is shown that with logarithmic utility func-
tions this separation holds for any heterogeneity of discount factors while the
generalization to constant relative risk aversion only holds for homogeneous
discount factors. Our results have simple asset pricing implications for the
time series and also the cross section of asset prices. It is found that on data
from the DJIA a risk aversion weaker than in the logarithmic case fits best.

1 Introduction
Ever since Tobin (1958) financial economists have been interested in conditions
that help to simplify portfolio allocation problems. A great simplification is
achieved by those conditions that allow to structure portfolio decisions in two
stages: First, deciding how to split one’s wealth between a risk-free and a mu-
tual fund of risky assets, and then to allocate among the risky assets within the
mutual fund. This separation property is known as two-fund separation, or more
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specifically, since one of the funds is assumed to be risk-free, as monetary separa-

tion. By now the conditions for two-fund separation are well-known. The seminal

paper in this area is Cass and Stiglitz (1970) out of which an impressive litera-

ture developed that is too large to be reviewed here in detail. Instead, we refer

to Russel (1980) and standard textbooks like Gollier (2001), Huang and Litzen-

berger (1988), Ingersoll (1987), and Magill and Quinzii (1996). While the finance

literature on two-fund separation considers asset returns as exogenously given

the general equilibrium literature derives two-fund separation with endogenously

determined returns. For example Detemple and Gottardi (1998) derive two-fund

separation in a two-period general equilibrium models and Judd, Kubler, and

Schmedders (2004) have recently extended the two-fund separation literature to

dynamic general equilibrium models.

While in this paper we use the same dynamic general equilibrium methodology

as in Judd et al. (2004), we are interested in a different separation property that

also simplifies intertemporal asset allocation problems. In a T-period model

we study the conditions for separating between consumption and investments

in (risky) assets, which we call T-period fund separation. One may argue that

this separation is even more fundamental than the monetary separation, because

before one can decide on how to allocate wealth among (risky) assets one has to

decide how much to invest and how much to consume.

Separation properties can be derived from conditions on agent’s preferences

(Cass and Stiglitz (1970), Detemple and Gottardi (1998), and Judd et al. (2004)

and others), or from conditions on the assets’ return distributions. As in Cass

and Stiglitz (1970), Detemple and Gottardi (1998), and Judd et al. (2004) and

others, we do not restrict return distributions but seek for conditions on agents’

preferences. Moreover, as it is also standard in this literature, we assume that

all agents are discounted expected utility maximizers sharing the same beliefs

on the assets’ return. Given these assumptions conditions for fund separation

do restrict the heterogeneity of the agents’ type of risk aversion and possibly

also the heterogeneity of their discount rates. Our first result shows that T-

period fund separation holds for any heterogneous discount factors if all agents

have logarithmic utility functions. In the case of non-unit constant relative risk

aversion (CRRA), T-period fund separation is shown to hold if and only if agent’s
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discount factors are identical. These results generalize Hens, Reimann, and Vogt

(2004) to more than two periods. Moreover, they show that in contrast to the

two-period case, with T-periods fund separation fails for non-unit CRRA with

heterogeneous discount factors. An intuition for this new finding comes from

the observation that only in the case of logarithmic utility dynamic optimization

reduces to two-period optimization (see e.g. Hakansson (1970)).

Besides giving conditions for intertemporal fund separation our results are

also interesting because they relate to various strands of literature. Our results

for the logarithmic case give a general equilibrium foundation to the literature on

growth-optimal portfolios. See for example Kelly (1956), Breiman (1961), Thorp

(1971), Algoet and Cover (1988), Hakansson and Ziemba (1995) and references

therein. That is to say in contrast to the standard optimal growth literature, in

our model asset prices and hence market values and returns are endogeneized and

explained by the exogenous dividend process of the assets. Moreover, under sta-

tionarity assumptions on the dividend process we derive the well-known “fix-mix”

portfolio rule, giving also a general equilibrium foundation to the literature as for

example, Perold and Sharpe (1988), Mulvey and Ziemba (1998), Browne (1998),

and Dempster (2002), Dempster, Germano, Medova, and Villaverde (2003).

Our result for the logarithmic case connects nicely to the asset pricing liter-

ature which is one of the most important applications of fund separation. The

literature on asset pricing is also quite impressive and too large to be reviewed

here in detail. The interested reader may consult Campbell (2000) and Hirshleifer

(2001) for two recent surveys. From a dynamic general equilibrium point of view

the art of constructing asset pricing models is to find an optimal balance between

very general models without well structured preferences and a large degree of

heterogeneity on the one hand and very specific models with overly simplified

preferences and homogeneity of consumers on the other hand. In the first case

anything can happen while in the second case asset pricing puzzles arise. Fund

separation is an important tool in this respect since it allows for heterogeneity

of consumers while keeping the aggregate simple. Indeed, two-fund separation

builds the foundation of the capital asset pricing model and T-period fund sep-

aration is important for the time series and cross section properties of relative

asset prices. Our result shows that in a dynamic general equilibrium, relative
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market values of assets are determined by relative dividends of assets. Valuation

formulas for economies with CRRA are well known in the finance literature. See

Roll (1973), Kraus and Litzenberger (1975) and Rubinstein (1976). Note how-

ever, that in contrast to the standard finance literature our valuation formulas

are expressed solely in terms of exogenous characteristics of the economy like

the dividend process, the degree of risk aversion and the time preference. While

our asset pricing implication of logarithmic preferences has recently also been

derived by Evstigneev, Hens, and Schenk-Hoppé (1998) based on an evolution-

ary portfolio selection model, our result for the case of non-logarithmic utility

generalizes this asset pricing implication to any degree of constant relative risk

aversion. This generalization allows us to test the log versus the non-log CRRA-

case on stock market data. For quarterly data from 1992 to 2004 on dividends

and market values of stocks from the DJIA we find that a coefficient of relative

risk aversion around 0.65 fits best, i.e., asset prices would suggest a weaker degree

of risk aversion than in the logarithmic case (CRRA=1). This finding contrasts

with the asset pricing literature working on aggregate data instead of individual

stocks (cf. Mehra and Prescott (1985) and Kocherlakota (1996), for example)

which finds a much stronger degree of risk aversion than in the logarithmic case.

Finally, we show that our heterogenous agent economy can equivalently be

described by a single representative consumer whose demand function determines

equilibrium asset prices for any exogenously given future dividend process. This

aggregation property is weaker than full demand aggregation but far stronger

than than the usual notion of a representative consumer whose portfolio deci-

sion problem generates asset prices for any given dividend process, but whose

optimization problem fails to explain how asset prices change on changing the

exogenous characteristics of the economy (here, the dividend process).

The rest of the paper is organized as follows. In Section 2 we set up the

dynamic general equilibrium model. Section 3 provides an analysis of T-period

fund separation under constant relative risk aversion and in Section 4 we present

the results from an empirical test of our model.
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2 The Model

We consider a standard multiperiod finance economy. There are T + 1 periods

t = 0, . . . , T, and S states of nature, where S is finite.1 Uncertainty is modelled

by an information filtration

F = (F0, F1, . . . , FT ),

where each Ft is a partition of the set of states {1, . . . , S} and

(i) F0 = {{1, . . . , S}},

(ii) FT = {{1}, . . . , {S}},

(iii) Ft+1 is finer than Ft for all t = 0 . . . , T − 1, i.e.

ξt ∈ Ft and ξt+1 ∈ Ft+1 ⇒ ξt+1 ⊂ ξt or ξt+1 ∩ ξt = ∅.

Each element ξt of Ft is a date-t event. Let

D = {ξt | ξt ∈ Ft for some t = 0, 1, . . . T}

be the set of all events and let d = #D. By D+ we denote the set of non-initial

events, i.e.

D+ = D \ ξ0,

and by D− we denote the set of non-terminal events, i.e.

D− = D \ FT .

The unique ξt ∈ Ft with ξt ⊃ ξt+1 is called the immediate predecessor of ξt+1 ∈
Ft+1, t ≤ T − 1. The immediate predecessor of ξ ∈ D+ is denoted by ξ−. Let

π(ξT ) > 0 be the probability of ξT ∈ FT . Then, for all t = 0, . . . , T , π defines a

probability measure on Ft, which we also denote by π, via

π(ξt) =
∑

ξT⊂ξt

π(ξT ).

1Since there is asset trade in all but the last period only, we call the model a “T -period

model.”
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For x ∈ Rd and any t ∈ {0, . . . , T} we denote by xt the vector in R#Ft that

takes values x(ξt), ξt ∈ Ft.
2

There are K assets k = 1, . . . , K, which pay off a dividend per share at the

beginning of every period before trade takes place in this period. Dk(ξ) ≥ 0 is

the dividend paid by asset k in event ξ ∈ D. By D(ξ) = (D1(ξ), . . . , DK(ξ)) we

denote the vector of dividend payments of all assets in event ξ. We assume that

aggregate dividends are strictly positive, i.e.

D(ξ) :=
K∑

k=1

Dk(ξ) > 0 for all ξ ∈ D.

There are I investors i = 1, . . . , I. Each investor is characterized by her

initial endowment of assets θ̄i ∈ RK and by her utility function U i : Rd
+ → R,

respectively U i : Rd
++ → R. We assume that asset endowments are collinear,

i.e. there exists θ̄ ∈ RK such that θ̄i = δiθ̄ for all i, where δi > 0 for all i and∑
i δ

i = 1. The aggregate endowment θ̄ is normalized so that θ̄k = 1 for all

k. Moreover, we assume that U i has expected utility form, i.e. there exist von

Neumann-Morgenstern utility functions ui
t : R+ → R, respectively ui

t : R++ → R,

for all t = 0, . . . , T , such that

U i(c) = E

[
T∑

t=0

ui
t(ct)

]
, for all c ∈ Rd

+ (resp. c ∈ Rd
++),

where the expectation is taken with respect to the probability measure π. In-

vestors have no endowment in periods t > 0. Hence, any positive consumption in

periods t > 0 is generated by an intertemporal transfer of wealth through trade

on the asset market.

Investors can trade in the K assets in each non-terminal event. For each ξ ∈
D− let λi

k(ξ) be the proportion of wealth agent i invests in asset k ∈ {1, . . . , K}
in event ξ, and let λi

0(ξ) denote the proportion of wealth i consumes in ξ. We

assume that
∑K

k=0 λi
k(ξ) = 1 for all ξ ∈ D−. The investment strategy of agent i

then is given by λi = (λi
k(ξ)) ξ∈D−

k=0,...,K

.

2Alternatively, we can interpret xt as an Ft-measurable function xt : {1, . . . , S} → R,

i.e. xt(s) = xt(s′) whenever s, s′ ∈ ξt for some ξt ∈ Ft.
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3 T-Period Fund Separation

Let qk(ξ) > 0 denote the price of asset k in event ξ ∈ D−. It is convenient to

define qk(ξT ) := 0 for all terminal events ξT ∈ FT and all k. Let wi(ξ) be investor

i’s wealth in event ξ ∈ D. Then wi
0 := wi(ξ0) = (D0+q0)θ̄

i, and for all ξt+1 ∈ Ft+1

and t = 0, . . . , T − 1,

wi(ξt+1) = wi(ξt)
K∑

k=1

Dk(ξt+1) + qk(ξt+1)

qk(ξt)
λi

k(ξt),

= . . .

= wi
0

t∏
τ=0

[
K∑

k=1

Dk(ξτ+1) + qk(ξτ+1)

qk(ξτ )
λi

k(ξτ )

]
,

where ξτ is the unique predecessor of ξt+1 at period τ . Investor i’s consumption

ci ∈ Rd
+ is a function of her investment strategy λi and asset prices q and is given

by

ci(λi, q)(ξt) = λi
0(ξt)w

i(ξt)

for all ξt ∈ Ft and for all t = 0, . . . , T , where we define λi
0(ξT ) := 1 for all ξT ∈ FT .

For given asset prices q, investor i solves

max U i(ci(λi, q))

s.t.
∑K

k=0 λi
tk = 1 for all t = 0, . . . , T − 1.

(1)

Since assets are in unit supply market clearing requires that for all k = 1, . . . , K,

and for all t = 0, . . . , T − 1,

qk
t =

I∑
i=1

λi
tkw

i
t.

A competitive equilibrium is defined as follows:
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Definition 3.1 A profile of investment strategies λ = (λi)i together with asset

prices q is a competitive equilibrium, if

1. U i(ci(λi, q)) ≥ U i(ci(λ̃i, q)) for all investment strategies λ̃i and all i =

1, . . . , I, and

2. (Market clearing) qk
t =

∑I
i=1 λi

tkw
i
t for all k = 1, . . . , K, and for all

t = 0, . . . , T − 1.

From now on we assume that ui
t exhibits constant relative risk aversion (CRRA)

η > 0, i.e. ui
t = βt

i uη for all t = 0, . . . , T , where βi, 0 < βi ≤ 1, is a discount

factor, and uη : R+ → R (respectively uη : R++ → R for η = 1) is given by

uη(c) =





1

1− η
c1−η , η 6= 1

ln(c) , η = 1
.

Given the properties of uη the optimization problem (1) has a unique interior

solution. Moreover, the first order condition is necessary and sufficient for a

solution and it is given by

qk
t =

T∑
τ=t+1

βτ−t
i Et

[(
ci
t

ci
τ

)η
ci
τ

ci
t+1

λi
t+1,0

(
Dk

t+1 + qk
t+1

)]
, (2)

for all t = 0, . . . , T − 1 and all k = 1, . . . , K, where Et[·] denotes the expectation

conditional on the sigma-algebra induced by the partition Ft (see Appendix A

for a derivation of (2)).

We are interested in the question, whether in equilibrium all investors invest

in the same mutual fund, whenever they have the same constant relative risk

aversion but differ with respect to their time preference and asset endowment.
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Definition 3.2 A competitive equilibrium (λ, q) is an equilibrium with T-

period fund separation, if there exists (λ̄tk)k=1,...,K
t=0,...,T−1

with
∑K

k=1 λ̄tk = 1 for all

t = 0, . . . , T − 1, such that for all i,

λi
tk =

(
1− λi

t0

)
λ̄tk for all k = 1, . . . , K.

Hence, in an equilibrium with T-period fund separation the proportion of non-

consumed wealth invested into any asset k is the same across all investors. For

unit CRRA we obtain the following result:

Theorem 3.1 If all investors have constant relative risk aversion equal to 1,

then there exists a unique equilibrium with T-period fund separation (λ, q), which

is given by

λi
t0 =

1− βi

1− βT+1−t
i

,

λ̄tk =
1

∑
j

(
βt+1

j −βT+1
j

1−βT+1
j

δj

)
T∑

τ=t+1

(∑
j

βτ
j − βτ+1

j

1− βT+1
j

δj

)
Et[d

k
τ ],

for all t = 0, . . . , T − 1, for all k = 1, . . . , K and for all i, where

dk
t :=

Dk
t

Dt

denotes the relative dividend paid by asset k in period t. Equilibrium prices q are

given by

qk
t = Dt

1

∑
j

(
βt

j−βt+1
j

1−βT+1
j

δj

)
T∑

τ=t+1

(∑
j

βτ
j − βτ+1

j

1− βT+1
j

δj

)
Et[d

k
τ ],

for all k = 1, . . . , K, and all t = 0, . . . , T − 1.

The proof is in Appendix A. By Theorem 3.1 under logarithmic utility all agents

hold the same portfolio of assets and the proportion of wealth each agent invests
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into asset k is given by some weighted sum of the expected relative dividend

paid by this asset in the future. Observe, however, that agents have different

consumption rates which increase over time. Moreover, as expected, consumption

rates are increasing in the agent’s impatience: the smaller an agent’s discount

factor, the higher the proportion of wealth she consumes in each period.

The following corollaries immediately follow from Theorem 3.1:

Corollary 3.1 (Homogeneity) If all consumers have the same discount factor,

i.e. βi = β for all i, then

λ̄tk =
1

βt+1 − βT+1

T∑
τ=t+1

(
βτ − βτ+1

)
Et[d

k
τ ],

qk
t = Dt

T∑
τ=t+1

βτ−tEt[d
k
τ ]

for all t = 0, . . . , T − 1, and for all k = 1, . . . , K.

Corollary 3.2 (Fix-Mix) If the conditional expected relative dividends of all

assets are event- and time-independent, i.e. if there exists a constant dk such that

Et[d
k
t+1] ≡ dk

for all k = 1, . . . , K, t = 0, . . . , T − 1, then

λ̄tk = dk

for all k = 1, . . . , K and all t = 0, . . . , T − 1.

Hence, if the expected relative dividends of all assets are event- and time-

independent, then in equilibrium all agents use the same stationary strategy for

their investment in the assets. That is, in each period t the proportion of wealth

invested into any asset k is the same, independent of the event at t and thus

independent of the investor’s wealth that is realized in t. This “fix-mix” strategy

is a generalization of Kelly’s (1956) “rule of betting” to multiple assets.
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For constant relative risk aversion different from 1 we obtain the following

result:

Theorem 3.2 If all investors have constant relative risk aversion η 6= 1 and if

they all have the same discount factor, i.e. βi = β for all i, then there exists a

unique competitive equilibrium (λ, q). This is an equilibrium with T-period fund

separation and it is given by

λ̄tk =

∑T
τ=t+1 βτ−tEt[

Dk
τ

(Dτ )η ]
∑T

τ=t+1 βτ−tEt[(Dτ )1−η]
,

for all t = 0, . . . , T − 1, k = 1, . . . , K, and

λt0 =

(
Dt

)1−η

(
Dt

)1−η
+

∑T
τ=t+1 βτ−t Et[(Dτ )1−η]

, (3)

for all t = 0, . . . , T − 1.

Equilibrium prices q are given by

qk
t = (Dt)

η

T∑
τ=t+1

βτ−tEt

[
Dk

τ

(Dτ )η

]
.

for all k = 1, . . . , K, and all t = 0, . . . , T − 1.

The proof can again be found in Appendix A. We have the following corollary:

Corollary 3.3 (Fix-Mix) If there exists a constant dk such that

Et

[
Dk

t+1

(Dt+1)η

]

Et

[
(Dt+1)1−η

] ≡ dk

for all k = 1, . . . , K, t = 0, . . . , T − 1, then

λ̄tk = dk

for all k = 1, . . . , K and all t = 0, . . . , T − 1.
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Hence, as in the case of unit CRRA all agents invest according to a fix-mix

strategy in equilibrium, if dividends satisfy a certain stationarity requirement. A

particular case, where the condition of Corollary 3.3 is satisfied, is the one where

the dividend process is i.i.d. Corollaries 3.2 and 3.3 show that a basic insight from

portfolio choice theory, namely that CRRA implies a fix-mix investment strategy,

carries over to the case where asset returns are determined endogenously. This

result is surprising since asset returns need not be stationary in equilibrium3 and

hence it is not clear that a fix-mix strategy is optimal as it is in case of exogenous

asset returns.

Under logarithmic utility we have seen that there exists an equilibrium with

T-period fund separation even if agents have heterogenous time preferences. This

is not true for T ≥ 2 and CRRA different from 1, i.e. Theorem 3.2 does not carry

over to the case of heterogenous discount factors as it is shown by the following

example.

Example 3.1 Let I = K = T = 2 and let dividends be given by

D1(ξ0) = D2(ξ0) = 0.5,

D1(ξu) = D2(ξd) = 1,

D1(ξd) = D2(ξu) = 0,

D1(ξuu) = D1(ξdu) = D2(ξud) = D2(ξdd) = 1,

D1(ξud) = D1(ξdd) = D2(ξdu) = D2(ξuu) = 0,

where ξ0 = {uu, ud, du, dd}, ξu = {uu, ud}, ξd = {du, dd}, ξuu = {uu},
ξud = {ud}, ξdu = {du}, ξdd = {dd} and F0 = {ξ0}, F1 = {ξu, ξd}, F2 =

{ξuu, ξud, ξdu, ξdd}. Let

π(ξuu) = p1p2, π(ξud) = p1(1− p2),

π(ξdu) = (1− p1)p2, π(ξdd) = (1− p1)(1− p2),

where 0 < p1 < 1 and 0 < p2 < 1. If p1 6= p2, i.e. if the dividends are not

identically distributed over time, then there does not exist an equilibrium with

T-period fund separation. To see this consider the case where p1 = 0.9 and

p2 = 0.1 and let η = 2, δ1 = δ2 = 0.5, β1 = 0.1, β2 = 1. Assume by way of

3This is due to the fact that aggregate dividends Dt, which enter asset prices, need not be

stationary under the conditions of Corollaries 3.2 and 3.3.
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contradiction that there exists an equilibrium with T-period fund separation and

let λi be agent i’s investment strategy in this equilibrium. Then, for k = 1, 2,

there exists λ̄0k such that λi
0k = (1 − λi

00)λ̄0k for i = 1, 2. Substituting this into

the first order condition (2) for agent i = 1 and solving for λ1 (using the market

clearing condition) we obtain the numeric solution λ̄01 ≈ 0.51. However, solving

agent 2’s first order condition gives λ̄01 ≈ 0.39 which is a contradiction. Hence, in

this example there does not exist an equilibrium with T-period fund separation.

♦

From the two-period case it is well known that equilibrium allocations are

Pareto efficient if the agents’ endowments are spanned and if agents have HARA

(hyperbolic absolute risk aversion) utility functions, such that each agent’s risk

tolerance exhibits the same slope. This result carries over to the multiperiod

model studied in this paper:

Theorem 3.3 (Effective Completeness) The consumption allocation (c∗i)i

corresponding to the equilibrium with T-period fund separation (λ∗, q∗) in Theo-

rem 3.1 and Theorem 3.2 is Pareto efficient.

The proof, given in Appendix A, is a simple computation showing that all

agents’ utility gradients are collinear at the consumption allocation correspond-

ing to the equilibrium with T-period fund separation. Effective completeness of

the asset market implies the existence of a representative investor whose portfo-

lio decision problem generates the equilibrium asset prices for the heterogenous

agents economy.

Theorem 3.4 (Representative Agent Equilibrium) Assume that the con-

ditions of Theorem 3.1, resp. Theorem 3.2, are satisfied and let (λ∗, q∗) be the cor-

responding equilibrium with T-period fund separation. Then there exists a repre-

sentative investor with expected utility function Û : Rd
++ → R, resp. Û : Rd

+ → R,

and endowment ē ∈ Rd
++, where ēt = Dt for all t = 0, . . . , T , such that equilibrium

asset prices in the representative agent economy are given by q∗.

If investors in the heterogenous agent economy have constant relative risk

aversion η, then Û can be chosen to have expected utility form with the same con-
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stant relative risk aversion η. Moreover, Û is independent of the future dividend

process (Dt)t=1,...,T .

Out of equilibrium the demand function of the representative agent is not

equal to the aggregate demand in the heterogenous agent economy, i.e. we do not

have demand aggregation in a strong sense. Nevertheless, by Theorem 3.4 the

demand function of the representative agent determines equilibrium asset prices

for any given future dividend process. Hence, we have demand aggregation in a

sense that is most relevant for asset pricing theory.

4 Empirical Results

In this section we provide an empirical test of the theoretical results derived

above. In particular, we test, whether stock prices indeed can be explained by

relative dividends as it is predicted by our model. Our empirical analysis differs

from previous studies in the literature on empirical dynamic asset pricing which

has concentrated on aggregate data instead of individual stocks. As part of our

empirical analysis we also estimate the consumers’ coefficient of risk aversion. In-

terestingly, our estimated coefficient is much closer to the risk aversion observed

in experimental studies (which is below 1) than to the risk aversion that was

found in tests of Lucas’ (1978) asset pricing model (which is at least 10).4

First, we give an outline of the estimation procedure. First–order conditions of

dynamic optimization problems with structural (deep) parameters θ usually are

formalized by expectations of a functional f of actual outcomes of state variables

and future instances of control variables xt,

xt = Et [f(xt+1, xt+2, . . . ; θ)] . (4)

To solve dynamic optimization problems numerically, Den Haan and Marcet

(1994) suggest to parameterize expectations by a linear or preferably nonlinear

function ψ parameterizing expectations by ω based on an information set Ωt,

Et [f(xt+1, xt+2, . . . ; θ)] = E [f(xt+1, xt+2, . . .), θ|Ωt] = ψ(Ωt; ω). (5)

4See for instance Kocherlakota (1996).
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Hence, determining expectations given the trajectories of the control and state

variables is simply a stochastic approximation problem,

min
ω

Σ(x, ω) = ‖f(·; θ)− ψ(·; ω)‖, (6)

where ‖·‖ denotes the euclidean norm which is calculated in data samples as mean

squared error. The solution to the dynamic problem (4) based on parameterized

expectations (5) and (6) is the fixed–point ωi−1 = ωi = ω̄ for large i of the

iterative map

ωi = (1− λ)ωi−1 + λ argminωΣ(xi−1, ω), i = 1, 2 . . . , ω0 ∈ R,

and

xi = ψ(xi−1; ωi),

where λ ∈ (0, 1] describes the rate of convergence. Den Haan and Marcet (1994)

find numerically that convergence is reached in models such as the neoclassical

growth model. To justify numerical convergence, we suggest to consider the p–

value associated with the null hypothesis H0 : ωi(ψ(Ωt; ω
i−1)) = ωi−1. Although

the iteration only describes local convergence, Den Haan and Marcet (1994) claim

for many stochastic dynamic models that transversality conditions or the assump-

tion of time–invariant solutions ensure a unique solution in the above iterative

map.

Assuming that observed real world data is the outcome of the solution to the

dynamic model, i.e. the observed sample data of xt and f(·; θ) imply ω̂ = ω̄ , we

estimate the structural parameters of the latter as

θ̂ = argminθ‖x− ψ(·; ω̂)‖ s.t. ω̂ = argminωΣ(ω).

To put it in another way, we start the numerical solution problem with ob-

served time series, and are searching for the structural parameters of the dynamic

model that do not change the time series for the parameters given above.5

5In Woehrmann (2005) it is shown by simulations of the neoclassical stochastic growth model

of Kydland and Prescott (1982) that this inference approach to dynamic models is unbiased

and efficient.
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In our model deep parameters θ = (β, η) have to be estimated. Furthermore

we suppose dividends to follow a random walk implying actual dividends to be

best predictors of future dividends.6 Applying the inference scheme above to the

first order conditions of our dynamic model provided in Theorem 3.2, we solve

θ̂ = argminθ‖q − q̂‖

s.t.

q̂t = λ̄tk(Dt)
η

∑T
τ=t+1 βτ−t(Dt)

1−η

λ̄tk =
1∑T

τ=t+1 βτ−t(Dt)1−η

T∑
τ=t+1

βτ−tψ(ω)

ψ(ω) = polynomial conditional on dk,t and λ̄k,t

ω̂ = argminω‖(Dτ )
1−η

(
λt+1,0d

k
t+1 + (1− λt+1,0)λ̄t+1,k

)− ψ(ω)‖

λt0 =
D

1−η

t

D
1−η

t +
∑T

τ=t+1 βτ−t(Dt)1−η
,

where polynomials are estimated by ordinary least squares as in Den Haan

and Marcet (1994). Note, that qt and q̂t denote observed and estimated prices,

respectively. Estimations are conducted with quarterly data on the stocks of

the companies listed in Table 1. Among the 100 largest stocks with respect to

market capitalization in 2004 we have chosen those from the FAME data base,

which provide histories of at least 50 consecutive quarters of dividend payments.

Different from the large body of studies on dynamic asset pricing models based

on aggregate data, our model explains the stock market by relative dividends.

Hence, we report basic summary statistics of the latter in Table 1. Bottom line,

relative dividends of many stocks are normally distributed, but they are mostly

not stationary. Note that this is not assumed in our estimation scheme.

Results for the estimation of deep parameters θ are reported in Table 2. Note,

that convergence with regard to parameters ωi of the polynomial function as de-

scribed above is reached. We find that a coefficient of relative risk aversion
6This is verified — as in numerous papers — based on the ADF–test for unit roots.
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Table 1: Summary statistics for relative dividends.

JB and ADF denote the Jarque–Bera test for normality and the augmented

Dickey–Fuller test for unit roots, respectively.

Company Mean Std. Dev. Skewness Kurtosis JB p–value ADF p–value

3M 0.1320 0.0527 1.0383 3.5838 0.0079 0.5222

Altria 0.0832 0.0357 1.3748 5.2152 0.0000 0.4904

American Express 0.0275 0.0099 0.4960 2.2252 0.1920 0.2609

Bank New York 0.0225 0.0105 0.7649 2.7828 0.0831 0.0013

General Electric 0.0162 0.0082 1.4912 6.2053 0.0000 0.3815

General Motors 0.2442 0.1416 0.5259 2.4241 0.2236 0.0924

Hewlett Packard 0.0216 0.0104 0.1991 1.7377 0.1612 0.8243

Intel 0.0092 0.0079 2.0340 8.0703 0.0000 0.0925

IBM 0.1148 0.0637 -0.0605 2.0475 0.3828 0.7228

J. P. Morgan Chase 0.0551 0.0162 0.0284 2.2113 0.5213 0.5807

Johnson & Johnson 0.0335 0.0169 1.0705 3.0277 0.0084 0.2015

McDonalds 0.0190 0.0058 0.0588 2.1375 0.4542 0.3722

Merrill Lynch 0.0429 0.0261 0.6716 2.6040 0.1297 0.3116

Microsoft 0.0071 0.0057 0.2325 1.5908 0.1009 0.5072

Pfizer 0.0137 0.0096 0.6306 2.1112 0.0838 0.1695

United Technologies 0.0756 0.0415 0.6990 2.1477 0.0613 0.1880

Wachovia 0.0819 0.0352 0.3440 2.5655 0.5018 0.4982
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around 0.63 fits best, i.e., asset prices would suggest a weaker degree of risk aver-

sion than in the logarithmic case (CRRA=1). This is robust with respect to the

degree of the polynomial choosen in the estimation procedure. The null hypoth-

esis H0 : η = 1 can be rejected with low p-values of the Wald test. Given that

η ∼ N (0, σ), σ > 0, results of asymptotic theory give us (η−1)2

σ̂2 ∼ F (1, T − 1),

which leads directly to a t–test for η frequently termed Wald–test. σ̂ is obtained

by omitting once each data point. This finding contrasts with the asset pric-

ing literature working on aggregate data instead of individual stocks (cf. Mehra

and Prescott (1985) and Kocherlakota (1996), for example) which finds a much

stronger degree of risk aversion than in the logarithmic case. However, here we

focus on relative stock prices explained by relative dividends rather than consid-

ering the equity premium puzzle here.

Table 2: Estimation results of the structural parameters.

The degree of polynomial refers to ψ(·). RMSE stands for the root mean

squares error of q and q̂. The null hypothesis of the Wald test is H0 : η = 1.

Polynomial β̂ η̂ RMSE Wald p–value

2nd order 0.95 0.633 4.6887 0.000

3rd order 0.95 0.631 4.3445 0.000

Estimated time series of relative stock prices, qk
t /q̄t for the 17 companies in

Table 1 are illustrated in the figures in Appendix B. The average R squared of

estimated relative stock prices is 70.65%, its standard deviation is 14.43%, and

they range between 42.77% and 96.88% indicating a good fit with the data.
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Appendix A: Proofs

General Considerations: In the following we derive the first order condition

(2) for the optimization problem (1). The first order condition for an interior

solution λi to (1) is given by

∂U i(ci(λi, q))

∂λi
k(ξt)

= αi(ξt),

for all k = 0, . . . , K, all ξt ∈ Ft and all t = 0, . . . , T−1, where αi(ξt) is a Lagrange

multiplier. Hence, for all k = 1, . . . , K, and all ξt ∈ Ft,

∂U i(ci(λi, q))

∂λi
0(ξt)

=
∂U i(ci(λi, q))

∂λi
k(ξt)

.

∂U i(ci(λi, q))

∂λi
0(ξt)

= wi(ξt)∂ξtU
i = βt

iπ(ξt)u
′
η(c

i(ξt))w
i(ξt),

7

where

∂ξtU
i :=

∂U i(ci)

∂ci(ξt)
.

Moreover,

∂U i

∂λi
k(ξt)

=
T∑

τ=t+1

∑

ξτ⊂ξt

∂ξτ U
iλi

0(ξτ )
∂wi(ξτ )

∂λi
k(ξt)

=
T∑

τ=t+1

∑

ξτ⊂ξt

βτ
i π(ξτ )u

′
η(c

i(ξτ ))λ
i
0(ξτ )

∂wi(ξτ )

∂λi
k(ξt)

Let ξτ ⊂ ξt and let ξt+1, . . . , ξτ−1 be the unique predecessors of ξτ in periods

t + 1, . . . , τ − 1. Then

∂wi(ξτ )

∂λi
k(ξt)

= wi
0

Dk(ξt+1) + qk(ξt+1)

qk(ξt)

τ−1∏
s=0
s6=t

[
K∑

k=1

Dk(ξs+1) + qk(ξs+1)

qk(ξs)
λi

k(ξs)

]

= wi(ξt)
Dk(ξt+1) + qk(ξt+1)

qk(ξt)

τ−1∏
s=t+1

[
K∑

k=1

Dk(ξs+1) + qk(ξs+1)

qk(ξs)
λi

k(ξs)

]

=
wi(ξt)

wi(ξt+1)
wi(ξτ )

Dk(ξt+1) + qk(ξt+1)

qk(ξt)
.

7Here and in the following we shortly write ci(ξt) instead of ci(λi, q)(ξt).
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Hence, the first order condition becomes

qk
t =

T∑
τ=t+1

βτ−t
i Et

[
u′η(c

i
τ )

u′η(c
i
t)

wi
τ

wi
t+1

λi
τ0

(
Dk

t+1 + qk
t+1

)]

=
T∑

τ=t+1

βτ−t
i Et

[
u′η(c

i
τ )

u′η(c
i
t)

ci
τ

ci
t+1

λi
t+1,0

(
Dk

t+1 + qk
t+1

)]

=
T∑

τ=t+1

βτ−t
i Et

[(
ci
t

ci
τ

)η
ci
τ

ci
t+1

λi
t+1,0

(
Dk

t+1 + qk
t+1

)]
,

for all t = 0, . . . , T − 1 and all k = 1, . . . , K, where Et[·] denotes the expectation

conditional on the sigma-algebra induced by the partition Ft. This proves (2).

¤

Proof of Theorem 3.1: The first order condition (2) for η = 1 reads

qk
t =

T∑
τ=t+1

βτ−t
i Et

[
ci
t

ci
t+1

λi
t+1,0

(
Dk

t+1 + qk
t+1

)]
. (A.7)

If there exists an equilibrium with T-period fund separation, then, for all l and

all t there exists λ̄tl such that λi
tl = (1− λi

t0)λ̄tl for all i, which implies

ql
t =

∑
j

λj
tlw

j
t = λ̄tl

∑
j

(1− λj
t0)w

j
t

and hence

ci
t

ci
t+1

λi
t+1,0 =

λi
t0w

i
t

wi
t+1

=
λi

t0∑
l

Dl
t+1+ql

t+1

ql
t

λi
tl

=
λi

t0

1− λi
t0

∑
j

(1− λj
t0)w

j
t

1

Dt+1 + q̄t+1

,

where

q̄t :=
K∑

l=1

ql
t for all t = 0, . . . , T − 1.
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Substituting this into (A.7) gives

λ̄tk =
T∑

τ=t+1

βτ−t
i

λi
t0

1− λi
t0

Et

[
Dk

t+1 + qk
t+1

Dt+1 + q̄t+1

]
.

Since
∑K

k=1 λ̄tk = 1 it follows that

λi
t0 =

1

1 +
∑T

τ=t+1 βτ−t
i

=
1− βi

1− βT+1−t
i

(A.8)

and λ̄tk = Et

[
Dk

t+1 + qk
t+1

Dt+1 + q̄t+1

]
,

for all i, for all k = 1, . . . , K, and all t = 0, . . . , T − 1. From

q̄t+1 =
∑

j

(1− λj
t+1,0)w

j
t+1,

it follows that

qk
t+1 = λ̄t+1,k q̄t+1

and hence

λ̄tk = Et

[
Dk

t+1 + λ̄t+1,kq̄t+1

Dt+1 + q̄t+1

]
.

Therefore, it remains to solve for q̄t for all t = 0, . . . , T − 1. For t = 0 we have

q̄0 =
∑

j

(1− λj
00)w

j
0 =

∑
j

(1− λj
00)(D0 + q0) δj θ̄ = (D0 + q̄0)

∑
j

(1− λj
00) δj.

This implies

q̄0 = D0

∑
j(1− λj

00) δj

∑
j λj

00 δj
. (A.9)

Since

wj
t+1 = (1− λj

t0)w
j
t

∑

k

λ̄tk

Dk
t+1 + qk

t+1

qk
t

= (1− λj
t0)w

j
t

Dt+1 + q̄t+1

q̄t

= . . .

= wj
0

t∏
τ=0

(
(1− λj

τ0)
Dτ+1 + q̄τ+1

q̄τ

)
,
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it follows that

q̄t+1 =
∑

j

(1− λj
t+1,0)w

j
t+1

=
t∏

τ=0

(
Dτ+1 + q̄τ+1

q̄τ

) ∑
j

(
wj

0

t+1∏
τ=0

(1− λj
τ,0)

)

= (D0 + q̄0)
t∏

τ=0

(
Dτ+1 + q̄τ+1

q̄τ

) ∑
j

(
δj

t+1∏
τ=0

(1− λj
τ,0)

)
.

From

1− λi
t0 = βi

1− βT−t
i

1− βT+1−t
i

we compute
t+1∏
τ=0

(1− λi
τ,0) =

βt+2
i − βT+1

i

1− βT+1
i

,

and hence

q̄t+1 = (D0 + q̄0)
t∏

τ=0

(
Dτ+1 + q̄τ+1

q̄τ

) ∑
j

(
βt+2

j − βT+1
j

1− βT+1
j

δj

)
, (A.10)

for t = 0, . . . , T − 1. From (A.10) we can solve for q̄t for all t and it is straight-

forward to verify that

q̄t = Dt

∑
j

(
βt+1

j −βT+1
j

1−βT+1
j

δj

)

∑
j

(
βt

j−βt+1
j

1−βT+1
j

δj

) , t = 0, . . . , T − 1,

solves (A.10) for all t = 0, . . . , T − 1.

Given q̄t it follows that

λ̄tk = Et

[
Dk

t+1 + λ̄t+1,kq̄t+1

Dt+1 + q̄t+1

]

=

∑
j

(
βt+1

j −βt+2
j

1−βT+1
j

δj

)

∑
j

(
βt+1

j −βT+1
j

1−βT+1
j

δj

)Et[d
k
t+1] +

∑
j

(
βt+2

j −βT+1
j

1−βT+1
j

δj

)

∑
j

(
βt+1

j −βT+1
j

1−βT+1
j

δj

)Et[λ̄t+1,k],
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for all k = 1, . . . , K, and all t = 0, . . . , T − 1. Solving for λ̄tk recursively, we

obtain

λ̄tk =
1

∑
j

(
βt+1

j −βT+1
j

1−βT+1
j

δj

)
T∑

τ=t+1

(∑
j

βτ
j − βτ+1

j

1− βT+1
j

δj

)
Et[d

k
τ ],

and qk
t = λ̄tkq̄t = Dt

1

∑
j

(
βt

j−βt+1
j

1−βT+1
j

δj

)
T∑

τ=t+1

(∑
j

βτ
j − βτ+1

j

1− βT+1
j

δj

)
Et[d

k
τ ]

for all k = 1, . . . , K, and all t = 0, . . . , T − 1. This proves the theorem.

¤

Proof of Theorem 3.2: Consider the first order condition (2) for the case

where βi = β for all i and η 6= 1. Let t = T − 1. Then, since λi
T0 = 1, the

first order condition is identical for all investors i. Hence, λi
T−1,k = λT−1,k for

all k = 0, . . . , K and for all i. By induction it follows that λi
tk = λtk for all

k = 0, . . . , K, for all i and all 0 ≤ t ≤ T − 1. For all t = 0, . . . , T − 1, and all

k = 1, . . . , K, define

λ̄tk = λtk/(1− λt0).

From the market clearing condition we get

ql
t = (1− λt0)λ̄tl

∑
j

wj
t = (1− λt0)λ̄tl

(
Dt + q̄t

)
, t = 0, . . . , T − 1.

Substituting this into the first order condition (2) we get

λ̄tk =
T∑

τ=t+1

βτ−t (λt0)
η

1− λt0

Et

[(
ci
τ

wi
t

)1−η
Dk

t+1 + qk
t+1

Dt+1 + q̄t+1

]
.

For t = 0, . . . , T − 1, and τ = t + 1, . . . , T ,

wi
τ = wi

t

τ−1∏
s=t

[
K∑

k=1

Dk
s+1 + qk

s+1

qk
s

λi
sk

]

= wi
t

τ−1∏
s=t

Ds+1 + q̄s+1

Ds + q̄s

= wi
t

Dτ + q̄τ

Dt + q̄t

.
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This implies

λ̄tk =
(λt0)

η

1− λt0

T∑
τ=t+1

βτ−tEt

[
(λτ,0)

1−η

(
Dτ + q̄τ

Dt + q̄t

)1−η
Dk

t+1 + qk
t+1

Dt+1 + q̄t+1

]
(A.11)

for t = 0, . . . , T − 1.

We now solve for the equilibrium price q. We have already seen that

qk
t = λ̄tk(1− λt0)

(
Dt + q̄t

)
,

for t = 0, . . . , T − 1. Summing over all k we get

q̄t = (1− λt0)
(
Dt + q̄t

)

⇐⇒ q̄t =
1− λt0

λt0

Dt, t = 0, . . . , T − 1.

Substituting this into (A.11) gives

λ̄tk =
λt0

1− λt0

T∑
τ=t+1

βτ−tEt

[(
Dτ

Dt

)1−η
Dk

t+1 + qk
t+1

Dt+1 + q̄t+1

]
, for t = 0, . . . , T − 1.

Summing over all k and solving for λt0 we obtain that

λt0 =
(Dt)

1−η

(Dt)1−η +
∑T

τ=t+1 βτ−tEt

[
(Dτ )1−η

] , t = 0, . . . , T − 1.

Hence,

λ̄tk =
1∑T

τ=t+1 βτ−tEt

[
(Dτ )1−η

]
T∑

τ=t+1

βτ−tEt

[
(Dτ )

1−η Dk
t+1 + qk

t+1

Dt+1 + q̄t+1

]

=
1∑T

τ=t+1 βτ−tEt

[
(Dτ )1−η

]
T∑

τ=t+1

βτ−tEt

[
(Dτ )

1−η
(
λt+1,0d

k
t+1 + (1− λt+1,0)λ̄t+1,k

)]
.

Solving backwards for λ̄tk gives

λ̄tk =

∑T
τ=t+1 βτ−tEt[

Dk
τ

(Dτ )η ]
∑T

τ=t+1 βτ−tEt[(Dτ )1−η]
,
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for all t = 0, . . . , T − 1, k = 1, . . . , K. This implies that

qk
t = λ̄tkq̄t

= λ̄tk(Dt)
η

T∑
τ=t+1

βτ−tEt

[
(Dτ )

1−η
]

= (Dt)
η

T∑
τ=t+1

βτ−tEt

[
Dk

τ

(Dτ )η

]
,

for t = 0, . . . , T − 1, which proves the theorem.

¤

Proof of Theorem 3.3: Let c∗i be investor i’s consumption in the equilib-

rium with T-period fund separation, (λ∗, q∗), as characterized in Theorem 3.1,

resp. Theorem 3.2. Then, for all t = 0, . . . , T − 1 and all i,

wi
t+1 =

δi
∏t

τ=0(1− λ∗iτ0)∑
j

(
δj

∏t
τ=0(1− λ∗iτ0)

) (
Dt+1 + qt+1

)
= δi

t∏
τ=0

(1− λ∗iτ0)Zt+1,

where Zt+1 is independent of i. This implies

c∗i0

c∗it+1

=
λ∗i00w

i
0

λ∗it+1,0w
i
t+1

=
λ∗i00(D0 + q̄0)

λ∗it+1,0

∏t
τ=0(1− λ∗iτ0)Zt+1

.

By Theorem 3.1, if η = 1, then λ∗it0 = (1− βi)/(1− βT+1−t
i ) for all t. Hence,

λ∗i00

λ∗it+1,0

∏t
τ=0(1− λ∗iτ0)

=
1

βt+1
i

,

which implies

βt+1
i

c∗i0

c∗it+1

=
D0 + q̄0

Zt+1

,

and
∂ξt+1U

i(c∗i)
∂ξ0U

i(c∗i)
= βt+1

i π(ξt+1)
c∗i0

c∗i(ξt+1)
=

π(ξt+1)(D0 + q̄0)

Z(ξt+1)
,

which is independent of i.

Let η 6= 1 and βi = β for all i. Then, by Theorem 3.2, λ∗it0 = λ∗t0 is independent

of i for all t. This implies wi
t+1 = δi(Dt+1 + q̄t+1). Hence,

c∗i0

c∗it+1

=
λ∗00(D0 + q̄0)

λ∗t+1,0(Dt+1 + q̄t+1)
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is independent of i. Therefore,

∂ξt+1U
i(c∗i)

∂ξ0U
i(c∗i)

= βt+1π(ξt+1)

(
c∗i0

c∗i(ξt+1)

)η

= βt+1π(ξt+1)

(
λ∗00(D0 + q̄0)

λ∗t+1,0(Dt+1 + q̄t+1)

)η

,

which is independent of i. Thus, in both cases the agent’s utility gradients are

collinear in equilibrium, ∇U i(c∗i) ‖ ∇U j(c∗j) for all i 6= j, which implies the

Pareto efficiency of the equilibrium allocation (c∗i)i.

¤

Proof of Theorem 3.4: Let (λ∗, q∗) be an equilibrium with T-period fund sep-

aration for the economy. Then, by Theorem 3.3 the corresponding consumption

allocation (c∗i) is Pareto efficient. Hence, the agents’ utility gradients ∇U i(c∗i)

are collinear, ∇U i(c∗i) ‖ ∇U j(c∗j) for all i 6= j. For all i = 1, . . . , I, define

γi :=
1

∂ξ0U
i(c∗i)

=
(
c∗i0

)η
.

If η = 1 define Û : Rd
++ → R by

Û(c) := sup

{∑
i

γiU
i(ci)

∣∣∣∣∣
∑

i

ci = c, ci ∈ Rd
++ for all i

}
, c ∈ Rd

++ .

If η 6= 1 define Û : Rd
+ → R accordingly. Then Û(c̄) =

∑
i γiU

i(c̄i) if and only if

γi∇U i(c̄i) = γj∇U j(c̄j) for all i 6= j.

Moreover,

∇Û(c̄) = γi∇U i(c̄i) for all i. (A.12)

Let ē ∈ Rd
++ be given by ēt = Dt for all t. Then, ē =

∑
i c
∗i and by definition of

Û it follows that

Û(ē) =
∑

i

γiU
i(c∗i).

Hence, by (A.12) q∗ is an equilibrium price vector in the representative agent

economy, where the agent has utility function Û and endowment ē.

Since all U i are in expected utility form, Û has expected utility form as well.

Consider first the case where all investors in the heterogenous agent economy
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have unit constant relative risk aversion. Then it is straightforward to show that

Û is given by

Û(c) = E

[
T∑

t=0

(At + Bt ln(ct))

]
, for all c ∈ Rd

++

where

At =
∑

i

γiβ
t
i ln(αi

t) and Bt =
∑

i

γiβ
t
i ,

and αi
t = γiβ

t
i/

∑
j γjβ

t
j for all i and t = 0, . . . , T . Hence, a monotone transforma-

tion of Û has expected logarithmic utility form and therefore, the representative

agent has unit CRRA.

Similarly, if all investors in the heterogenous agent economy have CRRA η 6= 1

and the same discount factor β, then Û is given by

Û(c) = E

[
T∑

t=0

Gt
1

1− η
(ct)

1−η

]
, for all c ∈ Rd

+,

where Gt = βt
(∑

i(γi)
1
η

)η

for all t = 0, . . . , T . Hence, the representative agent

has CRRA equal to η.

Finally, observe that γi only depends on (βj, )j (δj)j and D0 for all i:

c∗i0 = λ∗i00w
i
0 = λ∗i00δ

i(D0 + q̄0) =
λ∗i00δ

i

∑
j λ∗j00δ

j
D0.

If η 6= 1, then

γi =
(
c∗i0

)η
=

(
δiD0

)η
.

If η = 1, then

γi = c∗i0 =
1− βi

1− βT+1
i

δi

(∑
j

1− βj

1− βT+1
j

δj

)−1

D0,

Hence, Û is independent of the future dividend process (Dt)t=1,...,T .

¤
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Appendix B: Figures

The following figures show the estimated time series of relative stock prices for

the 17 companies in Table 1.
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General Motors
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McDonalds
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Stable Stock Markets,” Economic Theory, forthcoming.

Gollier, C. (2001): The Economics of Risk and Time. MIT Press, Cambridge,

Massachusetts.

34



Hakansson, N. H. (1970): “Optimal Investment and Consumption Strategies

under Risk for a Class of Utility Functions,” Econometrica, 38, 587–607.

Hakansson, N. H., and W. T. Ziemba (1995): “Capital Growth Theory,”

in Handbooks in Operations Research and Management Science, ed. by R. A.

Jarrow, V. Maksimovic, and W. T. Ziemba, vol. 9 (Finance), chap. 3, pp. 65–86.

Elsevier, Amsterdam.

Hens, T., S. Reimann, and B. Vogt (2004): “Nash Competitive Equilibria

and Two-Period Fund Separation,” Journal of Mathematical Economics, 40,

321–346.

Hirshleifer, D. (2001): “Investor Psychology and Asset Pricing,” Journal of

Finance, 56, 1533–1597.

Huang, C.-F., and R. H. Litzenberger (1988): Foundations of Financial

Economics. North-Holland, New York, NY.

Ingersoll, J. E. J. (1987): Theory of Financial Decision Making. Rowman &

Littlefield Publishers, Savage, Maryland.

Judd, K. L., F. Kubler, and K. Schmedders (2004): “Dynamic General

Equilibrium and Two-Fund Separation,” Stanford University and Kellog School

of Management, Northwestern.

Kelly, J. L. (1956): “A New Interpretation of Information Rate,” Bell System

Technical Journal, 35, 917–926.

Kocherlakota, N. R. (1996): “The Equity Premium: It’s still a Puzzle,”

Journal of Economic Literature, 34, 42–71.

Kraus, A., and R. H. Litzenberger (1975): “Market Equilibrium in a Mul-

tiperiod State Preference Model with Logarithmic Utility,” The Journal of

Finance, 30, 1213–1227.

Kydland, F. E., and E. C. Prescott (1982): “Time to Build and Aggregate

Fluctuations,” Econometrica, 50, 1345–1370.

35



Lucas, R. E. (1978): “Asset Prices in an Exchange Economy,” Econometrica,

46, 1429–1445.

Magill, M., and M. Quinzii (1996): Theory of Incomplete Markets. MIT

Press, Cambridge, MA.

Mehra, R., and E. C. Prescott (1985): “The Equity Premium: A Puzzle,”

Journal of Monetary Economics, 15, 1455–1461.

Mulvey, J. M., and W. T. Ziemba (1998): Worldwide Asset and Liability

Modeling. Cambridge University Press, Cambridge, UK.

Perold, A. F., and W. F. Sharpe (1988): “Dynamic Strategies for Asset

Allocation,” Financial Analysts Journal, 44, 16–27.

Roll, R. (1973): “Evidence on the “Growth-Optimum” Model,” The Journal

of Finance, 28, 551–566.

Rubinstein, M. (1976): “The Strong Case for the Generalized Logarithmic

Utility Model as the Premier Model of Financial Markets,” The Journal of

Finance, 31, 551–571.

Russel, T. (1980): “Portfolio Separation: The Analytic Case,” Economics Let-

ters, 6, 59–66.

Thorp, E. O. (1971): “Portfolio Choice and the Kelly Criterion,” in Stochastic

Models in Finance, ed. by W. T. Ziemba, and R. G. Vickson, pp. 599–619.

Academic Press, New York.

Tobin, J. (1958): “Liquidity Preference as Behavior Towards Risk,” Review of

Economic Studies, 67, 65–86.

Woehrmann, P. (2005): “Estimating Dynamic Asset Pricing Models,” NCCR-

Finrisk Working Paper No. 244, University of Zurich.

36




