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Abstract

In this paper, we consider Stackelberg games in a multiperiod vertical contracting model with uncertain demand.

Demand has a distribution with a mean and variance that depend on the current retail price, and this dependence

may vary from period to period. We focus on a class of problems in which the market has a memory-based scaling

of demand, and the mean scaling is a function of previous retail prices. This leads to a strategic game in which the

parties must balance high immediate profits with reduced future earnings. We propose a complete solution to this

multiperiod Stackelberg game, covering cases with finite and infinite horizons. The theory is illustrated by using a

Cobb–Douglas demand function with an additive, normally distributed random term, but the theory applies to more

general settings.
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Main symbols:

W = wholesale price per unit (chosen by the manufacturer)

q = order quantity (chosen by the retailer)

R = retail price per unit (chosen by the retailer)

D = demand (random)

M = production cost per unit (fixed)

S = salvage price per unit (fixed)

Πr = profit for the retailer

Πm = profit for the manufacturer

1 Introduction

In a vertical contracting problem, a retailer wants to order a quantity q from a manufacturer.

Demand D is a random variable, and the retailer wishes to select an order quantity q to maxi-

mize his or her expected profit E[Πr[q,D]]. When the distribution of D is known, this problem

is easily solved, and is commonly referred to as the “newsvendor problem”. The basic problem is

simple, but appears to have a never-ending number of variations. There is now a large literature

on such problems, which is surveyed by Cachón (2003) and Qin et al. (2011). (See also the

numerous references therein.)

In this paper, we consider multiperiod Stackelberg games between a manufacturer and a

retailer, and study cases where future demand depends on past as well as future prices. The

players must then take into account actions from a third party, the customers. Aggressive pric-

ing may lead to short-term profits, but may be harmful to demand in the long run.

The one-period newsvendor problem with price-dependent demand is classical (see Whitin

1955). Mills (1959) refined the construction by considering the case in which demand uncer-

tainty is added to the price–demand curve, and Karlin and Carr (1962) considered the case in

which demand uncertainty is multiplied by the price–demand curve. For a useful review of the
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problem with extensions, see Petruzzi and Dada (1999). See also Xu et al. (2010) and Xu et al.

(2011) for recent contributions to the price-dependent case.

In our Stackelberg game, the manufacturer is the leader and offers the retailer a wholesale

price W for items delivered in the next period. The retailer is the follower and he or she tries to

select an order quantity q and a retail price R to maximize future expected profits. Stackelberg

games for the one-period case with fixed R have been studied extensively by Lariviere and Por-

teus (2001), who provide quite general conditions under which unique equilibria can be found.

Petruzzi and Dada (1999) consider multiperiod cases with price-dependent demand, and show

how to adapt such models to include backorders. They do not, however, address Stackelberg

games. In this paper, we extend the theory to Stackelberg equilibria in multiperiod cases in

which demand in the future is a function of prices and demand in the past. We assume that

unmet demand is lost, and hence ignore cases with backordering. Although this is a serious

limitation, our theory can be applied to important cases such as electricity markets and markets

for fresh foods.

Multiperiod Stackelberg games of the type we discuss in this paper are generally difficult

to solve. Some types may admit numerical solutions, but the general problem is difficult to

compute or analyze even in the two-period case. By comparison, the model we present in this

paper yields an explicit solution that is easily computed for any number of periods. Our model

retains the main essence of the problem itself, while simultaneously providing a solution that

can be analyzed without the need for advanced optimizing techniques.

Øksendal et al. (2011) consider continuous time Stackelberg games for Itô–Lévy processes

with price-dependent demand. They prove that equilibria can be found by solving a coupled sys-

tem of stochastic differential equations. In principle, such systems can be solved, but even simple

cases lead to equations that cannot be solved by conventional means. Solutions appear to re-

quire mathematical optimization techniques not yet discussed in the literature. By comparison,

the discrete version we consider in this paper is transparent. Our scaling approach decouples a

multiperiod problem into a sequence of one-period problems, each of which is fairly easy to solve.
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This paper is organized as follows. In Section 2, we introduce basic notation and review

classical formulas for the one-period case. In Section 3, we formulate general Stackelberg games

for the two-period case. Although general problems of this kind can be solved numerically, the

problem is so deeply nested that one cannot expect to find an analytical solution. However,

if demand in the next period is scaled by a factor that depends on the current demand and

retail price, the system decouples into two separate cases. This decoupling carries over to the

multiperiod case, and we can obtain a complete solution by backward iteration; i.e., we first

solve the problem for the final period, feed the solution into a similar problem for the previous

period, and continue backwards until we reach the first period. Our main result is stated in

Theorem 3.1. In Section 4, we discuss problems related to existence and uniqueness, and also

show how to address problems that have an infinite horizon. In Section 5, we illustrate the

theory developed in Sections 3 and 4 by using explicit numerical examples. In Section 6, we

offer concluding remarks.

2 The newsvendor model with price-dependent demand

In this section, we review well-known facts about the one-period newsvendor model. These facts

explain the formula in (10), which is used throughout the paper.

In the classical newsvendor model, a retailer plans to sell a commodity in a market with

uncertain demand D. The retailer orders a number of units of the commodity from a manufac-

turer, and expects to sell a sufficient number of these units to make a profit. The manufacturer

decides the wholesale price W , while the retailer decides the selling price (revenue) R and the

order quantity q. Any unsold items can be salvaged at the price S.

The retailer’s profit is denoted by Πr. Profits in the newsvendor model can be written in

several different ways. For our analysis, it is convenient to express everything in terms of the
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random variable min[D, q]. By using the relation (q −D)+ = q −min[D, q], we obtain:

Πr = Rmin[D, q] + S(q −D)+ −Wq

= Rmin[D, q] + S(q −min[D, q])−Wq (1)

= (R− S) min[D, q]− (W − S)q.

From this expression, we obtain:

E[Πr] = (R− S)E[min[D, q]]− (W − S)q. (2)

To consider situations with price-dependent demand, we consider cases with D of the form:

D = µ[R] + σ[R]E (3)

where µ[R] and σ[R] are given deterministic functions, and E is an arbitrary distribution sat-

isfying E[E ] = 0,Var[E ] = 1. Note that multiplicative cases with E[E ] 6= 0 and Var[E ] 6= 1 are

easily transformed into the format in (3). When R is given, it is well known that maximum

expected profit is obtained when:

P (D ≤ q) =
R−W
R− S

. (4)

Let FE denote the cumulative distribution of E . We assume that E is continuous, supported on

an interval, with density fE > 0 a.e. on its support. Under these conditions, the expected profit

Πr is strictly concave in q on the support of D, and the order quantity q from (4) is unique. It

is clear that

q = µ[R] + σ[R] · F−1
E

[
R−W
R− S

.

]
(5)

By using (3) and (4), we obtain:

E[Πr] = (R− S)E[min[D, q]]− (W − S)q

= (R− S)
(
µ[R] + E

[
min

[
σ[R]E , σ[R]F−1

E

[
R−W
R− S

]]])
(6)

− (W − S)
(
µ[R] + σ[R]F−1

E

[
R−W
R− S

])
.
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Equations (3)–(5) indicate that:

E
[
min

[
E , F−1

[
R−W
R− S

]]]
(7)

=
∫ F−1

E [R−WR−S ]

−∞
xfE [x]dx+ F−1

E

[
R−W
R− S

]
· P
(
E ≥ F−1

E

[
R−W
R− S

])
(8)

=
∫ F−1

E [R−WR−S ]

−∞
xfE [x]dx+ F−1

E

[
R−W
R− S

]
·
(

1− R−W
R− S

)
. (9)

Inserting the expression in (9) into (6) and simplifying the resulting expression yields:

Πr = E[Πr] = (R−W )µ[R] + LE [R,W ]σ[R] (10)

where LE is defined by:

LE [R,W ] = (R− S)
∫ z

−∞
xfE [x]dx z = F−1

E

[
R−W
R− S

]
. (11)

By assumption E[E ] =
∫∞
−∞ xfE [x]dx = 0, and hence LE [R,W ] ≤ 0. In the literature, the term

LE ·σ is often referred to as loss due to randomness. Note that LE does not depend on the choice

of the function σ[R]. For the construction used to solve multiperiod Stackelberg games in this

paper, it is important that the deterministic function σ[R] enters as a multiplicative factor in

(10). Thus, it is essential that the σ dependence is handled through the format we use in (3).

3 The multiperiod newsvendor game

In this section, we provide a theoretical discussion of the multiperiod newsvendor game. Start-

ing with a brief description of the classical one-period game, we discuss the structure of the

multiperiod case. In particular, we focus on the case in which demand in the next period is

scaled by a factor that depends on prices and demand in the current period. This is a type of

Markov assumption in that it only requires knowledge of the current state, not of how prices

and demand arrived at that state.

In the multiperiod game, we assume that the parties are risk neutral and try to maximize
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discounted expected profit:

Jr = Πr
1 + αΠr

2 + α2Πr
3 + · · ·+ αn−1Πr

n (12)

Jm = Πm
1 + αΠm

2 + α2Πm
3 + · · ·+ αn−1Πm

n (13)

where n is the number of periods, α is a discounting factor, and barred symbols indicate expected

values.

3.1 The one-period game

In the one-period newsvendor model, to formulate a Stackelberg game, we assume that both

parties are risk neutral. The manufacturer (leader) offers a wholesale price W . We ignore the

possibility that the retailer can negotiate the wholesale price. Given W , the retailer (follower)

then chooses the retail price R and the order quantity q to maximize expected profit as given by

(10). The manufacturer knows that the retailer will choose q to maximize expected profit. Given

each possible value of W , the manufacturer can hence anticipate the resulting order quantity

q = q[W ], and so chooses W to maximize expected profit (which happens to be deterministic in

this case). The manufacturer’s profit is given by:

Πm = (W −M)q (14)

where M is the production cost per unit.

3.2 General two-period games

For a two-period Stackelberg game, demand in the first period is given by:

D1 = µ1[R1] + σ1[R1]E1. (15)

In the second period, we have:

D2 = µ2[R1, R2, D1] + σ2[R1, R2, D1]E2. (16)
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We assume that µ1, µ2, σ1, and σ2 are deterministic functions, and that the random variables E1

and E2 are centered and normalized. The idea is that the level of demand in the first period can

(to some extent) carry over to the second period. Moreover, a high price in the first period can

lead to reduced demand in the second period, whereas a low initial price can have the opposite

effect by stimulating demand.

We let Πr
1 and Πr

2 denote the profits for the retailer in the two periods. Πm
1 and Πm

2 denote

the corresponding profits for the manufacturer. We assume that both parties try to maximize

discounted expected profits:

Jr = E[Πr
1 + α ·Πr

2] (17)

Jm = E[Πm
1 + α ·Πm

2 ] (18)

where 0 ≤ α ≤ 1 is a fixed discounting factor. When decisions are taken for the second period,

we assume that the values R1, W1, and D1 are common knowledge. Conditional on D1, and

given values for R1, R2, and W2, it follows from (5) and (10) that:

q2 = µ2[R1, R2, D1] + σ2[R1, R2, D1] · F−1
E2

[
R2 −W2

R2 − S

]
(19)

E[Πr
2|D1] = (R2 −W2)µ2[R1, R2, D1] + LE2 [R2,W2]σ2[R1, R2, D1]. (20)

In the second and final period, there is no need to worry about future demand. Hence, given

R1, D1, and W2, the retailer chooses R2 to maximize E[Π2
r |D1]. By assuming that the mapping

R2 7→ E[Πr
2|D1] has a unique maximum, we can hence construct a function R2 = R2[R1, D1,W2]

that maximizes this conditional expected value. At the time when the manufacturer chooses

W2, the values of R1 and D1 are common knowledge. Hence, the manufacturer chooses W2 to

maximize conditional profit:

E[Πm
2 |D1] = (W2 −M2)q2 (21)

where q2 is given by (19) and R2 = R2[R1, D1,W2]. Given values for R1 and D1, it follows that
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E[Πm
2 |D1] is a function of only W2. Assuming that this function has a unique maximum, we

can then construct a function W2 = W2[R1, D1] that maximizes the manufacturers conditional

expected profit.

By the law of double expectation, we have:

Jr = E[Πr
1] + α · E[E[Πr

2|D1]] (22)

Jm = E[Πm
1 ] + α · E[E[Πm

2 |D1]]. (23)

Given a value for W1, the retailer, knowing that the manufacturer is a Stackelberg optimizer,

can anticipate that the manufacturer will offer the price W2 = W2[R1, D1] in the second period.

By (10), we have:

E[Πr
1] = (R1 −W2)µ1[R1] + LE1 [R1,W1]σ1[R1]. (24)

Given R1, the distribution of D1 is known. Equation (22), together with (20) and (24),

enables us to compute the final value of Jr given this particular choice of R1. The retailer

chooses R1 to maximize this value. From this choice, the manufacturer obtains (deterministic)

profit of:

Πm
1 = (W1 −M)

(
µ1[R1] + σ1|R1] · F−1

E1

[
R1 −W1

R1 − S

])
. (25)

The manufacturer’s (possibly) random profit is:

Πm
2 = (W2 −M)q2[R1, D1,W2]. (26)

Knowing that the retailer will choose R1 as above, the manufacturer can hence choose W1 to

maximize his or her total expected profit.

3.3 Two-period games with multiplicative scaling

The general construction in Section 3.2 is sufficiently explicit to enable numerical solutions of

the problem for most choices of the functions µ1, µ2, σ1, and σ2. However, the problem is so

deeply nested that one cannot expect to find an analytical solution. To search for cases that
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can be studied in more detail, we consider the following special case:

µ2[R1, R2, D2] = µ̃2[R2] · g1[R1, D1] σ2[R1, R2, D2] = σ̃2[R2] · g1[R1, D1] (27)

with g1 being a common scaling factor. In this case, (20) takes the form:

E[Πr
2|D1] = (R2 −W2)µ2[R1, R2, D1] + σ2[R1, R2, D2](R2 − S)

∫ F−1
E2

h
R2−W2
R2−S

i
−∞

xfE2 [x]dx (28)

= g1[R1, D1]

(
(R2 −W2)µ̃2[R2] + σ̃2[D2](R2 − S)

∫ F−1
E2

h
R2−W2
R2−S

i
−∞

xfE2 [x]dx

)
(29)

and the optimal values of R2 and W2 are then independent of R1 and D1. The retailer’s

optimization problem reduces to the problem of maximizing:

Jr[R1] = (R1 −W1)µ1[R1] + LE1 [R1,W1]σ1[R1] + E[α · g1[R1, D1] ·Π2] (30)

where Π2 is the expected profit the retailer would have obtained in the final period had the scaling

factor been 1. This simplification separates our original problem into two separate subproblems,

which are both easily solved. The problem for the final period is a standard one-period problem

with price-dependent demand. The second problem is quite similar, the only difference being

the extra term E[α · g1[R1, D1] ·Π2].

3.4 Multiperiod games with multiplicative scaling

Whereas it is straightforward to formulate an n-period game in the general case, numerical solu-

tions are difficult to obtain even if n is moderately large. The nonlinear structure of the problem

branching into separate cases for each particular choice made on every level quickly renders the

problem infeasible.

We show how to generalize the scaling approach described in the previous section to mul-

tiperiod problems. First, we discuss an important technical issue. Consider the three-period
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problem:

D1 = µ1[R1] + σ1[R1]E1 (31)

D2 = g1[R1, D1](µ2[R2] + σ2[R2]E2) (32)

D3 = g1[R1, D1]g2[R2, D2](µ3[R3] + σ3[R3]E3) (33)

where E1, E2, and E3 are independent and g1 and g2 are scaling factors. The scaling factors

g1[R1, D1] and g2[R2, D2] are typically not independent, and it is easy to check that the problem

does not in general separate into independent subproblems. However, this issue does not arise

if the scaling factors depend only on price. Generally, one can extend the construction to cases

in which the scaling factors are functions of E , because these are independent. When all the

scaling factors are independent, the system can be solved by repeated use of backward iteration.

This always applies if n = 2 because there is only one scaling factor involved.

To simplify notation, we define:

g[R] = E[g[R, E ]]. (34)

First, we solve for the final period to obtain expected profits Πr
n and Πm

n . Once these values

are known, the previous level can be computed as shown in Section 3.3. That produces numerical

values of Πr
n−1,n and Πm

n−1,n (total discounted expected profits in the two periods). To determine

the strategy for the (n− 2)nd level, we consider the problem:

Jr[Rn−2] = (Rn−2 −Wn−2)µn−2[Rn−2] + LEn−2 [Rn−2,Wn−2]σn−2[Rn−2] (35)

+ α ·Πr
n−1,n · gn−2[Rn−2] (36)

Jm[Wn−2] = (Wn−2 −Rn−2)
(
µn−2[Rn−2] + σn−2[Rn−2] · F−1

En−2

[
Rn−2 −Wn−2

Rn−2 − S

])
(37)

+ α ·Πm
n−1,n · gn−2[Rn−2]. (38)
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To simplify notation, we have suppressed dependence on arguments that are not yet active;

µn−2 and σn−2 are in general functions of (Rn−3, En−3) but according to our assumptions, this

dependence enters as an independent multiplicative factor and can hence be factored out of the

optimization problem.

By using the argument above repeatedly, it is clear that we can solve this problem for any

value of n. We state the final result in the form of a theorem.

Theorem 3.1

Let n be the number of periods and assume that demand in period k is given by:

Dk = (µk[Rk] + σk[Rk]Ek) ·
k−1∏
i=1

gi[Ri, Ei] (39)

where E1, . . . , En are independent and continuously distributed with E[Ek] = 0 and Var[Ek] = 1

for all k, and supported on intervals with fEk > 0 a.e. on their supports. If, for each k, the

following one-period Stackelberg problem has a unique equilibrium at Rk = R̂k,Wk = Ŵk:

J (k)
r [Rk] = (Rk −Wk)µk[Rk] + LEk [Rk,Wk]σk[Rk] + α ·Πr

k · gk[Rk]

J (k)
m [Wk] = (Wk −Rk)

(
µn−2[Rk] + σk[Rk] · F−1

Ek

[
Rk −Wk

Rk − S

])
+ α ·Πm

k · gk[Rk] (40)

where Πr
k and Πm

k are found recursively from:

Πr
n = 0 Πm

n = 0 (41)

Πr
k = J (k+1)

r [R̂k+1] Πm
k = J (k+1)

m [Ŵk+1] k = 1, 2, . . . , n− 1, (42)

then the multiperiod problem:

Jr = Πr
1 + αΠr

2 + α2Πr
3 + · · ·+ αn−1Πr

n (43)

Jm = Πm
1 + αΠm

2 + α2Πm
3 + · · ·+ αn−1Πm

n (44)

has a unique equilibrium at R̂ = (R̂1, . . . , R̂n),Ŵ = (Ŵ1, . . . , Ŵn).
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Remarks

The multiplicative factor
∏k−1
i=1 gi[Ri, Ei] controls the memory of the process. If all the scaling

factors are equal to 1, there is no memory, and the problem decouples into independent one-

period problems. Note that given Ri, the value of Ei is known if and only if the value of Di is

known.

The condition that Ek is supported on an interval with fEk > 0 a.e. on its support is needed

to ensure that FEk is invertible. If FEk is not invertible, it is possible that the retailer’s ex-

pected profit is maximized at several order quantities between which the retailer is indifferent.

Different order quantities lead to different profits for the manufacturer, but the manufacturer

lacks an instrument to ensure that the retailer chooses order quantities that are optimal for the

manufacturer.

Uniqueness of the equilibria is important. However, given suitable scaling factors, the prob-

lems associated with existence and uniqueness are no more complicated than those in the corre-

sponding one-period problem. Thus, problems of uniqueness arise in the one-period case. Our

main issue is solving the multiperiod problem with multiplicative scaling, and uniqueness is

clearly not restricted to those classical settings that have already been examined in the context

of the one-period case.

4 Theoretical aspects of the model

4.1 Optimization for the retailer

In this section, we consider theoretical issues related to the multiperiod newsvendor problem

with scaling. As explained in Section 3.4, this problem can be solved by backward iteration. At

each stage of the iteration, we must solve a Stackelberg problem of the form (40). Given W , the

retailer should try to maximize Jr : [W,∞)→ R given by:

Jr[R] = (R−W )µ[R] + LE [R,W ]σ[R] + α ·Πr · g[R]. (45)
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If σ[R] = 0, demand is deterministic. To isolate the effect due to randomness we split the

function into two parts:

Jr[R] = Jdet
r [R] + Jσr [R] (46)

where

Jdet
r [R] = (R−W )µ[R] + α ·Πr · g[R] (47)

Jσr [R] = LE [R,W ]σ[R]. (48)

It is reasonable to assume that the deterministic part, i.e., Jdet
r [R], is quasiconcave, increas-

ing at R = W with limR→∞ J
det
r [R] = 0. These conditions are quite mild and are satisfied for

fairly wide classes of demand functions and scaling factors. The special case in which Cobb–

Douglas functions and linear expected scaling factors are used is discussed subsequently. Under

such conditions, the deterministic part has a unique maximum at R = R∗. If σ is sufficiently

small, the deterministic part is dominant and uniqueness is transferred to the stochastic case.

The behavior is complicated when σ is not small. The first extreme is generally a minimum,

and hence uniqueness depends on a delicate balance between the deterministic and stochastic

parts on the interval starting from the second extreme.

Noting that dz
dR = W−S

fE(z)(R−S)2
, it is straightforward to check that:

dLE
dR

=
∫ z

−∞
xfE(x)dx+

∫ ∞
z

zfE(x)dx < 0
d2LE
dR2

= (1− FE [z])
dz

dR
> 0. (49)

Clearly, limR→W LE [R,W ] = 0, and a simple application of L’Hôpital’s rule gives:

lim
R→∞

LE [R,W ] = −∞.

Thus, the function LE is negative, globally decreasing and convex in R. If σ[R] is constant (as in

the additive case examined by Mills (1959)), or more generally, if σ′[R] ≥ 0 and σ′′[R] ≤ 0, the

same is true for Jσr . Clearly, limR→W
dJσr
dR = −∞ and limR→W

d2Jσr
dR2 = +∞. If µ, σ : (0,∞)→ R

are continuously differentiable, then Jr[R] is almost never quasiconcave, the only exception be-

ing when Jr is globally decreasing.
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4.2 Cobb–Douglas demand with linear scaling

In Section 5 we discuss the case in which µ[R] = CR−a, where C > 0 and a > 1 are given

constants. Moreover, we consider scaling factors where:

g[R] = E[g[R, E ]] = 1 + γ(K −R) (50)

where γ > 0 and K > 0 are given constants. With these particular choices, we obtain:

dJdet
r

dR
= C aR−a

(
W

R
− a− 1

a

)
− αγΠ (51)

d2Jdet
r

dR2
= −(a+ 1)R−1CaR−a

(
W

R
− a− 1

a

)
− (a− 1)R−a−1. (52)

If dJdet
r
dR [R∗] = 0, it follows that:

d2Jdet
r

dR2
[R∗] = −(a+ 1)R−1αγΠ− (a− 1)R−a−1 < 0. (53)

It follows that, for any choice of C, a, γ, K, and Π, then R 7→ Jdet
r [R] is quasiconcave and

the value R∗ = Argmax[Jdet
r [R]] is unique. If R > R∗, then dJdet

r
dR [R∗] < 0. If σ′[R] ≥ 0

for all R ≥ R∗, the stochastic part is decreasing on [R∗,∞). Hence, a numerical search for

Argmax[Jr[R]] can be restricted to the interval [W,R∗]. We summarize some of the findings

from Sections 4.1 and 4.2 in the following proposition.

Proposition 4.1

Assume that µk[R] = CkR
−ak , and that the scaling factor for demand satisfies:

gk[Rk] = (1 + γk(Kk −Rk)),

where Ck, ak, γk and Kk are constants. Then, if σ′k[Rk] ≥ 0 for Rk ≥ R∗k, the function:

J (k)
r [Rk] = (Rk −Wk)µk[Rk] + LEk [R,Wk]σk[Rk] + α ·Πr

k · gk[Rk] (54)
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has a global maximum in the interval [W,R∗k].

Remark

Note that R∗k is fixed, i.e., independent of any particular choice of the function σk[R]. The

conditions are trivially satisfied if σk is constant, which is the case we consider in Section 5.

4.3 The infinite-period case

For given values of Πr
k and Πm

k , the parties try to optimize:

J (k)
r [Rk] = (Rk −Wk)µk[Rk] + LEk [Rk,Wk]σk[Rk] + α ·Πr

k · gk[Rk] (55)

J (k)
m [Wk] = (Wk −Rk)

(
µn−2[Rk] + σk[Rk] · F−1

Ek

[
Rk −Wk

Rk − S

])
(56)

+ α ·Πm
k · gk[Rk].

The first-order conditions for this problem yield two equations for the two unknowns Rk and

Wk. In the multiperiod case, we start by using Πr
n = 0 and Πm

n = 0 and iterate backwards until

we reach the starting period. However, if the horizon is infinite, this approach fails because an

infinite number of iterations is needed to reach the start.

If µ[R], σ[R], g[R, E ], and E do not depend on k, i.e., the same functions are used for any

k, then cases with an infinite horizon can be solved. To do so, one needs a steady state for the

system; i.e., we must find Πr and Πm such that:

Πr = (R−W )µ[R] + LE [R,W ] + α ·Πr · g[R] (57)

Πm = (W −R)
(
µ[R] + σ[R] · F−1

E

[
R−W
R− S

])
+ α ·Πm · g[R]. (58)

The first-order conditions from (55)–(56), together with (57)–(58), yield four equations in the

four unknowns, R, W , Πr, and Πm. If this system has a unique solution, we have a unique

candidate for the infinite-horizon case.
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5 Numerical results

In this section, we illustrate the theory in Sections 3 and 4 by using numerical examples. In

these examples, we use a Cobb–Douglas demand function with a normally distributed random

term. The problem is as easily solved when using other functional forms. The problem (given

W ) is reduced to finding maxima for a function of one variable, which is straightforward for

almost any µk[R], σk[R], Ek, and gk[R, Ek].

For simplicity, we consider only the case in which the same functions are used for all periods,

although using varying functions does not make the problem any harder to solve. We start

with the one-period case, and gradually increase the number of periods, n, until we reach the

infinite-horizon case.

5.1 The one-period case

We consider the demand function:

D = 1000 ·R−2 + 10 · E (59)

where E is N(0, 1). Because a normally distributed variable can take negative values, we must

impose restrictions to exclude artificial cases. If q, as given by (5), is negative, we set q = 0.

Moreover, if the expected profit in (10) is negative, we also assume q = 0. We choose:

M = 2 S = 1. (60)

By using the formulas in (5) and (10) we can compute the manufacturer’s profit as a function

of W . This function is illustrated on the left side of Figure 1.
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Figure 1: Expected profits for the manufacturer (left) and the retailer (right)

The manufacturer obtains maximum profit at the unique value W = 4.61. Given W = 4.61,

the retailer’s profit in (10) is a function of R only. This function is shown on the right side of

Figure 1. The retailer’s best response is to choose R = 7.29, which, from (5), leads to an order

quantity q = 16.96. To summarize, our particular Stackelberg game has a unique equilibrium

at:

(W,Πm) = (4.61, 44.27) (61)

(R, q,Πr) = (7.29, 16.96, 25.79). (62)

5.2 The two-period case

In this section, we extend the discussion in Section 5.1 to a two-period Stackelberg game. We

assume that:

D1 = µ1[R1] + 10 · E1 (63)

where µ1[R] = 1000 · R−2 and E1 is N(0, 1); i.e., we use the same demand function used in

Section 5.1. We further assume that M = 2 and S = 1 (as before). Now, let:

D2 = g[R1, D1](µ1[R2] + 10 · Ẽ1) (64)

where Ẽ1 is an independent copy of E1 and g[R1, D1] is a scaling factor. Regardless of the choice

of g[R1, D1], it follows from (29) and the results in Section 3 that the second stage of the game
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will have a unique equilibrium at:

(W2,Πm
2 ) = (4.61, 44.27 · E[g[R1, D1]]) (65)

(R2, q2,Πr
2) = (7.29, 16.96, 25.79 · E[g[R1, D1]]). (66)

Hence, the arguments W2, R2, and q2 are independent of the scaling factor. However, the

maximal values depend on the scaling factor, and both parties must take this into account when

considering their first-period strategies. We now consider the scaling factors:

g[R1] = E[g[R1, D1]] = 1 + γ(K −R1) (67)

where γ ≥ 0 and K ≥ 0 are given constants. The constant K can be interpreted as a “fair” price;

i.e., any initial price above K reduces demand, whereas demand is more likely to increase if R1 <

K. If the scaling factor is negative, maxima are turned into minima. Hence, if E[g[R1, D1]] ≤ 0,

the optimal order q2 is zero. To avoid this problem, we consider cases where:

g[R1] = max[1 + γ(K −R1), 0]. (68)

Typically, M ≤ W1 ≤ R1 is expected. Ruling out short selling implies W1 ≥ 0 and R1 ≥ 0.

If R1 < W1, the optimal order quantity q1 is zero. However, R1 < W1 might represent an

optimal strategy. If R1 < W1, the retailer orders nothing in the first period. Then, he or she

might just as well choose R1 = 0 because this is the most efficient way to increase demand in

period 2. A strategy of this type makes good sense economically; it corresponds to a situation

in which a small number of items (q1 ≈ 0) are given away for free (R1 = 0) in the first period

to create increased interest for the product in the second period. In our optimization problem,

given W1, the retailer should find the maximum over all R1 with R1 ≥W1. The retailer should

then compare this maximum value with the value he or she could obtain by using the alternative

R1 = 0, q1 = 0, and then choose the best alternative.
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We consider the case:

µ1[R1] = 1000 ·R−2
1 σ1[R1] = 10 (69)

µ2[R1, R2, D1] = g[R1, D1]µ1[R2] σ2[R1, R2, D1] = g[R1, D1]σ1[R2] (70)

g[R1] = max[(1 + γ(K −R1), 0]. (71)

S = 1,M = 2 (72)

Values for the parameters γ and K are specified below. We investigate how different values

of these parameters affect the solutions. Given the choices described above, the strategies and

expected profits in the second period are given by (65) and (66). Hence, the retailer’s total

expected profit, given W1, is:

Jr[R1] = (R1 −W1)µ1[R1] + LE1 [R1,W1]σ1[R1] (73)

+ α · 25.79 ·max[(1 + γ(K −R1), 0].

The manufacturer’s total expected profit is:

Jm[W1] = (W1 −R1)
(
µ1[R1] + σ1[R1] · F−1

E1

[
R1 −W1

R1 − S

])
(74)

+ α · 44.27 ·max[(1 + γ(K −R1), 0].

The manufacturer knows that, given W1, the retailer will choose R1 to maximize Jr[R1].

Given R1 = Argmax[Jr[R1]] in (74), Jm[W1] is a function of W1 only.

• Case 1: α = 1 (no discounting), γ = 0 (no dependence on R1).

In this particular case, the system is effectively decoupled into two identical one-period problems.

The equilibrium prices are:

W1 = W2 = 4.61 Jm = 88.53 (75)

R1 = R2 = 7.29 q1 = q2 = 16.96 Jr = 51.57. (76)

• Case 2: α = 1 (no discounting), γ = 0.1,K = 5.
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Now the pricing effect of R1 is active. The system has a unique equilibrium state at:

W1 = 4.05,W2 = 4.61 Jm = 87.26 (77)

R1 = 6.24, R2 = 7.29 q1 = 23.60, q2 = 16.96 Jr = 64.19. (78)
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Figure 2: Expected total profit for the manufacturer as a function of W1

The graph of the function Jm[W1] is shown in Figure 2. The section to the right is flat

because, when W1 is too high, the retailer’s best choice is to order q1 = 0, in which case he or

she chooses R1 = 0 to get the benefit of higher demand in period 2. The graph reveals that this

does not correspond to the manufacturer’s best choice.

In equilibrium, the discounted scaling factor is α(1 + γ(K − R1)) < 1. Hence, demand is

lower than in Case 1. Although profits are higher than in Case 1, the profit margin is lower, but

this is offset by a higher order quantity. The manufacturer has less control and makes a smaller

expected profit.

• Case 3: α = 1 (no discounting), γ = 0.25,K = 5.

The system has equilibrium states at:

W1 ≥ 3.93,W2 = 4.61 Jm = 99.60 (79)

R1 = 0, R2 = 7.29 q1 = 0, q2 = 16.97 Jr = 58.02. (80)
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Figure 3: Expected total profit for the manufacturer

The graph of the function Jm[W1] is shown in Figure 3. The section to the right is flat

because, when W1 ≥ 3.93, the retailer’s best choice is to order q1 = 0, in which case he or she

chooses R1 = 0 to get the benefit of higher demand in period 2. Unlike in Case 2, it is in the

manufacturer’s best interest to provoke a strategy of this sort because it maximizes expected

profit.

• Case 4: α = 0.8, γ = 0.2,K = 5.

The system has a unique equilibrium state at:

W1 = 3.75,W2 = 4.61 Jm = 80.81 (81)

R1 = 5.63, R2 = 7.29 q1 = 29.18, q2 = 16.97 Jr = 58.80. (82)
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Figure 4: Expected total profit for the manufacturer

The graph of the function Jm[W1] is shown in Figure 4. Because of the discounting, it no

longer pays to have zero sales in the first period; profits in the second period are less valuable

because of discounting.
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5.3 The multiperiod case

As explained in the theoretical section, once we have a code that solves the two-period case,

the same code can be used repeatedly to solve n-period problems. We merely have to update

the remaining profits as the construction progresses backwards. Starting with a given demand

distribution D1 in period 1, we consider the case in which demand in period k is given by:

Dk = D̃1 ·
k−1∏
i=1

gi[Ri, Ei] (83)

where the tilde signifies that, at each step, an independent draw is made from the original

distribution D1. When setting Dk, the values of R1, R2, . . . , Rk−1, and D1, D2, . . . , Dk−1 are all

known, in which case the values E1, E2, . . . , Ek−1 are also known. In principle, the scaling factor

gk can change with k. For illustration purposes, we only consider cases in which the expected

scaling factors satisfy the following:

gk[Rk] = max[1 + γ(K −Rk), 0] (84)

where γ > 0 and K > 0 are given constants. As mentioned above, more complicated expressions

can be computed without problems.

• Case 1: α = 1 (no discounting), γ = 0.02,K = 5, n = 25.

The equilibrium prices in each period are shown in Figure 5. In this figure, R1, . . . , R25 are

marked with bold dots, and W1, . . . ,W25 are marked with light dots.
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Figure 5: Equilibrium prices in period k

The optimal strategy is to increase demand by letting R1 = · · · = R14 = 0, then start selling
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in period 15, and gradually increase prices in the remaining periods. The values of Rk and Wk

increase with k, as does the profit margin Rk −Wk. (In the sales period, k ≥ 15.) While these

properties might apply in general, examination of this issue is beyond the scope of this paper.

• Case 2: α = 0.9, γ = 0.02,K = 5, n = 25.

In this case, α ·max g = α(1 + γK) = 0.99. To obtain increased profits from an initial strategy

in which R1 = 0, it is clearly necessary that α ·max g > 1. Because this is not the case in this

example, sales take place in all periods. Moreover, prices hardly vary initially. This suggests

that there is an equilibrium strategy for the infinite-horizon case.
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Figure 6: Equilibrium prices in period k

5.4 The infinite-horizon case

If we continue to iterate the system illustrated in Figure 6 backwards, equilibrium prices will

progressively stabilize. This is to be expected as we approach an infinite-horizon problem with

a well-defined equilibrium state. If α(1 + γK) > 1, it is clear that an arbitrarily large total

profit can be obtained, and that there is no nondegenerate equilibrium strategy. Hence, we need

α(1 + γK) ≤ 1, in which case we can try to solve a fixed-point problem by using the first-order

conditions from (55)–(56) together with (57)–(58).

By using the values α = 0.9, γ = 0.02, and K = 5, this fixed-point problem is straightforward

to solve, and we find:

R = 5.59, q = 29.0,Πr = 348.2 (85)

W = 3.84,Πm = 481.6. (86)
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It is straightforward to check that this is indeed a steady state for the system.

The situation becomes more interesting if, e.g., γ is allowed to change values. To illustrate

this point of view, consider the case where

γk =


0.01 k ≤ 20

0.02 k > 20
(87)

To solve this problem, we feed the expected remaining profits from (85)–(86) into (40) and it-

erate this backwards to the start. The solution is shown in Figure 7. Clearly equilibrium prices

are constant when k > 20.
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Figure 7: Equilibrium prices in period k

6 Concluding remarks

In this paper, we considered multiperiod newsvendor problems with price-dependent demand.

In particular, we studied the case in which demand in one period is a function of prices and

demand in the previous period. A problem of this type leads to time dependent pricing strate-

gies. Increasing prices in one period can lead to short-term improvements, but as a consequence

of the coupling, long-term demand can be reduced, as, thereby, can overall profits. The parties

must then find an optimal balance between current profits and discounted future profits.

We showed how to obtain a complete solution to such problems when demand in one period

is scaled by a multiplicative factor that depends on prices in the previous period. The multi-

period problem can then be separated into a sequence of one-period problems, and the solution
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can be found by backward iteration starting from the final period. The problems are linked in

that each stage needs the total profit from the previous stage as an input, but otherwise there

is no coupling between the stages. When the scaling function is fixed, it is possible to consider

infinite-horizon problems of this type, and Stackelberg equilibria can then be found solving an

explicit fixed-point problem.

Although the main focus of the paper is on theory, to demonstrate that such problems can

be solved, we provided numerical solutions to some special cases. Note, however, that our frame-

work is not limited to such special cases. The numerical illustrations raise questions of interest

for future research. We found that prices and profit margins increase with time. This is some-

thing that might be true in general, but we leave this and similar problems for future research.
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