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portfolio management. Fund managers trade stocks and bonds in an order-driven

market, subject to transaction taxes and constraints on short-selling and leverage.
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1 Introduction

Since the onset of the financial crisis in 2007, policy makers around the world have been

engaged in a fight against speculation. Temporary short-sale bans and other restrictions on

leverage were imposed in more than 30 countries to restore financial stability, and there is

growing support for the introduction of a financial transaction tax to discourage speculative

trading. As part of the current push for tighter regulation these measures may soon be

voted into law. Whether the benefits will outweigh the costs is an open question. The

empirical evidence on the short-run effects of leverage constraints and transaction taxes is

mostly negative but very little is known about the long-term consequences.

This paper analyzes the long-term equilibrium effects of regulatory reform in order-driven

financial markets. We propose a modeling framework which integrates trading and asset

management, and apply it to the issue of curbing speculation by means of leverage restrictions

and taxes on financial transactions. We measure the impact of these regulations on market

characteristics such as portfolio holdings, order flow, liquidity, cost of capital, price discovery,

short-term volatility and long-term price dynamics. Quantitative results are obtained by

comparing equilibria under different regulatory regimes to a benchmark that is calibrated to

U.S. institutional details and stylized facts.

The model combines a general description of investor behavior with a detailed repre-

sentation of the market microstructure. The real economy is modeled as an aggregate firm

whose earnings are generated by a stochastic process with an unobservable business cycle

component. The firm is financed with debt and equity. Stocks can be traded against bonds

by submitting orders to an exchange which operates a continuous double auction. Short

or leveraged long positions in the stock can be held subject to fulfillment of margin re-

quirements, and transactions may be taxed. Brokers enforce compliance with margin-trade

regulations. A clearinghouse takes on all counter-party risk.

Investors are modeled as fund managers who trade stocks and bonds on behalf of clients.

Each fund’s strategy is fixed throughout its lifetime, but competition from new entrants
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exerts pressure on low-performing funds by increasing their risk of client attrition.1 The

market for portfolio management services is modeled as a multiperiod tournament based on

past performance. Brown, Harlow & Starks (1996) and Brown, Goetzmann & Park (2001)

find that models of this type capture many empirical regularities associated with entry and

exit of managed funds.

An equilibrium in our model is a set of trading strategies such that (a) no individual

strategy can be systematically outperformed by some alternative trading strategy; and (b)

the market is weak-form efficient. A genetic programming algorithm with tournament selec-

tion is applied to search for new strategies that outperform existing ones until the conditions

for equilibrium are met. The outcome of this search is a set of heterogeneous strategies which

are adapted to the institutional setting and geared towards survival. Agent heterogeneity is

endogenous with respect to range as well as distribution, in contrast to heterogenous agent

models where the range of behavioral variation is fixed ex ante. We find, however, that

a substantial part of this heterogeneity can be represented by a small number of common

investment styles which are robust to variations in the regulatory regime, although their

relative importance differs between scenarios.

Four regulatory scenarios are considered: (i) A benchmark scenario, calibrated to the

stylized facts of the S&P 500 index and current U.S. stock market regulations, where trade

is subject to initial and maintenance margin requirements and no transaction tax is levied;

(ii) a short-sale ban, corresponding to a permanent and global implementation of the ban of

short sales that was imposed during the financial crisis; (iii) a ban of all leveraged trade (both

short-selling and borrowing); and (iv) a tax of 10 basis points on the value of a transaction

imposed on the buyers of equity as well as debt.

The benchmark scenario is characterized by high trading activity in terms of volume,

order size and trade frequency, and low transaction costs measured by bid-ask spread and

market impact. Almost half of all wealth is managed by funds that make long-term invest-

1Busse, Goyal & Wahal (2010) find that competition among U.S. equity funds is intense with attrition
rates as high as 25% over a 3-year horizon.

3



ments in the market portfolio. The most active traders are leveraged funds with speculative

trading strategies. On average, stocks trade at a 25% discount to their net present value,

but this risk premium is strongly counter-cyclical. High risk premia during recessions are

partly caused by short sellers betting on the possibility that bankruptcies in the real economy

will clear their short positions at no cost. Such bear runs aggravate downturns and amplify

long swings in asset prices, as measured by the mean stock price decline from a peak in an

expansion to a trough in the next recession.

A tax on financial transactions has a strong negative impact on trading activity and

liquidity. In addition to its direct effect on transaction costs, the tax has an indirect effect of

roughly the same size due to wider spreads and greater market impact. Price discovery is less

efficient, but volatility is slightly lower than in the benchmark scenario. Higher transaction

costs lead to more long-term investment in the market portfolio, but the relatively high

trading activity among leveraged funds persists. We find no evidence that the tax reduces

long swings in asset prices.

A short-sale ban reduces trading activity to about half the benchmark level, but without

a negative effect on transaction costs. Order book depth is reduced, but so are order sizes,

and the net effect is a slight reduction in bid-ask spread and market impact. By curbing

speculative bear runs, the short-sale ban reduces the depth of recessions and dampens long

swings in asset prices. This yields a calmer market with slightly improved price efficiency,

substantially lower volatility, and a 7% increase in stock prices.

A leverage ban reduces long swings further by curbing both bear runs and speculative

bubbles. Volatility is on par with the short-sale ban scenario, but liquidity in terms of trade

volume and market impact of large orders is worse. The order book is extremely shallow,

but round-trip costs are only marginally higher than in the benchmark scenario because the

leverage ban reduces the trade volume by 90% relative to the benchmark level.

This paper makes two main contributions, one practical and one methodological. First,

our results provide guidance for policy makers by identifying the costs and benefits of specu-
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lation, and the trade-offs associated with the menu of regulatory options. We find that good

market liquidity comes at the cost of high short-term volatility and enhanced long swings

in asset prices, but that informational efficiency can be obtained without regard to the pre-

ferred mix of liquidity and market stability. Liquidity is best under the current regulatory

regime, while market stability is best under a full leverage ban. A short-sale ban offers a

compromise with the additional benefit of a lower cost of capital. A transaction tax entails

costs but no significant benefits.

Second, we provide a versatile modeling framework capable of identifying equilibria in

institutionally rich environments, and apply it to construct a model which integrates short-

run trading activity with long-term asset management, as suggested by Parlour & Seppi

(2008). The approach follows Alchian’s (1950) idea of economic survival of the fittest and

captures some of the features emphasized in Lo’s (2004) formulation of the adaptive market

hypothesis. The software implementation of the model and all data are publicly available

through the authors’ web sites.

The remainder of the paper is organized as follows. Section 2 discusses related literature.

Section 3 introduces the model and its calibration. Section 4 presents the results on the effects

of short-sale and leverage bans as well as financial transaction taxes. Section 5 concludes.

2 Related literature

The literature on financial market regulation tends to focus on either portfolio choice or

trading but rarely combines both. Papers focusing on portfolio choice typically abstract

from the interplay between trading and market liquidity. This group includes most of the

literature on leverage cycles and margin constraints, as well as research on transaction taxes

in overlapping generations models. The second group focuses on the impact of short-sale

constraints on the information content of prices. These papers usually abstract from portfolio

management considerations. However, the interdependence between trading and portfolio
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management has proved to be relevant, for instance, in understanding the occurrence of short

squeezes (Brunnermeier & Pedersen 2005); the collapse of hedge funds in 1998 (Brunnermeier

& Pedersen 2009); and the relevance of position for traders’ response to news (Lloyd-Davies

& Canes 1978).

Theoretical studies find that short-sale constraints typically lead to less informative

prices. Diamond & Verrecchia (1987) show that prices respond more slowly to new in-

formation, particularly if it is negative, when all traders face short-sale constraints. Hong

& Stein (2003) find that short-sale constraints can contribute to market crashes, i.e., a fall

in the price without arrival of new information. This happens when short-sale constrained

investors with private information do not buy after a fall in the price. From their failure to

act as support buyers the market learns that not all negative information is incorporated,

leading to a further fall in the price.

Results on the effect of short-sale constraints on the price level are more ambiguous.

Miller (1977) finds that short-sale constraints can lead to asset overvaluation when pessimistic

traders are prevented from selling short. Scheinkman & Xiong (2003) show that this effect

persists in a dynamic model with both rational and overconfident investors. In equilibrium,

buyers are willing to pay more than their private valuation because of the embedded option

to make a speculative profit by reselling the asset to a more optimistic investor. In contrast

Diamond & Verrecchia (1987) do not find an upward bias to prices. Bai, Chang & Wang

(2006) consider short-sale constraints that can affect either risk-sharing or informed trading.

They demonstrate that prices can go up or down with a respective decrease or increase of

volatility.

The asymmetric effect of short-sale bans on price efficiency is confirmed in the empirical

study by Bris, Goetzmann & Zhu (2007). Other empirical papers find that short-sale bans

reduce volatility (Chang, Cheng & Yu 2007) and increase stock prices (Chang, Cheng &

Yu 2012). Both observations are confirmed by Chang, Luo & Ren (2012) who use a unique

data set of Chinese stocks for which short-selling constraints were removed in 2010. They
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also find that a ban entails better price discovery with respect to positive news.

Empirical studies of the 2008 short-sale ban find significant negative effects on liquid-

ity, price discovery and volatility, see, e.g., Battalio & Schultz (2011), Beber & Pagano

(forth.), Boehmer, Jones & Zhang (2009), Boulton & Braga-Alves (2010), Kolasinksi, Reed

& Thornock (2010), and Marsh & Payne (2012). Beber & Pagano find that the ban was

largely ineffective in supporting stock prices in most countries except the U.S. This effect

may in part have been due to the U.S. market’s anticipation of the Troubled Asset Relief

Program. However, Harris, Namvar & Phillips (2009) use a factor analytic approach to show

that TARP did not contribute significantly to higher stock prices during the U.S. ban.

A case for active management of margin requirements to fight speculative bubbles was

made by Robert Shiller after the burst of the dot-com bubble in 2000.2 More recently,

the G20 countries have taken steps to discourage excessive leverage. Among the tangible

outcomes of these initiatives is the European Parliament’s Legislative Resolution ‘on the

proposal for a regulation [...] on Short Selling and certain aspects of Credit Default Swaps’

(COM/2010/0482). This resolution seeks to restrict short-selling with the aim of preventing

speculative attacks against European sovereign debt instruments and financial institutions.

The destabilizing effects of leverage are well documented. Leverage can exacerbate asset

price movements through several channels: directly affecting borrowing capacity (Kiyotaki

& Moore 1997), pro-cyclical borrowing induced by counter-cyclical volatility (Adrian & Shin

2010), fire sales in illiquid markets during downturns (Shleifer & Vishny 1992, 2011), and

forced closure of arbitrage fund managers’ positions when mispricing becomes more severe

(Shleifer & Vishny 1997). Similar mechanisms are present in our model: Short positions

are increased when stock prices fall, volatility, bid-ask spread and market impact are all

counter-cyclical, and losses on speculative positions increase the risk of client attrition.

Theoretical studies find that transaction taxes have negative effects on trade frequency

and volume (Constantinides 1986, Kupiec 1996, Scheinkman & Xiong 2003). Kupiec (1996)

2‘Margin Calls: Should the Fed Step In?,’ Wall Street Journal, April 10, 2000.
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finds that asset prices are reduced by the net present value of the effective tax and that

volatility is increased. In contrast Constantinides (1986) and Scheinkman & Xiong (2003)

find that the tax impacts neither price level nor volatility. Moreover, Vayanos (1998) shows

in an overlapping generations model with several rounds of trade that taxation can increase

prices as old agents are less reluctant to sell when transaction costs are high. None of these

papers consider the market microstructure where trading costs can also increase as a result

of wider spreads or a shallower book. In quote-driven markets the effect of a tax on prices

and trading costs depends on the competition between market-makers and the degree of

information asymmetry (Subrahmanyam 1998, Dupont & Lee 2007).

Empirical studies have found transaction taxes to reduce liquidity, increase the cost of

capital, and impede price discovery without reducing volatility. Schwert & Seguin’s (1993)

survey provides a detailed account of the literature prior to 1993, and Matheson (2011)

gives a more recent overview. Empirical evidence from UK data, where the stamp duty

on stock purchases has been changed three times during 1974-1986, is provided in Bond,

Hawkins & Klemm (2004), Jackson & O’Donnell (1985), and Saporta & Kan (1997). Umlauf

(1993) studies Swedish data where transaction taxes were increased to 2% from 1% in 1986.

Campbell & Froot (1994) provide a detailed account and also quantify the impact of the tax

on investor behavior, migration of trade and use of non-taxed instruments such as derivatives.

The policy debate on the benefits of transaction taxes has a long history in economics.

Keynes (1936) argued that excessive short-term trading by uninformed traders could lead

to speculative bubbles and should be discouraged through transactions taxes. The proposal

was revived by Tobin (1978) as a tax on foreign exchange to reduce short-term international

capital mobility. Stiglitz (1989) and Summers & Summers (1989) lend their support to the

tax as a means to discourage wasteful information gathering and prevent market crashes.

Since then financial transaction taxes have received considerable support among academics,

and European policy-makers have taken steps towards their implementation.3

3See, e.g., the Center for Economic and Policy Research’s (CEPR) open letter ‘Economists in Support of
Financial Transaction Taxes’ (December 3, 2009)—and Krugman’s opinion piece ‘Taxing the Speculators’
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3 Model

The model represents fund managers who trade, on behalf of their clients, the debt and

equity of an aggregate firm over an infinite time horizon. Trading takes place in a continuous

order-driven market, subject to margin requirements and transaction taxes.

3.1 Market and investors

Financial securities. Stock and bonds are issued by one aggregate firm. The firm is

represented by a stochastic earnings process which yields et per share per day t = 1, 2, ....

The bond price is used as a numéraire and set to one. The price per share of stock is denoted

p. On day t, there are St shares and Bt bonds outstanding. Debt per share is dt := Bt/St.

Each bond entitles its holder to a fixed overnight interest payment r > 0. Shareholders

receive a dividend equal to the residual net income et − rdt per share.

Negative net income is associated with financial distress of firms in the real economy,

leading to dilution of existing shareholders’ equity through debt restructuring or bankrupt-

cies. We abstract from the details by assuming that negative net income leads to interest

payments that consist in part of a transfer of shares from shareholders to bondholders. For

each bond, the aggregate firm pays et/dt and the shareholders make up the shortfall by

transferring (r− et/dt)/pt shares to the bondholders. This procedure implies that bonds are

risk-free, and that shareholders have limited liability.

We assume that the aggregate firm pursues a financial policy to keep debt per share

constant at d := d0. At the end of every trading day it issues new shares and bonds in

proportions 1 : d. Investors spend all of their income on the new issue by purchasing

et/(pt + d) shares of issued stock for each share held, and investing their remaining income

in new bonds. The number of shares and bonds bought is then Stet/(pt + d) and Stet −

ptStet/(pt + d) = dStet/(pt + d), respectively. This leaves debt per share constant at d and

in the New York Times (November 26, 2009). Financial transaction taxes are recommended in the Euro-
pean Commission’s ‘Proposal for a Council Directive on a common system of financial transaction tax [...]’
(COM/2011/594).
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yields a total proceeds of Stet, equal to the total income of investors.

Earnings. The daily earnings per share of the aggregate firm are determined by a

geometric Ornstein-Uhlenbeck process with time-varying mean. The specification of the

EBIT-process follows Goldstein, Ju & Leland (2001) but adds an unobservable business

cycle component as in Pástor & Veronesi (2003):

det/et = ηst (µst − et) dt+ σ dWt, (1)

where st is the state of the economy at time t. The economy is either in expansion (st = 1)

or contraction (st = 0). Expected earnings are higher during expansions, µ1 > µ0, and the

speed of mean reversion is higher in contractions, η0 > η1. The duration of the state of the

economy is exponentially distributed with parameter νst where ν1 > ν0. Earnings exhibit

short-term volatility σ and a medium-term trend ηst(µst − et).

The earnings process is observable, but the state of the economy is not. Given a Bayesian

estimate of the probability Pt that the current state is 1, the net present value (NPV) of a

share with current earnings et is

v(Pt, et) := (1− Pt) v
0(et) + Pt v

1(et), (2)

where vs(et) is the net present value of a share when the current state of the economy is

s. Information about the earnings process is revealed at 100 equidistant points in time per

day. These news events are a source of asymmetric information between traders who submit

orders close to the arrival times of new information.

Order book. Shares are traded against bonds by submitting limit orders to an exchange

which operates a continuous double auction. Each order is a commitment to buy or sell

shares at the posted price up to the announced quantity. An order crossing the spread is a

market order.4 Market orders are executed at the best price offered by the current standing

4The term ‘market order’ is used here as short-hand for ‘marketable limit order.’
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limit orders. Partial execution against limit orders at different prices is possible, with any

remaining quantity being added to the order book. At every point in time the order book

is the collection of all non-executed orders. Limit orders are included in the book observing

the usual price-time priority. A limit order remains in the order book until it is executed or

the trader submits a new order which cancels any standing order by the same trader. The

bid (ask) is the highest (lowest) price among all buy (sell) orders.

Margin trading. Investors can trade on margin by borrowing stocks or bonds to take

on short or leveraged long positions in the stock. Short sales are covered, although we do

not model individual lender-borrower contracts. We assume, however, that the supply of

stock available for borrowing is limited to the current number of shares outstanding. Margin

trading is managed by brokers, who will organize a stock loan for a short sale, or lend bonds

for a leveraged long position, using the trader’s portfolio as collateral. We assume that each

trader has a margin account with a broker which encompasses the entire financial situation

of the trader.5

A trader’s assets consist of positive stock holdings valued at the bid, and claims on the

broker and the aggregate firm. Claims on the broker are bonds deposited with the broker,

and payments for any shares that have been sold in the past. Claims on the firm consist of

accrued, but unsettled dividend and interest payments. Liabilities to the broker are loans to

cover leveraged long positions in the stock, and stock loans valued at the ask.

We assume that the traders’ claims on the broker yield overnight interest at the same

rate as the bond. We also assume that margin loans (net debt to the broker) are charged at

an additional 2.5% per annum.6

Margin requirements. Margin trading is subject to margin requirements which are set

by regulatory authorities and brokers. An investor holding a portfolio with Bt bonds and St

5This is equivalent to assuming that the traders will honor their obligations to the broker as long as they
are financially able to do so.

6In practice interest on margin loans comes in addition to the call money rate, which is the interest rate
that banks charge to brokers for margin loans to their customers. We do not distinguish between short- and
long-term interest rates and use 2.5% as a proxy for the broker’s cost of providing a margin loan.
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stocks meets the margin requirement Mt provided

Mt|ptSt| ≤ Bt + ptSt, (3)

where pt is the bid (ask) price for a trader who is long (short) in the stock, i.e., portfolios

are marked-to-market. Initial margin requirements apply to new positions while existing

positions are subject to lower maintenance requirements. In the U.S., the Federal Reserve

Board (Regulation T) regulates initial margin requirements which have been set at 50% since

1974. Maintenance margin requirements are regulated by the Financial Industry Regulatory

Authority (FINRA) and the stock exchanges. They currently require a margin of at least

25%, but most brokers have stricter house requirements, typically 30-35%. If a trader’s equity

ratio in a margin account falls below the initial margin requirement, the account becomes

restricted and the broker is not allowed to increase lending. A trader with a restricted margin

account can only place orders that will increase her equity ratio, i.e., buying (selling) stocks

if short (leveraged long). We impose initial and maintenance margin requirements of 50%

and 33%, respectively. Under a short-sale ban, leveraged long positions are allowed subject

to fulfillment of these requirements. If all margin trade is banned, investors cannot be short

in either stocks or bonds.

Circuit breakers and pre-trade risk management. Most exchanges use circuit

breakers to halt trading in response to large intraday market-wide declines in security prices.

After a halt, trading is usually restarted with a call auction. We simplify by restricting the

price range of submitted limit orders to the current market price ±10%. Similar mechanisms

are used by futures market operators such as CME. We also impose a maximal order size

amounting to 1% of the total number of shares outstanding.

Transaction tax. A tax of 10 basis points on the value of a transaction can be levied

on the buyer of a financial asset. The tax is paid by buyers of stock as well as bonds.

Clearinghouse. Settlement of trades and overnight payments of dividend and interest
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are handled by a clearinghouse. A portfolio (Bt, St) held at the end of a trading day receives

the amount

r Bt + (et − rd)St − bfLt, (4)

where et − rd is the net income per share, r the overnight interest rate, bf the broker fee,

and Lt the trader’s margin loan. We assume that a margin loan agreement must cover the

trader’s current leverage with the addition of any that would result from the execution of

some standing limit order with positive or negative quantity Qt. The effective margin loan

is

Lt = −min{0, ptSt, pt(St +Qt), Bt, Bt − ptQt}.

The clearinghouse assumes all counter-party risk in return for receiving all broker fees

for margin trades. It also honors any claims against bankrupt traders. An investor holding

a portfolio with negative market value at the time of his arrival at the market is declared

bankrupt and his holdings are transferred to the clearinghouse. Portfolios of investors who

exit (enter) the market are also transferred to (from) the inventory of the clearinghouse. The

clearinghouse reduces its net holdings of stocks and bonds at a rate of 1% per day through

positive or negative transfers to investors at the end of each trading day. The amounts

transferred are proportional to the net wealth of each investor. Clearinghouse transfers rep-

resent primary market transactions. By modeling bankruptcies and other large transactions

as clearinghouse transfers, we avoid contaminating the order flow with transactions that are

usually processed in the primary market.

Investors. There are finitely many investors, indexed i = 1, ..., N . Investors will also be

referred to as ‘traders,’ ‘funds’ or ‘fund managers,’ depending on the context. Each investor

has a strategy which determines her current limit order, i.e., a price-quantity pair, as a

function of the information available at the time of order submission. Trading strategies are

implemented as computer programs.7 A trader’s information comprises knowledge about the

7Each program consists of a list of at most 128 instructions, implemented in machine code. Each instruc-
tion specifies an operator and one or two operands. Operators consist of +, -, /, ×, maximum, minimum,
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order book (bid, ask, and the quantities available at these prices), the net present value of

a share, changes in the stock mid price and NPV during the last 24 hours, current portfolio

holdings, and state of the margin account.

Order submission. A trading day is divided into N time periods. In each time period, a

randomly selected trader arrives at the market. The broker first verifies whether the trader’s

current portfolio meets the maintenance margin requirement and, if not, enforces compliance

by submitting a margin call. A margin call is modeled as a market order with a quantity

that is large enough for the trader’s post-trade portfolio to fulfill the maintenance margin

ratio. If the trader receives no margin call, he can submit an order to the book. The order

is derived from the trader’s strategy, with real numbers being rounded to the nearest price

tick and lot size. Positive and negative quantities are interpreted as buy and sell orders,

respectively. A valid order is submitted as is and cancels any standing order by the trader.

A trader’s strategy can produce invalid orders, i.e., orders that fail to comply with the

margin restrictions, or orders that are meaningless. A margin violation occurs if execution

of an order would cause the trader’s margin account to become restricted, or if already

restricted, would further reduce the trader’s equity ratio. Meaningless orders are orders

whose price or quantity is not a proper real number, e.g., as a result of division by zero.

Invalid orders are dealt with by liquidating the leveraged part of a trader’s portfolio, as a

proxy for a broker’s action to prevent potential losses on clients with erratic behavior.

Solution algorithm. The model is solved using a genetic programming algorithm with

tournament selection (Koza 1992).8 The model solution stage, which precedes the period

where data are collected, consists of 15 million trading days. At the end of every trading

day, there are four tournaments where underperforming fund managers are replaced by new

change sign, variable manipulations swap, copy, program-flow instructions, if, goto, and conditional state-
ments <, >, ≤, ≥, =, 6=. Operands consist of 10 input variables, 4 temporary variables and 213 numerical
constants. When a program executes, the temporary variables are initialized to pre-defined values and the
instructions are performed in order. The trader’s quote (a price and a quantity) is determined by the values
of the first two temporary variables after the program has executed.

8This approach is an extension of genetic algorithms that have been used to study models in financial
economics that are not analytically tractable, see, e.g., Arifovic (1996), Lensberg & Schenk-Hoppé (2007),
and Noe, Rebello & Wang (2003, 2006).
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entrants who either follow investment strategies that performed well in the past or random

modifications of those strategies.

In each tournament eight fund managers are randomly chosen from the population and

ranked according to wealth under management. The strategies of the two fund managers

with the lowest rank are replaced by copies of the strategies of the two with the highest

rank. The copied strategies are then exposed to crossover and mutation.9 The clearinghouse

receives the holdings of terminated funds, and endows new funds with 20% of the average

portfolio.

3.2 Calibration and data set

The benchmark scenario is calibrated with the current U.S. margin requirements and no

financial transaction tax. Parameter values are either derived from empirical observations or

chosen to give results consistent with historical averages and stylized facts. This is done by

first calibrating the earnings process to capture those features that are related to business

cycles, and the short-term variations that arise due to earnings surprises. We then simulate

the model for a range of values of debt per share, and choose that which yields a mean

equity ratio closest to the 60% long-run average of S&P 500 companies. Table 1 provides

the main parameter values and details of their calibration. The parameter values of the

calibrated model are retained in the other regulatory scenarios except for changes in margin

requirements and taxation.

Convergence of the model is checked by testing for a structural break in the relationship

between the risk premium and the NPV of the stock on data collected from the last 3 million

days of the model solution stage. The risk premium is defined as 1− p/NPV. Table 2 shows

no evidence of any structural break in these time series after 12 million trading days.

Weak-form market efficiency is tested using autocorrelations of daily log returns on data

from the converged model. Figure 1 shows that the autocorrelations are small and generally

9A crossover swaps randomly selected sublists of instructions between two programs, and a mutation
replaces one operation or operand in a program by a randomly generated one.
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insignificant in all scenarios, except under a transaction tax. In the tax scenario, statistically

significant autocorrelations below 2% are observed for lags up to 6 days. This yields a

predictable price change from one day to the next which is less than 2 basis points (2% of

1% daily volatility), too small to compensate for the transaction tax. We conclude that the

market is weakly efficient after 15 million trading days in all four scenarios.

The data set comprises time series of all investors’ orders and portfolio holdings, the order

book, and information about prices, earnings and NPV. It contains 200 independent time

series over 10,000 trading days for each scenario, starting at day 15 million. Realizations

of the earnings process differ between runs, but are identical across all regulatory scenarios

for each run, which allows paired statistical tests on daily data relative to the benchmark.

Table 3 contains summary statistics for key variables across the full data set of 8 million

observations.

Table 3 shows that the NPV of the stock varies between 8.8 and 27, while the range of

stock prices is much wider and includes the bounds 1 and 100 of the feasible set. A bound

is hit when one side of the order book is empty. The number of such instances equals the

number of missing observations for quantities at the bid and ask: 8 days with an empty buy

book at the close, and 13 days with an empty sell book. These 21 instances occurred in

the benchmark scenario of the model during 4 periods of extreme price fluctuations which

lasted 16 days on average. There are large variations in the risk premium of the stock, and

episodes with negative premia.

4 Results

This section presents quantitative results on the equilibrium effects of leverage constraints

and transaction taxes using data on portfolio holdings, order flow, liquidity, cost of capital,

price discovery, short-term volatility and long-term price dynamics.
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4.1 Investor behavior

Specialization is a prerequisite for success in the market for portfolio management services.

Fund managers therefore face a number of strategic choices. The most important ones

concern investment style (product differentiation) and strategy implementation (trading and

risk management). The complexity and variety in the investment styles of fund managers

pose a challenge in forecasting the impact of regulatory reform. The 2008 short-sale ban, for

instance, disrupted the business models of many financial firms that decried the measure as

counterproductive to its aims. The Coalition of Private Investment Companies’s letter to the

SEC in 2011 provides an insightful account of the industry’s sentiment and its opposition to

current regulatory proposals.10 In this section, we explore the variation in investor behavior

across different regulatory scenarios. Our analysis shows that regulation has a profound

impact on trading strategies, while portfolio holdings and other facets of style are affected

to a lesser extent.

In markets with delegated fund management passive investment in the market portfolio

offers two main advantages: Returns in line with the market average, and low transaction

costs. Returns in line with the market average ensure low volatility of the fund manager’s

relative performance, which reduces the risk of client attrition. Table 4 shows that in all

regulatory scenarios some 40-50% of total wealth is managed by funds that invest in the

market portfolio, while wealth held in leveraged positions (short and long) amounts to less

than 10%. This pattern is reversed with respect to trading activity. Table 5 shows that funds

holding leveraged positions trade five to seven times more per dollar under management than

the average fund, while those who hold the market portfolio trade less than half the average

volume. Funds holding the market portfolio thus have the traits of passive investors, while

those who hold leveraged positions are active portfolio managers.

The transaction tax raises the cost of active portfolio management and provides investors

with additional incentives to pursue passive investment strategies. As a result, in this sce-

10http://www.sec.gov/comments/4-627/4627-139.pdf
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nario more than 50% of total wealth is invested in the market portfolio. The effects of

leverage restrictions on wealth invested in the market portfolio are not significant, but the

market portfolio seems to attract more investors when a short-sale ban is extended to a full

leverage ban.

Table 4 shows that a transaction tax does not discourage leverage, contrary to suggestions

made by its proponents. Wealth in short positions actually increases, although by less than

one percentage point, and wealth in leveraged long positions decreases by a similar amount.

Consequently, wealth managed by all leveraged funds is barely changed relative to the 9%

benchmark level. A short-sale ban increases wealth in leveraged long positions by about one

half, but reduces overall leverage from 9% to 7.5%. Relative to the benchmark, a leverage

ban generates a 60% increase in the wealth invested in portfolios that are long in one asset

only. Although margin restrictions curb leveraged risk-taking, neither margin restrictions

nor transaction taxes seem to dampen the investors’ appetite for risk.

To explore the effects of regulation on investment styles, we collect data for individual

traders on portfolio holdings, trading activity and sensitivity to information, and carry out

a factor analysis for each scenario. The estimated models are structurally identical across

scenarios and individual factors can be interpreted in terms of real-world trading styles. We

examine the relative importance of these trading styles across scenarios, and find significant

differences related to information acquisition and investment horizon.

Data for the factor analyses are obtained by randomly selecting one executed order for

each scenario, run and day. This yields a total of 4 × 200 × 10,000 = 8 million orders. For

each order, we compute values for the 12 variables listed in Table 6. The first four variables

represent trader size, trade volume relative to managed wealth, order type (limit or market

order) and the distance of the trader’s portfolio from the market portfolio. The remaining

eight variables represent the sensitivity of the trader’s decision function to information. For

each information variable xj, an indicator variable is set to 1 if a change in xj alters the
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quoted price by at least one tick or the order quantity by at least one lot.11 Vectors of

indicator variables are divided by their sum (if positive) to obtain a measure of the extent

to which the trade was based on selective information. Sensitivities to order book quantities

are excluded to avoid multi-collinearity, and all variables are standardized by run to control

for run level fixed effects.

To select the number of factors for the models, we compute eigenvalues from correlation

matrices for the variables and include factors corresponding to eigenvalues greater than 1.

Like other criteria for factor model selection, this one is vulnerable to sampling error. We deal

with this problem by computing distributions for the eigenvalues with data from each of the

200 independent runs for each scenario. Figure 2 provides box plots of these distributions for

the five largest eigenvalues. In each scenario, only the first three eigenvalues are consistently

greater than 1.

Table 6 contains the results of estimating a three-factor model for each of the four sce-

narios. The factors are ordered by explained variance, except for the taxation case, where

factors F2 and F3 are swapped to facilitate comparison with the other scenarios. White and

black circles areas represent positive and negative factor loadings, respectively.

Factor F2 distinguishes between two types of informed traders.12 It assigns positive scores

to traders who are sensitive to information on prices and net present values, and negative

scores to traders who are sensitive to daily changes in those variables. Positive scores are

representative of value traders, and negative scores typify news traders and arbitrageurs.

Factor F1 distinguishes between two types of uninformed traders. It scores positive for

traders who are sensitive to the bid-ask spread and prefer limit to market orders. These

characteristics are representative of market makers and other specialized liquidity suppliers.

Negative scores are obtained by traders who pay attention to their portfolio position and the

11For example, sensitivity to the price level is measured by considering two parallel shifts of ±1% in the
bid and ask, and sensitivity to the bid-ask spread is measured by widening and narrowing the spread by at
most 4 ticks through mean preserving changes in the bid and ask while maintaining a minimum spread of 1
tick.

12Informed traders are traders who can form rational beliefs about asset mispricing. As a proxy we check
whether a trader’s order is sensitive to the stock price and NPV or to changes in both variables.
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net present value of the stock, but who are insensitive to price information. These traders

appear to be involved in carry trades or other cyclical strategies. Factor F3 is a size factor

which scores positive for large traders who hold positions close to the market portfolio, and

negative for small traders who hold extreme positions and submit large orders relative to

their equity.

We next examine whether the distribution of these styles varies across scenarios, Table 7.

Styles are represented by proxy variables for liquidity suppliers, value traders, news traders

and informed traders (news or value traders) on the raw data of Table 6.

Style distributions are qualitatively similar across scenarios except for a few notable differ-

ences relative to the base case: (i) Informed traders are underrepresented in the tax scenario;

and (ii) the ratio of news traders to value traders is substantially higher in the tax scenario

and lower in the scenario with a leverage ban. The first result supports Stiglitz’s (1989)

hypothesis that a transaction tax will reduce effort spent on information acquisition, but

the second one disagrees with his conjecture that it could redirect investors’ focus towards

the long term and discourage short-term speculative trading. The results in Table 7 suggest

that a full leverage ban would advance that goal, but that a short-sale ban would have the

opposite effect.

4.2 Liquidity

Liquid markets offer investors the opportunity to trade large volumes at low cost whenever

they want to trade. When liquidity dries up the consequences can be disastrous as evidenced

by the fall of Long-Term Capital Management and other hedge funds in 1998 (Brunnermeier

& Pedersen 2009). Transaction taxes generally reduce liquidity because trading becomes

more costly. Sweden’s painful experience with the effect of high transaction taxes in the

late 1980s and early 1990s is a case in point. Now as then, proponents of the tax argue

that low trading volume is a benefit as it discourages ‘socially worthless activities’ by clever
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and overpaid people.13 There is also the, less commonly shared, view that frequent traders

are net liquidity takers and therefore by curtailing their activities with a tax, liquidity may

actually improve.

We analyze the net liquidity supply of different groups of investors, and provide results

on order book properties and transaction costs. Table 8 contains information on net liquidity

supply. Traders are classified by portfolio positions at the time of order submission, and net

liquidity supply is measured as the difference between daily limit order and market order

volume.14 The executed volume of each order is attributed by equal parts to the trader’s

portfolio position at the time of the current and next order submission. In the base scenario,

active investors demand liquidity and passive ones supply it. This pattern is enhanced

when a transaction tax is imposed, contrary to arguments put forward by its proponents.

Restriction of margin trade fundamentally alters the pattern of net liquidity supply. Table 8

reveals that under a short-sale ban the largest suppliers of liquidity are active traders who

are constrained to holding all-bond portfolios. This effect disappears when the short-sale

ban is extended to a full leverage ban because it hurts the customer base of market makers

by eliminating all leveraged speculation.

Table 9 contains results on market liquidity measured by the bid-ask spread, market

impact, order book depth and trading activity. The market impact of a buy (sell) order

is the absolute difference between the current ask (bid) and the volume-weighted execution

price. Endogenous market impact is computed across all executed orders, and order book

depth is the market impact of a large order (0.2% of the benchmark trade volume), computed

from the state of the book at the close of every trading day.

The base scenario is characterized by high liquidity with a low quoted spread of about

10 basis points and an endogenous market impact of only 1 basis point. The effects of the

13See Section 2.1.1 in Campbell & Froot (1994) for more details on these comments and the Swedish
experience.

14For every order that is executed in full or part, the quantity that is executed against standing limit
orders is classified as a market order, and any quantity that is executed against incoming market orders is
classified as a limit order.
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regulatory scenarios on the quoted bid-ask spread and endogenous market impact are small,

except in the tax scenario where the spread is twice as high as in the benchmark scenario and

market impact is five times larger. The effects on order book depth are more pronounced.

A short-sale ban increases the market impact of the large order by 60%, and in the leverage

ban and tax scenarios, the market impact is about four times larger.

Trade frequency, order size and trade volume are highest in the base scenario, Table 9.

A short-sale ban reduces trade volume to about 50% of the benchmark level, and a leverage

ban cuts it down to 10%. The transaction tax, despite being only 10 basis points, reduces

the trade volume to 20% of the benchmark level. Differences in trade volumes are mainly

due to differences in order sizes, except in the leverage ban scenario where a small order size

is accompanied by a very low trade frequency.

The net effects of differences in liquidity on trading costs are shown in Table 9. Round-

trip cost is the average cost incurred by a trader who uses market orders to open and close

a position. It amounts to two times the 10 basis point tax plus the effective spread (bid-ask

spread plus two times the average market impact). Relative to the base scenario, a short-

sale ban reduces the round-trip cost by a marginal amount, while a leverage ban leads to

a moderate increase. In contrast, the transaction tax increases the round-trip cost from 12

to 51 bp, of which 20 bp are directly related to the tax. The remaining 19 bp are due to a

higher effective spread. This implies that 97.5% of the transaction tax falls on the liquidity

takers. To see this, consider a round-trip involving an impatient trader and a market maker.

Their transactions generate a tax bill of 20 bp to each party. In addition, the trader pays

the market maker 19 bp as a result of the increased effective spread. This amount almost

covers the tax bill of the market maker, except for a 1 bp reduction in profits.

The negative impact of the short-sale ban on trade volume and trading activity are con-

sistent with the empirical evidence from the 2008 short-sale ban. However, the dramatic

increase in the transaction costs of banned stocks reported by Boehmer et al. (2009) is not

observed as an equilibrium effect in the model. This suggests that some of the empirical

22



results on short-sale bans may be due to short-run effects which are not equilibrium phe-

nomena.

The 2008 U.S. short-sale ban differs from the ban considered in our model in three main

respects: (1) The ban was an emergency action taken in response to a severe decline in

the market values of financial stocks; (2) the announcement marked an unexpected and

temporary shift in the regulatory regime; and (3) during the 15 trading days the ban was

imposed, prices of banned stocks continued to fall along with the overall market.

To assess the short-term effects of a temporary short-sale ban, we carried out a controlled

experiment in a similar market situation within our modeling framework. From each sim-

ulation run, a period of market distress is selected that resembles the situation of the 2008

short-sale ban. This is done by choosing a period of 1 year and 15 days from each run of

the base case as follows: For all periods, percentage declines in NPV over the first year and

the subsequent 15 days are calculated separately, and the period with the largest product

of the two percentage declines is selected. The last 15 days become the intra-ban period for

the experiment. Data are collected from 200 runs on time paths for the earnings process

identical to those of the base case, but with a temporary short-sale ban in place during each

intra-ban period.

During the simulated 15-day ban, percentage volume-weighted spreads and endogenous

market impact increase by 90% and 146% relative to the base case, while trade volume and

the number of trades decrease by 22% and 18%, respectively. On day 15 of the ban, the stock

price is up 9.4% relative to the base case. This is in line with the findings of Harris et al.

(2009), who estimate a 10-12% price increase during the 2008 ban. Differences in stock prices

and trading activity between the two scenarios increase throughout the temporary ban, but

systematic differences in spreads and market impact disappear halfway through the ban.

These findings suggest that lower trading activity is a permanent effect of a short-sale ban,

while higher transaction costs are a temporary phenomenon associated with an unexpected

change in the regulatory regime.
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4.3 Market dynamics and the business cycle

The effect of regulation on long-term market movements is influenced by the governance

structures in the portfolio management industry. Under delegated fund management, the

principal-agent relationship between investors and fund managers relies on past performance

as a proxy for unobservable skill, see e.g., Shleifer & Vishny (1997). This will induce short-

sellers to increase their positions during downturns and decrease them during upturns, as

observed by Lamont & Stein (2004). Short-sale bans could therefore benefit long-term market

stability. In contrast, transaction taxes impact the order flow by raising the cost of trading,

but have no direct effect on the cost of portfolio holdings. Their effect on long swings in

asset prices is therefore less clear.

We find that leverage restrictions dampen long swings in asset prices by preventing bear

runs during recessions, while a transaction tax has no effect. The peak-to-trough variable

in Table 10 measures the amplitude of price movements over business cycles as the mean

percentage decline in the stock price from a peak in an expansion to the trough in the

subsequent recession. In the benchmark scenario, the mean peak-to-trough decline across 687

business cycles is 43.1%. Both types of leverage restrictions have a dampening effect on long-

term price movements. A short-sale ban reduces the mean decline by 3.5 percentage points

to 39.6%, and a leverage ban reduces it by 4.8 percentage points to 38.3%. A transaction

tax, on the other hand, has no significant effect.

Second, leverage restrictions dampen long swings by supporting stock prices during re-

cessions. Variables ‘High’ and ‘Low’ in Table 10 are the means of maximal and minimal

stock prices across 200 40-year periods, and ‘Range’ is the difference between ‘High’ and

‘Low.’ While the high mean does not differ significantly across scenarios, the low mean is

15% higher in the two scenarios with a short-sale ban. The range is narrower under a full

leverage ban, but is not significantly different in the other three scenarios. Differences in

long swings reflect differences in the cyclicality of risk premia, Table 11. The risk premium

on the stock moves counter-cyclically in all scenarios, but less so in the two scenarios with a
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short-sale ban.

Third, leverage restrictions support stock prices during recessions by eliminating down-

ward price pressure from counter-cyclical short-selling. Table 11 shows that short interest is

strongly counter-cyclical in the base and tax scenarios, with short positions increasing during

downturns and decreasing during upturns. This is consistent with Lamont & Stein’s (2004)

observation that short interest moved counter-cyclically during the dot-com bubble.

Fourth, counter-cyclical short-selling is a consequence of delegated fund management, as

predicted by Shleifer & Vishny (1997). Short sellers experience capital losses during upturns,

and negative profits during booms when dividends are high. Their poor performance leads

to a further reduction of wealth under management as clients withdraw funds. In downturns,

capital gains are positive, and short sellers continue to perform well throughout the recession

when dividends are consistently low. The good performance leads to an inflow of funds to

short sellers which, in turn, allows them to take on larger positions.

In recessions, a short position is effectively a bet on high rates of bankruptcies among

companies in the real economy. A short position generates a positive cash flow at the time

of sale and, if the company is bankrupt, clears the short position at no cost. Leveraged long

positions are different because borrowed bonds have to be repaid in full. Consequently, the

incentives to hold leveraged long positions during booms are weaker than the incentives to

hold short positions during busts. This difference in incentives explains the differences in

cyclicality between short interest and long leverage in the base and tax scenarios of Table 11.

We conclude that leverage restrictions dampen long swings in asset prices by preventing

bear runs caused by short sellers who speculate on financial distress of companies in the real

economy. The transaction tax has no beneficial effect on long term price swings because it

does not alter the incentives to hold leveraged positions.

25



4.4 Pricing and price discovery

This section is concerned with the effect of regulation on the level and information content

of stock prices. From a macroeconomic perspective, higher stock prices reduce the cost of

capital which promotes growth. Consequently, regulatory reform can improve welfare if it

increases stock prices by reducing price fluctuations or by increasing the demand for stocks in

other ways. On the micro level, efficient capital allocation relies on informationally efficient

prices. Measuring the effect of regulation on price discovery, however, is a non-trivial task as

fundamental values are usually unknown. Even when this is not the case, regulatory reforms

may have confounding effects on price dynamics. Such effects can arise through changes in

trading patterns when a short-sale ban is introduced, as suggested by the Wall Street wisdom

that short-selling is good, rather than bad news as current sell pressure means future buy

pressure.

We find that stock prices are highest under the short-sale ban and lowest in the base

and tax scenarios, Table 12. The major part of these differences can be accounted for by

volatility which is highest in the base scenario, slightly lower in the tax scenario, and much

lower in the two scenarios with leverage restrictions. Lower volatility under the short-sale

ban is in line with the empirical findings of Chang, Cheng & Yu (2012). However, while a

short-sale ban increases the equilibrium price level by 7% in our model, a full leverage ban

increases it by only 5%, despite lower volatility in the leverage ban scenario. We attribute

the high stock price in the short-sale ban scenario to Miller’s (1977) result on overvaluation

in markets with diverging opinions and short-sale constraints.

Empirical studies show that transaction taxes lower asset prices (Bond et al. 2004, Schwert

& Seguin 1993). In our model, the tax has no effect on prices, because it is applied to both

assets. This observation lends support to a point made by the proponents of a transaction

tax. If the tax is introduced, it should be global and uniform to cover all assets classes.

Otherwise distortions may occur and the cost of capital is raised for issuers of taxed versus

non-taxed assets.
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Price reactions to news can be measured by considering the impact of actual news events,

e.g., Vega (2006) or the amount of idiosyncratic risk reflected in stock prices, as suggested

by Mørck, Yeung & Yu (2000). We combine the two approaches by applying the statistical

measures of Bris et al. (2007) to actual news events. The efficiency of the price discovery

process is measured as the R2 in regressions of daily log stock returns on daily log innovations

to NPV. To test for asymmetric price efficiency with respect to good and bad news, we

compute upside (downside) R2 in the same way for days with an increasing (decreasing)

NPV. R2 and the difference between downside and upside R2 are reported in Table 12.

Price efficiency is generally high, with an R2 of 87% in the benchmark scenario. It is

worst under a transaction tax (83%), and best in the two scenarios with leverage restrictions

(94%). Inferior price discovery in the tax scenario is due in part to higher transaction costs

which generate larger hysteresis in the traders’ response to information, as predicted by

Constantinides (1986). Superior price discovery under the short-sale ban is at odds with the

empirical findings of Bris et al. (2007), but consistent with Chang, Cheng & Yu (2012) and

Chang, Luo & Ren (2012). Their data source is similar to ours in the sense that it comes

close to being a controlled experiment.

Downside-minus-upside R2 is positive across all scenarios, indicating that the markets di-

gest bad news more efficiently than good news. Empirical studies based on earnings surprises

(Vega 2006) find the same asymmetric effect, while studies based on idiosyncratic risk (Bris

et al. 2007) find the opposite. Downside-minus-upside R2 is smallest in the short-sale ban

scenario. This is consistent with Diamond & Verrecchia’s (1987) prediction that short-sale

restrictions can impede price discovery in response to bad news by preventing short sellers

from acting on private information. However, downside-minus-upside R2 is only slightly

higher under a full leverage ban, which suggests that additional effects are present.

We find that price discovery is adversely affected by bear runs (Section 4.3) and short

squeezes.15 Table 13 provides details on the behavior of margin traders during extreme

15Surges in stock prices caused by short squeezes are not uncommon. An illustrative example is provided
in the Wall Street Journal, ‘The Jury’s In: Yelp’s Surge Is a ’Short Squeeze’,’ August 29, 2012. Short sellers’
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events, defined for each run as the 5-day period which maximizes the absolute log return on

the stock. For each extreme event, we collect information about changes in the log stock

price ∆p, short interest ∆SI, and long leverage ∆LL. We also compute net margin trade

∆(LL−SI). All variables are normalized by their respective standard deviations computed

by run on the full samples. The table contains conditional means and medians for each

variable during crashes (∆p < 0) and bubbles (∆p > 0).

We first observe that that bubbles are relatively more frequent when short-selling is

allowed. The ratio of bubbles to crashes is 2:3 in the base and tax scenarios and only 2:7 in

the scenario with a short-sale ban. When short-selling is allowed, crashes and bubbles are

associated with destabilizing bear runs and short squeezes, respectively. Short traders sell

stock at a mean rate of 5.5 standard deviations during crashes and buy twice as much during

bubbles. Traders with leveraged long positions act as contrarians, but their reaction is less

extreme and more symmetric. Asymmetric margin trade is partly due to forced liquidations

triggered by margin calls. In the base scenario, net margin trade is destabilizing and highly

asymmetric at mean rates of 9 and -2.5 standard deviations during bubbles and crashes,

respectively. In the tax scenario, the pattern is the same, but more pronounced. Under the

short-sale ban, net margin trade is stabilizing and relatively symmetric at mean rates of about

±4 standard deviations. Stock price movements during extreme events reflect differences in

margin trade activity. During crashes, mean absolute returns do not differ significantly

across scenarios. During bubbles, however, mean absolute returns are significantly higher in

the scenarios where short-selling is allowed.

In the base and tax scenarios, the destabilizing effect of margin trade distorts the associ-

ation of returns with innovations to NPV, and the asymmetric effect blurs the relationship

between returns and positive innovations to NPV. The former leads to higher kurtosis and

lower price efficiency in terms of R2, and the latter to less negative skewness16 and higher

predicament after a sudden price increase of 25% was cogently summarized by the co-head of trading at First
New York Securities, Seth Setrakian, who is quoted “The shorts got caught with their pants down today,
plain and simple.”

16Absent any asymmetric effects of trading, daily stock returns will display negative skewness because the
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downside-minus-upside R2 (Table 12).

To quantify the effect of the short-sale ban on the price efficiency measure during extreme

events, we computed downside R2 and upside R2 after removing the 10 most extreme events

from each run in the base and short-sale ban scenarios. Downside and upside R2 increase

in both scenarios, but the effect is one order of magnitude larger in the base case. In both

scenarios, upside R2 increases three times more than downside R2. As a result, the difference

in downside-minus-upside R2 is reduced from 0.029 (Table 12) to 0.016. This implies that

our estimate of the negative effect of the short-sale ban on price discovery in response to

bad news is biased upwards by more than 80%. More generally, this analysis shows that

regulatory reforms can have spurious effects on standard measures of price discovery,17 and

that these effects can sometimes be identified by examining differences in price dynamics

during extreme events.

5 Conclusion

Financial stability is high on the agenda of politicians and regulators. Several measures

have been proposed to deal with the recent crises, but quantitative knowledge about their

long-term implications is scarce. Our paper attempts to fill this gap by introducing a new

methodology to quantify the effects of regulatory reform in an equilibrium model with market

microstructure. We apply this methodology to measure the effects of leverage restrictions

and financial transaction taxes on market quality and financial stability. The approach

enables a detailed analysis of the dynamic equilibrium of portfolio choice, trading activity,

market quality and price dynamics under the different regulatory measures.

We find that a short-sale ban reduces both short-term volatility and long swings in asset

prices which positively impacts price discovery and lowers the cost of capital. There is no

adverse effect on transaction costs but liquidity is worse in terms of trade volume and order

skewness of daily innovations to NPV is negative at -0.18. Negative skewness in NPV is due to negative
skewness in the Bayesian state probability, which has a median close to 1 and a fat left tail (Table 1).

17A similar point is made by Chang, Cheng & Yu (2012).
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book depth. A leverage ban enhances the positive effects of the short-sale ban on market

stability, but liquidity is very poor, and the cost of capital is higher. A financial transaction

tax has a negative impact on liquidity and price discovery, but no significant effect on long

swings in asset prices. While most studies of short-sale bans have focused on their ability to

limit extreme declines in asset prices, our findings suggest that their ability to limit extreme

price increases can be as important for short-run market stability.

Our analysis suggests some new hypotheses for empirical investigation: (1) Introduction

of a short-sale ban has a permanent effect on stock prices and trading activity, but only a

temporary effect on transaction costs; and (2) Evidence of inferior price discovery related

to negative information about stocks subject to a short-sale ban can be accounted for by

asymmetric price dynamics during extreme events.

The model can be extended in several directions to address further open issues. The

effect of regulatory discrimination between asset classes can be explored by introducing cash

as a medium of exchange and trading different assets against cash on separate order books.

Other regulatory measures, such as uptick rules, can be studied in the present version of

the model, and circuit breakers can be analyzed by adding a call auction mechanism. This

approach can also be used to guide decisions on the choice between continuous trading and

repeated call auctions in markets for illiquid assets.
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Figure 1: Autocorrelations in daily log returns. For each scenario, data are collected from
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Table 2: Convergence of price process. We test for a structural break in the relationship of
the risk premium of the stock, πt := 1−pt/NPVt, to the expected net present value of future
dividends, NPVt, towards the end of the 15 million trading days of the model solution stage.
For each one of 200 independent model runs for each scenario, we collect one observation
at the close of every 10,000th trading day during the last 3 million trading days for that
run. For each run, we split the resulting sample of size 300, and use the first and last 100
observations for the test. This yields a total of 200 × 200 = 40,000 observations for each
scenario. Letting Dt be a dummy variable that is 0 in the first half of the sample and 1 for
the second half, we estimate the model 100 πt = α1 + β1NPVt +Dt(α2 + β2NPVt) + εt with
AR(1) disturbances and GLS. A Chow test is used to test the null hypothesis H0 that the
coefficients α2 and β2 are jointly zero. P-values are shown in parentheses.

Base case No short No leverage Taxation

α1 60.088 48.244 46.597 56.832
(0.000) (0.000) (0.000) (0.000)

β1 −1.735 −1.427 −1.250 −1.619
(0.000) (0.000) (0.000) (0.000)

α2 0.109 0.385 −0.177 0.699
(0.785) (0.301) (0.615) (0.060)

β2 0.006 −0.027 0.003 −0.028
(0.753) (0.092) (0.843) (0.090)

H0 : α2 = β2 = 0
F (1, 39996) 0.089 1.000 0.265 3.541
P-value (0.765) (0.317) (0.607) (0.060)
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Table 4: Distribution of wealth under management by investors’ portfolio position. Let
(α, β) := (S/S, B/B) for a portfolio with S stocks and B bonds, where (S,B) is the current
number of stocks and bonds outstanding. If α+β > 0, we define λ = α/(α+β) and classify
the portfolio as Short if λ < −0.05; All bond if −0.05 ≤ λ < 0.05; Overweight bond if
0.05 ≤ λ < 0.35; Market portfolio if 0.35 ≤ λ < 0.65; Overweight stock if 0.65 ≤ λ < 0.95;
All stock if 0.95 ≤ λ < 1.05; and Leveraged long if λ ≥ 1.05. If α + β ≤ 0, the portfolio
is classified as Short if α < 0, and as Leveraged long if β < 0. Investors with portfolios
such that α ≤ 0 and β ≤ 0 are bankrupt and excluded from the classification. For each
trading day, we compute a histogram w() on the bins of this classification, where w(P ) is the
percentage of total wealth managed by investors in portfolio position P . These histograms
are aggregated by run. The entries in the table are the mean values of w(P ) for each scenario
and portfolio position. For the base case, the p-values in parentheses refer to one-sample
t-tests of zero means. For the other scenarios, they refer to paired t-tests of differences in
means between that scenario and the base case. The number of observations is 200 in each
scenario.

Position Base case No short No leverage Taxation

Short 4.06 4.62
(0.000) (0.000)

All bond 2.49 6.35 10.47 1.12
(0.000) (0.000) (0.000) (0.000)

Overweight bond 13.39 29.09 11.75 9.69
(0.000) (0.000) (0.028) (0.000)

Market portfolio 45.14 42.49 47.35 53.15
(0.000) (0.074) (0.115) (0.000)

Overweight stock 24.32 10.76 13.43 23.16
(0.000) (0.000) (0.000) (0.261)

All stock 5.46 3.83 17.00 3.90
(0.000) (0.001) (0.000) (0.000)

Leveraged long 5.10 7.48 4.34
(0.000) (0.000) (0.000)
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Table 5: Trading activity by investors’ portfolio positions. Trading activity τ(P ) is defined
as the ratio of trading volume per unit of wealth under management by investors in position
P , relative to the average across all investors. The percentage of total trade volume by
investors in position P , v(P ), is calculated on the same bins as w(P ) in Table 4. Trading
activity is given by τ(P ) = v(P )/w(P ). Investors with trading activity above (below) 1 have
a larger (smaller) trading volume than the average investor per unit of wealth. P-values in
parentheses are calculated as in Table 4. The number of observations is 200 in each scenario.

Position Base case No short No leverage Taxation

Short 5.33 6.26
(0.000) (0.000)

All bond 6.63 3.75 2.25 12.78
(0.000) (0.000) (0.000) (0.000)

Overweight bond 1.41 1.06 2.44 1.67
(0.000) (0.000) (0.000) (0.005)

Market portfolio 0.39 0.49 0.52 0.32
(0.000) (0.000) (0.000) (0.000)

Overweight stock 0.48 1.29 1.60 0.46
(0.000) (0.000) (0.000) (0.537)

All stock 2.42 4.99 1.55 3.92
(0.000) (0.000) (0.000) (0.000)

Leveraged long 5.24 3.96 6.72
(0.000) (0.000) (0.000)
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Table 6: Factor analysis of trading styles. The data consist of a random sample of two million
executed trades from each scenario. Variables B1-B4 represent trader characteristics and behavior,
including a limit order dummy (B3) and a measure of the distance of the trader’s portfolio from the
market portfolio (B4). Variables I1-I8 represent information usage, measured as the sensitivity of
trading decisions to changes in the information available when the order was submitted. Raw data
consist of vectors of indicator variables, where 1 indicates that a change in the relevant variable
changed the quoted price by at least one tick or the order quantity by at least one lot. Vectors
of indicator variables are divided by their sum (if positive) to obtain a measure of the extent to
which the trade was based on selective information. Variables representing order book quantities
are excluded to avoid multi-collinearity, and the data are standardized by run to control for run
level fixed effects. The table shows the results of estimating a three-factor model with maximum
likelihood and varimax rotation for each scenario. White and black circles correspond to positive
and negative factor loadings, respectively, and circle areas represent absolute values. In the tax
scenario, the ordering of factors 2 and 3 is swapped to match their ordering by explained variance
in the other scenarios.

Base case No short No leverage Taxation
No. Variable / Factor F1 F2 F3 F1 F2 F3 F1 F2 F3 F1 F2 F3

B1 Size (log relative wealth)

B2 Relative trade volume

B3 Limit order

B4 Dist. from mkt portfolio

I1 Bid-ask spread

I2 Stock holdings

I3 Bond holdings

I4 Prices

I5 Net present value (NPV)

I6 Price change

I7 Change in NPV
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SS loadings 2.20 1.50 1.49 2.84 1.45 1.38 2.07 1.76 1.24 2.44 1.13 1.41
Proportion Var. 0.18 0.12 0.12 0.24 0.12 0.11 0.17 0.15 0.10 0.20 0.09 0.12
Cumulative Var. 0.18 0.31 0.43 0.24 0.36 0.47 0.17 0.32 0.42 0.20 0.30 0.42
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Table 7: Trading styles. Executed orders are classified by proxy variables for selected styles
identified in Table 6, using the raw data of Table 6. The proxies are defined as T1 =
(B3∧I1)∧¬I5; T2 = (I4∧I5)∧¬(I6∧I7); T3 = (I6∧I7)∧¬(I4∧I5); and T4 = (I4∧I5)∨(I6∧I7).
The table contains means of relative frequencies computed by run for each variable and
scenario. Percentages do not add up to 100 because the classification is neither exhaustive
nor mutually exclusive. P-values in parentheses are calculated as in Table 4. The number of
observations is 200 in each scenario.

No. Variable Base case No short No leverage Taxation

T1 Liquidity suppliers 18.7% 17.1% 16.8% 19.0%
(0.000) (0.091) (0.061) (0.766)

T2 Value traders 24.6% 21.9% 32.4% 16.7%
(0.000) (0.208) (0.001) (0.000)

T3 News traders / arbs. 41.9% 49.6% 36.5% 47.3%
(0.000) (0.000) (0.011) (0.012)

T4 Informed traders 83.3% 85.2% 82.0% 78.2%
(0.000) (0.100) (0.296) (0.000)

Table 8: Net liquidity supply. The data are annual means of daily observations of 100(vL(P )−
vM(P ))/(vL(P ) + vM(P )), where vL(P ) is the limit order volume of all traders moving in
or out of position P , and vM(P ) is the corresponding market order volume. P-values and
classification of portfolio positions as in Table 4. The number of observations is 200 in each
scenario.

Position Base case No short No leverage Taxation

Short -4.28 -14.62
(0.000) (0.000)

All bond -1.51 6.00 -1.48 -5.91
(0.001) (0.000) (0.957) (0.000)

Overweight bond 4.39 4.50 -0.66 10.61
(0.000) (0.847) (0.000) (0.000)

Market portfolio 4.04 4.41 -0.82 11.85
(0.000) (0.500) (0.000) (0.000)

Overweight stock 2.63 2.03 2.91 7.96
(0.000) (0.146) (0.485) (0.000)

All stock -3.44 -7.19 0.06 -5.37
(0.000) (0.000) (0.000) (0.000)

Leveraged long -1.80 -9.73 -4.47
(0.000) (0.000) (0.000)
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Table 9: Liquidity. The data set consists of run means of daily observations of each variable.
For each day, the closing bid and ask are computed as the median bid and ask across the last
50 of 20,000 intraday time steps. The bid-ask spread is the difference between the closing
ask and bid. Market impact is the difference between the current bid (ask) and the average
execution price of a market sell (buy) order. Market impact is calculated as (i) the average
market impact across all market orders submitted during the day (endogenous order size),
and (ii) the average market impact of one large buy order and one large sell order of 50,000
shares submitted at the close. The large order size corresponds to 0.2% of the average daily
trade volume in the base case. In the table, spreads and market impacts are reported in
basis points (bp) relative to the mid price. Average order size on a given day is calculated
as trade volume divided by the number of trades. Days between trades is the average time,
measured in days, between two consecutive trades by the same investor, calculated as the
number of investors (20,000) divided by the number of trades on the given day. Turnover
per day is trade volume divided by the number of shares outstanding (10 million shares).
Round-trip cost is the total cost, including taxes, of buying and selling a volume equal to
the endogenous order size using market orders. P-values in parentheses are calculated as in
Table 4. The number of observations is 200 in each scenario.

Base case No short No leverage Taxation

Bid-ask spread (bp) 10.18 9.60 10.93 20.64
(0.000) (0.059) (0.015) (0.000)

Market impact (bp) 1.07 0.91 1.96 5.26
(endogenous) (0.000) (0.013) (0.000) (0.000)

Market impact (bp) 3.11 5.00 13.14 12.34
(50,000 shares) (0.000) (0.000) (0.000) (0.000)

Average order size 6,067 3,330 2,012 1,980
(number of shares) (0.000) (0.000) (0.000) (0.000)

Days between trades 5.23 6.21 17.73 8.95
(0.000) (0.000) (0.000) (0.000)

Turnover per day 2.46% 1.15% 0.24% 0.49%
(0.000) (0.000) (0.000) (0.000)

Round-trip cost (bp) 12.32 11.43 14.85 51.16
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Table 10: Long swings in asset prices. For each scenario, Peak-to-trough is the mean percent-
age decline in the stock price from the peak in an expansion to the trough in the subsequent
recession. An expansion (recession) is defined as an interval of trading days T = {t1, ..., tk}
such that the state variable st is 1 (0) on all days in T and 0 (1) on days t1 − 1 and tk + 1.
There are 687 of these events across the 200 independent runs of the model. High (Low) is
the mean across 200 runs of the maximum (minimum) closing stock price across all 10,000
trading days of that run. Range is the difference between High and Low. For the base case,
the p-values in parentheses refer to one-sample t-tests of zero means. For the other scenarios,
they refer to paired t-tests of differences in means between that scenario and the base case.

# obs. Base case No short No leverage Taxation

Peak-to-trough 4 × 687 43.1% 39.6% 38.3% 42.4%
(0.000) (0.000) (0.000) (0.055)

High 4 × 200 21.49 22.15 21.55 21.59
(0.000) (0.100) (0.872) (0.781)

Low 4 × 200 8.16 9.37 9.39 8.48
(0.000) (0.000) (0.000) (0.004)

Range 4 × 200 13.33 12.78 12.15 13.11
(0.000) (0.200) (0.002) (0.513)

Table 11: Comovement of selected market indicators with the net present value of the stock
(NPV). For each scenario, we sort all data records (200 × 10,000) by NPV, split the data set
into 1,000 bins of size 0.1%, and compute the mean of each variable on the 2,000 observations
of each bin. The mean NPV of each bin is identical across scenarios because the realizations
of NPV are identical by run. We regress each variable on NPV by OLS for each scenario
and report the coefficient on NPV. For the base case, we also report p-values in parenthesis.
For the other scenarios, the p-values refer to tests of differences in the coefficients on NPV
relative to the base case. The number of observations is 1,000 for each scenario.

Base case No short No leverage Taxation

Risk premium −1.952 −1.602 −1.396 −1.889
(0.000) (0.000) (0.000) (0.000)

Short interest −1.164 −1.059
(0.000) (0.000)

Long leverage −0.007 0.231 0.079
(0.000) (0.000) (0.000)
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Table 12: Price fluctuations and price discovery. For each scenario and run, we calculate the
R2 obtained by regressing daily log returns on daily log innovations in the NPV of the stock.
Upside and downside R2 are calculated in the same way, except for restricting the data to
days with a non-decreasing and decreasing NPV, respectively. Downside-minus-upside R2

is the difference between the downside and the upside R2. Annualized volatility, skewness
and excess kurtosis are calculated by run from daily log-returns. P-values in parentheses are
calculated as in Table 4. The number of observations is 200 in each scenario.

Base case No short No leverage Taxation

Stock price 15.37 16.45 16.10 15.47
(0.000) (0.000) (0.000) (0.388)

R2 0.874 0.939 0.943 0.830
(0.000) (0.000) (0.000) (0.000)

R2 down-up 0.037 0.008 0.014 0.041
(0.000) (0.000) (0.000) (0.482)

Volatility (annualized) 17.36 14.73 14.29 16.53
(0.000) (0.000) (0.000) (0.010)

Skewness 0.08 -0.31 -0.22 -0.01
(0.323) (0.000) (0.000) (0.279)

Excess kurtosis 18.34 7.27 5.55 10.45
(0.000) (0.003) (0.000) (0.021)
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Table 13: Margin trading during extreme events. For each scenario and run, we identify
the most extreme event, defined as the 5-day period that maximizes the range of the log
closing stock price p across all 5-day periods of that run. For each extreme event, we collect
information about changes in the log stock price ∆p, short interest ∆SI, and long leverage
∆LL. We also compute net margin trade ∆(LL−SI). All variables are normalized by their
respective standard deviations computed by run on the full samples. The table contains
conditional means and medians for each variable for negative extreme events, ∆p < 0, and
positive extreme events, ∆p > 0. For the base case, the p-values refer to one-sample Wilcoxon
tests. For the other scenarios, they refer to Mann-Whitney U tests of differences between
that scenario and the base case. The number of observations is 200 in each scenario.

Base case No short Taxation
∆p < 0 ∆p > 0 ∆p < 0 ∆p > 0 ∆p < 0 ∆p > 0

Change in short interest
Mean 5.53 -10.69 5.62 -12.78
Median 4.78 -6.43 5.18 -9.26
P-value (0.000) (0.000) (0.653) (0.077)

Change in long leverage
Mean 4.02 -2.62 4.97 -3.62 6.05 -4.56
Median 4.32 -2.36 6.02 -3.88 6.56 -4.62
P-value (0.000) (0.000) (0.004) (0.128) (0.000) (0.001)

Net margin trade
Mean -2.44 8.76 4.97 -3.62 -1.06 9.77
Median -1.68 3.24 6.02 -3.88 -0.79 5.20
P-value (0.000) (0.000) (0.000) (0.000) (0.029) (0.668)

Change in stock price
Mean -8.96 11.42 -8.77 8.03 -9.27 10.11
Median -8.58 9.83 -8.30 7.84 -8.57 8.85
P-value (0.000) (0.000) (0.286) (0.000) (0.584) (0.054)

Number of observations 122 78 155 45 118 82
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