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Abstract 

 

In commercial fisheries, stock collapse is an intrinsic problem caused by overexploitation 

or due to pure stochasticity. To analyze the risk of stock collapse, we apply a relatively 

simple Monte Carlo approach which can capture complex stock dynamics. We use an 

economic model with downward sloping demand and stock dependent costs. First, we 

derive an optimal exploitation policy as a feedback control rule and analyze the effects of 

stochasticity. We observe that the stochastic solution is more conservative compared to the 

deterministic solution at low level of stochasticity. For moderate level of stochasticity, a 

more myopic exploitation is optimal at small stock and conservative at large stock level. 

For relatively high stochasticity, one should be myopic in exploitation. Then, we simulate 

the system forward in time with the optimal solution. In simulated paths, some stock 

recovered while others collapsed. From the simulation approach, we estimate the 

probability of stock collapse and characterize the long term stable region. 
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Introduction 

 

Fear of rapid depletion of the world fish stocks is increasing and fisheries collapse is 

considered to be the result of purely economic or administrative mismanagement (Mullon 

et al 2005). The equilibrium theories hypothetically ensure that the fishing effort is 

maintained at, or below, a reasonable value, such that collapse should never occur. 

Nevertheless, it does. The rate of collapse has been stable since the 1950s indicating no 

improvement in the fisheries management (Mullon et al 2005). The bioeconomic models, 

which date back to the 1950s with the pioneering work of Gordon (1954), Schaefer (1954) 

and later works (see for example Clark 1973; Clark and Munro 1975; Hannesson 1975; 

Clark 1990), mainly focus on the deterministic framework and do not incorporate 

uncertainties in the resource growth. However, it is well perceived that the exploitation 

decisions based upon a deterministic model are suboptimal for the fish resources that are 

inherently stochastic in nature. Such decisions lead to a problem of overexploitation 

(Roughgarden and Smith 1996). The problem of overexploitation in fisheries is estimated 

to have increased over the last few decades despite substantial effort to improve 

management. FAO (2010) reported that the proportion of overexploited fisheries has 

increased from 10 percent in 1974 to 28 percent in 2008. The increasing trend of 

overexploitation makes the threat of collapses in fisheries worldwide more imminent. 

Overexploitation has already resulted in species collapse in several cases. Some species 

have been suppressed to such low levels that it no longer makes sense to continue 

commercial exploitation. The collapse of the Newfoundland North Atlantic cod during 

the1990s (Hannesson 1996), the Norwegian herring during the 1960s (Lorentzen and 

Hannesson 2004), the Barents Sea capelin during the 1980s (Tereshchenko 2002)  are some 

of the examples of the commercial collapse cases in point. The first two cases probably 

resulted from overexploitation; the last case resulted from stochastic events (Gjøsæter et al 

2009). 

 

Deterministic models provide poor guidance for the management of stochastic stocks even 

in the case of risk neutrality and in constant price conditions (Hannesson 1987). In other 
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words, it is crucial to understand the stochasticity in fish stock dynamics.  The analysis of 

stochasticity in bioeconomic models began in the 1980s from the work of Reed (1979), 

Ludwig (1980), Lewis (1981), and Pindyck (1984) among many others. In recent years, 

further emphasis has been put on developing models for optimal management of these 

stochastic natural resources (Nøstbakken 2006; Agnarsson et al 2008; Sarkar 2009). 

Although the number of studies in bioeconomic modeling that include the stochastic 

dynamics are increasing, they are still not adequate. Many of these stochastic models are 

linear, resulting in bang-bang solutions or most rapid approach paths which are not always 

useful for practical purposes (Sandal and Steinshamn 1997b). Reality is, after all, not linear. 

We also think that the understanding of uncertainty in fish stock dynamics is limited. The 

challenge is at least two-fold: the quantification of the stochasticity in the stock dynamics 

and developing appropriate management plans accordingly. 

 

There have been increasing efforts to analyze the risk of collapse in fisheries to improve the 

management and avoid the probability of the stock collapse (for example see Johnston and 

Sutinen 1996; Myers et al 1997; Hutchings 2000; Jonzén et al 2002; Escudero et al 2004; 

Hutchings and Reynolds 2004; Mullon et al 2005; Mitra and Roy 2006) . Although a 

complete closure or a substantial reduction of the fishing mortality is suggested for the 

recovery of a collapsed stock, not all stocks recover (Hutchings 2000; Hutchings and 

Reynolds 2004). In contrast to the perception that marine fish stocks are highly resilient to 

large population reductions, Hutchings (2000) claims that there is little evidence of rapid 

recovery from prolonged declines. Jonzén et al (2002) analyzed the risk of collapse in the 

Baltic cod fishery and concluded that a substantial reduction in the exploitation level is the 

only way of avoiding the overexploitation and consequently the risk of collapse. Similarly, 

Hutchings and Reynolds (2004) analyzed the consequences for recovery and risk of 

extinction of a collapsed fishery. They found that the reductions in fishing pressure, 

although clearly necessary for population recovery, are often insufficient for the recovery 

of a collapsed stock. 
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Most of the literature in fishery economics focused on the analysis of stock collapse due to 

overexploitation under uncertain environment and concluded that overexploitation is the 

single cause of the stock collapse.  There is a lack of understanding of the ‘level of 

stochasticity’ and ‘stock collapse’. Mullon et al (2005) found that the stochastic shocks in 

the stock dynamics can drive the collapse of the stock even without the harvest. 

Acknowledging that there is stochasticity in the dynamics of a fish stock, one has a 

situation where the fish stock can collapse even without any fishing pressure (Field et al 

2009).  Collapse can occur for any initial stock level, but its probability decreases with 

increasing stock level. Similarly, the probability of collapse also depends on the strength of 

the stochastic noise even for an optimally exploited stock. 

 

The quantification of the stochasticity in a non-linear model is a difficult task (Kugarajh et 

al 2006). In addition, selection of an appropriate estimation method is always pertinent to 

the accuracy of the estimated parameters. We employed a Kalman filter type approach to 

estimate drift and diffusion parameters simultaneously. First, we specified a biomass 

surplus production model for the fishery formulated as a stochastic differential equation. 

The stochastic term is geometric, which means that the size of the stochastic term increases 

with the stock level. Next, we estimated parameters with the ensemble Kalman filter. The 

ensemble Kalman filter is a data assimilation method which generalizes the Kalman filter to 

a large class of nonlinear models (Evensen 2003). A key part of the method is the use of a 

Markov chain Monte Carlo approach to solve the time evolution of the stochastic 

differential equation. It fits the stochastic differential equation to observations on the stock 

level and on catches in a sequential manner. The method lets us estimate time varying 

parameters such that a relatively simple model can capture complex stock dynamics. The 

economic parameters in the study were adopted from Agnarsson et al (2008).  

 

With the specified bioeconomic model, we calculated the optimal harvest profile as a 

feedback control rule (Sandal and Steinshamn 1997b; Sandal and Steinshamn 1997a; 

Sandal and Steinshamn 2001). In a feedback approach, the control variable is a 

deterministic function of the state variable. In contrast to the commonly used time path 
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approach, the feedback approach (closed-loop) is superior when facing stochasticity and 

uncertainty (Agnarsson et al 2008). Feedback solutions take prevailing stock (states) as an 

input and therefore automatically respond to unexpected changes in the stock and adapt to 

the new situations (Sandal and Steinshamn 1997b; Sandal and Steinshamn 1997a). We 

apply a dynamic programing (DP) technique to obtain the optimal feedback solution. DP is 

a very useful method when considering management models under stochasticity 

(Sanchirico and Springborn 2011).  

 

Although it is possible to derive the probability of collapse directly from the stock 

dynamics equation, it requires solving the Fokker-Planck equation. The Fokker-Planck 

equation governs the time evolution of the probability density of the stock, and for practical 

purposes it is hard to solve. That the stock dynamics depends on the harvest policy 

complicates matters. We employed a Monte Carlo approach. We simulated the system 

forward in time with the estimated biological parameters and the derived optimal feedback 

solution. We can directly estimate the probability of stock collapse by simply counting the 

paths that collapse over time.  

 

The Model 

 

Following Sandal and Steinshamn (1997b) and Agnarsson et al (2008), we model the 

dynamics of the fish stock biomass ( x ) as:  

.

( )
dx

x f x h
dt

    
(1)  

where 
.

/x dx dt  is the instantaneous change in stock biomass, and 2( ) (1 / )f x r x x k   is 

the modified logistic growth function. The ݔଶ	term makes the growth ( )f x   skewed to the 

right and indicates that the growth of the fish stock is slow when the stock is  small. r

denotes growth rate and k denotes the carrying capacity of the species. h  is the rate of 

biomass harvest. By adding a stochastic term in equation (1), the general stochastic 

dynamic growth function can be written as: 
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0( ( ) ) ( )dx f x h dt x dB    (2)  

In equation (2), ( )f x h is the drift term which explains the net growth in the deterministic 

case and the term 0 is the stochastic parameter. The term  dt  is time increment and dB  

denotes the incremental Brownian motion which are i.i.d. with mean zero and variance dt . 

The term 0 ( )x dB  represents the stochastic part of the stock growth relationship. We 

assume quasiconcavity in the growth function and (0) ( ) 0f f k   and impose the natural 

restrictions 0x  and 0h  . 

 

Let the instantaneous net revenue from the harvest of the stock biomass ( , )x h be given as: 

( , ) ( ) ( , )x h p h h c x h    (3)  

where, ( )p h  is the inverse demand function and ( , )c x h  is the cost function. We assume the 

following: 

 
(.) (.) (.)

0; 0; 0.
p c c

h h x

  
  

    

The functional forms for the demand and cost functions are specified as: 0 1( )p h p p h   

and ( , )
c h

c x h
x



 . The functional forms for demand and cost functions are employed to fit 

the model to a real world fishery, where the price of the harvest depends on the amount 

harvested and the cost of harvest depends on the stock biomass.  

 

By substituting the values in equation (3), the profit function can be rearranged as: 

2
0 1( , )

ch
x h p h p h

x



     
(4)  

where, 0 1, ,p p c and  are parameters.  

Given the growth function and profit function, the management objective is to maximize 

expected net present value of the return from the harvest schedule over an infinite time 

horizon. Hence our objective is 
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0
( , )t

h
Max E e x h dt 

  
    

(5)  

subject to the dynamic constraint equation (2) and the appropriate natural restrictions on the 

state and policy variables. Here, the non-negative parameter δ is discount rate and E is the 

expectation operator. We define the maximum expected value as a value function 

0

0

( )
0 0

0 0

( , ) ( , )

( )

t t

th
W x t Max E e x h dt

x t t x

 
      

 

  
(6)  

and obtain the optimal solution by solving following the Hamilton-Jacobi-Bellman (HJB) 

equation for the current value ܸ, defined by ܹሺݔ, ሻݐ ൌ ݁ିఋ௧ܸሺݔሻ. 

2
0

0

1
max{ ( , ) ( ( ) ) ( ) }

2x xx
h

V x h f x h V x V  


     
(7)  

The subscripts of V denote partial derivatives. It is difficult or impossible to solve the 

Hamilton-Jacobi-Bellman (HJB) equation analytically in our case. We approach the 

problem by using numerical approximation methods.  

 

Numerical Approximation and Monte Carlo Simulation 

 

Our problem is strongly non-linear in the control. Analytic solutions to such problems are 

extremely rare and it is difficult to solve the Hamilton-Jacobi-Bellman (HJB) equation 

together with nonlinearity and boundary conditions. Numerical methods are the only viable 

alternatives. The Markov chain approximation approach is one of the most effective 

methods (Song 2008), which is based on probability theory. Numerical algorithms for 

optimal stochastic control problems of this kind can be found in Kushner and Dupuis 

(2001). 

 

The numerical technique entails discretizing the state space for the HJB control problem 

(7), constructing transition probabilities for the controlled Markov chain by applying finite 

difference techniques and then iterating on the resulting discrete value transition equation 

with initial guess 0V for the value function. The combined approximation in policy space 
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and value space is more powerful. The iteration is carried out until the value function 

converges to the optimal value function (for details of the approximation refer to Kushner 

and Dupuis 2001). 

 

With the optimal policy solution available in feedback form, we simulated the system 

forward in time. We carried out the Monte Carlo simulation for a range of initial stock 

levels. The simulation was performed for a thousand realizations for 500 years. At the end 

of the simulation horizon, a simulated path either reached a stable region, comparable to a 

deterministic steady state, or collapsed to a near zero stock level. The higher the initial 

stock level, the higher the share of simulated paths reached the stable region. For a given 

initial stock level, we treat the distribution of the simulated paths as an estimate of the 

probability of collapse.  

 

Model Application: The Northeast Artic Cod Fishery 

 

We used the data from the Northeast Arctic cod (Gadus morhua) fishery in the model. This 

is the main commercial fish species in Norway and considered to be the basis of the 

Norwegian commercial white fish industry (Kugarajh et al 2006).  Northeast Arctic cod 

data from Barents Sea were obtained from the International Council for the Exploration of 

the Seas and employed to estimate the biological and economic parameters. 

 

Biological Parameters 

 

We use the ensemble Kalman filter (EnKF) approach to estimate biological parameters, 

namely the drift and diffusion parameters in equation (2).  The EnKF is a data assimilation 

method which is widely used in physical applications like meteorology and oceanography, 

where phenomena typically have a chaotic nature. It has structural relationships to the 

classical Kalman filter, but extends to a large class of nonlinear models (see Burgers et al 

1998 and references therein). The method was first suggested by Evensen (1994), while 

Burgers et al (1998) provided a theoretical clarification. Evensen (2003) reviewed both 
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theoretical developments and survey applications of the ensemble Kalman filter and related 

techniques.  

 

The ensemble Kalman filter uses a Markov Chain Monte Carlo method to solve the 

fundamental equation for the time evolution of the probability density of the model state 

(Evensen 2003).  The method applies to state space models with the dynamic equation (the 

state or model equation) written as a stochastic differential equation. The details of the 

algorithm for estimation can be found in the sources mentioned earlier. The estimated 

parameters are shown in figure 1. The parameter ߪ is estimated in the sense of Hansen and 

Penland (2007). 

 

   

Figure 1: The biological parameters estimated using the ensemble Kalman filter approach. 

 

Table 1. The functional forms and the estimated biological parameter values  

Functions   Parameters Descriptions   Values  

Drift function F(x)=rx2(1-x/k) r Intrinsic growth rate 4.0441× 10-7  

  k Stock carrying 

capacity  

3.9741× 106 

Diffusion function σ0(x)= σ0×x σ0 Volatility coefficient  0.0763 

 

Although the stochastic process is estimated in the filtering procedure, we analyze effects 

of different sizes of the stochastic term. If appropriate management can reduce 

stochasticity, we are interested in the effect of small stochastic terms, while the 

precautionary principle may lead us to presume larger stochastic effects. 
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Economic Parameters 

 

We obtained the economic parameters estimated by Agnarsson et al (2008), which were 

also estimated using data on the Northeast Arctic cod. The details of the functional forms 

and the estimated parameter values are presented in table 2. 

 

Table 2. The functional forms and the economic parameter values 

Functions   Parameters Descriptions   Values  

Price function P(h)= p0 - p1 h p0 Price of the stock 12.65  

  p1 Strength of demand 0.00839 

Cost function c(x, h)= c×hα 

/x 

c Cost of exploitation 5848.1  

  α Harvest cost 

parameter 

1.1 

Sources: adopted from Agnarsson et al (2008). 

 

Results and Discussions 

 

The Optimal Exploitation Policy 

 

The optimal exploitation policy in the deterministic case and in different levels of 

stochasticity is presented in figure 2. Different optimal behavior can be observed at 

different levels of stochasticity. When compared to the policy derived from the 

deterministic setup where the stochastic term has been set to zero, observe that the 

stochastic solution is more conservative at a low level of stochasticity (σ0 =0.3). With 

increased level of stochasticity (σ0 =0.5), the stochastic solution is conservative at high 

stock levels but it should be harvested earlier for small stock levels because the risk of 

extinction at small stock is high. The stochastic solution is more conservative than the 

deterministic solution at moderate to high stock levels, which is interesting along several 

dimensions. First, it is found that the geometric noise in the dynamics creates a downward 
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drag on the stock level, so expected surplus growth is smaller in the stochastic model than 

in the deterministic model. Second, the stochastic solution lines up with the precautionary 

principle which has been advocated by marine scientists and economists alike. 

 

If the size of the stochastic term increases further (σ0  0.7), the stochastic solution 

approaches the myopic (infinite discounting) solution (Figure 2) because the probability of 

stock collapse is very high due to the strong noise in stock dynamics.  

 

 

Figure 2: The feedback optimal exploitation paths for deterministic and stochasticity 

growth models. These optimal paths were obtained using 5 percent discount rate in all 

cases. 

 

By applying a different level of stochasticity in the models, the optimal exploitation 

behavior at different levels of stochasticity can be generalized as: 

 

a. A low level of stochasticity (σ0 ≤ 0.4) in the growth of biological stock leads to a 

conservative exploitation at all levels of stock biomass. 
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b. A moderate level of stochasticity (0.4 < σ0 <0.7) in growth of biological stock leads to a 

more myopic exploitation for small stock and conservative exploitation for large stock. 

c. A high level of stochasticity (σ0   0.7) in the growth of biological stock leads to an 

exploitation that approaches the myopic policy at any levels of stock biomass. 

 

We also compared the optimal solutions at different levels of stochasticity with the actual 

harvest data over the last 62 years (1946 - 2007). The optimal harvest and actual harvest are 

presented in figure 3. It can be noted that the actual harvest is fairly high compared to the 

optimal harvest models during most of the periods.  

 

 

Figure 3: Actual versus optimal harvest of cod species in different growth models and 

stochastic levels. 

 

Overexploitation can be observed over the whole period compared to the optimal catch 

identified in different models. It is very interesting to note that the historical harvest nearly 
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follows the very-high-level-stochastic model which is close to the myopic optimal model. 

The model explains that the historical harvest was ‘static optimum’ for the cod harvest 

contrary to optimal harvest except for some years such as during 1968-1970 and 1991-

1994. However, the trends of historical catch and optimal catch are similar over most of the 

periods.  

 

The general overexploitation of the fish stocks in Barents Sea could be the result of a policy 

that aims at a maximum sustainable yield (Agnarsson et al 2008) from a biological point of 

view and the economic aspect might have been ignored. 

 

Long-term Sustainable Optimal (LSO) Levels and Evolution of Stock Over Time 

 

After the Monte Carlo simulation (with the optimal solution), the paths that recovered and 

converged to a stable region, identified as the LSO region.  

 

The LSO region is the deterministic setting is the steady state or the equilibrium level that 

can be achieved after a certain period of time if the stock is managed optimally. While in a 

stochastic setting, there is no equilibrium but most paths stabilize approximately at the 

same level after some period. This stable region, characterized as the mean of the stochastic 

realizations that relatively stabilizes after a certain period of time is defined as the 

stochastic LSO levels. In other words it can be defined as optimal stochastic stationary state 

(Smith 1986). The LSO stock level can be achieved either by allowing the stock to increase 

or by reducing the stock through exploitation. 

 

We have attempted to obtain the LSO or the stationary state both in deterministic and 

stochastic settings. The steady state in the deterministic model in this study is characterized 

as: 

 

6

6 1

* 3453.4 10

*( *)   631.9271 10

x kg

h x kg year

 

 
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And the LSO level in stochastic setting (σx=0.3) can be characterized by:  

6

6 1

* 3038.5 10

*( *) 577.59 10

x kg

h x kg year

 

 
 

The LSO stock is lower in the stochastic model compared to the deterministic model due to 

the stochasticity induced downward drag. This can be easily shown for simplest case as 

follows: 

Consider a simple single species surplus growth model ݀ݔ ൌ ݂ሺݔሻ݀ݐ and add stochasticity 

to make the model more realistic as ݀ݔ ൌ ݂ሺݔሻ݀ݐ ൅  Then by taking .ܤ݀ݔ଴ߪ

transformation		ݕ ൌ ݈݊ሺݔሻ, we get,	݀ݕ ൌ ቀ
௙

௫
	െ	

ଵ

ଶ
଴ଶቁߪ ݐ݀ ൅  The term .ܤ݀	଴ߪ

ଵ

ଶ
 creates	଴ଶߪ

an asymptotic downward drag on the stochastic growth. Therefore, the stochastic LSO for 

the stock is expected to be lower than the deterministic LSO. Subsequently, the optimal 

exploitation level becomes lower in the stochastic model, which has also been reported in 

the literature (for example, see Reed 1978). 

 

In the simulation exercise, we have also looked at the time required for the stock to reach a 

stable level. We make a couple of observations. The system needs more time to stabilize if 

the initial stock level is small and needs more time to stabilize with stochasticity than 

without stochasticity.  

 

Figures 4 and 5 show the evolution of the stock over time in the deterministic and 

stochastic models respectively. A large initial stock quickly approaches the LSO level 

because it is optimal to exploit due to low exploitation cost. Although the price decreases 

due to inverse demand function, the net revenue is still higher due to the decreased 

exploitation cost. On the other hand, a small initial stock takes longer to approach its LSO 

compared to a large stock level in both the deterministic and stochastic models but the 

duration to LSO is further prolonged in the stochastic case (Figures 4a and 5a).  
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Figure 4: The deterministic evolution of the stock to LSO over time (a) large initial stock 

levels (b) small initial stock levels. If the initial stock level is very small, it may take many 

years to approach LSO level but the stock never collapses in deterministic growth stock. 

 

Furthermore, Figure 5b demonstrates that there is a chance of extinction of a stochastic 

stock if it is small. Extinction may happen as a result of the stochasticity induced critical 

depensation. While Figure 4b shows that there is no problem of stock extinction in the case 

of the deterministic growth model, although, it may take several years to recover to LSO 

level (Figure 4b). 

  

Figure 5: The stochastic evolution of the stock to LSO over time (a) large initial stock 

levels (b) small initial stock levels. The paths represent the mean of 1000 realizations, 

simulated over time. If the initial stock level is very small (<1106 kg) the stock will 

collapse with high probability (ܲ ≅ 1) i.e. there is almost no chance of stock recovery over 

the simulation horizon. 
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Analysis of the Risk of Stock Collapse 

 

To analyze the risk of extinction of the stock in the long run, we simulated the system 

forward in time from a range of initial stock levels with the stochastic model and optimal 

solution. As mentioned earlier, for high initial stock levels, all the paths recovered or 

persisted at healthy levels and approached the LSO levels in the long run. For small initial 

stock levels, all paths collapsed. But for some of the intermediate initial stock levels, some 

of the simulated paths collapsed, while other paths recovered or persisted at healthy levels. 

We identified the paths and grouped them into two: the collapsed group and the healthy 

group. We estimated the probability of collapse for a given stock level simply by observing 

how these paths are distributed into the groups. The precision of the estimate only depends 

on the number of paths simulated. A thousand realizations were simulated for 500 years 

from each initial stock level(s).  

 

We observe that the risk of collapse or extinction (recovery) is higher (lower) for a smaller 

stock compared to a large stock level. Similarly, the risk of extinction is higher for a highly 

stochastic stock compared to the low stochastic stock which can be expected. The 

probability of stock collapse in the long run is presented in figure 6. The figure indicates 

that the probability of extinction approaches almost zero when the initial stock level is 

above 100 ൈ 10଺ kg at a low stochasticity (σ0= 0.1) and above 1000 ൈ 10଺	kg if the 

stochasticity parameter is 0.3. 

 

Figure 6: The probability stock collapse in the long run (500 years) under stochastic growth 

models (a) stochasticity 0.1 (b) stochasticity 0.3. The initial stock levels are given in a 

logarithmic scale on the x-axis and their collapse probabilities in the y-axis. 
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To add more clarity, we have also presented a table to illustrate the probability of extinction 

of different initial stocks at different degrees of stochasticity (table 3). It is clearly observed 

that the higher the stochasticity in the stock growth, the higher the probabilities of the stock 

collapse in the long run. A stock of biomass greater than  100 ൈ 10଺ kg could recover over 

time at a small degree of stochasticity (σ0= 0.1) but at a high degree of stochasticity (σ0= 

0.5), there is a 75 percent probability that a stock could collapse even without exploitation 

in the long run. For a moderate level of stochasticity (σ0= 0.3), it could recover to a healthy 

stock level if the initial stock is above 1000 ൈ 10଺ kg.  

 

Table 3. The probability of stock collapse in the long run at different degrees of 

stochasticity for different initial stock levels 

Initial stock biomass 

level 

Probability of stock collapse under different stochasticity levels 

Pr(σ0= 0.1) Pr(σ0= 0.3) Pr(σ0= 0.5) 

0.5×106 kg 1.0 1.0 1.0 

5×106 kg 0.78 0.95 1.0 

10×106 kg 0.56 0.89 1.0 

50×106 kg 0.03 0.69 0.96 

100×106 kg 0.003 0.39 0.95 

120×106 kg 0 0.37 0.94 

250×106 kg 0 0.14 0.88 

1000×106 kg 0 0 0.79 

2000×106 kg 0 0 0.76 

 

Viewed differently, the probability of stock collapse is more than 90 percent (P0.9), if the 

stock is below 3106 kg at a low stochasticity level (σ0= 0.1), is below 6106 kg at 

moderate stochasticity level (σ0= 0.3) and is below 200×106 kg for a high level of 

stochasticity (σ0= 0.5). The probability of stock collapse is less than 10 percent (P≤0.1), if 

the stock is above 30106 kg at low degree of stochasticity and is above 275106 kg at 
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moderate degree of stochasticity. There is no chance of stock recovery if the stochasticity 

level is high (σ0 > 0.5) (Table 3). 

 

Stock Recovery Over Time 

  

In the previous section, we showed that there is some probability that a stochastic stock 

could recover in the long run. However, beside the probability of recovery, the time or the 

duration of stock recovery matters. The duration or total time required for the recovery of 

the stock in a stochastic model is important due to the underlying economic consequences 

of the resource stock. For example, a stock that recovers in infinite time does not have any 

economic importance. Therefore, in this section, we have calculated the probability of the 

stock recovery at different points in time. The probability of stock recovery at moderate 

level of stochasticity (σ0=0.3) is shown in the table 4. 

 

Table 4. The probability of stock recovery in different initial stochastic stock levels at 

different points in time. Long run refers to the end of the simulation horizon, which was 

500 years 

Initial stock levels Probability Pr(σ0= 0.3) of stock recovery in a given period 

 Within 5 years Within 10 years Within 25 years Long run 

1×106 kg 0 0 0 0 

15×106 kg 0 0 0 0.15 

30×106 kg 0 0 0.04 0.26 

80×106 kg 0 0.03 0.24 0.53 

120×106 kg 0.03 0.14 0.37 0.63 

150×106 kg 0.11 0.33 0.55 0.72 

300×106 kg 0.41 0.69 0.83 0.90 

500×106 kg 0.72 0.85 0.97 0.99 

700×106 kg 0.94 0.98 0.99 1.0 

1000×106 kg 0.99 1.0 1.0 1.0 
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The probability of stock recovery within five years is zero for an initial biomass of about  

120 ൈ 10଺ kg and there is 37 percent probability that it could recover within 25 years and 

63 percent probability of it recovering in the long run.  Similarly, an initial biomass level 

greater than 500 ൈ 10଺ kg, there is almost no collapse is observed in the long run, has only 

72 percent probability of recovery in a short period (5 years). Therefore, a complete closure 

on the exploitation is essential for its recovery in the long run. At least an initial stock 

biomass of 1000 ൈ 10଺ kg could recover to its LSO level within five years. This means 

that any stock below 1000 ൈ 10଺ kg is required to close for fishing for at least five years. 

We also analyze the relationship between the stochasticity and exploitation rate that cause 

stock collapse. We note two points from the previous sections: first, our model suggests 

that fishing moratorium is at a high stock level, approximately 1200 ൈ 10଺ kg of biomass 

and even lower in a stochastic model. Second, our simulation results indicate that there is 

risk of stock collapse when the stock is below 1000 ൈ 10଺ kg of biomass level at 0.3 

stochasticity level. This indicates that there is no risk of stock collapse if the stock is 

managed optimally. However, if suboptimal exploitation occurs i.e. if we exploit the 

resource when it is below 1000 ൈ 10଺ kg, there is a probability that the stock could 

collapse or take longer to recover. Furthermore, we also observe that at high level of 

stochasticity (σ0=0.5), there is a higher probability that the stock can collapse even if 

managed optimally. 

 

Concluding remarks 

 

A holistic approach should be applied to fisheries management in a stochastic environment. 

We demonstrate an approach to quantify stochasticity in fish stock dynamics. We derive the 

optimal, stochastic harvest profile, and demonstrate a method to assess the risk of collapse. 

We believe that policy makers would benefit from an increased appreciation of the effects 

of stochasticity, and the consequences of ignorance. The ignorance becomes apparent when 

we compare our solutions to historic catches. In periods, landings lie closer to the myopic 

solution than to both the stochastic and deterministic solutions. 
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Finally, we acknowledge that real world fisheries management is concerned with a limited 

number of fish stocks that are only a part of a larger ecosystem. To analyze the effect of 

stochasticity and to assess risk of stock collapse in an ecosystem framework is beyond our 

scope here. We are only on one of the first steps on a long ladder towards the ultimate goal 

of ecosystem management under uncertainty. But, it is an important step; a step in the right 

direction. 
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