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Technological Change in Renewable Resource 

Industries: An Alternative Estimation Approach 
 

Abstract 
I set forth a generalized stochastic time trend approach, based upon the Kalman 

filter, as an alternative to the general index approach to measure technological 

change. Technology is treated as a latent variable in a state-space model of the 

production function. In data sparse settings, where panel data are unavailable, 

the method provides results which encompass insights from the general index 

approach, but provides more detailed estimates. I revisit an analysis of 

technological change in the Lofoten fishery. The estimated technology time 

profiles agree to some extent between the methods, but my more detailed 

results demand a new historical interpretation. (JEL C22, O33, Q22) 
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1 Introduction 
A common problem in economics is the presence of latent variables in empirical models. In 

particular, the problem applies to technological change in production functions. 

Technological change is believed to be an important source of growth, but little agreement 

exists regarding its nature and, under scrutiny here, measurement (Squires and Vestergaard 

2009 provide an extensive discussion). Typical remedies for empirical measurement embody 

inclusion of a trend or proxy variables such as R&D expenditures (Slade 1989, p. 363), or 

time dummies (Baltagi and Griffin 1988; Hannesson et al. 2010). The latter is known as the 

general index number approach. The typical remedies certainly shed light on the issue and 

are better than pure ignorance, but more appropriate methods can improve the 

understanding and measurement of technological change. State-space models and the 

Kalman filter are ideal statistical tools for models with unobserved variables (Slade 1989, p. 

364, Streibel and Harvey 1993, p. 264) and their use in economics should be well 

established. See Rausser and Howitt (1975) for an early application. Slade (1989, p. 364) 

reviews the earliest development in economics and further discusses how the Kalman filter 

approach to technological change measurement relates to traditional approaches. In the 

particular setup discussed here, the Kalman filter approach can be viewed as a stochastic 

generalization of the standard linear time trend approach.  

Hannesson et al. (2010) examine technological change in the Lofoten fishery in order 

to discuss the interaction between the fish stock and changes in total factor productivity. 

While there are ample, anecdotal evidence of technological progress in the fishery, its role in 

the production function proves difficult to pin down. Hannesson et al. (2010), inspired by the 

Baltagi and Griffin (1988) general index number approach and later developments, introduce 

time period dummies into the production function 𝑌𝑡 = 𝐴𝑡𝐸𝑡𝛼𝑆𝑡
𝛽, where 𝑌𝑡 is the fish 

production (catch), 𝐸𝑡 the input effort, 𝑆𝑡 the fish stock level, and 𝐴𝑡 reflects technology. 

Each dummy variable represents six years and the technology measure is equivalently crude. 

On the contrary, a finer resolution, which otherwise would be desirable, leads to more 

parameters entering the estimation equation and there is also a potential for a downward 

bias in the fish stock elasticity 𝛽 (Hannesson et al. 2010, pp. 756-757). Further, the time 

dummy approach has problems with serial correlation. 
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I suggest an alternative approach. In a Kalman filter framework, I treat the technology 

parameter as latent and behaving according to the law of motion 𝐴𝑡+1 = 𝛿1𝐴𝑡
𝛿2. The law of 

motion is a generalization of the linear time trend model. First, I restrict the model to the 

purely exponential model, 𝛿1  = 1, next, 𝛿1 varies with time. The Kalman filter yields an 

exact expression for the likelihood function, and parameters are estimated via maximum 

likelihood estimation. The time profiles of the estimated technology parameters for different 

gears are consistent with the results of Hannesson et al. (2010). Estimated factor elasticities 

and the level of the technology parameter differ somewhat, however. For some gears, I 

estimate a higher resource elasticity (𝛽) and a lower technology level (𝐴𝑡), while for other 

gear types, the opposite occurs. While my elasticity estimates are less than two standard 

deviations away from the Hannesson et al. (2010) estimates, there are larger discrepancies 

when it comes to the level of the technology parameter. 

The Kalman filter approach has some advantages. First of all, the Kalman filter 

provides yearly estimates of the level of technology. With yearly estimates, sharp shifts in 

the technology development become apparent. In comparison, six year period estimates 

smooth out the effects of sharp shifts, and the shifts become more difficult, if not 

impossible, to detect. Thus, while the period estimates give rise to an understanding of the 

long term technological development, the yearly estimates also make the year-to-year 

development apparent. When compared to the historical and anecdotal evidence of 

technological change, the yearly estimates can ultimately reveal whether and to what extent 

certain innovations made an impact on the productivity. Finally, serial correlation is less of 

an issue with the Kalman filter than with the time dummy approach. Let me add that in 

situations where panel data are available for firms in an industry, the general index number 

approach (Baltagi and Griffin 1988) may prove less restrictive when it comes to the nature of 

technical progress; while it in the Kalman filter is necessary to model the technology process, 

the general index approach is model free. But when panels are unavailable or insufficient 

and time period dummies must be introduced to make a general index approach viable, as is 

the case in the Lofoten data, the Kalman filter provides estimates which capture the 

behavior of the time dummy estimates without sacrificing resolution. 

 Let me hasten to add that while I aim to improve on the estimation of technological 

development in the Lofoten fishery, Hannesson et al. (2010) has a wider agenda. They aim to 

understand why labor productivity in the fishery remained low for a long time, lagging 
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behind the development in agriculture and manufacturing. For productivity growth rates, my 

alternative empirical approach does not make much difference and I have not pursued 

productivity growth rates here. That is, their final analysis still stands. Further, Hannesson et 

al. (2010) provide a history of the Lofoten fishery which has been exploited at least since the 

eight century. They also discuss the modern time historical development of institutions in 

the fishery. 

In the fisheries economics literature, little attention has been devoted to 

measurement of technological change. Lack of relevant data is a part of the explanation, but 

the normative understanding of technological change in renewable resource industries is 

also underdeveloped (Squires 2009, Squires and Vestergaard 2009). Notwithstanding, Kirkley 

et al. (2004) used a rich dataset to evaluate contributions of technical change to catch rates 

in the French sète trawl fishery; see Squires (2009) for a comprehensive review of the 

emerging literature on fisheries technical change measurement. Squires (1992) extended the 

standard total factor productivity measurement framework to include the effect of 

fluctuating stock abundance, and a number of studies have followed. Key contributions are 

Fox et al. (2003), Hannesson (2007), and Jin et al. (2002). 

 

2 Data and Background Information  
I use the same data set which Hannesson et al. (2010) use. They describe and discuss the 

data thoroughly, so here I limit myself to a short description of the data and the fishery. The 

data on catches and effort were collected from the annual reports on the Lofoten fishery. 

The reports go back to 1859. Four different gear types are observed; gill nets, long lines, 

hand lines, and since 1959, Danish seine. Further different gear types have been used in the 

fishery for shorter periods, but most of them are not included in the data. There are some 

observations on the use of the highly effective purse seine, but it was outlawed in 1958, and 

the observations are too few to use in estimation. For each gear type, two measures of input 

effort exist: the number of men and the number of boats. The numbers are based upon a 

census of men and boats around the peak of the season. Physical characteristics such as boat 

length would be helpful, but does not exist. The correlation between men and boats is high 

and it does not make sense to include both in the same equation. As Hannesson et al. 

(2010), I focus on the boat variable as a reasonable proxy for effort. 



6 
 

The fish stock data goes back to 1900 and were obtained from the Institute of Marine 

Research in Bergen. As the fish stock is not directly observable, the data are rather estimates 

based on stock assessment models. The data from the earliest period (1900 - 1912) are 

estimates based on catch per fisherman. Most likely, later observations are more accurate 

than earlier ones. As Hannesson et al. (2010, p. 750) remark, the data are less than perfect, 

but they are the best available. 

Since around 1857, the Lofoten fishery, which targets the spawning North-East 

Atlantic Cod, has been an open-access fishery. The fishery remained open-access until 1990, 

but certain limitations on total harvest were set already the year before. Under open-access, 

with a practically unobservable fish stock, the effort and stock variables can be treated as 

independent (Hannesson et al. 2010, p. 760, discuss endogeneity and try to instrument 

effort with lagged variables without improvements to the results). I analyze data from when 

the first stock estimates are available, 1900, to 1988, as limitations were introduced in 1989 

and the fishery was no longer pure open-access. Hannesson et al. (2010) discuss the 

historical institutions surrounding the fishery further, give an account of the anecdotal 

evidence on technological change, and list a number of relevant references. 

 

3 A State-Space Model of Technological Change 
The analysis in Hannesson et al. (2010, p. 755) departs from the Cobb-Douglas production 

function 

 𝑌𝑡 =  𝐴𝑡𝐸𝑡𝛼𝑆𝑡
𝛽 (1) 

where 𝑌𝑡 is fish caught in period t, 𝐸𝑡 the input effort, and 𝑆𝑡 the stock level. 𝐴𝑡 reflects the 

technology level in period t. The production function is common in fisheries economics and 

is inspired by the Schaefer production function, where elasticities 𝛼 and 𝛽 are equal to one. 

Hannesson et al. (2010, p. 755) envision Hicks-neutral technological change which would 

manifest itself in 𝐴𝑡 rising over time (see Squires and Vestergaard 2009, footnote 8, p. 5, and 

p. 6). To capture an increasing technology level, they take logarithms and add time dummies 

𝑑𝑖 for 𝑇 − 1 periods of equal length. The last and residual period 𝑇 has shorter length. They 

end up with the following equation to estimate: 

 ln𝑌𝑡 = ln𝐴 +  𝛼 ln𝐸𝑡 +  𝛽 ln 𝑆𝑡 +  𝑑1 +  … +  𝑑𝑇−1 +  𝜀𝑡 (2) 
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There is no time dummy for the last period. The technology level in any given period 

𝑖 ∊ [1, … ,𝑇 − 1]  is then ln𝐴 +  𝑑𝑖; the level in the last period 𝑇 is simply ln𝐴. As such, 

when Hannesson et al. (2010) carry out the standard t-test on the time dummies, they test 

whether the technology level in a given period differs from the level in period 𝑇. The test is 

indeed relevant, but they do not mention its interpretation. If the technology level rose over 

the time series and the quality of the estimates was roughly stable, t-values should be higher 

early in the time series; a pattern which only emerges for gill nets and hand lines. Testing 

whether ln𝐴 +  𝑑𝑖 is statistically different from zero would perhaps be of more interest. The 

results from the time dummies specification (2) show signs of serial correlation and to deal 

with it they use the Prais-Winsten procedure. 

A state-space model where the technology level 𝐴𝑡 is latent can look like the 

following: 

 ln𝐴𝑡+1 = ln 𝛿1 +  𝛿2 ln𝐴𝑡 +  𝑣𝑡 

ln𝑌𝑡 = ln𝐴𝑡 +  𝛼 ln𝐸𝑡 +  𝛽 ln 𝑆𝑡 +  𝑤𝑡 
(3) 

where 𝐴𝑡 is unobserved and 𝛿1, 𝛿2, 𝛼, and 𝛽 are parameters to be estimated. 𝑣𝑡 and 𝑤𝑡 are 

normal, independent, and identically distributed error terms with zero mean and variances 

𝜎𝑣2 and 𝜎𝑤2 . Technology has the law of motion 𝐴𝑡+1 = 𝛿1𝐴𝑡
𝛿2, which combines a linear trend 

model and a purely exponential model. As the model (3) is stochastic, it can capture a range 

of patterns in time. The unknown parameters can be estimated with maximum likelihood 

estimation. The first of the equations in (3) is known as the state equation; the second is 

known as the observation equation. 

 

The Classical State-Space Model and the Kalman Filter 
Before moving on, it may be useful to review some details about the classical state-space 

model and the Kalman filter . A general state-space model is written: 

 𝑧𝑡+1 =  𝐹𝑧𝑡 +  𝑣𝑡 

𝑌𝑡 = 𝐴𝑋𝑡 +  𝐻𝑧𝑡 +  𝑤𝑡 
(4) 

See equations (13.2.1) and (13.2.2) in Hamilton (1994, p. 377) and see surrounding 

discussion for the full set of assumptions. 𝑧𝑡 is called the state vector and is unobserved in 

the observation equation; 𝑌𝑡 and 𝑋𝑡 constitute the observations in the system. With an 

assumed or known initial state (𝑧0) and related variance (𝑃0), the Kalman filter yield an exact 

expression for the likelihood function. The Kalman filter has a recursive structure which 
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allows the likelihood to be calculated without use of large matrices (Jones 1993, p. 78). The 

structure also allows sequential updating when new data arrives without having to run 

through the full set of observations each time. The filter estimates the state vector at time 𝑡 

contingent upon observations up to and including time 𝑡. In many cases, an estimate based 

upon all available observations is more relevant. I attain an estimate contingent on the full 

set of information by smoothing the filter estimate, see Hamilton (1994, pp. 394-397). 

Finally, equations (13.4.1) and (13.4.2) in Hamilton (1994, pp. 385-386) give the expression 

for the log-likelihood function ln 𝐿. In principle, 𝐹, 𝐴, 𝐻, and the variances of the error terms 

can be treated as unknown parameters. 

 

The Restricted Model 
First, I consider a model restricted by 𝛿1  = 1; technology is purely exponential. The state 

equation in (3) becomes 

 ln𝐴𝑡+1 = δ2 ln𝐴𝑡 +  𝑣𝑡 (5) 

The equation is only stable when |δ2| < 1. Stability is necessary to ensure convergence of 

the Kalman filter (Hamilton 1994, p. 390). If the stability requirement holds, the technology 

level is expected to converge towards one; in the long run, gains from technological change 

will dry up. While the long run interpretation may be unsettling, it may on the one hand be 

realistic, on the other the long run interpretation does not necessarily have to interfere with 

a system estimated over a limited time period. Keep in mind that I do not in any sense 

estimate the true technology process and that the estimated process has limited, if any, out-

of-sample relevance. Rather, the process suggested in the state equation should be able to 

capture the phenomenon and theoretical concept of interest. See Sucarrat (2010) and 

Hendry (1995, pp. 344-368) for a discussion that goes all the way back to Haavelmo (1944). 

I expect the technology level to increase over time and thus approach one from 

below. If I estimate (3) directly, 𝐴𝑡 will not necessarily be below one (compare Hannesson et 

al. 2010), and technological improvement cannot be a relevant interpretation. (The results in 

Hannesson et al. 2010 do not suffer from the interpretation problem of my model.) I remedy 

the problem by introducing a constant 𝑘 in the observation equation: 

 ln𝑌𝑡 = ln𝐴𝑡 +  𝑘 +  𝛼 ln𝐸𝑡 +  𝛽 ln 𝑆𝑡 +  𝑤𝑡 (6) 

A sensitivity analysis shows that with 𝑘 sufficiently large, such that ln𝐴𝑡 is much smaller 

than zero when ln𝐴𝑡 +  𝑘 is in the vicinity of zero, no noticeable changes in parameter 
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estimates appear with larger 𝑘. Plots show that the same holds for the technology estimate. 

Table A3 in the appendix reports the results from the sensitivity analysis. Somewhat 

arbitrarily, I use 𝑘 = 10. (The modification in equation (6) is equivalent to modifying 

equation (5) into ln(𝐴𝑡+1 − 𝑘) = δ2 ln(𝐴𝑡 −  𝑘) +  𝑣𝑡. When modifying equation (5), 𝑘 

must operate on a different scale.) 

The system in (5) and (6) is a special case of the system in (4) with 𝑧𝑡 = ln𝐴𝑡, 𝐹 =

 δ2, 𝐴 = [𝛼  𝛽  𝑘], 𝑋𝑡 = [ln𝐸𝑡   ln 𝑆𝑡  1]ʹ , and 𝐻 = 1 (apostrophe denotes the transpose). 

The method requires me to specify initial values for the expected state (the technology level; 

ln𝐴0 +  𝑘) and its variance. As initial value, I use the Hannesson et al. (2010) result for the 

first period. The initial variance is set to one; increasing it to two or reducing it to a half 

makes no noticeable difference on the results. I find the maximum of the log likelihood 

function using the Nelder-Mead routine as implemented in Matlab's fminsearch function. 

In effect, 𝑣𝑡 and 𝑤𝑡 introduce two multiplicative error terms in equation (1) while 

there is no mechanism to allocate variation between them. Thus, estimating both 𝜎𝑣2 and 𝜎𝑤2  

can be both conceptually unsound and technically difficult. Typically, much of the variation is 

allocated to one term and no or little to the other. Instead, I restrict the model to: 

 𝜎𝑣2 =  𝜎𝑤2 =  𝜎2 (7) 

The model now mimic only one error term in equation (1); the term has mean zero and 

variance 𝜎𝑣2+ 𝜎𝑤2 = 2 𝜎2 (Ross 1985, p. 65). I test the additional restriction with a likelihood 

ratio test with one degree of freedom. The likelihood ratio test rejects the restriction (7) in 

the case of hand lines and Danish seine (p-values 0.0384 and 0.0180). Results from 

estimating the system without the restriction are reported in Table A1 in the Appendix. The 

estimates of 𝜎𝑣2 and 𝜎𝑤2  in Table A1 are relatively far apart when the likelihood ratio test 

rejects (7). As an alternative, I calculate the Akaike (1973) information criteria (AIC) for 

model selection. The information criteria lines up with the likelihood ratio test results, 

selecting the model with the variance restriction (7) for gill nets and long lines, but the 

model without the variance restriction for hand lines and Danish seine. 

Although the model mimics only one error term in (1), the method nonetheless 

predict errors in both the state and observation equation. I test whether the errors are 

normally distributed with the Lilliefors (1967) test. p-values are reported in Table A4 in the 

appendix. The p-value for the errors in the observation equation (𝑤𝑡) for hand lines is close 

to the conventional 5% level and could be a sign of misspecification. I also carry out a 
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Kolmogorov-Smirnov test to see whether the predicted errors are mean zero with variance 

as in (7). Table A5 in the appendix reports p-values. The p-values for errors in the 

observation equations (𝑤𝑡) for gill nets, long lines, and hand lines are small. (On the other 

hand, the predicted errors from the estimations reported in Table A1 perform worse in the 

Kolmogorov-Smirnov test.) Thus, (7) is rejected by the likelihood ratio test for Danish seine 

and by the Kolmogorov-Smirnov test for the other gears. (7) implies that the variation in (1) 

should be equally distributed between the state and observation equation. Alternatively, 

one could attribute more of the variation to the observation equation. A further extension of 

my analysis would generalize (7). I am confident that it is possible to find the right balance of 

(7) such that predicted errors pass the Kolmogorov-Smirnov test because the errors pass the 

Lilliefors test of normality. In particular, I believe the right balance exist for the cases which 

pass the likelihood ratio test (gill nets and long lines). Exploratory results suggest that 

parameter estimates would not change substantially upon such a generalization of (7). The 

similarity of estimates for 𝛼 and 𝛽 in Tables 1 and A1 are further suggestive to that end. 

 

Results 
Table 1 lists parameter estimates for the restricted, purely exponential model (equations (5) 

to (7)) for the four different gear types. Standard errors are given in parenthesis. The 

likelihood ratio test rejects the restriction (7) for hand lines and Danish seine (the p-value is 

less than 0.05); for gill nets and long lines, the restriction cannot be rejected. 

(Notwithstanding, conclusions based upon large-sample properties like the likelihood ratio 

statistic may be questionable with only 30 observations in the case of Danish seine and 89 

observations for the other gears.) δ2 is estimated close to but below one for all gears but 

Danish seine. (The estimate is below one for all gears in the estimation without the variance 

restriction, see Table A1.) For all gears, the estimate is more than two standard errors away 

from zero.  

 𝛼 is estimated within two standard errors of one for gill nets and Danish seine. For 

long lines and hand lines, the estimates are below but more than two standard errors away 

from one. Finally, 𝛼 is estimated more than two standard deviations away from zero for all 

gears. 𝛼 = 1 implies constant returns to effort. It is unclear to me whether constant returns 

are expected. If the fish stock arrived in Lofoten at the beginning of the season and was 

fished down as the season progressed, one would expect diminishing returns to effort. If, 
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however, the stock arrived in portions or something like a flow, constant returns should at 

least be possible. If vessels cooperated, for example by sharing information on productive 

fishing grounds, even increasing returns could arise. My results from the restricted, purely 

exponential model suggest close to constant returns to effort for most gears. 

I estimate 𝛽 two standard deviations away from both zero and one for gill nets and 

long lines, while for Danish seine, the estimate is close to one. For hand lines, the estimate is 

two standard deviations away from zero but not from one. The classical Schaefer production 

function has 𝛽 = 1 with the interpretation that the fish is distributed evenly over the fishing 

ground. One expects 𝛽 below one for schooling fish stocks (not the case for the North-East 

Atlantic cod); 𝛽 would also be estimated below one if the fishermen knew where to find the 

fish or used fish finding equipment like the echo sounder. Both possibilities are quite likely 

for the Lofoten fishery. Hannesson et al. (2010, p. 756) hypothesize that if too much 

variation is picked up by the technology parameter, 𝛽 would have a downward bias. 𝛽 would 

also have a downward bias if only a part of the stock was within reach of the fishing fleet, 

unless the partiality was already reflected in the data. (With 𝑌𝑡 =  𝐴𝑡𝐸𝑡𝛼(𝑐𝑆𝑡)𝛽, where 𝑐 

reflects that only a fraction of the stock is interacting with the fishery, one would estimate 

𝑌𝑡 =  𝐴𝑡𝑐𝛽𝐸𝑡𝛼𝑆𝑡
𝛽 =  𝐴𝑡∗𝐸𝑡𝛼𝑆𝑡

𝛽∗  where 𝐴𝑡∗ =  𝐴𝑡𝑐𝛽. Since 𝑐𝑆𝑡 <  𝑆𝑡 and (𝑐𝑆𝑡)𝛽  =  𝑆𝑡
𝛽∗, 𝛽∗ 

would underestimate 𝛽, and 𝐴𝑡∗ would underestimate 𝐴𝑡 since 𝑐 represents a fraction.) 

Hannesson et al. (2010) had problems with serial correlation. The Ljung-Box Q-

statistic test for serial correlations, and I compute it for the realized errors in both the state 

and observation equation, see Table 1. For hand lines, the p-value of the statistic is relatively 

small and some serial correlation could occur. (The problem is less pronounced in the model 

without the variance restriction, see Table A1.)  For all other gears, I find no sign of serial 

correlation in the error terms. 

Finally, I turn to the estimated technology level. The solid curves in Figure 1 show the 

smoothed technology level ln𝐴𝑡 +  𝑘 for the restricted, purely exponential model for all 

gears. The shaded areas show two standard errors around the estimate in both directions. 

The dashed curves show the technology level estimated by Hannesson et al. (2010, Table 1, 

regression (iii), p. 756). In comparison, the time profiles of their and my estimates are highly 

consistent. Also, the level of the technology level agrees to a large extent, but I have 

estimated a slightly higher technology level for hand lines and Danish seine. The estimated 

technology level depends on the estimated input elasticities 𝛼 and 𝛽: For gill nets and long 
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lines, with highly consistent level estimates, the elasticity estimates are also quite close. The 

estimated technology level appears noisy in the sense that it has small short-term variations 

around a longer-term trend. First, I expect the estimate to fluctuate within a standard 

deviation or two from the true level. Second, as long as the model is not perfect some 

exogenous variation will inadvertently end up in the technology estimate. (Indeed, the 

technology concept underlying the Baltagi and Griffin 1988, the Hannesson et al. 2010, and 

my approach derives from Solow 1957, p. 312: ‘any kind of shift in the production function.’) 

 

The Unrestricted Model 
Next, I turn to the model in (3) without the restriction 𝛿1  = 1. Without the restriction, it is 

not necessary to introduce an additional constant in the system like in (6). With 

 𝑧𝑡 = �
ln 𝛿1,𝑡
ln𝐴𝑡

� ,𝐹 =  �1 0
1 δ2

� , 𝑣𝑡 =  �
𝑣1,𝑡
𝑣2,𝑡

�, 

𝐴 = [𝛼 𝛽],𝑋𝑡 =  �ln𝐸𝑡  ln 𝑆𝑡  
� ,𝐻 =  [0 1]  

(8) 

the system is a special case of the system in (4). Technically, ln 𝛿1,𝑡 is not treated as a 

parameter, but rather as a state variable and thus carries a subscript 𝑡. While ln 𝛿1,𝑡 will have 

a time profile, just like the technology level, one can nevertheless think of it as a parameter 

of the system. Indeed, it is treated as a stochastic constant: 

 ln 𝛿1,𝑡+1 =  ln δ1,𝑡 +  𝑣1,𝑡  

The error terms 𝑣1,𝑡 are normal, independent, and identically distributed with mean zero 

and variance 𝜎𝑣,1
2 . For the technology level, I use the same initial condition as in the 

restricted, purely exponential model: the estimated initial level from Hannesson et al. 

(2010). For ln 𝛿1,𝑡, I set the initial condition equal to zero (𝛿1,0  = 1). Initial variances are 

again set to one. 

 Similarly as in the restricted model, the terms 𝑣1,𝑡, 𝑣2,𝑡, and 𝑤𝑡 introduces 

multiplicative error terms in equation (1) while there is no mechanism to allocate variation 

between them. I use the additional restriction: 

 𝜎𝑣,1
2 = 𝜎𝑣,2

2 =  𝜎𝑤2 =  𝜎2 (9) 

(I still refer to the model as the unrestricted model, as the restriction on 𝛿1 is the main 

restriction of interest.) The additional restriction (9) is tested with a likelihood ratio test; 

Table 2 reports the test statistics and p-values (estimation results without the restriction are 
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reported in Table A2 in the Appendix). The restriction cannot be rejected for any of the 

gears. The Akaike (1973) information criterion suggest the model restricted by (9) for all 

gears but hand line. Normality of the predicted errors is tested with the Lilliefors (1967) test; 

p-values are reported in Table A4 in the appendix. The p-values for 𝑣1,𝑡 for long lines and 

Danish seine are small and could be a sign of misspecification, but plots of the errors suggest 

rather that outliers cause problems. Finally, in Table A5, I provide p-values from the 

Kolmogorov-Smirnov test on predicted errors. As in the restricted model, p-values for errors 

in the observation equation (𝑤𝑡) are low and suggest problems. Similarly as with (7), one can 

probably tune (9) in order to make predicted errors pass the Kolmogorov-Smirnov test. 

 As in Table 1, I carry out the Ljung-Box test on predicted errors; Table 2 reports both 

the test statistic and p-values. There are no signs of serial correlations in the results. 

 

Results 
Table 2 reports parameter estimates for the unrestricted model (equations (8) and (9)) for 

the four different gears types. Standard errors are given in parenthesis. For all gears, the 

likelihood ratio test cannot reject the additional restriction (9). The estimates of 𝛼 and 𝛽 are 

relatively similar to those estimated for the restricted model (Table 1). The largest 

differences are found for hand lines and Danish seine. If one considers intervals of two 

standard deviations around the estimates rather than point estimates, the intervals overlap 

to a large degree for all gears. The estimates for 𝛿2 are quite different, however. For all 

gears, the estimate is close to zero, only for long lines and Danish seine is the estimate more 

than a standard deviation away. The 𝛿2 estimate for Danish seine is negative. Since ln𝐴𝑡 also 

is negative for Danish seine, a negative 𝛿2 is consistent with an upward trend in the 

technology level. Setting 𝛿2 = 0 leads to a model equivalent to the restricted model with 

𝛿1 = 1, where ln 𝛿1,𝑡 takes the role of the term 𝛿2 ln𝐴𝑡 in (5). As mentioned, the 𝛿2 

estimates for the restricted, purely exponential model are close to one for all gears (see 

Table 1). The unrestricted model is in other words not very different from the restricted 

model, and the results from the two models mimic each other. I conclude that the restriction 

𝛿1  = 1 cannot be rejected. 

 The solid curves in Figure 2 show the smoothed technology level ln𝐴𝑡 for the 

unrestricted model for all gears. The shaded areas show two standard errors around the 

estimate in each direction. As in Figure 1, the dashed curves show the technology level 
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estimated by Hannesson et al. (2010, Table 1, regression (iii), p. 756). While the overall 

impression is that the results are similar to those displayed in Figure 1, a few remarks are in 

order. The estimates contain more noise. The law of motion for the technology level in the 

restricted model contains one error term (see equation (5)), while for the unrestricted 

model, the law of motion contains two error terms. Although 𝜎2 is estimated at a higher 

level in the restricted model, it adds up to more noise in the technology level for the 

unrestricted model. The added noise is more pronounced in the cases where the 𝛿2 estimate 

is more than a standard deviation away from zero (long lines and Danish seine). The shaded 

areas in Figure 2 are slightly narrower than in Figure 1, implying smaller standard errors. The 

standard deviations in Table 2 are in most cases also smaller than in Table 1 and particularly 

so for the variance estimates: The restriction 𝛿1 = 1 reduces precision of the estimates. 

 Figure 3 show the estimates of  ln δ1,𝑡 for the unrestricted model for all gears. The 

solid curves show the smoothed estimate, while the shaded areas show two standard 

deviations around the estimate in both directions. With δ2 close to zero,  ln δ1,𝑡 is driving the 

development in  ln A𝑡 (see equation (3)). Thus, the  ln δ1,𝑡  estimates in Figure 3 are similar to 

the ln𝐴𝑡 estimates in Figure 2, but the Figure 3 estimates are more smooth ( ln δ1,𝑡 contains 

less noise than ln𝐴𝑡 in both Figures 1 and 2). 

Table 3 shows a side-by-side comparison of estimates for input elasticities 𝛼 and 𝛽 

from the restricted model (Table 1), the unrestricted model (Table 2), and from Hannesson 

et al. (2010). For gill nets and long lines, the estimates are relatively close over all 

specifications. For gill nets, somewhat lower 𝛼 estimates are offset by somewhat higher 𝛽 

estimates, while the opposite occurs for long lines. Thus, the estimated technology level for 

gill nets and long lines agree to a large extent across all specifications. For hand lines and 

Danish seine, my restricted, purely exponential model estimates for 𝛼 are lower and my 

estimates for 𝛽 are higher when compared to Hannesson et al. (2010). The differences do 

not cancel out to the same degree as for gill nets and long lines, and I estimate a higher 

technology level for both hand lines and Danish seine. In the unrestricted model, I estimate 

both input elasticities below the estimates in Hannesson et al. (2010), and thus estimate the 

technology level at a significantly higher level. 

The restriction 𝛿1  = 1 does not seem to be binding. While there are some 

differences in the estimated technology level, the time profiles agree to a large extent, and 

the unrestricted model suggests the same revisions of the development of the fishery as do 



15 
 

the restricted model. Thus, the results and their interpretation with and without the 

restriction do not differ very much and the unrestricted model adds little to the 

understanding of the importance of technological development in the Lofoten fishery. 

 

4 Discussion 
I have provided a Kalman filter approach as an alternative to the time dummy approach in 

Hannesson et al. (2010). The results are to some extent consistent between the methods, 

but they also show the limitations of the time dummy approach. The most obvious limitation 

is that estimates are only provided in six year aggregates. In comparison, the Kalman filter 

approach provides yearly estimates. The higher resolution in the estimates gives rise to an 

alternative view on the technological development in the fishery. 

Based upon the technology time profiles, Hannesson et al. (2010, pp. 758-759, see 

Figure 7, p. 757, for technology time profiles) identifies four major periods in the fishery: 

From the beginning of the twentieth century to the end of World War II, from the end of 

World War II to about 1960, from the early 1960s to the early 1980s, and finally from the 

early 1980s to the end of the open access regime in 1988. 

From my estimates in Figures 1 and 2, a different picture appears. From 1900 to circa 

1920, the technology level for both gill nets and hand lines increased steadily. At around 

1920, there is a clear break in the development. Motorization of the fleet took place in the 

years leading up to 1920, and by that time, most of the decked boats in the fishing fleet had 

engines. My results suggest that motorization was indeed the most important technical 

innovation in the pre-war period. Little improvement happened in the long line fleet, which 

suggests that motorization was less important for the long line technology. For the next forty 

years following 1920, the technology level had some ups and downs, but by the end of the 

1950s, not much had happened to the technology level when compared to the 1920 level; 

for long lines, however, the technology level by the late 1950s was almost comparable to the 

technology level at the beginning of the century. From the late 1950’s to around 1970, 

improvements occurred in all gears. The use of synthetic fibers and, for hand lines, jigging 

machines was probably the most important innovations in the period. The Hannesson et al. 

(2010) results suggest that in the early 1960s, the technology level was at the level it had 

been for a number of years, while in the late 1960s, the technology was at a much higher 

level. In comparison, my results show that the technology improvement started around 
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1960, or a few years later depending on the gear, and increased steadily through a number 

of years before leveling off in the years after 1970. Further, the change happened much 

faster in the long line fleet than in the rest of the fishery; synthetic fibers were probably 

quite important for the long line technology. In the final years, technical regress seem to 

occur. The regress is difficult to explain. In the Hannesson et al. (2010) analysis, the regress 

seems confined to the final period which covers 1984 to 1988. My results, however, suggest 

the regress started as early as the late 1970s. Particularly, the gill net technology seemed to 

have a peak around 1970 with subsequent technological regress. Total catches in the period 

of apparent technological regress was low, however, particularly in the 1980s, and the 

regress can simply be a signal that the particular production function (1) is not a very good 

representation of the harvesting process at low levels. Since the regress occurs in all gears, it 

could also suggest that some biological or environmental change was under way; all gears 

interact with the same biology and the same environment, after all. 

To summarize, based upon the Kalman filter approach I identify four major periods of 

technological development in the Lofoten fishery: 1900 – 1920: Motorization lead to 

improvements in productivity. 1920 – 1960: Few gains from technological improvements. 

1960 – 1970: Synthetic fibers and general development lead to substantial improvements. 

1970 – 1988: Hard to explain technological stagnation and regress. In addition, the long line 

technology stands out with a different technological development than the rest of the 

fishery. 

 

5 Conclusion 
I have estimated production functions for the open-access cod fishery in Lofoten in a Kalman 

filter framework. The analysis suggests improvements to the analysis in Hannesson et al. 

(2010). While the estimates largely agree with the earlier analysis, I was able to produce 

results with a higher time resolution, and serial correlation seemed less of an issue. With the 

higher resolution results, year-to-year changes, which largely disappear with aggregated 

period estimates, become apparent. Ultimately, the new results inspire a different view on 

the technological development in the fishery. For example, there was a clear break in the 

technological development of the gill net and hand line gears around 1920. The break 

coincides with when motorization was completed; motors were an important development 

in the fishery. 
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 My alternative empirical approach to technical change in the Lofoten fishery does not 

alter the main findings about productivity growth in Hannesson et al. (2010). But, if one is 

interested in technological development in itself, or latent variables in other contexts, I 

submit that the Kalman filter is a conceptually more sound approach than some of the more 

traditional remedies. 

 The Hicks-neutrality assumption, which is integral to both my and the analysis in 

Hannesson et al. (2010), is made more out of convenience than theoretical rigor. Non-

neutral, technical change in the production function (1) amounts to input elasticities 

changing over time. The effort elasticity would increase over time as the same amount of 

effort could produce a larger harvest. The estimate of the effort elasticity does however 

incorporate efficiency of effort. Thus, if boats are not on the efficient frontier, the elasticity 

has a downward bias; if the average boat moves closer to the efficient frontier, it would 

manifest itself in an increasing elasticity over time. With non-neutral technical change, the 

stock elasticity would also be expected to increase over time, as a larger harvest could be 

extracted from the same stock level. However, technological change could also make the 

harvest outcome less dependent upon the stock level, and the stock elasticity would then 

decrease over time. To address non-neutral technical change nonlinear methods are 

necessary, while it seems apparent that the current model and data are insufficient to shed 

light on the issue. (With better data, both the general index and the Kalman filter approach 

allows for non-neutral technical change. In the present framework, it would require more 

observations or less correlated effort variables.) Non-neutral technical change would 

probably interfere with the neutral technology parameter 𝐴𝑡 and can potentially explain the 

apparent technical regress which seemed to occur in the nineteen seventies and eighties. 

Non-neutral technical change poses challenges for future work in this line of research. 
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Appendix 
Table A1: Results from estimating the restricted model (equations (5) – (6)) for all gears 

without the restriction (7) on variances. 

 
Gill Nets Long Lines Hand Lines Danish Seine 

𝛿2 0.9983 (0.0018) 0.9993 (0.0030) 0.9983 (0.0022) 0.9979 (0.0013) 
𝛼 0.9611 (0.1638) 0.4963 (0.2365) 0.7838 (0.2274) 1.0877 (0.1098) 
𝛽 0.4636 (0.1280) 0.7322 (0.1204) 0.5103 (0.2317) 0.9950 (0.1817) 
𝜎𝑣2 0.0626 (0.0141) 0.0247 (0.0115) 0.2823 (0.0432) 0.1655 (0.0535) 
𝜎𝑤2  0.0244 (0.0133) 0.0344 (0.0129) 0.0229 (0.0173) 0.0000 (0.0058) 
ln 𝐿 -31.0530 -12.2807 -83.0739 -17.6781 
AIC -72.1060 -34.5614 -176.1478 -45.3562 

LB-stat (𝑣𝑡) 15.2537 
0.7617 

15.4573 
0.7497 

29.2410 
0.0831 

9.5694 
0.9753 p-value 

LB-stat (𝑤𝑡) 14.6370 
0.7968 

15.5998 
0.7411 

29.2934 
0.0821 

14.5529 
0.8014 p-value 

No. Obs 89 89 89 30 
Note: Standard deviations in parenthesis. 

 

Table A2: Results from estimating the unrestricted model (equation (8)) for all gears without 

the restriction (9) on variances. 

 
Gill Nets Long Lines Hand Lines Danish Seine 

𝛿2 0.2897 (0.5719) 0.8100 (0.1235) 0.3061 (0.2859) 0.5372 (0.3662) 
𝛼 0.9236 (0.1728) 0.3769 (0.1316) 0.7252 (0.2356) 1.4399 (0.4466) 
𝛽 0.4532 (0.1484) 0.7321 (0.1356) 0.4405 (0.2700) 0.8527 (0.1303) 
𝜎𝑣,1
2  0.0830 (0.1263) 0.0478 (0.0206) 0.2824 (0.2479) 0.0000 (0.1007) 

𝜎𝑣,2
2  0.0000 (0.1325) 0.0151 (0.0157) 0.0000 (0.2543) 0.1192 (0.0800) 
𝜎𝑤2  0.0083 (0.0168) 0.0000 (0.0001) 0.0128 (0.0227) 0.0035 (0.0090) 
ln 𝐿 -112.9982 -94.7886 -161.9120 -46.2694 
AIC -237.9964 -201.5772 -335.8240 -104.5388 

LB-stat (𝑣1,𝑡) 12.4744 6.1193 17.1060 4.9784 
p-value 0.8988 0.9987 0.6461 0.9997 

LB-stat (𝑣2,𝑡) 10.1459 14.5900 16.9761 9.1433 
p-value 0.9654 0.7994 0.6545 0.9812 

LB-stat (𝑤𝑡) 10.0001 15.1653 19.5680 10.6158 
p-value 0.9682 0.7669 0.4852 0.9556 
No. Obs 89 89 89 30 

Note: Standard deviations in parenthesis. 
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Table A3: Parameter estimates the restricted model (equations (5) – (7)) for all gears and 

different values of 𝑘. The column 𝑘 = 10 corresponds to the results reported in Table 1. 

Gear Parameter 𝑘 = 2 𝑘 = 5 𝑘 = 10 𝑘 = 15 𝑘 = 20 

 𝛿 
0.9124 0.9958 0.9983 0.9990 0.9993 

 𝛼 
0.8636 0.9672 0.9675 0.9672 0.9670 

Gill nets 𝛽 
0.3639 0.4486 0.4507 0.4511 0.4513 

 𝜎2 
0.0450 0.0449 0.0450 0.0450 0.0450 

 𝛿 
0.9025 0.9973 0.9994 0.9997 0.9998 

 𝛼 
0.4655 0.5027 0.5009 0.5002 0.4998 

Long lines 𝛽 
0.7699 0.7385 0.7406 0.7410 0.7412 

 𝜎2 
0.0290 0.0290 0.0290 0.0290 0.0290 

 𝛿 
0.8913 0.9909 0.9971 0.9984 0.9989 

 𝛼 
0.4664 0.4588 0.4731 0.4755 0.4765 

Hand lines 𝛽 
0.5620 0.7005 0.7022 0.7019 0.7016 

 𝜎2 
0.1511 0.1513 0.1516 0.1516 0.1516 

 𝛿 
0.9990 1.0001 1.0003 1.0003 1.0002 

 𝛼 
1.1031 1.1114 1.1157 1.1174 1.1183 

Danish seine 𝛽 
0.9562 0.9546 0.9537 0.9533 0.9531 

 𝜎2 
0.0840 0.0840 0.0840 0.0840 0.0840 

 

Table A4: p-values from the Lilliefors (1967) test of the hypothesis that error terms from 

estimations in Tables 1 and 2 are normally distributed. 

 Table 1  Table 2 

 𝑣𝑡 𝑤𝑡   𝑣1,𝑡 𝑣2,𝑡 𝑤𝑡  

Gill Nets 0.1126 0.0803  0.0648 0.686 0.0513 

Long Lines 0.1028 0.1542  0.0133 0.2796 0.0701 

Hand Lines 0.0622 0.0598  0.0958 0.1004 0.0530 

Danish Seine 0.3465 0.4750  0.0084 0.1417 > 0.5 
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Table A5: p-values from the Kolmogorov-Smirnov test on predicted errors from estimations 

in Tables 1 and 2. 

 Table 1  Table 2 

 𝑣𝑡 𝑤𝑡   𝑣1,𝑡 𝑣2,𝑡 𝑤𝑡  

Gill Nets 0.5686 0.0143  0.2147 0.3302 0.0008 

Long Lines 0.5356 0.0230  0.2739 0.0474 0.0013 

Hand Lines 0.3766 0.0026  0.3860 0.6940 0.0001 

Danish Seine 0.8915 0.1359  0.9287 0.3346 0.0926 
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Tables and Figures 
Table 1: Results from estimating the restricted model (equations (5) – (7)) for all gears. The 

likelihood ratio statistics and p-values relate to the results in Table A1. Figure 1 shows 

related estimates of ln𝐴𝑡. 

 
Gill Nets Long Lines Hand Lines Danish Seine 

𝛿2 0.9983 (0.0024) 0.9994 (0.0027) 0.9971 (0.0042) 1.0003 (0.0063) 
𝛼 0.9675 (0.1709) 0.5009 (0.2292) 0.4731 (0.1836) 1.1157 (0.2134) 
𝛽 0.4507 (0.1336) 0.7406 (0.1204) 0.7022 (0.2355) 0.9537 (0.1476) 
𝜎2 0.0450 (0.0055) 0.0290 (0.0041) 0.1516 (0.0143) 0.0840 (0.0256) 

ln 𝐿 -31.7105 -12.4173 -85.2174 -20.4740 
AIC -71.4210 -32.8346 -178.4348 -48.9480 

LR-stat 1.3150 0.2732 4.2870 5.5918 
p-value 0.2515 0.6012 0.0384 0.0180 

LB-stat (𝑣𝑡) 14.8665 15.6840 30.6323 
0.0602 

9.2968 
0.9792 p-value 0.7840 0.7360 

LB-stat (𝑤𝑡) 14.5871 
0.7995 

15.8441 
0.7262 

32.1654 
0.0416 

10.1539 
0.9653 p-value 

No. Obs 89 89 89 30 
Note: Standard deviations in parenthesis. 

 

Table 2: Results from estimating the unrestricted model (equations (8) – (9)) for all gears. 

The likelihood ratio statistics and p-values relate to the results in Table A2. Figures 2 and 3 

shows related estimates of ln𝐴𝑡 and ln 𝛿1,𝑡. 

 
Gill Nets Long Lines Hand Lines Danish Seine 

𝛿2 0.0615 (0.1975) 0.2634 (0.1633) 0.0758 (0.1322) -0.3427 (0.2440) 
𝛼 0.9571 (0.1723) 0.5458 (0.1474) 0.4986 (0.2178) 1.0208 (0.1011) 
𝛽 0.4306 (0.1434) 0.7279 (0.1210) 0.6297 (0.2800) 0.7988 (0.0616) 
𝜎2 0.0289 (0.0034) 0.0180 (0.0030) 0.0910 (0.0098) 0.0437 (0.0125) 

ln 𝐿 -113.9446 -95.9263 -164.0846 -47.9079 
AIC -235.8892 -199.8526 -336.1692 -103.8158 

LR-stat 1.8928 2.2754 4.3452 3.2770 
p-value 0.3881 0.3206 0.1139 0.1943 

LB-stat (𝑣1,𝑡) 13.4306 12.0648 25.5122 8.4076 
p-value 0.8582 0.9138 0.1825 0.9888 

LB-stat (𝑣2,𝑡) 13.2950 14.2755 25.6454 9.4171 
p-value 0.8644 0.8163 0.1778 0.9776 

LB-stat (𝑤𝑡) 13.1839 16.0888 26.6726 7.9336 
p-value 0.8694 0.7111 0.1447 0.9923 
No. Obs 89 89 89 30 

Note: Standard deviations in parenthesis. 
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Table 3: Comparing elasticity estimates for the restricted (Table 1) and unrestricted model 
(Table 2) to Hannesson et al. (2010, Table 1, regression (iii), p. 756) estimates. 

 
𝛼  𝛽 

 

Re-
stricted 

Unre-
stricted 

Hannesson et al. 
(2010) 

 Re-
stricted 

Unre-
stricted 

Hannesson et al. 
(2010) 

Gill Nets 0.9675 0.9571 1.0100  0.4507 0.4306 0.4064 
Long Lines 0.5009 0.5458 0.4938  0.7406 0.7279 0.7620 
Hand Lines 0.4731 0.4986 0.6844  0.7022 0.6297 0.5363 

Danish Seine 1.1157 1.0208 1.2234  0.9537 0.7988 0.9015 
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Figure 1: Smoothed estimates of ln𝐴𝑡 +  𝑘 for the different gears in the restricted  model 

(solid curves; the shaded areas show two standard deviations on each side of the central 

estimate) and the Hannesson et al. (2010, Table 1, regression (iii), p. 756) estimates of 

ln𝐴 +  𝑑𝑖 (dashed curves). Parameter estimates in Table 1; the Hannesson et al. (2010) 

parameter estimates are listed in Table 3. 
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Figure 2: Smoothed estimates of ln𝐴𝑡 for the different gears in the unrestricted model (solid 

curves; the shaded areas show two standard deviations on each side of the central estimate) 

and the Hannesson et al. (2010, Table 1, regression (iii), p. 756) estimates of ln𝐴 +  𝑑𝑖 

(dashed curves). Parameter estimates in Table 2. The Hannesson et al. (2010) parameter 

estimates are listed in Table 3. 
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Figure 3: Smoothed estimates of ln 𝛿1,𝑡 for the different gears, unrestricted model (solid 

curves; the shaded area show two standard deviations on each side of the central estimate). 

Parameter estimates in Table 2. 
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