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Abstract

We demonstrate the power of the Ensemble Kalman Filter in specifying

ecosystem models ideal for bioeconomic analysis. Bioeconomic analysis

requires models to be relatively simple, but models must still capture the

nature and dynamics of the system. With the Ensemble Kalman Filter, we

are able to capture complex dynamics in multispecies models with models

simple enough to allow further bioeconomic analysis. While bioeconomic

analysis has had limited influence on management decisions, the advent of

new methods and the need for high dimensional ecosystem based manage-

ment models may make bioeconomic research more relevant in the future.

The filter is applied to a ecosystem model of the commercially most im-

portant species in the Barents Sea. The simpler, aggregated stochastic

biomass models capture the complex dynamics of the pelagic stocks on

the level needed for making decisions on for example allowable catches.

Keywords: Ensemble Kalman Filter, Ecosystem Management, Bioeconomics,

Aggregated Biomass Models.



1 Introduction

Whilst traditional fisheries management has had limited success (Ludwig et al.

1993, Worm et al. 2006), interest in and need for ecosystem-based management

of fisheries increases (Holland et al. 2010, Kaufman et al. 2004, May et al. 1979).

Economists has spent considerable time and effort on studying efficiency and

optimality of fisheries management and more generally renewable resource man-

agement models, but the so-called bioeconomics literature has had little impact

on real-world fisheries management (Squires 2009). Perhaps the main reason

for the lack of impact are the over-simplified biological models typically used.

While simple models enhance tractability, the models simply cannot capture

the observed dynamics of fish stocks. When it comes to ecosystem-based man-

agement, it is obvious that the staple, single-species model in bioeconomics has

limited, if any, interest. As such, much of the work in population dynamics,

which has had a much larger impact on policy (Wilen 2000), has also focused

on single-species models. Thus, the management of most fisheries today is based

upon single-species concepts. A case in point is the central position of the maxi-

mum sustainable yield concept in the Johannesburg Declaration on Sustainable

Development (United Nations 2002). Maximum sustainable yield is a staple

single-species concept which leads astray in an ecosystem setting (see Kaufman

et al. 2004, p. 694, and references therein, see also Ludwig et al. 1993, p. 17,

and May et al. 1979, p. 267). While population dynamics has been the main

scientific influence on management decisions, one may ask whether the sole in-

fluence is warranted. We subscribe to the criticism raised by Hannesson (2007,

p. 699), that ‘age-structured models introduce idiosyncratic elements of uncer-

tainty’ through unknown parameters, and believe that the much more tractable

aggregated biomass models are more relevant ‘when they can be reconciled with

reality.’ Tractability becomes ever more important when the dimensionality of

the problem increases. The aim of our present efforts is exactly to demonstrate

how aggregated biomass models can be reconciled with the reality of marine

ecosystems.

We use the ensemble Kalman filter (Evensen 1994, Burgers et al. 1998) to fit

a marine ecosystem model to data. The ensemble Kalman filter is a data assimi-

lation method much used in meteorology and oceanography; sciences which deal

with large, high-dimensional, and chaotic systems. Evensen (2003) reviews both
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theoretical developments and applications of the ensemble Kalman filter and re-

lated methods; Evensen (2009) covers more recent developments. The method

can be seen as an extension of the classical Kalman filter to a large class of

nonlinear models. The fundamental idea is to use a Markov Chain Monte Carlo

approach to solve the Fokker-Planck (or Kolmogorov’s) equation which governs

the time evolution of the model. The model is written as a stochastic differ-

ential equation, and both the model and observations are assumed to contain

noise. Importantly, the method facilitates simultaneous estimation of poorly

known parameters (Evensen 2009, p. 101). With the ensemble Kalman filter,

relatively simple models can capture much of the complexity observed in marine

ecosystems. We review the theory of the ensemble Kalman filter and apply it

to a three-species model of the Barents Sea ecosystem.

Variants of the Kalman filter has been applied to bioeconomic models ear-

lier. Berck and Johns (1985) considered the extended Kalman filter to fit an

aggregated biomass model to the Pacific Halibut fishery. The extended Kalman

filter extends the classical filter (Kalman 1960) to nonlinear models by local

linearizing of the model. The extended filter has limited applicability as it de-

pends on closure assumptions and costly computations of the Jacobian (Burgers

et al. 1998, p. 1719). While the analysis in Berck and Johns (1985) never saw

the light of day in a peer-review publication, it was both original and inventive,

among other things estimating the value of information about the Pacific Hal-

ibut stock (less than perfect information about the 1973 stock was estimated to

2% of the present value of the fishery, p. 18). They also underlined that their

approach to estimating the stock level was ‘radically different’ than the methods

used by the management body (the International Pacific Halibut Commission).

In their words, the Kalman filter ‘sacrifice biological detail while gaining sta-

tistical method’ (Berck and Johns 1985, p. 19). The extended Kalman filter

was later suggested for renewable resource management by Walters (1986). Ma-

rine scientists have on some occasions applied the extended Kalman filter to

their models, see for example Schnute (1994), Peterman et al. (2000, 2003), and

references therein.

More recently, several different data assimilation methods, usually so-called

variational adjoint methods, have been suggested to fit aggregated biomass mod-

els to data (see Ussif et al. 2003, and references therein). On the other hand,

Grønnevik and Evensen (2001) applied different ensemble-based data assimila-
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tion techniques to age-structured fish stock assessment models; among them,

the ensemble Kalman filter. An advantage of the ensemble Kalman filter when

compared to variational adjoint methods is that it does not rely on direct opti-

mization, and all observations are not processed simultaneously. Instead, vari-

able and parameter estimates are updated sequentially according to the filtering

procedure. The ensemble Kalman filter also facilitates so-called flow-dependent

noise attribution; flow-dependent (or rather, state-dependent) noise processes,

it turns out, are fundamental in capturing the dynamics of marine ecosystems.

If, as in Ussif et al. (2003), there is a known or easily identified functional

relationship between biological variables and the exploitation strategy, the filter

can also estimate economic parameters (the exploitation rate). Similarly, the

filter applies to a number of related problems, not only in bioeconomics, but in

economics more generally.

The ensemble Kalman filter fits, in an efficient manner, nonlinear, aggre-

gated biomass, ecosystem models to data. It also estimate the model error,

which can be translated into uncertainty in model predictions. Combined with

developments in high-dimensional, stochastic optimization, we believe the fil-

ter can make bioeconomic analysis relevant for real-world fisheries management

decisions. The main criticism, over-simplified biological models, looses much of

its force when the explanatory power of the fitted biomass models matches, and

even competes with, that of age-structured models. The potential of the ensem-

ble Kalman filter reaches further. It has the ability to process large amounts of

data in high-dimensional systems with large numbers of poorly known param-

eters (see Evensen 2003, and references therein) and it should be of interest to

any researcher working with large and volatile systems; from macroeconomics

to population dynamics and beyond.

2 Theory

Our theoretical presentation of the ensemble Kalman filter is inspired by Evensen

(2003, 2009). We depart from the continuous time state-space model:

dx = f(x)dt+ σdB (1)

d = M(x) + v (2)
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An incremental change dx in the state variable (or vector) x is the sum of the

drift term f(x)dt and the stochastic diffusion term σdB. When x is an aggre-

gated biomass vector, f(x) is the multi-dimensional growth function (f : Rn →
Rn). The stochastic increments dB are independent, identical, and normal dis-

tributed with mean zero and variance dt. The measurement functional M(x)

relates the state vector to the observations d. When the state vector is directly

observed, the measurement functional is the identity operator. v is a normal dis-

tributed error term with mean zero and covariance R. Equation (1) is called the

state equation; equation (2) is called the measurement or observation equation.

The ensemble Kalman filter is a sequential filter method and works as follows.

The model is integrated forward in time until measurements become available.

Measurements are used to update the model. The updated model is then further

integrated until the next measurement time. In the theoretical literature, the

update step is called the analysis, thus the notation xa for the updated state

vector. The forward integrated model (the forecast) is denoted xf . Cf is the

covariance of the model forecast; Ca is the covariance of the model analysis.

The ensemble Kalman filter uses, as the name suggests, an ensemble of model

states; a cloud of points in the state-space, to represent the probability density

function at any given time. With a so-called Markov Chain Monte Carlo method

(meaning that the model can be formulated as a Markov Chain and that a large

number of simulated solutions are considered, see Evensen 2009), each ensemble

member is integrated forward in time according to (1). Errors are simulated.

The integrated ensemble represents a forecast of the probability density and

the only approximation is the limited number of ensemble members (Evensen

2009, p. 47). The Markov Chain Monte Carlo method is the backbone of the

ensemble Kalman filter and is equivalent to solving the Fokker-Planck equation

for the time evolution of the probability density; see Evensen (2003, p. 348) for

further details.

When measurements are available, each ensemble member is updated as a

linear weighting between the forecast and the measurements:

xa = xf +K(d−Mxf ) (3)

The weight K is called the Kalman gain. Assuming M is the identity operator,

we see that with K = 0, no weight is put on the observation d; with K = 1, no
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weight is put on the forecast xf . The Kalman gain is given by:

K = CfMT (MCfMT +R)−1 (4)

where we assume that M is a linear operator (a matrix); MT denotes its trans-

pose. It is crucial that observations are treated as uncertain (R > 0), and in the

ensemble Kalman filter, the observation probability density is represented by an

ensemble; observations are perturbed (Burgers et al. 1998, pp. 1720-1721). It is

convenient to let the number of ensemble members in the state-space ensemble,

denoted X, and in the observation ensemble, denoted D be equal.

In the standard Kalman filter, both the forecast and analysis covariance (Cf

and Ca) are in principle unknown; they are defined in terms of the unknown

true state (see Evensen 2003, p. 347). In the ensemble Kalman filter, they are

defined in terms of the ensemble mean (E denotes the mean or expected value):

Cf
e = E

[
(Xf −E[Xf ])(Xf −E[Xf ])T

]
(5)

Ca
e = E

[
(Xa −E[Xa])(Xa −E[Xa])T

]
(6)

That is, covariances are represented by the ensemble moments which carry the

subscript e. The observation covariance is also represented by the ensemble

moment:

Re = E
[
(D − d)(D − d)T

]
(7)

The observation ensemble is defined such that it has the true (given) observation

as its mean: E[D] = d. The ensemble Kalman gain is defined as

Ke = Cf
eM

T (MCf
eM

T +Re)
−1 (8)

We assume that the ensemble is of sufficient size, such that MCf
eM

T and Re

are nonsingular; see Evensen (2003, p. 349). The analysis step (3) is carried

out element by element:

Xa
j = Xf

j +Ke(Dj −MXf
j ) (9)

where the subscript denote ensemble member j. It can be shown that by updat-

ing the ensemble with the perturbed observations D, the updated ensemble Xa

has the correct error statistics (Evensen 2003, p. 349). The analysis covariance

can be written as

Ca
e = (I−KeM)Cf

e (10)
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which is equivalent to the standard Kalman filter expression. I denotes the iden-

tity operator. Please see Evensen (2003) for derivations and further discussion.

The filter can estimate parameters simply by adding them to the state-space,

and thus, the state vector. Parameters are treated as model states, and state

variables and parameters are estimated simultaneously. As Evensen (2009, pp.

95-97) points out, the approach represents an improvement to more traditional

approaches which ignore model error. With parameters in the state space, it

is straightforward to adapt involved operators to make them compatible with

the extended state vector. For example, in a system with m observations and

n states, the measurement operator is M : Rn → Rm. With p parameters to be

estimated in the system, the measurement operator must be M : Rn+p → Rm.

The Kalman gain must be K : Rm → Rn+p. Note that the estimate is the

ensemble mean. Interpreting the ensemble as representative of the probability

density function, the filter parameter estimate is conceptually an alternative

to a maximum likelihood estimate; the maximum likelihood estimate is at the

mode of the probability density. Hansen and Penland (2007) suggest an al-

ternative interpretation of obtained parameter values, but the approach has

only been demonstrated appropriate for high-frequency observations and with

a near-perfect model where parameters are unknown constant. The alternative

interpretation of parameter estimates could potentially improve model forecasts,

but that is auxiliary to our present focus.

The initial ensemble should reflect belief about the initial state of the sys-

tem (Evensen 2003, p. 350). The filter can be initialized by specifying means

and standard deviations which characterize the initial ensemble. In the case of

unknown parameters, initialization can be challenging. Our experience is that

with large enough standard deviations, such that the initial ensemble cover all

eventualities, and enough ensemble members, it is possible to find reasonable

traits of the initial ensemble. Often, there is theory and earlier results to rely on.

The size of the ensemble is another concern, mostly computational in nature.

The ensemble should be large enough to sufficiently represent the probability

density function. What is sufficient depends on the dimensionality of the prob-

lem, but also on the nature of the data; data with little variation could perhaps

require more ensemble members. What is a possible ensemble size depends on

computational limitations. An ensemble size of one hundred is not uncommon

in the oceanographic and meteorological sciences, sciences where the application
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of the ensemble Kalman filter to high-dimensional systems with large numbers

of unknowns has been successful (Evensen 2009).

To sum up, the ensemble Kalman filter can be interpreted as a statistical

Monte Carlo method where the ensemble evolves in state-space with the mean

as the best estimate and the spreading of the ensemble as the error variance

(Burgers et al. 1998, p. 1720). In many problems, the sequential processing of

observations proves to be a better approach than the simultaneous processing

which is typical in variational methods (Evensen 2009, p. 101).

3 The Model

The Barents Sea is one of the most productive ocean areas in the world, and is

subject to extensive research (Gjøsæter et al. 2009, Huse et al. 2004, O’Brien

et al. 2004, see also further references therein). The commercially most impor-

tant stocks are cod and capelin; cod is highly valued as human food and capelin

is an important part of the cod diet. Capelin is also caught for fish meal and

oil production. Juvenile herring enters the Barents Sea when large year-classes

arise in the Norwegian Sea. Herring has an important influence on the ecosys-

tem; it is preyed on by cod while it preys on capelin larvae. We limit our model

to these three fish stocks, for two main reasons. First, we are able to capture

the dynamics of the cod stock to a high degree, and the cod fishery is the most

important fishery in the region and of our main interest. Second, if the model

is to be relevant for bioeconomic analysis, we have to limit the complexity and

dimensionality of the model. We have in mind the type of analysis carried out

in Sandal and Steinshamn (2010); see also Kugarajh et al. (2006). To limit

complexity, we use simple growth functions and interaction terms common in

traditional bioeconomic analysis. While dimensionality is based upon technical

limitations, we find comfort in the view promoted by Holling and Meffe (1996,

p. 333), that the driving forces of an ecosystem are confined to a relatively

small subset of variables and relationships. While it is highly improbable that

our choice of variables and relationships contain all driving forces of the Bar-

ents Sea ecosystem, we observe that our model captures much of the variation

detected in stock assessments.
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3.1 The State-Space Model

To begin with notation, the biomass of the three stocks are the state variables;

cod is denoted x1, capelin is denoted x2, and herring is denoted x3. Both cod

and capelin are harvested in the Barents Sea; h1 and h2 denote fishing mortality

on cod and capelin. Herring is not harvested in the Barents Sea, but it flows in

from the Norwegian Sea. We denote the herring inflow by i3. Finally, we denote

parameters ci. The dynamic model for the system is written:

dx1 = (c1x1(1− x1/c2) + c3c7x1x2 + c4c12x1x3 − h1) dt+ σ1(x)dB1 (11)

dx2 =
(
c5x

2
2(1− x2/c6)− c7x1x2 − c8x2x3 − h2

)
dt+ σ2(x)dB2 (12)

dx3 =
(
c9x

2
3(1− x3/c10) + c11c8x2x3 − c12x1x3 + c13i3

)
dt+ σ3(x)dB3(13)

The stochastic increments dBi are independent, with mean zero and variance

dt. Correlations in the noise processes are reflected in the scaling term σi(x).

We use two principal models of the scaling term; white noise (σi(x) = σi) and

geometric, white noise (σi(x) = σi · x).

The first terms (the c1-, c5-, and c9-terms) in each model equation is equiv-

alent to the logistic (cod) or modified logistic (capelin and herring) growth

function, and the parameters c1, c2, c5, c6, c9, and c10 are interpreted accord-

ingly. (The idea of carrying capacity; the standard interpretation of the second

parameter in the logistic and modified logistic, becomes unclear in an ecosys-

tem setting. The capacity of the ecosystem to harbor any one specie depends

on the state of the entire system. Hence, intrinsic, single species notions such as

carrying capacity must be treated with caution in all multispecies approaches.)

Parameters c7, c8, and c12 are the basic species interaction parameters. c7

measures the intensity of the capelin-cod interaction; c8 the capelin-herring

interaction, and c12 the herring-cod interaction. Parameters c3, c4, and c11

adjusts the mirror interactions (cod-capelin, cod-herring, and herring-capelin),

as biomass is not conserved in the interactions. All parameters are lognormal

distributed, and are thus always positive. (Theoretically, they are modeled as

ci = exp(αi), where each αi is a stochastic constant which has white noise.)

The signs of the interaction terms thus becomes significant and a matter of

modeling; cod benefits from interacting both with capelin and herring (positive

sign on interaction terms), and herring benefit from interacting with capelin.

Mirror interaction terms have opposite signs; both species cannot benefit from

the interaction. (The interactions are predator-prey interactions, where cod is

8



the top predator, while caplin is preyed upon by both cod and herring. Sym-

biotic, mutually beneficial interactions between the three species are not likely

and not possible in our model. Neither are competitive, mutually destructive

interactions.) The multiplicative interaction model is a crude Lotka-Volterra

form of predator-prey interaction (May et al. 1979, p. 268); it is also referred

to as mass-action (Tschirhart 2009).

The final parameter c13 measures the influence of the inflow of herring on

the herring stock growth. Most of the time, the amount of herring biomass

which enters the Barents Sea is relatively small. After a few years, however, the

herring has grown substantially. Thus, we lag the inflow variable two years and

multiply it with the scaling parameter c13. The idea is that three year old (and

older) herring makes out most of the herring biomass in the Barents Sea, and

the biomass influx two years earlier better explains the change in the herring

stock. (After three or four years in the Barents Sea, the juvenile herring returns

to its main habitat in the Norwegian Sea to mature and eventually spawn.)

The adjustment parameters c3, c4, and c11 can be interpreted as biomass

conversion rates between species. Presumably, regularities exists between the

cod-capelin interaction term and the capelin-cod interaction term, and between

all other mirror interaction terms. While known or assumed interaction rela-

tionships would be helpful in reducing the number of parameters in the sys-

tem, biologists are sceptical when it comes to the stability of the relationships

(Tjelmeland 2011). Thus, we refrain from prescribing fixed relationships. (The

alternative would be, if one assumed that, say, 90% of the biomass was lost

between two trophic levels, to specify the corresponding mirror interaction pa-

rameter ci = 0.1.)

We treat the stock level estimates as direct measurements of the state vari-

ables, and the measurement operator is thus the identity operator. Note that

parameters are added to the state vector as described above. The measurement

operator must thus be adjusted to be compatible with the state vector. The op-

erator is adjusted by adding zeros; parameters are unobserved. The observation

equation becomes

d = Mx+ v (14)

where

x =

[
xi

cj

]
, i = [1, . . . , 3], j = [1, . . . , 13], and M = [I 0]
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where I is a three by three identity matrix and 0 is a three by thirteen zero

matrix. d is a three-element vector of observations, and v is the error term

which is normal, independent, and identically distributed with mean zero and

known or assumed variance R.

3.2 Data

The fish stocks in the Barents Sea cannot be observed directly. However, the

Institute of Marine Research in Bergen (in collaboration with the Knipovich

Polar Research Institute of Marine Fisheries and Oceanography in Murmansk)

carries out extensive, yearly ecosystem surveys. Based upon these surveys, they

provide yearly estimates of the stock levels of all the important species in the

Barents Sea. The stock estimates are published by the International Council for

the Exploration of the Sea (ICES), and most of our data are collected from the

ICES online database. Uncertainty in stock assessments are, however, usually

not reported, and we are left to speculation.

We have stock estimates, catch data and herring inflow estimates from 1950

to 2007. However, the ICES database does not contain data on capelin prior to

1972. For the period, we collected catch data from Røttingen and Tjelmeland

(2008, see Figure 2). Capelin stock estimates were collected from Marshall

et al. (2000, see Figure 1, p. 2435). The early capelin stock estimates are more

uncertain than later estimates, and we assume a 50% increased observation

uncertainty on the capelin stock data prior to 1972.

3.3 The Initial Ensemble

The initial ensemble is drawn randomly from a normal distribution. For the

three state variables, we use the first observations as the mean of the initial

ensemble and 30% of the first observation as standard deviation. For the pa-

rameter variables, we use a combination of theory, common sense, and existing

estimates to characterize the initial ensemble. As parameters enter the model

equations as ci = exp(αi), the parameter variable ensembles are defined in terms

of the αi’s, which may be called shadow parameters. Means and variances for

the shadow parameter variable ensembles are listed in Table 1. The table also

lists the implied parameter mean exp(ᾱi). Since it is intuitively much easier to

relate to the parameters ci rather than the shadow parameters αi, we refer to
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the parameters in the discussions that follow.

Initial means for the logistic parameters for cod, c1 and c2, were set to 1 and

5·106. The values were inspired by earlier estimates (Kugarajh et al. 2006, p. 75,

Table 3) and, when it comes to the capacity parameter c2, the range of observed

stock levels. For the pelagic stocks capelin and herring, we used the modified

logistic growth function; see equations (12) and (13). The growth parameter in

the modified logistic operates on a different scale than the growth parameter

in the pure logistic, and initial means for c5 and c6 were set at 10 · 10−6 and

5 · 10−6. It is not uncommon with a significantly larger intrinsic growth rate of

prey species in many predator-prey relationships (May et al. 1979, p. 269). As

with cod, the initial means of the capacity parameters c6 and c10 were inspired

by the range of observed levels and set to 2 · 107 and 1 · 107.

The initial ensemble for the basic interaction parameters c7, c8, and c12 were

treated more rigorously. The term c7x1x2 in (12) reflects the loss of capelin

biomass from the interaction with cod. Gjøsæter et al. (2009, see Figure 5, p.

45) estimated the amount of capelin consumed by the Barents Sea cod for the

years 1984-2006 from stomach content data. The consumption varies over time,

as does the cod and capelin stock levels. To get a reasonable initial measure of

c7, we regressed the total consumption of capelin on the term x1x2. Notably,

Gjøsæter et al. (2009) provided us with consumption estimates for 1984-2007

(that is, one more year of data than what they based their original analysis

upon). The estimated coefficient was 3.46 · 10−10 (standard error 5.1 · 10−11,

R2
adj 0.63). Similar data for the capelin-herring interaction are not available.

Herring is however thought to have a smaller predation rate on capelin than

cod; we set the implied mean for c8 at 10% of the implied mean of c7. For the

herring-cod interaction parameter c12, data are available: Gjøsæter et al. (2009)

estimated the amount of herring consumed by the Barents Sea cod. Regressing

the herring consumption on the term x1x3 yielded a coefficient of 2.49 · 10−11

(standard error 3.76·10−12, R2
adj 0.61). As with c7, we set the mean of the initial

shadow parameter (α12) ensemble to correspond to the estimated coefficient.

The mirror interaction parameters c3, c4, and c11 cannot be larger than one

as it is assumed that some biomass is lost in the interactions. The biomass

loss assumption is not explicitly enforced, but initial implied ensemble means

for the three mirror interaction parameters were set to 0.25 for c3 and 0.1 for

c4 and c11. Typically, one assumes that 90% of the biomass is lost between
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trophic levels, but cod spends less energy catching capelin and thus we specified

a higher mirror interaction parameter for the cod-capelin interaction.

3.4 Practical Details

Some care must be taken when working with stochastic differential equations.

We have formulated the model in continuous time, but it is necessary to dis-

cretize the equations for the numerical analysis, and in particular to produce

the forecast. We us Itô algebra and end up with the following forecast equation:

xt+1 = xt + f(xt)∆t+
√

∆t · σ(xt) · wt (15)

where the superscript is a time index, ∆t is the discrete time increment, and wt

is a simulated, normal distributed error with zero mean and unit variance. The

term
√

∆t conserves the properties of the stochastic process. The term σ(xt)

scales the noise process and retains the covariance structure. With a simple,

white noise model, σ(xt) is the unique, upper-triangular Cholesky matrix of Ca
e ,

see equation (6). With a geometric, white noise model, σ(xt) is the Cholesky

matrix of Ca
e multiplied with xt/xa. (Note that the Cholesky matrix of Ca

e can

be written as Σa
ex

a, where Σa
e is an upper triangular matrix of coefficients.) The

time unit is one year (the same as the observation frequency), and ∆t = 1/12.

We have catch or landings data entering our equations as so-called control

variables. We have ample reasons to believe that registered landings are not

perfect observations of fishing mortality because of discarding at sea and illegal

landings. Thus, we treat the landings data as uncertain and represent them

with an uniformly distributed ensemble. The actual observation serves as the

lower limit as the official landings certainly is a conservative estimate of fish-

ing mortality, while the upper limit is set 20% higher. In the herring equation

(13), landings do not enter. Instead, we have inflow data. The inflow data

are estimates based upon virtual population models for the herring stock in the

Norwegian Sea, which is coupled with an ocean circulation model which predicts

the drift of eggs and larvae into the Barents Sea. While the inflow estimates

probably are quite uncertain, we have no reason to believe they are neither up-

ward or downward biased. Thus, we represent them with an ensemble which is

normal distributed, with mean at the reported inflow and a 5% standard devi-

ation. (Alternatively, it is possible to not use an ensemble for control variables.

The implicit assumption is then that the controls are perfectly observed.)
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Table 1: Initial characterization of the initial parameter ensemble. Column 1

(Parameter) identifies the parameters. Column 2 (Ensemble Mean) reports the

mean of the ensemble on the underlying parameter αi. Column 3 (Ensemble Std.

Dev.) reports the standard deviation of the αi ensemble. Column 4 (Implied

Mean) reports the initial mean implied on the parameter ci by the assumed

mean on the initial αi ensemble. The table is grouped with regard to which

equation the parameters belong to.

Parameter Ensemble Mean (ᾱi) Ensemble Std. Dev. Implied Mean (exp(ᾱi))

c1 0.0 1.0 1.0

c2 15.4249 0.2 5.0 · 106

c3 -1.3863 0.5 0.25

c4 -2.3026 0.5 0.10

c5 -11.5129 1.0 1.0 · 10−5

c6 16.8112 0.3 2.0 · 107

c7 -21.7846 2.0 3.46 · 10−10

c8 -24.0872 1.5 3.46 · 10−11

c9 -12.2061 1.0 5.0 · 10−6

c10 16.1181 0.3 1.0 · 107

c11 -2.3026 0.5 0.1

c12 -24.4162 1.0 2.49 · 10−11

c13 2.3026 1.0 10.0
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Stock observations are also estimates derived from virtual population models

and are uncertain. It is crucial that observations on state variables are repre-

sented with an ensemble (Burgers et al. 1998). The stock observation ensemble

is normal distributed, with the observation at the mean and a standard deviation

of 30%. (Because the capelin stock estimates prior to 1972 are more uncertain,

the standard deviation in the capelin observation ensemble is increased with

50%.)

Finally, we use an ensemble size of 200, which currently is at the limit of

what our computer system can handle. In comparison, ensemble sizes of 100 or

less is not uncommon in problems of larger dimensions than ours (see Evensen

2009, for examples).

4 Results

Figure 1 shows the estimated stock levels (solid lines) for all three species cod

(top panel: State 1), capelin (middle panel: State 2), and herring (bottom

panel: State 3). The figure also shows observed stock levels (x-marks) which

almost always lie within the 95 % confidence intervals (shaded areas). Most

observations also lie within the 50 % confidence intervals (dark shaded areas);

model uncertainty could be overstated. The general impression is that the

model captures much of the dynamics in the ecosystem. In particular, the

rather violent dynamics in the pelagic stocks capelin and herring is to a large

degree picked up.

If we look closer at the cod stock estimates (Figure 1, top panel), there

seems to be a pattern in that when the stock level is high or increasing, the

estimate is below the observations. When the stock level is low or decreasing,

the estimate is typically above the observations. The pattern could suggest that

some of the dynamics is lost. The pattern could also be interpreted as a delay;

it takes some time before the system adapts to new information. Some delay

is inevitable in multidimensional systems, as the estimate at any given time

depends on the forecast (old observations processed through the model equations

with adapted parameters), the Kalman gain (covariances of the forecast and

the observations; thus not directly depend upon the latest observation), and

the latest observation; see equations (8) and (9). When the system is truly

stochastic or if the model is imperfect (in our case, both), new observations
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will always contain some new information which is not reflected in the forecast

model. The estimate is a convex combination of the forecast and the observation;

again, see equation (9), and the estimate will always lie somewhere between the

forecast and the observation.

The dynamics of the pelagic stocks (capelin: Figure 1, middle panel; herring:

Figure 1, bottom panel) is also largely captured by the model. For capelin, the

confidence intervals are significantly larger prior to 1972, when measurements

were more uncertain. The difference is visible for the naked eye when one com-

pares, for example, the intervals in 1970 and 1980; years with comparable stock

level measurements. After 1972, the capelin stock estimates, in addition to be-

ing more precise, lie closer to the measurements. The increased fit with the

measurements follows from the definition of the Kalman gain (8): with less

uncertain measurements (a smaller Re), the gain increases and measurements

gains more weight in the estimates (9). For herring, the model fits well to all

observations up until the most recent observations. There are a couple of pos-

sible explanations for the relative poor fit for late herring observations. One is

that fundamental changes in the Barents Sea ecosystem could be under way,

and as discussed earlier, the model takes some time to adapt to new informa-

tion. Another potential explanation is that late measurements are under review;

our measurements results from virtual population models, and recent stock esti-

mates are often reviewed when more raw data are fed to the virtual population

models and upon further study of both biology and technology.

Figure 1 shows that there is correlation between stock levels and confidence

intervals. Level dependent noise is built in both the model; see equations (11

- 13), and the measurement uncertainty. The noise is modeled as σ · x, where

σ is an upper triangular matrix of coefficients. The matrix of coefficients will

depend upon time in the same manner as state and parameter estimates; the

final estimate is:

σ =


0.2595 0.0180 −0.0915

0 0.3080 0.0492

0 0 0.2682

 (16)

Relative to the diagonal terms, the off-diagonal terms, which measure covari-

ations in the noise structure, are small, but the covariation between cod and

herring (-0.09) is probably too large to be ignored. We also estimated the model

with pure white noise and obtained qualitatively similar results. Clearly, a geo-
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metric noise model is better suited to model the covariance behavior. Thus, with

the white noise model, it would require a post-analysis to obtain the relevant

σ-matrix.

Figure 2 shows the parameter estimates (solid lines) with 95 % confidence

intervals (shaded areas) for the model in equations (11 - 13). All parameters

are stable over most of the time series, and most have a clear tendency of a

decreasing spread. In particular, the growth parameters (c1, c2, c5, c6, c9,

and c10) all show stability and ensemble convergence. The interaction adjust-

ment parameters (c3, c4, and c11) are stable, but convergence is not particularly

pronounced. One reason could be that it simply is difficult to tease out the

interaction adjustment parameters from the data. Another potential reason is

that the interaction model we use is not perfect. In that regard, our estimates

are the best possible with the given structure. While a more sophisticated and

complicated interaction model could improve parameter estimates, it would not

necessarily be ideal as basis for adaptive, ecosystem management. Our aim is to

strike a balance between enough complexity to capture observed dynamics and

enough simplicity to allow dynamic, stochastic optimization. But the evidence

on the interaction model is mixed, as the basic interaction parameter estimates

are promising. The basic interaction parameters (c7, c8, and c12) are less sta-

ble than for example the growth parameters, but are still not unstable, and

convergence is present. (In Figure 2, the time profile of the basic interaction pa-

rameter estimates cannot be detected because of the relatively wide confidence

intervals. Figure 3 shows only the time profiles of the central estimates.) The

final parameter, c13, basically measures how much the inflow of herring larvae

biomass from two years earlier has grown. The estimate is stable around 10 and

the confidence interval steadily decreases throughout the time series.

Holling and Meffe (1996, p. 334) highlighted the problem of identifying

stable parameters in ecosystem models as a major challenge to establish con-

ceptually sound management regimes. Our approach identifies relatively stable

parameters, and the key to the challenge is to allow for model error, as is done

with the ensemble Kalman filter in particular, and in all state-space approaches

in general.

In the ensemble Kalman filter literature (see reviews in Evensen 2003, 2009),

a traditional tool to evaluate filter and model performance is to inspect plots

of root mean squared innovations and root mean squared errors. Innovations
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Figure 1: Estimated stock levels (solid line) with 95 % confidence intervals

(shaded area), 50 % confidence intervals (dark shaded area), stock observations

(x-marks), catch and inflow data (circles).
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Figure 2: Estimated parameter values (solid lines) with 95 % confidence intervals

(shaded areas).
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are the corrections or updates which occur in the analysis step; see equation

(9). Errors are also called ensemble anomalies, and are the mean difference

of the updated ensemble and the estimate (the ensemble mean). Thus, the

root mean squared errors are given by E [E[Xa]−Xa]. The absolute ensemble

mean innovation should in theory decline over the time series and eventually

stabilize. A lack of decline in the innovations can be a general sign of model

misspecification, filter divergence, too little measurement error, or other, more

esoteric problems (see Anderson and Anderson 1999). Since our parameters are

modeled as ci = exp(αi), where αi is represented by an ensemble, the confidence

intervals of the ci may not give the correct impression of wether an estimate

improves over the time series or not (wether the ensemble converges or not).

In comparison, errors decline by construction. Too much error decline is not

healthy, however. If the root mean squared error goes to zero, the filter exhibits

ensemble collapse and filter divergence.

Figure 4 shows the root mean squared innovations (solid lines) and root

mean squared errors (dashed lines) of the αi ensembles. To make comparisons

easier, all quantities are scaled such that 1 is the maximum of each serie . All pa-

rameters show ensemble convergence and there are no signs of filter divergence.

The growth parameters (parameters 1, 2, 5, 6, 9, and 10) all have errors close

to or below half of the maximum at the end of the time series. Parameter 6,

the capacity parameter in the capelin equation, has some erratic behavior in the

innovations late in the series, but the average statistic has a downward trend.

For the interaction parameters, the ensemble convergence is less pronounced

and innovations are more erratic with no clear trends. But, at least innova-

tions are stable (no increasing trends) for all parameters. Parameters 11 and

12 demonstrate the potential problem of only inspecting the plots of confidence

intervals in Figure 2: While the confidence intervals of c12 clearly have stronger

convergence, the innovations and errors plots show that the parameters have

similar ensemble convergence, and both have erratic innovations. The inflow

scaling parameter in the herring equation, parameter 13, shows satisfactorily

ensemble convergence with errors converging to less than half of the maximum.

From Figure 4, we can conclude that the distributions of most parameters

have not converged to the true distributions; the root mean squared errors

(dashed lines) have not stabilized. Thus, the model probably overstates the

uncertainty in the system. While overstated uncertainty not necessarily is prob-
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Figure 4: Root mean squared innovations (solid lines; E
[
Xa −Xf

]
, see equa-

tion (3)) and root mean squared errors (dashed lines; E [E[Xa]−Xa]), for all

parameters.
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lematic in a management model, it explains why much more than half of the

observations in Figure 1 lie within the 50 % confidence intervals.

5 Conclusions

In applying the ensemble Kalman filter, we have demonstrated how relatively

simple aggregated biomass models, typical in bioeconomic analysis, can capture

much of the dynamics of ecosystems. When compared to earlier efforts (Ussif

et al. 2003), our results are far superior. But our model still has potential for

improvement. The results overstate uncertainty as only a few of the parameter

distributions have converged. More data or a more accurate initial ensemble

could remedy the situation. In addition, a number of possible variations of the

model exist; model noise as pure white (non-geometric) noise, assume perfect

observations of the control variables (catch and inflow), model herring inflow as

a state variable, and model herring inflow as pure noise with non-zero mean.

The listed variations were all tested and lead to only small changes in the model

fit and small variations in parameter estimates. A future research topic is how

to treat more general noise terms, for example terms including unknown param-

eters.

Compared to the standard Kalman filter and the extended Kalman filter, the

ensemble Kalman filter has no disadvantages, but a number of advantages. The

ensemble Kalman filter is suitable for large-scale problems, it requires no lin-

earisation, it is robust, it extends to asyncronous observations, and solves rank

problems which may occur with large numbers of observed variables. Com-

pared to variational adjoint methods, the ensemble Kalman filter is simpler (it

requires no adjoint operator) and it has flow-dependent covariance, but the en-

semble integration can be computationally costly and it is not iterative (iterative

filtering is seen as a solution to strongly nonlinear systems, but is still under

investigation). A range of related methods exist; see Evensen (2003). We men-

tion only two; square root filters and the method of ensemble inflation. Square

root filters remedy a tendency to underestimate the covariance (a typical prob-

lem when working with relatively few ensemble members). Ensemble inflation

is a remedy for filter divergence which occurs when the ensemble collapses to

a single solution; see Anderson and Anderson (1999) or Hansen and Penland

(2007, p. 91) for a brief introduction. Hansen and Penland (2007) also provide
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an alternative take on parameter estimation with the ensemble Kalman filter.

If simple models are to capture complex dynamics, they must rely on adap-

tive parameters. Estimates of parameters in chaotic systems are not likely to be

very precise, and management models should be flexible and adaptive (Holling

and Meffe 1996, p. 332). It is important that management models take the

uncertainty of the dynamics into account. Adaptive management models such

as feedback models are already well understood in the bioeconomic literature

(Sandal and Steinshamn 1997). The challenge is to solve models of higher di-

mensionality which must underly ecosystem-based management. We believe the

ensemble Kalman filter has an important role to play in both theoretical and

operational management research, particularly in light of the recent calls for

ecosystem-based management (Commission 2003).

The model we have estimated is not the final model. Uncertainty is over-

stated, and the model must be revised upon further observations. New obser-

vations are always imminent, and future management regimes must therefore

be adaptive, not only in the sense that uncertainty is explicitly modeled, but

in the sense that the underlying model, and in turn management decisions, are

revised at appropriate times. The management model we envision here is thus

not much different than current management regimes in terms of model and

decision revisions. In the broader scope of things, we aim to answer calls for

‘flexible, adaptive, and experimental’ management models (Holling and Meffe

1996, p. 332), who further write that ‘effective natural resource management

that promotes long-term system viability must be based on an understanding

of the key processes that structure and drive ecosystems, and on acceptance

of both the natural ranges of ecosystems variation and the constrains of that

variation for long-term success and sustainability’ (p. 335). We think, when

models are simplified and reduced down to the key driving phenomena, that the

ensemble Kalman filter can capture variabilities and stabilities of ecosystems

and serve tractable management models.
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