Decompositions
of

Travelling Salesman Problems

@yvind Halskau

s ——————

Doctoral Thesis

O0h001%52

0131735
H16d

.z,,l<’5. 2

Hamilton’s Icosian Game

. Preface
This work is the author’s doctor thesis for the dr. oecon. title.

Even if the work has been performed without formal supervision, it would not have
been possible to complete the thesis without the support and inspiration from many
people. Especially I would like to mention professor Kurt Jornsten, NHH and
associate professor Kjetil Haugen, HSM. Without their help, suggestions, and
constructive discussions I would probably have given up somewhere along the path

I would also like to thank my employer, Hggskolen i Molde (HSM) for giving me
time and sometimes money, not to mention access to a very good library and an
equivalent computer support department. Without such facilities, the work would not
have been possible.

Finally, I would like to thank my wife Ragnhild, not for her patience, but for her silent
“whip”, which gave me a freedom to work as much and as often as I wanted, without
any bad conscience for my absence.

Molde - Norway

December 1999

@yvind Halskau

Contents
Preface
Contents
Summary

Chapter 1
1.1 Introduction
1.2 Notation and Definitions
1.3 Different Categories of TSP
1.4 Applications of TSP
1.5 Varieties and Generalisation of TSP

1.6 Solution Techniques

1.6.1 Exact models for TSP
1.6.2 Lower Bounds for TSP
1.6.3 Heuristics for TSP

1.7 Polynomial cases for TSP

1.7.1 The Constant-TSP

1.7.2 The Small TSP

1.7.3 Graded TSP

1.7.4 The Circulant TSP

1.7.5 Product Matrices

1.7.6 Convex-hull- and — Line TSP
1.7.7 Pyramidal Tours

1.7.8 Upper Triangular matrices
1.7.9 Brownian Matrices

ii

ii

vii

13

14
16
17

26

26
28
29
29
30
38
38
41
42

Chapter 2

2.1 The saving Heuristic Revisited

2.1.1 Weighted Saving Matrices

2.2 Direct Applications

2.2.1 Solving the TSP with Saving Matrices
2.2.2 Applications to Heuristics

2.3 Savings and other Sub-graphs besides Cycles

2.3.1 Savings and Assignments
2.3.2 Saving and Spanning Paths
2.3.3 Saving and Trees

2.4 Generalised Savings

2.5 Lower Bounds for TSP

2.5.1 Simple Lower Bounds for TSP
2.5.2 Lower Bounds for Symmetric TSP Based on Trees
2.5.3 Bounds Based on Lagrangean Relaxation

2.6 Savings and Vehicle Routing

2.7 Savings and Special Cases of TSP

2.7.1 Savings and Product Matrices

2.7.2 Savings and the Circulant-TSP

2.7.3 Savings and the Small TSP

2.7.4 Savings and Pyramidal Tours

2.7.5 A new Class of Polynomial Solvable TSP

2.8 Savings and Edges

2.8.1 Edges that are in an Optimal Solution
2.8.2 Edges and Arcs thar are not in any Optimal Solution

2.9 TSPs with Identical Costs for every Cycle

iit

43

43
47

48

49
49

55

55
56
57

58
59

59
61

67
69

69
70
70
72
73

74

74
75

78

Chapter 3 81

3.1 Decomposition of Symmetric TSP and the Spectral 82

Theorem

3.2 A New Class of Polynomial Solvable STSP 85

3.3 Non-negative Matrices and the Spectral Theorem 87

3.4 Decomposition of m-TSP and the Spectral Theorem 92

3.5 Decomposition of Asymmetric TSP and the Spectral 94

Theorem

3.6 Hermitian Matrices and Asymmetric Real Matrices 97
Chapter 4 100

4.1 Hamiltonian Symmetric Travelling Salesman Problems 100
4.2 Optimal Pairs of Hamiltonian Cycles 105

4.3 An Algorithm for the Asymmetric Travelling Salesman 107

Problem

Chapter 5 117
5.1 Examples Related to Chapter 2 117
5.2 Examples Related to Chapter 3 129
5.3 Examples Related to Chapter 4 134
5.4 ATSP Instances from a Public Library 140

5.5 Final Comments and Further Research ' 143

iv

‘References 146
Appendix 1 153

Appendix 2 155

vi

Summary

This thesis deals with the Travelling Salesman Problem.

In chapter 1 some historical comments concerning the problem are offered and short
overviews of different applications and variations of the problem are given. Further,
some classical naive heuristics for TSP are discussed together with the problem of
finding lower bounds for the problem. In the last section some polynomial classes for
TSP are overviewed and an alternative proof for the polynomial class of symmetric
product matrices is given.

In chapter 2 the saving heuristic of Clarke and Wright is revisited. It is shown that the
cost of any Hamiltonian cycle measured in the original cost matrix plus the cost of the
same cycle measured in one of the saving matrices is a constant. This fact can be
utilised in several ways. First of all the saving matrices can be used - in principle - as
input to any to any heuristic for TSP, often yielding better solutions than those
obtained by the original cost matrix alone. Secondly, the saving matrices in
combination with constant-TSP can be used to obtain good lower bounds for the TSP
in question, only using I-trees. Combinations of the obtained lower bounds together
with solutions of simple IP models can improve on these bounds. Further, the saving
matrices are used to make minor extensions of known polynomial classes for TSP and
a new class of such matrices is offered. Finally, subsets of matrices are identified,
which have the property that all matrices in a subset have the same cost for each
Hamiltonian cycle.

In chapter 3 the cost matrix of TSP instances are decomposed with the help of the
spectral theorem. It turns out that in the symmetric case, this decomposition can be
performed with the help of a certain number of symmetric product matrices, that is,
polynomial solvable TSPs. In this case a new way of calculating a lower bound for the
TSP is offered. In the asymmetric case the decomposition is more difficult and
involves complex eigenvalues and eigenvectors and the decomposition involves
matrices that are not product matrices.

In chapter 4 a TSP instance is decomposed in different ways than in the previous
chapter. Basically, any asymmetric cost matrix are decomposed into a constant-TSP
matrix taking care of some of the asymmetric aspects of the original cost matrix, a
symmetric matrix and a residual asymmetric. This kind of decomposition leads to the
concept of Hamiltonian symmetric matrices, which are asymmetric matrices where
every cycle and its reverse have the same cost as will be the case for symmetric
matrices. Several criteria for identifying such matrices are given. Further, the
concept of an optimal pair of Hamiltonian cycles is introduced. An optimal pair of
cycles is the pair of cycles where the cost of the cycle plus the cost of the reversed
cycle is as small as possible. To find this pair of cycles can be done by solving a
symmetric TSP. The decompositions in this chapter are used in different ways. Partly
they can be used as algorithms for finding optimal solutions to asymmetric instances
of TSP, partly they can be used for finding upper and lower bounds. The performance
of the procedure will in many cases depend on the cost structure of the

vil

- original cost matrix and how this structure is reflected particularly in the residual
matrix.

Chapter 5 contains examples for some of the results in the previous chapters. The
effects on upper and lower bounds using the different decomposition schemes are
illustrated. Further, examples are given on how some naive heuristics perform when
saving matrices are used as input. The chapter also contains 10 examples of
asymmetric TSPs taken from a public library and exposed to the methods described in
chapter 4. At the end of the chapter some further research is suggested.

viii

‘Chapter 1

1.1 Introduction

The Travelling Salesman Problem (TSP) is a well-studied combinatorial optimisation
problem, which can briefly be described as the problem of finding the cheapest tour or
cycle between a certain number of cities, where every city shall be visited only once,
and the traveller shall return to the city he started from. It turns out that TSP belongs
to a class of mathematical problems which is easy to explain to a layman, but in
general is very difficult to solve.

Historically the TSP goes back a long time. The problem was indirectly mentioned
already by Leonhard (Leonid) Euler (1707 - 1783) in 1759, and a bit later by his
younger contemporary Alexandre-Theophile Vandermonde (1735 - 1796) in 1771,
discussing the so-called knight’s tour. A knight’s tour is connected to the 64 squares
on a chessboard. The knight’s tour is then the problem of finding a sequence of legal
moves - that is standard moves for a knight - starting from any square, visiting every
square only once and returning to the first square. The answer is affirmative, but the
tour is not a straightforward one. A solution can be found in Biggs et alt., 1977. In
1736 Euler had solved and generalised the famous problem for the bridges of
Konigsberg. He characterised graphs where it is possible to start anywhere and visit
all edges only once and return to the starting point. Such characterisations are not
known for TSP. There is a fundamental difference between the Konigsberg problem
and the latter one. The former can be =2°:! to be an explorer’s problem, that is every

place and road shall be vis'i=d © - 1ght’s tour we have a traveller’s problem,
that is, we want to visit all .. = gnce. In both cases we want to return
home.

The next person known to have been interested in TSP and related problems in a more
general setting is probably reverend Thomas Penyngton Kirkman (1806 - 1895).
Kirkman is an almost forgotten - and probably wrongly so - mathematician. Being
active from his forties and almost to his death at nearly 90, he published works in
many different fields of mathematics. His first published article appeared in 1846
dealing with combinatorial problems and his last article appeared in 1895 the same
year he died. During the almost 50 years he published articles, he always seemed to
return to questions dealing with combinatorial problems, but also gave contribution to
the theory of equations and he was probably the person that understood Galois theory
best among his British contemporaries. He solved the problem of Steiner triple system
six years before Steiner proposed it and gave substantial contribution to the
understanding of polyhedral and knots. He participated in the so-called Grand Prix de
Mathématique arranged by the Académie des Science in Paris in the late fifties with a
paper dealing with polyhedral. No one got the prize, but he was mentioned favourably
together with Jordan and Mathieu. Nonetheless he is best remembered today for a

mere trifle, that is, for his so-called “schoolgirl problem” forthcoming in 1850 as a
. challenge to gentlefolk to discover the solution for themselves:

Fifteen young ladies in a school walk out three abreast for seven days in succession: it is
required to arrange them daily, so that not two shall walk twice abreast.

His article on what we today call Hamiltonian cycles, was published in 1855, and he
explains that what he calls “closed polygons” can be employed as a means of
representing polyhedral. He considered the following problem: Given the graph of a
polyhedron, is it possible to find a circuit passing through each vertex one and only
one time? He claimed to have asserted sufficient condition for graphs to contain a
solution to TSP, but his claim was wrong. However, his major achievement in this
field of mathematics was to describe a general class of graphs, which do not possess
Hamiltonian cycles. He gave a general proof of the fact that if a polyhedron has an
odd number of vertices, and each face has an even number of edges, no Hamiltonian
cycle can exist in the graph. An example of such a graph, given by Kirkman, is drawn

in fig .1.1.
<
U /

figure 1.1

In a more modern language the graph in fig. 1.1 is said to be bipartite, that is the
vertices can be separated into two disjoint sets, such that any edge in the graph joins
vertices in each of the two sets. In fig. 1.1 the two sets are indicated by circles and
squares, respectively. Since a path in such a graph necessarily must visit vertices in
the two sets alternatively, a cycle starting and ending in the same vertex must contain
an even number of vertices. Hence, bipartite graphs having an odd number of vertices
cannot contain Hamiltonian cycles.

It is interesting to note that a similar argument was used by Euler when he discussed
the knight’s tour on non- standard chessboards, that is boards with nxn squares.
Defining the two sets of vertices as the black squares and the white squares, and
observing that a knight must always move from a white square to a black one or vice
versa, it follows that the knights tour is never possible on “chessboards” where 7 is an
odd number

A very thorough and interesting article describing the life and work of the said
- reverend Kirkman can be found in Biggs, 1981.

Two years after Kirkman had published his paper on Hamiltionian cycles, the Irish
mathematician William Rowan Hamilton (1805 - 1865) created a game the objective
of which basically was to find cycles in specific graphs. Hamilton was generally
recognised as one of the leading mathematicians of his time, giving major
contributions to non-commutative algebra, optical geometry and dynamics. The game
invented by Hamilton was called The Icosian Game (ico is Greek for twenty). He sold
the game to a wholesale dealer in games and puzzles for £25. The basic idea was to
use a specified graph - see figure 1.2 - to create different sub-graphs, and amongst
other things, cycles containing all the vertices.

S~
\
N\

o~

figure 1.2

Another version of this (planar) game involved a solid dodecahedron, known as “ The
traveller’s Dodecahedron” or “A Voyage Round the World”. Each vertex was given a
name after some major city in the world, starting with Brussels and ending with
Zanzibar. All the cities were marked by pegs, and a thread should be looped around
the pegs in order to indicate the itinerary. A complete cycle - a Hamiltonian cycle -
was called a “voyage around the world”.

In 1930 the mathematician Menger proposed a new definition of curve length which
turned out to have a close connection with TSP - the so-called messenger problem.
Menger defined the length of a curve as the least upper bound of the set of all numbers
that could be obtained by taking each finite set of points of the curve and determining
the length of the shortest polygonal graph joining all points. M.M. Flood mentions
(see Flood, 1955) that Hassler Whitney - the creator of matroids - posed the problem
in a seminar talk at Princeton University in 1934. However, it was not until the arrival

of the computer in the late nineteen forties and early fifties, and the creation of the

- simplex method of Dantzig, that TSP came into real focus among the mathematicians
of the world, notably through the article by Dantzig, Fulkerson and Johnson, 1954.
Since then a huge amount of articles, applications, and methods concerning TSP and
related topics have been published and studied. As a curiosity, Little et alt., (1963)
mention that the TSP even some times is used in contests and even has achieved some
public prominence. A soap company used the TSP as the basis of a promotional
contest. Prizes up to $10,000 were offered for identifying the most correct links in a
given 33-city problem. Quite a few people found the best cycle. On the other hand, a
number of people- as the authors write — * perhaps a little over-educated, wrote to the
company that the problem was impossible — an interesting misinterpretation of the
state of the art”

Polynomial-time algorithms (P) and Non-deterministic Polynomial algorithms
(NP)

An algorithm whose order-of-magnitude time performance is bound from above by a
polynomial function of N, where N is the size of its input, is called a Polynomial-time
algorithm. Problems where such algorithms have been shown to exist can be referred
to as reasonable or tractable. Problems that in the worst case require super-
polynomial- or exponential-time algorithms are referred to as unreasonable or
intractable problems. A verification algorithm is an algorithm that verifies or certifies
that a possible solution to a given problem really satisfies the ramifications set by the
problem. The complexity class NP is the class of problems that can be verified by a
polynomial-time algorithm. Note that P ¢ NP . Given two problems P1 and P2 in the
complexity class NP. One says that P1 is polynomial reducible to P2 if there exists a
polynomial algorithm that translates problem P1 to P2. Hence, given a solution to P2,
a solution to P1 can be found in polynomial time as well. A problem Q is said to be
NP-complete if two conditions are satisfied:

1. QisNP
2. All problems in NP must be polynomial reducible to O

If the problem Q satisfies the second problem and not necessarily the first, Q is said to
be NP-hard.

If a NP-complete problem could be solved in polynomial time, all NP problems could
be solved in polynomial time as well. On the other hand, if any NP problem is
intractable, every NP-complete problem will be intractable as well. A NP-hard
problem can only be tractable if P = NP . Most researchers tend to be of the opinion
that P # NP.

The TSP-decision problem is NP, since we can check whether a Hamiltonian cycle
has cost less than a given upper bound in polynomial time. The TSP-decision problem
is NP-complete and TSP is NP-hard. For details and further references, see for
example Lawler et alt, 1985, Harel 1988, Papadimitriou and Steiglitz, 1982 or Skeina,
1998.

| 1.2 Notation and Definitions

Before embarking on a closer examination of different aspects of TSP, it is convenient
to introduce some notation and concepts from graph theory.

In order to solve a specific instance of TSP one needs to know the costs of travelling
from any city to any other city, that is, one needs to have the cost matrix for the
problem. The cost matrix for a TSP will usually be denoted with capital Latin letters,
A, B, C, and so on and the elements of a matrix with the corresponding lower-case

letters with indices. Hence, a cost matrix for a TSP will be denoted A = [a,.j]n.m , where

a; denotes the cost of travelling from city or node i to node j, and » is the number of

nodes. The cost elements can always be taken to be non-negative and integer (unless
some entries are irrational numbers), since we can always add the same sufficiently
large number to all elements of the cost matrix without changing the optimal
sequencing of the nodes, or multiply every element by some factor, to get rid of any
fractions.

A graph G is apair (N,E), wixcre N is a set of points, or nodes and E is a set of edges
connecting some or all the nc:zs. If there exist edges between every pair of nodes, the
graph is called complete. To each edge in the graph, one may attach a cost. If the
graph is incomplete, then we can attach an arbitrarily high cost to the non-existent
edges, and in this way one may regard every graph as complete in the TSP context.
The graph is called undirected if one can travel directly back and forth between every
pair of nodes. If this is not possible, the graph is called directed and the directed edge
is called an arc. Graph theoretically TSP can be described as finding the cheapest
Hamiltonian cycle in the graph, that is a sequence of nodes and edges alternately,
where every node is visited once and one returns to the starting node. If one does not
return to the starting node after having visited every node, one has a Hamiltonian
path.

To each node in an undirected graph, one associates the degree of the node. The
degree is equal to the numb - - “edges attached to the node. If the graph is directed,

the in-degree of anode is ::- - :mber of arcs into the node, and the out-degree is the
number of arcs out from t}: . .e. A node in an undirected graph is called even if the
degree is an even number :::. .5 called odd if the number is an odd number. A graph

where all the nodes are even is called an Eulerian graph. By the so-called hand-
shaking lemma there is always an even number of odd nodes in any graph or sub-
graph.

A tree in an undirected graph is a sub-graph without cycles where every node has a
degree equal or larger than 1. A node with degree 1 is called a leave. In a tree there is
at least two leaves. By a spanning tree we understand a tree which includes all the
nodes in the graph. Hence a Hamiltonian cycle is not a tree, but a Hamiltonian path is
a special kind of a spanning tree, where exactly two nodes have degree 1 and all the
others have degree 2. A hub is a spanning tree where all nodes except one have
degreel and the last node has degree n - 1.

A Minimal Spanning Tree (MIST) is a spanning tree with the smallest possible cost.

- MIST can easily be found by several different polynomial algorithms, for example the
methods of either Kruskal or Prim. Deleting one edge from the optimal Hamiltonian
cycle, creates a path which is a tree. This shows that MIST is a lower bound for TSP.
By a I - tree we understand a spanning tree plus one edge more. This will always
create a graph with exactly one cycle. By a MIST- 1-tree we understand MIST plus the
smallest edge not used in the construction of MIST. Hence, any Hamiltonian cycle is a
1-tree and MIST-1-tree is a lower bound for TSP.

In a similar fashion we define the maximal spanning tree (MAST) as the spanning tree
with the largest possible cost. MAST can be found as easily as MIST, but note that
MAST does not constitute an upper bound for the maximal Hamiltonian cycle, but
only for the maximal Hamiltonian path. By a MAST - 1 -tree we understand the
MAST plus the largest edge not used in the construction of MAST. This 1 - tree
constitutes an upper bound for the maximal Hamiltonian cycle.

If the graph is directed, the concept of a tree becomes a bit more difficult. By a semi-
walk we understand an alternating sequence of nodes and arcs
<iy,Q1,05,0,5,03,05,.00een.. ,a.,i... > where an arc k is either the arc between

50 s+l

i, and i, or i, andi, .A semi-walk is called a semi-trail if all its arcs are distinct

and a semi-path if all its nodes are distinct and finally a semi-cycle if it contains at
least three nodes all distinct, except that i, =i ,, . Further, a directed graph is said to

be weakly connected or weak if for every pair (i,j) of distinct nodes there exists a
semi-path from i to j. Finally, with a directed tree we understand a weak, directed
graph with no semi-cycles. A Hamiltonian path in an asymmetric matrix will then be a
directed tree. A procedure to find a minimal (maximal) spanning directed tree can be
found in Lawler, 1976, pp 348 - 351. An alternative approach is given in subsection
1.6.

By an Euler trip we understand a sequence of edges and nodes, starting in a node and
ending in the same node, such that each edge is visited once. In undirected graphs this
is possible iff the graph is Eulerian.

1.3 Different Categories of TSP

TSP can be categorised in different ways. Most of these categories are connected with
the cost structure or the algebra of the cost matrix. Two obvious categories are to
differentiate between a symmetric cost matrix and an asymmetric one, ie,

if a; =a; Vi, j , the TSP is called symmetrical (STSP) and if at least for one pair of

nodes a; #a;,one says that the TSP is asymmetrical (ATSP).

Another, and maybe more important category, is the so-called polynomial solvable

cases of TSP. These are more or less broad subclasses of TSP that can be solved by
specialised algorithms, which find an optimal solution to any instance of TSP in the
class, in polynomial time. Most of the known well-solved cases of TSP are based on

special structures in the cost matrix. Some of the classes will be treated in subsection
- 1.7 and some extensions will be dealt with in later chapters.

1.4 Applications of TSP

TSP is describing a rather simple situation and it may seem a bit odd that it is so hard
to find an optimal solution to the problem. Due to its simplicity as a description of a
practical planning situation, one should not expect to find many practical applications
for the problem. However, over the years quite a few have been suggested and used,
solving practical problems. A short overview of such applications is given in this
section. In some of the applications it will be necessary to make small alterations to
the basic problem.

In its purest form TSP can be applied to several planning situations. For example,
collecting post from public post-boxes usually does not involve more than one
vehicle, and the vehicle’s capacity will usually not be an active restriction to the
planning problem. The same problem arises in connection with the delivering or pick-
up of cash from banks and customers by armoured cars. A slightly different planning
situation occurs in production planning. Suppose one can produce n different
commodities on a single machine, but some time or cost is incurred each time one has
to prepare the machine for production of a new commodity. This set-up time and/or
set-up cost will usually be sequence dependent. If one wants to minimise the set-up
time or cost for producing one cycle - that is producing each of the commodities in a
certain quantity, once in each cycle - one has to solve an instance of TSP. This kind of
application is already mentioned in Flood, 1955. Reinelt, 1994, mentions several
applications in his book. Drilling of Printed Circuit Boards (PCB) concerns the
drilling of many holes of different diameters in order to be able to connect different
layers, eg in integrated circuits. To change the diameter, the drilling equipment has to
move to a toolbox. This is time consuming. Hence, all necessary wholes with the
same diameter are drilled in a sequence. This is exactly a TSP situation, where one
wants to minimise the time used for moving the drill from one position to another. In
X-Ray Crystallography one has to position detectors in different places around the
crystal. To move the detectors is substantially more time consuming than the actual
measurements taking place. Hence, one wants to minimise the time used for moving
the detectors, which turns out to be a symmetric TSP. When overhauling Gas
Turbine Engines, one must position vanes with a lot of nozzles affixed around the
circumference of the turbine. A correct placement of the vanes can give substantial
benefits by reducing vibration, increasing uniformity of gas flow, and reduce fuel
consumption. The problem of placing the vanes in the best possible way can be
modelled as a symmetric TSP. Another application can be order-picking from a
warehouse. The warehouse receivs an order for a certain subset of the commodities
kept in the warehouse. Whether done manually or automatically, the order-picking
problem - that is finding the least time consuming sequence of finding all the
commodities given by the order - boils down to a TSP.

| 1.5 Varieties and Generalisation of TSP

There are lots of varieties and generalisations of the basic TSP. Some of these will be
mentioned below.

Graphical Travelling Salesman Problem

If the underlying graph for TSP is not complete, as will be the case in many practical
applications, it may well happen that Hamiltonian cycles do not exist at all in the
graph. Hence, visiting all nodes, the traveller may be forced to visit the same node
more than once and use some edges several times in order to reach all the nodes, and
being able to return to the starting node. Then the basic assumptions for TSP are
violated. However, it is reasonable to assume that one can always find a path from any
node to any other node. Then by calculating the shortest paths from every node to
every other node one may extend the underlying graph to become complete, and by
this the graphical travelling salesman problem (GTSP) can be solved as a TSP in the
extended graph. To find all the shortest paths can be done in polynomial time O(r?).

To find necessary and sufficient conditions for incomplete graphs to contain
Hamiltionian cycles, is in general a difficult question and will not be dealt with in this
thesis, since it is outside the scope of the problems considered in the chapters to come.

The Multiple Travelling Salesman Problem

If the task of visiting the nodes in the graph is shared between two or more travellers -
say m - one has what is called a multiple travelling salesman problem (m-TSP).
Tacitly, one supposes that all the salesmen start from the same node and return to this
node after having visiting disjointed sub-sets of the other nodes. The common starting
node is usually referred to as the depot. The m-TSP is seemingly more difficult than
TSP, but it can easily be shown that it is equivalent to a slightly larger TSP. This
result was derived independently by Bellmore and Hong, 1974, Orloff, 1974, Svestka
and Huckfeldt, 1973 and Eilon et alt., 1971. The technique is very simple: make m - /
copies of the depot, and let the cost of travelling from one duplicate of the depot to
another be infinitely large. The cost of travelling between any of the (identical) depots
and one of the other nodes is the same for every copy. Travelling between the
customer nodes has the same cost as before. Then one simply solves TSP with the
extended cost matrix of size (n + m -I)x(n + m -1).

K-Peripatetic Salesman Problem

In TSP one salesman is visiting every node once and in m-TSP the burden of visiting
is divided between m salesmen or vehicles, but still each node receives only one visit.
In K-Peripatetic Salesman Problems each node is visited by k different sales men each
visiting each node only once, but travelling in such a way that the Hamiltonian cycles
they use are disjoint. The problem is then to find a minimal cost of & disjoint
Hamiltonian cycles. The problem was stated and named by Krarup, 1975. The term
‘peripatetic’ refers to a system where teachers are employed at two or more schools
and travel between them. Not very much seems to be have been done with this
problem, but a branch and bound algorithm for the 2-peripatetic salesman problem is

available and some well solved cases are found by de Brey and Volgenant, 1996. A

. practical application of the K-peripatetic TSP can be found in the area of
telecommunications. The reliability of the networks increases if several cycles of
communication are constructed instead of only one, especially if different cycles have
no edges in common. Since TSP is a special case of the K-Peripatetic Salesman
Problem - TSP corresponds to k = 1 - the latter is in the NP-hard class as well.

The Vehicle Routing Problem.

This is an well-known extension of the m-TSP and concerns planning situations
where the customers have some kind of demand during a given time-horizon. This
demand has to be delivered (or picked up) by a fleet of vehicles with restricted
capacities. This so called Vehicle Routing Problem (VRP) has many applications, and
a huge amount of literature exists, that discusses practical applications of the problem
and the theoretical difficulties solving it to optimality. Overviews can be found in
Bodin et alt., 1983, Golden and Assad (ed.), 1988, and several chapters in Ball,
Magnanti et alt. (ed.), 1995b. Many extensions can be done to the basic VRP.
Different models exist, depending on whether the fleet size is a 4 priori decision or
should be a part of the decision problem. Other questions to be coped with are
whether the vehicle fleet can be regarded as uniform with respect to capacities or other
features related to the vehicle-customer relationship. If they cannot be regarded as
uniform, one usually speaks about a non-uniform vehicle fleet. What kinds of services
are performed by the vehicles? Is it a pure delivery problem, a pure pick-up problem
or is it a mix of the two types of demand? In the latter case, the models will in general
become more complex and difficult to solve. The basic model can be extended to
incorporate several depots - VRP with multiple depots (VRPMD). If this is the case,
one has to decide whether the vehicles should be allowed to return to any depot, or
whether they have to return to the depot they started from. Time windows - especially
in the retail business - have become more and more important. Such sophistication
can be integrated in MIP models known as Vehicle Routing with Time Windows
(VRPTW). One can operate with so-called hard time windows, ie time intervals that
must be observed. A vehicle arriving ahead of such a time window must wait in order
to perform its service. If late, then the service cannot be performed. Soft time
windows can be violated, ie. ... :ime window can be extended, but usually a penalty
is incurred.

The Assignment Problem

This is the problem of finding feasible solutions of connecting nodes to each other,
such that there is only one arc leaving each node and one arc entering each node. This
is a feature of a Hamiltonian cycle as well, but in the present problem one does allow
sub-cycles. Hence, the assignment problem (AS) is a relaxation of TSP and the
optimal assignment solution constitutes a lower bound for TSP. One may of course
have several non-optimal assignments as lower bounds for TSP and still other
assignments larger than TSP. However, to find the optimal assignment can be done by
LP, since the constraint matrix of an assignment problem is totally unimodular. In the
case of a symmetric cost matrix the assignment problem can be reformulated as the
finding the best solution when exactly two edges are attached to each node.

The Quadratic Assignment Problem

This problem was originally stated as a model for plant location by Koopman and
Beckman, 1957. Other applications have been done in hospital planning and in
typewriter keyboard optimisation.

In general the QAP involves finding the minimal sum of 2 Zdw(,.) so(p Where @ is

ieN peN
an assignment. Often the coefficients are split into a product by stating d
The QAP is then called the Koopmans-Beckmann problem.

iipg aipbiq :

QAP can be shown to be a generalisation of TSP, namely by setting the matrix A
equal to the cost matrix for the TSP and let the matrix B be a cyclic permutation
matrix.

Hamiltonian Paths

A Hamiltonian path is - as mentioned above - a path which spans all the nodes in the
graph, that is a Hamiltonian cycle minus one edge or arc. Different situations related
to finding such paths will be:

1) the starting and terminal nodes s and ¢, respectively, are given 4 priori

ii) the starting (terminating) node is known, but not the terminating
(starting) node, and finally

iii) neither the starting nor the terminating nodes are known.

In any of these cases the problem can be transformed to a standard TSP. In the first
case one has two options. The first option is to assign a sufficiently large negative
value -M to the arc (7,5). Solving TSP with the slightly changed cost matrix, the
optimal solution will certainly contain this arc. The second option is to enhance the
graph by adding a new node, say i = n+1, and defining the cost for the edges (s,n+1)
and (t,n+1) to be zero. Each Hamiltonian tour in this new graph will correspond to a
Hamiltonian tour in the old one with the same cost.

In the second case, assuming that the starting node is known, one enhances the graph
with a new node and add edges from all nodes in the old graph, except from s with
zero cost. Solving the Hamiltonian path problem with a fixed starting node s and
terminating node n+1 in the new graph, gives the optimal Hamiltonian path in the old
with starting point 5. The situation where only the terminating node is known is dealt
with in a similar way. Finally, in the last case one extends again the graph with a new
node, and adds edges from all nodes to the new node, all with costs zero. In this new
graph, one solves the TSP.

As can be seen from the above modifications, to find the optimal Hamiltonian path is
as difficult as TSP.

10

- Bottle-neck TSP

This problem is defined as finding Hamiltonian cycles, where the cost of the most
expensive edge is as small as possible, whatever the cost of the Hamiltonian cycle.
Otherwise the problem is the same as an ordinary TSP. Note that an optimal solution
to a bottle-neck TSP does not depend on the magnitude of the cost elements, but only
on their relative values. This means, sequencing the cost elements in an increasing
order and changing the values without changing the sequence, will yield the same
solution for the problem. Hence, given that all the elements are different, the

transformation cu = 2 will give the same solution as the original cost elements.
Moreover, the transformation above shows that the bottle-neck TSP can now be
solved as an ordinary TSP. Let cu = 2% be the longest arc in the optimal solution ¢ of

TSP and suppose there exists a shorter longest arc ¢,, =2° in an other Hamiltonian
cycle v . Then clearly C (v) < C (@), which is a contradiction. Usually, to solve a

bottle-neck problem is easier than solving a TSP. Further, the bottle-neck TSP can be
readily addressed as a minor variant of TSP, thus solving TSP with the added
restriction that ¢; < for some value 7. Hence by applying binary search, the optimal

solution to the bottle-neck TSP can be found by solving O(logn) Hamiltonian cycle
problems.

Time-dependent TSP

In this generalisation of TSP, one supposes that the cost of travelling will vary from
one time period to another, the time horizon being divided into » time intervals. A
linear formulation of this problem can be done with n® 0/1-variables, and a
surprisingly small amount of restrictions.

The Stacker Crane Problem

In this problem one has a pre-specified subset A of the edge set E. The objective is
now to find the shortest Hamiltonian cycle containing all the arcs in A, possibly
visiting some nodes several times. The problem can be applied in vehicle routing,
where one has to perform pick-ups and deliveries where one pick-up demand occupies
the capacity of the whole vehicle and is to be delivered as a total to another node.

The Travelling Purchaser Problem

In this case we have a set of nodes as in the ordinary TSP. In addition we have a set of
commodities. Every commodity is available on at least one of the nodes and may be
available at every node, but the price can be different from one node or market to
another. Starting from a given depot, where none of the commodities are available, the
traveller is supposed to find a cycle - not necessarily a Hamiltonian one - starting and
ending at the depot ~ enabling one to buy every commodity and that the sum of the
purchasing cost and travelling cost is minimised. Details can be found in Golden et
alt., 1981.

11

The Prize Collecting TSP (PCTSP)

In this case one has node weights w, representing some kind of benefit or income

received when visiting node i. Starting from a chosen depot d with node weight
w, =0, the traveller shall visit a set of the nodes once and return to the depot. The

objective is to maximise profit, ie the sum of the benefits received minus the
travelling costs. Note that if one assumes that all the nodes shall be visited, the sum of
the benefits is given and the problem will become an ordinary TSP. However, if it is a
part of the problem to decide which of the nodes to visit in order to maximise the net
profit, one has a slightly different situation than TSP. PCTSP can now be solved in
two different ways. The first is to maximise the profit, by finding a cycle - either
Hamiltonian or a sub-cycle - that contains the depot. Note that no other sub-cycles are
allowed. The second approach is to get rid of the node weights by substituting the

edge weights ¢, with ¢; — %(w,. +w;,), and find the cheapest cycle in the graph,

containing the depot node.

Variations of this problem could be that there exists some restrictions on the time
available for visiting nodes, called the time constrained TSP by Golden et alt., 1981,
or a budget limit for the cost of visiting nodes, sometimes called the orienteering
problem or generalised TSP. For details and further references, see eg. Balas (1989),
Laporte and Martello, 1990 and Ramesh and Brown, 1991. The first one also contains
descriptions of the relevant polytope. The second denotes the orienteering problem as
the Selective Travelling Salesman Problem. Applications of the orienteering problem
can be found in routing of oil tankers to service ships in different positions, and to
maximise profit in certain production planning situations subject to time constraints.

The Covering Tour Problem

This problem was introduced by Current in 1981 and is formulated in Current and
Schilling, 1989, and is further developed by Gendreau et alt., 1995. The nodes in an
undirected graph are divided into two sets, V. and W. The nodes in V are such that they
can be visited, but they do not have to be visited. A subset T of V contains the nodes
that must be visited. A certain node, say 1, is denoted as the depot node. The depot
node is a member of 7. A node in W is said to be covered by a tour among all nodes
in T and possibly some nodes in V and not in 7, if the distance from some node in the
tour to the node in W does not exceed a certain distance c.

One application of the covering tour problem will be a transportation network where
the tour corresponds to a primary vehicle route, and all points not on the tour are
within easy reach from it. Similarly, another example will be the construction of
routes for visiting health teams, where medical services are delivered only to a subset
of places, but where all other places must also be within reasonably distances from the
stopping places of the health teams. The covering tour problem is sometimes referred
to as The Travelling Circus Problem or Generalised Travelling Salesman Problem.
The latter name is used by Revelle and laporte (1996).

12

If we let T = V = W = N, the covering tour problem reduces to an ordinary TSP.
- Hence, the covering tour problem is a generalisation of TSP and is NP-hard.

The Rural Postman Problem (RPP)

In TSP one visits all nodes once and returns to the starting node. A different planning
situation occurs when one in a given graph wants to visit every edge once and returns
to the starting node. This is what usually is called the Postman Problem (PP), and
was solved by Euler in 1736 for so-called Eulerian-graphs. Euler proved this by
constructing a polynomial time algorithm that gives a sequence of nodes and edges, no
edge occurring more than once in the sequence. Euler extended his algorithm to
incorporate graphs with two odd nodes and relaxing the problem to a postman starting
in one of the odd nodes and ending in the other, but still visiting all the edges only
once. However, if the graph contains more than two odd nodes, neither Euler’s first
nor second approach can be applied. In 1962, the Chinese mathematician Guan Mei-
gu formulated the problem of how a postman should travel in non-Eulerian graphs,
such that every edge is visited alt least once and that the cost of travelling becomes as
small as possible. This problem, which has become to be known as the Chinese
Postman Problem (CCP) was solved by Edmonds and Johnson, 1973, using so-
called matching techniques, leading to a polynomial algorithm for the problem.

RPP is a generalisation of CCP. Let F be a subset of the edge set E in the underlying
graph. RPP is then to find the minimal closed walk in the graph visiting all the edges
in F. If F = E, the RRP becomes CPP.

Some further variations of the TSP can be found in Noschang, 1999.

Final remark

Above some variations and applications of TSP have been briefly discussed. In many
cases it turns out that the problem can be formulated as a symmetric TSP or at least
closely related to this clear cut and basic formulation. However, such transformation
will in most cases cost something, eg computation time or other difficulties and
should be used with care before actually trying to use them in practical problem
solving. For example, reformulating the GTSP as a TSP takes time O(n*), which may
be unacceptable in practice. Other transformations make use of the “big M” technique,
which can lead to numerical problems p..;zicularly when LP is used as a part of the
solution approach. Using “big M” can alsc prevent finding feasible solutions to the
problem when heuristics are applied.

1.6 Solution Techniques

Over the years, several solution techniques have been proposed and used for solving
TSP, and related combinatorial optimisation problems. Such techniques include for
example heuristics, which do not guarantee optimal solutions and mathematical
programming models. In this sub-section we give a brief survey of mathematical
models for TSP and some of the more well-known heuristics for this problem.

13

-1.6.1 Exact Models for TSP

It is convenient to introduce the two linear models. Let G = (E,N) be a complete
graph. If the graph is undirected, let E(i) denote the set of edges e, which is connected
to node i. We define two sets of decision variables:

_{lif arci - jis used

i 0 otherwise

e

{1 if edge eis used

0 otherwise

The first set of variables can be used both in ATSP and STSP, and the second only in
the STPS.

Model 1

(L min» Y c,U,

st

12) YU,=1 Vi=12,...,n
Jj=l1

(13) YU, =1 Vj=12,...n
i=1

(1.4) Subtour eliminating constraints

Model 1 can be used for ATSP as well as for symmetric TSP.

Model 2

This model can only be used in the symmetric case and usually gives better lower
bounds as a starting point, and it will usually be necessary with fewer sub-tour
eliminating constraints to reach optimum.

(15) min Y c,U,

eeE

ST

(16) YU,=2 Vi=12,...,n
ecE(i)

(L.7) subtour eliminating constraints

where ¢, denotes the cost of edge e.

14

The sub-tour eliminating constraints can be formulated in many different ways. A
- fairly common way to formulate such constraints is to introduce inequalities of the
type described in (1.8).

(1.8) YU, <|s|-1

i,jeS
where S © N,2<|S|<n-2.

Alternatives may be the so-called connectivity constraints (1.9)

(1.9) YU, 21

ieS jeS

where S denotes the complement of §. It is easily shown that (1.8) and (1.9) are
equivalent.

Different ways and more compact ways of formulating sub-tour eliminating
constraints have been proposed by Miller, Tucker, and Zemlin, 1960. Desrochers and
Laporte, 1991, have strengthened the formulation of Miller et alt. Different
approaches have been used by others, as for example Wong, 1980.

Model 1 or 2 can either be solved as IP or as LP. However, using LP will in almost all
cases sooner or later give lower bounds with fractional values for the decision
variables. If one wants to go on solving the given TSP as LP, one has to introduce so-
called facets. Facets are valid inequalities destroying the present non-feasible solution.
Facets are problem specific, and there exist a lot of them both for ATSP and STSP.
Overviews of facets for TSP can be found many places, for example Laporte, 1992,
Lawler et alt.,1985, and Nemhauser and Wolsey, 1988.

Asymmetric TSP can be solved as symmetric TSP by transforming the cost matrix of
the asymmetric instance and increasing the number of nodes, see Reinelt, 1994, in the
following way:

Let G =(N,A) be the graph describing the asymmetric TSP and ¢, be the cost of

travelling along the arc (i,j), A < NxN . We extend the node set N to
V=Nu {n +1Ln+ 2,....,2n} and define the undirected graph H = (V,E) where

corresponding to the undirected graph (V,E) is defined as

d .. =-Mfori=12,...,n

in+i
d,;=c;for(i,j)e A
where M is a sufficiently large number, for instance the sum of all the cost elements in
the original asymmetric matrix. By construction, each Hamiltonian cycle in G with

cost D corresponds to a Hamiltonian cycle in H with cost C,;, = D; —nM . In

15

addition, an optimal cycle in H contains all edges with cost —M, and hence induces a
- directed Hamiltonian cycle in G. Using the cost matrix D we can always use model 2
above for finding the optimal solution for any kind of TSP.

1.6.2 Lower Bounds for TSP

In many cases it will be convenient to have good lower bounds for TSP. Such lower
bounds can be obtained in many different ways. Any LP-relaxation to one of the
models above, with or without sub-tour eliminating constraints, will give such lower
bounds. Some further alternatives are reviewed in this sub-section.

1.6.2.1 Assignment Problem

An assignment solution to a given instance of TSP — that is model 1 or 2 minus
constraints (1.4) or (1.7) - will give such lower bounds. The assignment problem has
the so-called integrality property, that is, the problem can be relaxed to LP and we still
get integer values for the decision variables. Hence, it will be very easy to find the
lower bound corresponding to the minimal assignment. Assignment problems are
special cases of three different combinatorial optimisation problems, namely flows in
network, mathcing problems and matroid intersection problems. Extensions of the
assignment problem can be done for example by allowing multi-dimensional
problems. Such problems play a role in time table constructions, see Burkhardt, 1979.

1.6.2.2 Lagrangean Relaxation

Lagrangean relaxation was developed in the early 1970’s with the pioneering work of
Held and Karp, 1970 and 1971. Their work dealt specifically with TSP, but today the
technique they developed is indispensable for generating lower bounds for use in
algorithms to solve combinatorial optimisation problems. Relaxing the assignment
equations either in model 1 or in model 2, gives a Lagrangean relaxation where the
Lagrangean multipliers can have any values, and a solution to the Lagrangean
optimisation problem that is also feasible to the TSP, gives the optimal solution.
Whether using the sub-gradient method or multiplier adjustment to decide values for
the multiplier, will usually and rather quickly give good lower bounds for the TSP and
possibly reveal the optimal solution as well, if luck will have it.

1.6.2.3 Lower bounds based on trees.

Other ways of obtaining lower bounds can be with the help of sub-graphs as trees or
so called 1-trees. Two such lower bounds are shown in this section and other bounds
will be dealt with in the next chapter.

Shortest spanning r-arborescence
A Hamiltonian cycle in a directed graph minus one arc constitutes a directed tree,
where the in-degree of each node is exactly one. Hence, a minimal spanning directed

tree with an in-degree of exactly one, and where each node can be reached from the
root node r is a lower bound for ATSP. The shortest of the latter structures is usually

16

named the shortest spanning r-aborescence. This can be found by the following
-model:

1.10) Y ¥e,X,
ST

(1.11) Y X, =1 Vj

i=l
i#j

112) Y Y X,21LScEreSs
€S jeS

(1.13) X, 20 Vi jiz#j

Shortest spanning 1-tree (in the symmetric case)

In the symmetric case we obtain a similar lower bound for any STSP by relaxing (and
rewriting) model 2 into the following model:

iy 3¥ex,

i=l j=1
i<j

ST
(1.15) iiXij:n Yj

i=l j=1
i<j

(1.16) Y X, =n
j=2

(1.17) Y Y X, 21ScEV}i<|s|<n-1
ieS\1} jes\1}
(1.18) x,e{o1} Vi, j

1.6.3 Heuristics 7o TSP

There is a vast amount ot more or less sophisticated heuristics for TSP. In this sub-
section a short review of some of the most common is given. Some of the heuristics
will be considered in more detail in the next chapter. For detailed overviews, see eg
Bodin et alt., 1983, Reinelt, 1994 or Ball et alt., 1995a.

1.6.3.1 Construction Heuristics for TSP

These kinds of heuristics build a Hamiltonian cycle step by step. They often start with
a single node chosen randomly and extend a path or a sub-cycle node by node, until a
Hamiltonian cycle is found. Each of the heuristics can often be performed many times
for the same instance of TSP, due to the randomness of the starting node. They also
often come in slight variations of the basic idea. These variations are not treated

17

extensively below. Most of the heuristics below are originally created for STSP, but
- many of them can be applied on ATSP, usually at the cost of some more calculations.

Nearest neighbour (NN)

This is perhaps the simplest of all heuristics for TSP, and is a greedy heuristic trying
to connect nodes closest to each other in a sequential way. The standard version can
be formulated as follows:

Step 1: Select an arbitrary node j and let W = {1,2,........ ap\{j},setl =}
Step 2: As long asW # @, do the following:

2.1 Let j € Wsuch that ¢; = min{c,|i € W}
2.2 Connect/tojandset W= W\ {j}andl=

Step 3: Connect [to the node selected in step 1 to form a Hamiltonian cycle.

The heuristic creates a path, which in the end is closed to create a Hamiltonian cycle.
A simple alternative version of this, is to let the current path be extended in both its
end nodes. The heuristic can be applied on both ATSP and STSP. Obviously, the last
step can incur a high cost.

Insertion heuristics

The basic idea of this family of heuristics is to start with a sub-cycle. The number of
nodes in this sub-cycle can be two (and even a loop of one node), or many, but not all.
One then tries to extend this sub-cycle by adding one new node at a time and inserting
the chosen new node into the existing sub-cycle by some criterion and hence creating
a new and larger sub-cycle. Formalised, the procedure can be described as follows:

Step 1:

Select a starting sub-cycle

Step 2: As long as W # O, do as follows:

2.1 Select a node j € W according to some criterion
2.2 Insert node j at some position in the existing sub-cycle by some
criterion and set W =W\ {j}

Due to the “openness” of step 2.1 and 2.2 many different versions exist for this basic
idea. Usually, the criterion used in step 2.2 is to insert the chosen node in a position
such that the increase in cost will be as small as possible. Such a criterion will always
incur some calculations performed k times, if the existing sub-cycles have k edges or

18

arcs. A node, which is a part of the existing sub-cycle, is called a tour node. 1t is
- convenient to make the following definitions:

For j € Wone defines d_,,(j) = min{c,.jli eN\ W} which is the smallest distance

from any tour node to any node not in the existing sub-cycle. In a similar way, the
maximal distance from any tour node to any node not in the existing sub-cycle is

defined by Vj,je W, d,, ()= max{cijli EN\ W}. Further, the sum of all distances

from a tour node to all nodes not in the existing sub-cycle is denoted s(j), that is,

s(j) = ZieN\wciJ‘ :
Nearest insertion

Insert the node k that has the shortest distance to any tour node, that is choose k such
that k € W and d_;, (k) = min{d,,, ()|l € W}

Farthest insertion 1

Insert the node k not in the sub-tour, such that the minimal distance to the tour is
maximal. That is, choose k such that k € W and d,;, (k) = max{d_,, ()|l € W}.

Farthest insertion 2

Insert the node & not in the sub-tour with the farthest distance to the tour. That is,
choose k such that k€ Wandd,_, (k) = max{dmx (e W}.

Farthest insertion 3

In: : the node k not in the sub-tour, such that the maximal distance to the tour is
mi: :nal. That is, choose k such that k € Wand d_, (k) = min{dmx (Dt e W}.

Cheapest insertion

In the insertion procedures above, different selecting criteria are specified. These
criteria exclude all but one single node not in the present sub-tour. Then one has to
calculate where to insert the selected node in the existing sub-tour, choosing the place
such that the increase in cost is as small as possible. In cheapest insertion one
calculates the increased cost for all nodes not in the existing sub-tour, and chooses the
node and insertion with the smallest cost increase. Hence, the calculations involved
are many and take time, and there exists variants of the cheapest insertion heuristic,
which do not consider all possibilities, but selects some. However, these variants will
not play any important part in this thesis and will therefore not be discussed further.

Random insertion

Here, the new node, which is going to be inserted into the existing sub-tour, is chosen
at random.

19

- Largest sum insertion

Insert the node k not in the sub-tour, such that the sum of the distances to the tour is
maximal. That is, choose k such that k € W and s(k) = max{s(})|l € W}.

Smallest sum insertion

Insert the node k not in the sub-tour, such that the sum of the distances to the tour is
minimal. That is, choose k such that k € W and s(k) = rnin{s(l)]l € W} .

Fast Versions of Insertion Heuristics

Insertion heuristics involve two kinds of calculations. One type of calculation is
needed when applying the selecting criterion and one when the insertion criterion is
applied. In order to avoid too many calculations, one can simplify one or both of the
two calculations, egv by making 4 priori decisions about where to insert, or restricting
the search for the new node to a part of the remaining nodes. For details about these
kinds of variants, see Reinelt, 1994 or Bodin & alt, 1983. However, these variants will
not play any important part in what follows. Note that all the mentioned varieties of
the insertion heuristics can be applied on both ATSP and STSP.

Convex hull

All the insertion heuristics above usually start with selecting the first node at random,
and so a sub-tour is gradually built from this starting node, using whatever criteria
involved. For TSPs with Euclidian cost matrices, which always are symmetrical, it is
easy to construct the convex hull. This can be done in O(nlogn). The convex hull will
either be a Hamiltonian cycle - and if so, this cycle will be the optimal solution
(Folklore) - or the convex hull will be a sub-tour with some nodes in the interior of the
hull. This sub-tour can then be used as a starting sub-tour for any of the insertion
heuristics. Moreover, the sequence of the nodes in the convex hull will be the same as
in the optimal solution (see Lawler et. alt., ch 7). Flood, see Flood, 1956, observed
that “in the Euclidean plane the minimal (or optimal) tour does not intersect itself”.

Other possibilities exist as well when starting with a convex hull. These heuristics
basically try to exploit geometrical features of the node map, due to the underlying
Euclidian metric. Specifically, one can mention Convex hull insertion procedure,
Stewart, 1977, Greatest angle insertion procedure, Norback & Love, 1977 and1979
and Ratio times difference insertion procedure, Or, 1976, all of which can be found in
Lawler & alt, 1985, chapter 7, p. 217. Again, these heuristics will not play any
important part in what follows, so the details are left out.

The Saving Heuristic

This heuristic was originally made for VRP, see Clarke and Wright, 1963, but can
easily be adapted to the more simple case of TSP.

20

The heuristic is based on calculation of the so-called savings. In the TSP case one
.chooses one node, say d, as a depot. Visiting two other nodes separately creates a
certain cost. This cost is compared with the cost incurred when the two nodes are
visited sequentially and the difference is the so-called saving value for the pair of

nodes relatively to the chosen depot node. The saving values s; can then be
calculated by the formula below, see also figure 1.3a and b

d— —
A —cl.d+cdj C;i

OF ?i

«

d d
fig. 1.3a fig.1.3b

" When the savings are calculated for a given depot, one sorts the savings in decreasing
order and forms a Hamiltonian path among all the nodes, except the depot. This path
is created in a greedy fashion, choosing the arc with the largest saving value not used
so far, and deleting all savings that create sub-cycles or nodes with out-degree or in-
degree greater than one. When all nodes have been taken care of, the path is closed by
connecting the end nodes to the depot.

Hence, the saving heuristic is more or less the same type of heuristic as the nearest
neighbour heuristic above, but performed with a different cost matrix than the original
one. Note also that the saving values are only used for creating some sequence of the
nodes, hoping against hope that this sequence will give a small cost when measured
against the original cost matrix. Usually one does not even bother to calculate the sum
of the applied savings. The saving heuristic can be applied on both ATSP and STSP.
However, the transformation done by calculating the saving values turns out to have
no effect on the sequence of the different Hamiltonian cycles, see below, other than
reversing the sequence. This fact was already observed by Flood, 1956, who basically
formulates the same transformation as Clarke and Wright used, some years later.
There is no reference in their article to Flood’s observation.

The loss heuristic

All the above heuristics are greedy in some sense, and it is not difficult to find
examples of instances of TSP were these heuristics do not lead to the optimal
solution, showing that these greedy policies are not necessarily the best ones. The loss
heuristic tries to avoid this by not taking the “nearest” node.

21

- The loss heuristic was first proposed by Webb, 1977, for symmetric matrices, and was
later extended to asymmetric TSPs by Van der Cruyssen and Rijckaert, 1978. The core
idea of the heuristic is to calculate the lost opportunity cost of not linking a city to its
nearest neighbour.

Starting with some path, one out of four categories must occur for each node in the
graph. These categories are shown in the table below:

A node in category A is not an end point of the path and is not pursued any further
because both the arc into the node and out from the node have already been decided,
and this decision is never changed.

If a node j belongs to category B, one has the situation in fig 1.4

-

i J T~
20
fig. 14

Note that since the in-degree is one, the predecessor i of j is already decided. In figure
1.4, s is supposed to be the nearest neighbour of j, and 7 the next nearest, such that no
sub-cycle is formed. The lost opportunity of not linking j to s is then calculated by

LOSS(jy=c; —c;

In a similar fashion the category C is treated, but in this case the successor of j is
already decided, since the out-degree is one. The situation is described in fig.1.5,
where the nodes s and ¢ have the same properties as in the previous case.

22

~
t T~
~
~
~
\‘
o - =0 >0
s J !
fig,1.5

The lost opportunity cost is then calculated by

LOSS(j)=c, —c,

The last category is treating the situation where the node j has no connection with the
existing path, that is, there are no arcs into or out from the node in question. The
situation is described in figure 1.6.

O\
t ~
O u
~ ,/
- ~
07
O — — =TT >0,
$ J
fig.1.6

If all five nodes are different, the cost of lost opportunity is calculated as
LOSS(j) = max{c,j —CysCj, — cju}

At each step in the procedure, we calculate LOSS(j) for all nodes that fall into
categories B, C and D. The node with the largest loss is then connected to its most
favourable neighbour. The heuristic can be applied on both ATSP and STSP.

Heuristics based on minimal spanning trees

For any symmetric instance of TSP the minimal spanning tree is easily found, and the
value of MIST is a lower bound for TSP. If MIST is a path, we have found the
optimal solution to the problem of finding the cheapest Hamiltonian path, but in
general, the degree of some of the nodes in MIST will be larger than two. However, it
is still possible to hope that at least some of the edges contained in MIST will be a
part of the optimal solution of TSP. Below, two heuristics based on this hope are
presented. Since finding a directed MIST in an asymmetrical matrix is a bit
complicated - but still polynomial - this kind of heuristic is usually only applied on
STSP.

23

- Doubling of the minimal spanning tree

Construct MIST from the given cost matrix. Then, double each edge in the tree. The
resulting graph then becomes an Eulerian graph since every node has an even degree.
In this graph it is possible to construct many Eulerian tours. Construct one such tour.
Then starting from any node in the Eulerian tour, follow this tour edge to edge until a
node is reached a second time. Then retreat to the previous node in the Eulerian tour
and shortcut - ie use an edge not in MIST - from this to the first node in the Eulerian
tour which has not yet been visited. Proceed like this until all nodes are visited and
then return directly to the starting node. Note that for each choice of the Eulerian tour
we can start the procedure in n different ways. Hence, the heuristic can be performed
in a variety of ways, generating very many Hamiltonian cycles.

Christofides heuristic

This heuristic is a variant of the previous one starting in the same way by finding
MIST. Since every graph contains an even number of odd nodes by the so-called
“handshaking” lemma, the odd nodes in MIST can be matched in many ways. Finding
the minimal matching in MIST, an Eulerian graph is created. From this Eulerian
graph, we proceed as in the previous heuristic.

1.6.3.2 Improvement Heuristics for TSP

The best known heuristics of this kind, are the so-called edge change procedures, see
Lin, 1965 and Lin and Kernighan, 1973. These heuristics start with a given
Hamiltonian cycle of some cost. Then two or more edges or arcs are removed from the
cycle. These edges or arcs are replaced by other edges or arcs, such that new
Hamiltonian cycles are formed. The costs of the new cycles are then compared with
the old cycle. If k different edges are removed from a cycle, the change is called a k-
change. If all k-changes starting from a certain cycle are tried, then the best
Hamiltonian cycle is called a k-optimum or this specific new cycle is k-optimal.
Usually the heuristic will perform better and better as the number £ is increased, but
on the other hand, the number of new cycles that can be made after the removal of k
edges, will increase very rapidly as will the number of different ways to select the k
edges. Hence, this kind of improvement heuristics is usually restricted to values of k =
2 or k = 3. Improvement heuristics will usually perform well, but in the context of this
thesis nothing new will be offered. Consequenyly, no further details seem to be
necessary. The heuristic can be applied on both ATSP and STSP.

1.6.3.3 Composite Heuristics for TSP

This kind of heuristic is just a combination of any construction heuristic and an
improvement heuristic. That is, we apply a construction heuristic in order to get a
Hamiltonian cycle, and use this Hamiltonian cycle as input to the improvement
heuristic.

24

1.6.34 Heuristics Based on Lagrangean Relaxation

Each time one solves a Lagrangean relaxation problem for a concrete TSP, one has the
opportunity to change the solution of the Lagrangean problem, into a feasible solution
to the concrete TSP. Then one has obtained an upper bound for the same TSP. Taken
together with the lower bound created by the Lagrangean relaxation, this can give
good indications of how far from the target one is.

1.6.3.5 Meta-heuristics and other Heuristics

Throughout the last decades, several so-called local-search methods have been tried in
order to find good solutions to combinatorial optimisation problems, including TSP.
A very brief survey of such methods is given below.

Simulated annealing

This successive improvement method is derived from an analogy with material
annealing processes used in mechanics, and was introduced by Kilpatrick et alt in
1983. In order to bring a material to a minimal-energy solid state, it is necessary to
heat it until the particles are randomly distributed in the liquid state. Then to avoid
local minima, the temperature is gradually reduced uatil the system reaches an
equilibrium. At a high temperature, all possible state : can be reached, but as the
system cools down the number of possibilities is reduced, and the process converges
to a stable state. Applied to combinatorial optimisation, the aim is to move from a
given initial solution to minimum-cost solution, by performing gradual changes from
the starting solution. In the beginning, the cost is high and the number of allowed
moves or changes is high as well. Changes leading to smaller costs, decrease the
number of allowed changes as well, until no further change is possible. For a given
starting value, the simulated annealing algorithm is identical with the k-opt procedure,
calculating all solution in the neighbourhood of the initial solution. Sometimes new
solutions with higher costs are allowed, in order to reduce the probability of becoming
trapped in a local optimum. Simulating annealing has been applied to TSP by many
authors, with apparently a mixed degree of success.

Tabu-search

This method was introduced by Glover in 1977 and is like the previous heuristic a
general heuristic for combinatorial optimisation problems. Again, a feasible but not
necessarily good solution, is the starting point. A neighbourhood is defined to this
solution. In order to prevent cycling, solutions that have already been examined are
forbidden and entered into a “tabu-list” which is constantly updated. A certain
solution in the tabu-list stays there for a certain time defined by the user. The best
solution in the difference between the neighbourhood and the tabu-list is then found,
and the procedure starts again. Limitations are given to the number of iterations.
Tabu-search has been applied to TSP with seemingly very positive results.

25

Genetic algorithms

Genetic algorithms are sometimes called population heuristics or bionomic heuristics.
The basic idea goes back to Lawrence Fogel in 1960. Tabu search and simulated
annealing work on improving a single current solution. Genetic algorithms use a
number of current solutions and combine them together to generate new and
hopefully, better ones. A genetic algorithm can be described as an “intelligent”
probabilistic search algorithm. It basically tries to simulate the evolutionary process of
biological organisms in nature. During the course of evolution, natural populations
evolve according to the principles of natural selection and “survival of the fittest”.
Genetic algorithms maintain a “population” of feasible solution candidates for the
problem. Elements are drawn at random from this population and allowed to
“reproduce” by combining some aspects of two parent solutions. The probability that
an element is allowed to reproduce is based on its “fitness”, that is basically a function
of the cost of the solution it represents. Unfit elements die from the population, and
are replaced by more successful “children”. The idea behind genetic algorithms is very
appealing, but the convergence is slow and its success is varied. A variant of genetic
algorithms combining such techniques with local search techniques is so-called
memic algorithms.

Neural networks is still another approach to solving combinatorial optimisation
problems. For a short introduction with further references, see for example Skiena,
1998. Recently Colorni and alt.,1992 has introduced so-called Ant Systems, using a
colony of co-operating ants to solve the TSP. For further references, see eg Noschang,
1998.

A general bibliography for the TSP can be found Jiinger et alt., 1997.

1.7 Polynomial Cases for TSP

The TSP seems to be notoriously difficult to solve in general for large n. However,
during the last decades one has managed to identify certain sub-classes of TSP where
polynomial time algorithms have been found. Good overviews of such cases can be
found in Lawler & alt, 1986, ch. 4 and in Burkard & alt., 1995. Some of these classes
will be briefly reviewed below in as much as they will be treated or used in the
chapters to come.

1.7.1 The Constant-TSP

This is probably the simplest of the special cases of TSP and describes a cost matrix
that gives the same cost for every Hamiltonian cycle in the graph. The matrix is
readily described in the following theorem by Berenguer, 1979.

26

Theorem 1.1

The only matrices C for which all cyclic permutations on the n nodes have the same
length are those which have the structure C = [a‘. +b;]m .

Note, that the a’s and the b’s can be negative as well as positive numbers.
Corollary 1.1

In a constant TSP matrix, the cost of any Hamiltonian cycle is Zai + Zb ; and the

costs of the shortest and longest Hamiltonian paths are
.+) b.—maxya, +b; jand .+ > b, —minya, +b,;
S a,+ Sb, ~maxls, +b, Jand 0, + 3 b, ~minfs, +b,)

respectively.

By a linear admissible transformation we understand a transformation of the cost
elements of any quadratic cost matrix, such that the total ordering of all cycles is
preserved or reversed. Such linear transformation can be

C (9) = a+ pC(p)

where o and 3 are constants. The order is preserved if f is positive, and reversed if

negative. The term ‘admissible transformation’ was introduced by Vo-Khac, 1971,
and was used on transformations upon matrices, such that the order of cycles was the
same before and after the transformation. Berenguer restricts this to linear admissible
transformation and proves the following theorem:

Theorem 1.2

The only linear admissible transformations are those obtained by adding constants a;
to the i-th row and b; to the j-th column of a scalar multiple of C.

Evidently, the set C of all matrices nxn where all cyclic permutations give the same
cost, forms a linear sub-space of the vector space formed by all nxn matrices. Lenstra
and Rinnoy Kan, 1979, proved the two following lemmas:

Lemma 1.1

The dimension of the vector space C is 2n - 1.

Let R, (C;) denote matrices where the i-th row (j-th column) only contain ones and

all other elements are zeros.

27

Lemma 1.2

Any subset of 2n - 1 matrices from {R1 yRyyeoo.uR,,C,,Cy s ,C, } forms a basis for

the vector space C.

A sub-class of the constant-TSP is the so-called potential matrices described by
Warren, 1990.

A square matrix is called potential iff p, + p; = p, for all triples i, j,k . Further, a

square matrix is called constant row (column) iff all its entries in each row (column)
are equal. The following theorem characterises and solves the TSP for potential
matrices.

Theorem 1.3

A matrix P is potential iff P = E + F where E is a constant row matrix and F is a
constant column matrix, such that the entries on the main diagonal of E + F are 0.

A potential matrix is skew-symmetric and the length of any assignment is 0.

1.7.2 The Small TSP

Let a and b be two n-dimensional vectors and C a nxn matrix. The matrix C is called
small iff there exists two vectors such that ¢; = min{a,.,b i } Without loss of

generality and for simplicity of notation, one can always assume that
a, <a, S.... < a,. A small matrix is said to have distinct values if all the elements

of @ and b are distinct. Let d; be the i-th smallest of the 2n distinct values of the
elements of the two vectors. Further, let D = {d1 N7 P ,dn} and d = z; d, . We

then have the following theorem, due to Gabovich, 1970, which also and can be found
in Lawler & alt, 1985, chapter 4.

Theorem 1.4

Let C be a small matrix with distinct values. The length of an optimal tour in C is d iff
one of the following three conditions holds:

a) For the same city i, both a, and b; are in D
b) D= {al,az, ,a
c) D={b,.b,,.......b,}

The theorem just gives conditions for the optimal solution and the corresponding
value, but is not constructive in the sense that it specifies the sequence of the nodes
that leads to this value. However, the proof of the theorem is constructive and shows

28

how to find such a sequence. We will return to the proof in chapter 3, where an
- extension of this class is done. There exists several extensions of theorem 1.4 in
Lawler & alt, 1985, where some of the restrictions in theorem 1.4 are removed.

1.7.3 Graded TSP

A matrix C is called graded across its rows iff ¢; <c, ,,, forall i, j. It is called
for all i, j and doubly graded iff it is graded both

across its rows and up its columns. To find TSP in a graded or even doubly graded
matrix is NP-hard, since any matrix can be made graded or doubly graded by a linear
admissible transformation. Hence, it would be a big surprise if one managed to find a
polynomial algorithm for graded matrices. The following theorem gives, however, a
useful approximation to this kind of matrices, see Lawler & alt, 1985, ch.4.

graded up its columns iff ¢, 2 ¢

i+1,j

Theorem 1.5

Let C be non-negative and graded up its columns, and let ¢ be an optimal
assignment. Then it is easy to find a cycle T, such that

Cl@)sC(m)<c(p)+ max{clj}

Again, the theorem in itself is not constructive, but the proof is. We will return to this
proof in chapter 3 where the ideas of the proof are utilised in a different context.

It turns out that if we try to solve a bottle-neck TSP for doubly graded matrices, the
following theorem applies, see Lawler & alt, 1985, ch.4.

Theorem 1.6

If C is doubly graded, then a bottle-neck optimal cycle is given by the permutation
1-2-3-......... -n-l-n-1

1.7.4 The Circulant TSP

A circulant matrix is a nxn matrix of the form where the elements in positions (i,j)
such that (j - i) = k (mod n) has the same cost ¢, . These elements constitute the k-th

stripe of the matrix C. All stripes yield feasible assignments for C. Hence, finding the
cheapest assignment can be done by inspection, namely the stripe with the smallest
¢, - For circulant matrices we have the following theorem by Garfinkel, 1977.

Theorem 1.7

The number of sub-cycles in the assignment given by the k-th stripe is the greatest
common divisor of k and n, gcd(k,n).

29

. Theorem 1.7 gives immediately the following two corollaries.

Corollary 1.2
If gcd(k,n) = 1, then the k-th stripe yields a Hamiltonian cycles.

Corollary 1.3
If n is prime, each stripe, other than the 0-th, yields a Hamiltonian cycle.

The question concerning whether this class of matrices is polynomial or not, is still
open, but restricted to finding the optimal Hamiltonian path is polynomial according
to the next theorem by Bach, Luby and Goldwasser, which can be found in Lawler et
alt., 1985, ch 4.

Theorem 1.8

The nearest neighbour heuristic starting from any node yields a shortest Hamiltonian
path.

It is an open question whether TSP for circulant matrices is NP-hard or not. Even if
the matrix is specified to be circulant and symmetric, the question remains open.
However, the problem for symmetric, circulant bottle-neck TSPs was shown to be
efficiently solvable by Burkard and Sandholzer, 1991.

1.7.5 Product Matrices

_In sub-section 1.7.1 the so-called constant-TSP was considered. In this sub-class the
cost of travelling from one node to another is separated into two independent parts,
using “plus” as the algebra. For product matrices the separation of the cost elements is
done by multiplication. Hence, let a and b be two vectors with n elements, and define
the elements of a product matrix by

c; =ab,
Theorem 1.9 shows that this class of matrices can be as hard to solve to optimality as
TSP as such, see Sarvanov, 1980, which also can be found in Lawler et alt.,1985,
ch4.

Theorem 1.9

The TSP restricted to product matrices is NP-hard.

However, specifying the product matrices further, by craving symmetric matrices as
well gives a more positive result as the following theorem shows, see Gaikov, 1980

which also can found in Lawler et alt., 1985, ch. 4. Note that a symmetric product
matrix has the form

30

“where A is a constant.
Theorem 1.10

For symmetric product matrix C, where c; = Aa,a; and a, < a, <....... <a,, there

exists a polynomial time algorithm to find an optimal Hamiltonian cycle.

Note that the extra premise that the elements of the vector @ shall be ordered in an
ascending sequence does not lead to any reduction of generality. The proof of theorem
1.10 comes as a corollary to a rather difficult theorem with a long and technical proof.
However, it turns out that an alternative and much simpler and direct more proof is
possible. This proof leans heavily on theorem 1.11 by Hardy, Littlewood and Pélya,
1934. Let (a) denote a set of real numbers with n elements. Let (a) be the set (a)
rearranged in ascending order, thatis, a, <a, <........ <a,.

n

Theorem 1.11

If (a) and (b) are given and are of the same cardinality and without any special
ordering, then Z ab is greatest when (a) and (b) are monotonic in the same sense and

least when they are monotonic in the opposite senses; that is to say

n n n
Zg_illm-l-i S Zaibi b Zgi-l?-i
il i=1 i=1

Before giving an alternative proof for theorem 1.10 it can be convenient to consider an
example. It is necessary to discriminate between graphs where the number of nodes is
even and odd. So let the underlying vector be as in theorem 1.10.

For a graph with an even number of nodes, say n = 10, the minimal cost is obtained as
illustrated in figure 1.7.

10 2 8 4
[J [J
6
[] []
9 3 7 5
fig. 1.7

The cost of the above cycle is

S =a,a,, +a,a, +a,a; +aga, +a,a, +agas +asa, +a,a, +aa, +aya,

31

Note, that in this cycle the smallest element is multiplied with the two largest ones.
- The second smallest is multiplied with the largest and the third largest and so on. The
products in the sum above can be re-arranged in the following way
S =a,a,, + a,a,, + a,a, + a,a; +asa, +asas + asa, +a,a; +aza, + a,q,
The first factors in the ten products constitute the set
B= {al’a2’a3’a4’a5’a6’a6’a7’a8’a9}
where the elements are in an increasing order.
The second factors constitute the set

C ={aIO’aIO’a9’a8’a7’aS’a4’a3’a2’a1}

where the elements are in decreasing order. Hence, by theorem 1.11 the sum S is the
smallest possible when multiplying the elements of B and C pair ways. Note that the
set B contains element no. 6 twice and element no.10 is not present in this set. In set
C, element no. 6 is not present, but the largest element, no 10, is present twice.

In the case where the graph has an odd number of nodes, the situation is slightly
different. Let the number of nodes be n = 11. In this case the minimal sum becomes as
- illustrated in figure 1.8 .

2 9 4 7 6
@ L ®
L 4 L @

1 10 3 8 5

fig. 1.8
The cost of the above cycle is
T =a,a,, +a,a, +a,a, +a,a, +a,a, +a,a, + agas + asag + aza, +a,a,, + a,,a,

Note, that in this cycle the largest element is multiplied with the two smallest ones.
The second largest is multiplied with the smallest and the third smallest and so on.
The products in the sum above can be re-arranged in the following way

T =a,a,, +a,a,, +aa,y +a,a, +asag +aga, +asas +a,a, + aza, + ay,a, +a,q,

The first factors in the eleven products constitute the set

32

'—
B _'{al’a2’a3’a4’a5’a6’a6’a7’a8’a9’a10}

where the elements are in an increasing order.
The second factors constitute the set

C'= {an ,a”,alo,ag,as,a7,as,a4,a3,a2,a1}
where the elements are in decreasing order. Hence, by theorem 1.11 the sum S is the
smallest possible when multiplying the elements of B’ and C’ pair ways. Note that the
set B’ contains element no. 6 twice and element no.11 is not present in this set. In set
C’, element no. 6 is not present, but the largest element, no. 11; is present twice.
Alternative proof of theorem 1.10:
Let a be the vector describing the symmetric product matrix, and as mentioned, let the
numbering of the nodes be done such that the elements come forth in an ascending
order. First, let the number of nodes n be an even number. Now, let S be the following
sum:
S=aa,+aa,+a;a,_, +...+aa

n+2-i

S (TR +aa, +...+a,,a,+a,,q

Note, it is easily checked that the sum above corresponds to a Hamiltonian cycle.
Now, consider the first factors in the sum above. These can be described as a sequence

i

a. fori=123,... ,-’21+1

b.=<a fori=£+2
2

il

These numbers form an ascending sequence. The second factors in the above sum
form the following sequence:

(
a, fori=1
. n
C; =90 fori= 2,3, =
2
. n
a,. fori=—+1,....,n
L 2

33

These numbers form a descending sequence and hence by theorem 1.11 the sum S is
- the smallest sum obtainable from pair ways multiplication of the two sequences.

Now, let ¢ be any Hamiltonian cycle on the matrix A=[ga,a;]. Then
A(Q) = a0,y +aya,5) + oo +a,a,.,

Then there exists an index ¢ such that ¢(¢) = n, and an index p such that
o(p)= % +1. Switching the factors in the two products containing the indices ¢ and p

the cost of the cycle can be written

A(Q) = a,a, 5, + 8,0 F e, ta, @ .t @yt +a,,)a, +a,,a,
2 2 2

Since ¢ is a cyclic permutation, ¢(n) # ¢@(¢). Without loss of generality we can now
assume a certain order of the indices generated by the cyclic permutation, for instance

o(n) < %+ I< o)

Then the cost of the cycle can be re-arranged as follows:

Alp) =aja,y, +a,a,4, +...tayna, +...ta, a , +a, a,+...+a

@y ya, +...ta,a
2 ¢2 2

o(n-1)

o(n o

Now, the first factors in the products in the sum above forms the sequence

a<a,<...£a, <a, <a, < <a
EH EH 5+2

which corresponds to the sequence b; defined above. The second factors in the sum
above consist of the following numbers in some order:

corresponding to the numbers defined by the sequence c; above. By theorem 1.11 the
cost A(@) is larger or equal to the minimal cost.

Now, let n be an odd number and let T be the following sum:

T=aqa,+a,a,+asa, +...+a,a, ;,+...+aa 1 +a . -a i+a.,a
I N I R B

+ e +aa, +...+a,,a,+a,,q,

Again, it is easily checked that the sum above corresponds to a Hamiltonian cycle.
The first factors in this sum can be described by the following sequence:

34

d =<am fori=[—ni-|+1

a. fori=123,... ,[—]

These numbers form an ascending sequence. The second factors in the sum 7 form the
following sequence:

a, fori=1

e =44

i n+2-i

As in the previous case, the sum T formed by multiplying the numbers from the two
sequences pair ways, gives the smallest possible cost using these two sequences. In a
similar fashion as in the even case, one can show that any other Hamiltonian cycle
will lead to a cost where the same sequences are used, but where the elements in the
sequence ¢, are permuted in an non-descending order.

QED

Usually one wants to minimise the cost of the Hamiltonian cycles. In some cases
however, finding the maximal cycles will be necessary, as it will be in some
applications in chapter 3. A maximal cycle is usually found by multiplying each entry
in the original cost matrix by minus one. Then one solves TSP in this new matrix.
However, when we are dealing with polynomial cases of TSP, such a procedure may
destroy the polynomial algorithm. This will be the case for the class of symmetric
product matrices and the algorithm above. Multiplying each of the entries in the
matrix by minus one, gives a matrix which is not a symmetric product matrix. Neither
will it suffice to multiplying the entries of the underlying vector by minus one. The
last procedure will give exactly the same matrix as the original one. Hence, in order to
find the maximal Hamiltonian cycle in a symmetric product matrix, one must create a
new procedure. This is done below.

Algorithm for finding maximal Hamiltonian cycles in symmetric product
matrices.

To illustrate the algorithm, consider the cycle below. The cost of this cycle will be:

S =a,a, +a,a, +a,a, +a,as +a,a, +asa, +aga; +a,a, +aga,, +aga,,

35

8 6 4 2
@ [J
1
10
8 ®
9 7 5 3

fig. 1.9

The first factors in the parts in S constitute a sequence of numbers in ascending order.
The smallest co-ordinate in the underlying vector occurs twice and the largest is not
present in the sequence. The second factors in the parts in S also constitute a sequence
of numbers in ascending order. Here the smallest co-ordinate in the underlying vector
is not present, whilst the largest co-ordinate occurs twice. By theorem 1.11, §
constitutes the smallest possible sum of pair ways products ever obtainable from these
two sequences. In general let n be any number of nodes in the graph. Consider the sum

T=aa,+aa,+a,a, +...... +a;a;,5+ i, +a,,a,,+a,,a, +a,,a,

It is easily checked that this sum is reflecting the cost of a Hamiltonian cycle in the
graph. Moreover, the first factors in the parts in T, can be defined as

b = a; for i=1
' a_, fori=23,...,n

Note that this sequence is ascending and that the smallest of the co-ordinates in the
underlying vector occurs twice and that the largest is not present. The second factor in
the parts of T can be defined as

{am for i=12,...,n—-1

a fori=n

Note that this sequence is ascending too and that the smallest of the co-ordinates in
the underlying vector is not present and that the largest is present twice. Hence, by
theorem 1.11 the pair ways products of these two sequences yield the smallest sum.

Now, let y be any Hamiltonian cycle in the graph. Then the cost of this cycle will be:

A(W) =a,a,, + a,ay2) +oenens + a,ay
Just as in the minimising cases, this sum can be re-written such that the first factors in
the different parts will be identical to the sequence b, . The second factors will then be
some permutation of the other sequence. Hence, the cost will be less according to

theorem 1.11.
QED

36

For product matrices there is evidently a sharp border between the asymmetric and the
- symmetric cases, the former being NP-hard and the latter polynomial. Again it turns
out that changing from a traditional sum TSP to a bottle-neck TSP the situation
changes. The bottle-neck TSP for so called ordered asymmetric product matrices is
polynomial with an algorithm restricted by O(n), see van der Veen, 1993.

Constructing a product matrix given the vectors a and b is of course very simple. On
the other hand, if one has any matrix, one does not know 4 priori whether its entries
can be described by vectors a and b or not, that is we need some criterion to decide
whether a given matrix is a product matrix or not. The following lemma gives such a
criterion.

Lemma 1.3

Let C be a matrix, R, and K ;the sum of the entries on row no. i and column no. j, and

R the sum of the rows. Then

RK
R

J

C is a product matrix iff ¢; =

R, R K,
Proof: Supposec; = —R—’- . Define a; = 7—}%— and b; = —J—é . Then clearly the vectors

a and b define the matrix C. Suppose that C = [a,.b f Jm for some vectors a and b. Then,

R,~ - a.’ibj Kj — bjiai and R =(iai Iibi] Hence, a,= R,-%bi and
=) i=1 i=1 Jj=

K.) a.
b, = —’%—’— . The result follows.
QED
Corollary 1.4

Any symmetric product matrix is doubly graded and its bottle-neck TSP is polynomial
solvable.

Proof:

By renumbering the elements of the vector a such that they form a decreasing
sequence. Then clearly the resulting product matrix will be doubly graded and then by
theorem 1.6, the bottle-neck TSP is polynomial solvable.

QED

There seems to be a sharp border between asymmetric and symmetric product
matrices. However, there exists a subset of the asymmetric class — which in general is
NP-hard — that is polynomial solvable, namely the so-called ordered product matrices.

37

Hence, let @ and b be two vectors with n elements and define the elements of a
- product matrix by

A matrix C is said to be an ordered product matrix iff
0<aq, <a,.... <a,andb, 2b, 2......... 2b, 20

This class of TSP is a subset of the so-called Monge matrices, see sub-section 1.7.7.

1.7.6 Convex-hull- and -line TSP

In sub-section 1.6.2.1 the so-called convex hull heuristic was briefly touched upon.
Given an Euclidean metric it is easy to construct the convex hull, and if all nodes take
part in the convex hull, one has found the optimal solution. However, if there are
nodes in the interior of the hull, one does not know in general how to insert these
nodes between the nodes on the hull in order to obtain an optimal solution. Deineko et
alt., 1994 have solved a special case of this situation, where n - m nodes lie on the
boundary of the convex hull and the other m nodes on a line segment inside the hull. It
turns out that there exists an O(mn) time algorithm for this special case. A variant of
the convex hull and a line-segment inside the hull is a situation where the nodes lie on
a small number of N lines in the Euclidean plane. Rote, 1992, has shown that there

exists a dynamic programming approach in timen®" that solves this problem.

1.7.7 Pyramidal Tours

A cyclic permutation is called a pyramidal cycle if it is of the following kind:

where

In other words, the salesman starts in node 1, and visits a certain number of nodes in
increasing order according to the given numbering, reaching node » and then returning
to node 1 visiting the remaining nodes in a decreasing order. The set of pyramidal
cycles constitutes an exponential subset of all the Hamiltonian cycles among the n
nodes. It turns out that to find the best of all such pyramidal cycles can be done in
polynomial time.

Theorem 1.12

For any nxn matrix C, the problem of finding the shortest pyramidal cycle with
respect to C is solvable in O(n?) time.

38

For a proof of the above theorem, see Lawler, 1985. Note that applying the theorem

- on any distance matrix — or rather applying the dynamic programming scheme behind
the proof of the theorem - can be regarded as a heuristic approach to any instance of
TSP.

Moreover, it turns out that it is possible to identify certain structures of cost matrices
that guarantee the existence of a shortest cycle that is pyramidal. Hence, in cases
where the cost matrix possesses such properties, the optimal solution can be found in
polynomial time.
Several structures ensuring that there exists an optimal solution, which are pyramidal
have been found during the last decades. These structures have been given different
names by different authors, but we will adapt the names used by Burkard et alt.,1995.
The following structures will be reviewed:

- Monge matrices

- Van der Veen matrices

- Demidenko matrices

- Supnic matrices

- Kalmanson matrices

- Generalised Distribution matrices
Monge matrices.

A matrix C is called a Monge matrix iff

c;te,Sc,+c,; VI<i<r<nandl<j<s<n

Another name for such matrices is distribution matrices. The term ‘Monge’ was
framed by Hoffman, who rediscovered an observation made by the French
mathematician Gaspard Monge in 1781. Note that the class of so-called ordered
product matrices mentioned above is a sub-class of the Monge matrices.
Van der Veen matrices
A symmetric matrix C is called a Van der Veen matrix iff

c;+tC, Scytc;, VISi<j<j+l<isn
Symmetric Demidenko matrices

A symmetric matrix C is called a symmetric Demidenko matrix iff

cj+Ciy SCmte, ViISi<j<j+l<isn

39

This class contains the class of symmetric Monge matrices as a sub-class. On the other
. hand, the class of Van der Veen matrices neither contains, nor is contained, in the
class of symmetric Demidenko matrices.

Supnic matrices

A symmetric matrix C is called a Supnick matrix iff

Cj+Ciy SCiatc; S+, VISi<j<j+l<isn

The Supnick class is a sub-class of both the Van der Veer class and the symmetric
Demidenko class.

The optimal cycle is always 1-3-5-......-n-......,-6-4-2-1
Kalmanson matrices

A symmetric matrix C is called a Kalmanson matrix iff it full-fills the Kalmanson
conditions below:

i+ Sctc, VISi<j<k<ls<n

CytCyuSc+c, VISi<j<k<ls<n
The first of these two conditions is exactly the symmetric Demidenko condition and
so the Kalmanson class is a sub-class of this. The optimal solution is always given by
1-2-3-....... -,n-1,n,-1.
Deineko and Woeginger (1998) describe a solvable case for the quadratic assignment
problem called the Kalamanson-circulant QAP. They use the Koopmanns-Beckmann
formulation of QAP where the A matrix is restricted to a Kalmanson matrix and the
matrix B is taken to be a symmetric circulant matrix generated by a decreasing
function. Their subclass for the QAP specialise the original Kalmanson case above.

Generalised Distribution matrices

This class of matrices consists of four different types which all can be asymmetrical.
All four types have the following condition in common:

™) c;jtey, +¢, <S¢, +c, +ey,
A generalised distribution matrix is of type I iff (*) holds for all nodes i,j,k,p,q in
S, ={i,j,k,p,qe Ni,j,k<p<q;i¢j;j¢k}

Similarly, a generalised distribution matrix is of type II, Il and IV iff (*) holds for the
nodes in

40

Sy ={i.j.k.p.ae Nji,ja<p<k;i# jij#q}
Su=Y.Jk p.ge Nk<p<i,jgi# jii*a}
Sy ={i,j,k,p,qe N|q< p<i,jkii# j;i;&k}

All the four types contain the class of Monge matrices as a sub-class.

Asymmetric Demidenko matrices

An asymmetric matrix C is called an asymmetric Demidenko matrix iff it satisfies the
following four conditions for all nodes i,j,l withi < j < j+1 </

@) ¢y +C T Ci SC i tCh;tCy
@ cy €, € SCha; € TE
(1) ¢, +¢, 54 SC 5 tC

(V) ¢;+Cy Scj, tey

If C is symmetric, the four conditions above just reduce to one, namely the condition
for the symmetric Demidenko class above.

Even if all the classes above are shown to have a polynomial algorithm for solving
TSP, it is an NP-hard problem to test if a given instance of TSP is pyramidal or not.
Baki and Kabadi (1999) describe a new class of pyramidal tours called hereditary and
in addition give a polynomial algorithm to test whether a given instance of TSP is in
the new class or not. Their paper also contains a good and updated overview for
known classes of pyramidal tours. The same authors have in a different paper
examined and identified some other classes of polynomial solvable classes of TSP,
generalising the concept of permuted distribution matrices, see Kabadi and Baki,
1999.

1.7.8 Upper Triangular Matrices

A matrix C is called upper triangular iff i 2 j = ¢, =0, that is all entries on and

above the main diagonal are zero.

The TSP for such matrices is as easy as the assignment problem as shown by Lawler,
1971 in the following theorem:

Theorem 1.13

Let C be upper triangular and ¢ an assignment that is optimal to the constraint that
©(n) =1. Then C(@)is equal to the length of an optimal cycle T that can be easily
constructed from ¢@.

41

Here again the construction of the optimal cycle is given as a part of the proof. Since

- finding the optimal assignment - even with the added constraint @(n) =1 - is
polynomial, the class of upper triangular matrices is polynomial as well. The proof of
the theorem can be found in Lawler et alt, 1985 as well as in the original paper.

Note that if we want to find an optimal Hamiltonian path in an upper triangular
matrix, we can extend the matrix with an extra node and attach costs equal to zero
from all nodes to this new one and vice versa. The new extended node will be upper
triangular as well. Finding an optimal maximal cycle or path in upper triangular
matrices can be done as easily as solving the minimising problem. Finally, to find
optimal cycles or paths in lower triangular matrices can be done in the same way as
for the upper triangular instances, simply by taking the transposed matrix as the
starting point.

1.7.9 Brownian Matrices

A matrix C is called a Brownian matrix iff there exists two vectors a and b such that

a, ifi<j
c, = .
Y b i otherwise

Burkhard and Van der Veen, 1991, proved that this class of TSP is polynomial

" solvable.

42

Chapter 2

In this chapter, a relation between the cost matrix for an instance of TSP and the
corresponding saving values is established. The relation is based upon the special
polynomial TSP-case usually referred to as the constant-TSP, see sub-section 1.7.1,
and the concept of savings as defined in sub-section 1.6.2. The relation is then utilised
in different contexts.

2.1 The Saving Heuristic Revisited

As mentioned in section 1.6, the Clarke and Wright heuristic or the saving heuristic is
usually applied on VRP, but it can also be applied to TSP. Whether used in the first or
the second case, one is trying to maximise the sum of the so-called savings, hoping
that the result of joining the edges will yield a low cost when measured in the original
cost matrix. The values of the savings are not regarded important in themselves, but
are only used to decide the sequence of the edges in producing a feasible solution to
the problem. The original algorithm is not even concerned about finding a maximal
combination of savings, but is a simple greedy heuristic with a metric different from
the original cost matrix.

The values of these savings are based on the position of the depot and a customer’s
relative position to the depot and to each other. Applied to TSP we may choose any
node in the graph as our depot.

Let d be any node in the graph. The savings relative to d are then given by (2.1),

d _
(2.1) §; =Ciy tCy—Cy

In the original cost matrix C it will be assumed that ¢, = 0 for all i. It is easily
checked that in the resulting matrix S = [s,‘!’]m calculated by (2.1), row no. d and

column no. d are zero. Further, the savings can take any values, but will remain non-
negative as long as the triangle inequality holds for the cost matrix C and C is non-
negative.

(2.1) shows that any saving matrix is a linear admissible transformation of the original
cost matrix. This means that the set of optimal tours with C as the cost matrix, will be
the same as the set of optimal tours for any saving matrix. Further, the total ordering
of all Hamiltonian cycles in the graph will be reversed when calculated in any of the

43

saving matrices compared to the original cost matrix. The last comments were already
- made by Berenguer, 1979, and Lenstra and Rinnooy Kan, 1979. This observation
could lead to the conclusion that nothing much is obtained by calculating the savings.

Many variations of the saving heuristic have been proposed during the last decades.
Due to the way the saving values are calculated and the greedy fashion of the
heuristic, the procedure tends to match nodes close to each other and far away from
the depot early in the process. Nodes situated close to the depot but relatively far from
each other, tend to be connected late in the procedure. One has tried to counteract this
effect by adding some kind of modification to the saving values. One such approach
has been proposed by Paessens, 1988. He suggests the following modifications (in the
symmetric case)

(21b) S; = (C,'d +Cdj)_}€ij +6|Cid +Cdj|

where ¥ and 6 are parameters to be chosen freely inside the intervals <0,3] and [0,1]

respectively. Paessens reports better computational results. On the other hand this
approach calls for substantially more experimentation and computer time, and one has
of course no guarantee of finding the optimal solution. Therefore one choice of the
parameters in a specific instance of TSP or VRP cannot necessarily be used in another
instance.

Setting § = 0 and rewriting (2.1b) to get the asymmetric case, we get
(2.1¢) sp=(cy+eg)—r,; Vij

This kind of modification is used by Golden, Magnanti and Nguyen, 1977, and they
call the parametery for the route shape parameter. The route shape parameter was
introduced by Yellow, 1970. Again, the transformation (2.1c) is a linear admissible
transformation. Gaskell, 1978, chooses ¥ =2 and calls the transformation T and
restricts the discussion to the symmetric case. The effect of the parametery is to
modify the saving values in such a away that, if two nodes are far from the depot and
relatively far from each other, the original saving values - at least when applied in
VRP - still can choose to link the two nodes. By increasing the route shape parameter
from zero, the modified saving values will decrease, or if one likes, greater emphasis
is placed on the distance between the two nodes rather than their relative positions to
the depot. The linear admissibility shows, however, that nothing much will be
achieved by this. The ordering of the cycles will be the same, only reversed. But as
observed by experiments, different cycles will appear applying the basic heuristic for
different versions of the saving values.

(2.1b) is formulated for the symmetric case, and due to the absolute value sign in the
last part, this transformation is not necessarily a linear admissible transformation. It is
more difficult to find a motivation for this modification. Paessens gives no motivation
apart from the fact that he gets better result for the instances treated. However,
rewriting (2.1b) to treat the asymmetric case and replacing the absolute sign by an
ordinary bracelet, gives

(2.1d) s; =(1+8)c, +(A=8)c,; -r,; Vij

showing that we again have a linear admissible transformation. In principle there
should be no reason to restrict the value of the parameter 6 only to the interval [0,1],
but all values are in principle equally good. If § > 0, the effect in (2. ‘) will be to
increase the distance from node i to the depot and to decrease the distance from node j
to the depot.

It has also been observed, noteably by Gaskell 1978, that savings with the same
values, place the nodes in question on a hyberbola. This is easily seen by taking any of
the saving versions and let the left-hand side be a constant, for example in (2.1d)

(1+d)c,, +(1—6)ch. — %, = cons

As already mentioned in Ch.1, the values of the savings are only used to make a
sequence of nodes and arcs. Traditionally, the sum of the used savings does not enter
the calculations. The cost of the Hamiltonian cycle is calculated in the original cost
matrix, and there is no mention in the literature whether a low cost in the original cost
matrix always corresponds to a large cost of savings or not, until the results of
Berenguer in 1979.

In this sub-section, we show that there exists a very precise relationship between such
costs and the saving values. We start with the saving values as given by (2.1)

Let K¢ =[k;]1wherek; =c, +c,

This gives the following straightforward relation between the three defined matrices.
(2.2) Cc+S8*=K*

for d=1,2,....,n, disregarding the elements on the diagonal, which do not concern us.

Let ¢ be any cyclic permutation of the indices i and j, reflecting a Hamiltonian cycle
in the graph. This permutation gives the cost of the same Hamiltonian cycle in the
three different matrices C, S¢,and K¢ or if one wants, in three different metrics.

The elements of the matrix K“ have the special structure of a constant-TSP. Hence
every Hamiltonian cycle has the same cost. It is easy to see that the cost of any tour
must be K, + R,, where K, and R, make the d-th column and row sum respectively of

the cost matrix C. By the argument above, we then have the following theorem:

45

Theorem 2.1

For any permutation reflecting a Hamiltonian cycle in the graph
(2.3) C@)+S(p)=K,+R, Vd

This simple result seems to have been overlooked in the literature. The equation (2.3)
simply means that the cost of a Hamiltonian cycle, plus the cost of the corresponding
cycle measured in any saving matrix, is a constant for every Hamiltonian cycle.
Hence, the original cost matrix and any of its saving matrices can be seen as
complementary.

Equation (2.3) shows that finding the maximal sum of savings reflecting a
Hamiltonian cycle, will be as good as finding a minimal sum of the original cost
elements. This can be taken as an alternative proof - and a much simpler proof - of
Berenguer’s result on linear admissible forms restricted to the saving heuristic. If ¢

is an optimal permutation, then C(¢") will be the minimal cost and $¢(¢") will reach
its maximal value.

Hence, there seems to be a good motivation not only for calculating the savings, but
one can use any saving matrix as an alternative to the cost matrix C, that is, we can
equally well try to find the maximal sum of savings constituting a Hamiltonian cycle.

The property of equation (2.3) can also be expressed in the following way:
The radius vectors of the cost in C, and in any saving matrix for any Hamiltonian

cycle, will meet on the periphery of an ellipse. The situation is illustrated in figure 2.1
below.

A

fig. 2.1

46

In the figure, for example, AC will correspond to the cost of a given tour in C and BC
- to the same tour in a saving matrix. Taken together AC+BC=K,+R, Vd, where

the right hand side characterises the ellipse. Of course, not every point on the
periphery of the ellipse will correspond to a Hamiltonian cycle, since the number of
Hamiltonian cycles is finite. Neither should one expect the distribution of cycles along
the periphery to be uniform in any sense.

Anywayi, it is a bit surprising to observe that TSP - being a very typical discrete
problem - has such a simple and close relation with a very old part of mathematics
such as conic sections.

(2.3) holds for all instances of TSP. If C is restricted to symmetric matrices we have

Corollary 2.1

If the cost matrix C is symmetrical
(2.4) C(o)+S‘(p)=2R, Vd

Proof: In symmetric matrices every row sum is equal to the corresponding column
sum.

QED

A different version of (2.3) can be obtained from (2.1d) in exactly the same way
giving

2.5) K@) +S5(@)=(1+8)K,+(1-6)R, Vd

which gives a slightly different shaped ellipse than displayed than (2.3).

2.1.1 Weighted Saving Matrices

In (2.5) the matrix C is modified by the shape parameter ¥, and the right hand side is

modified by the parameter 6 . The savings as such are not modified, but are just
consequences of the other modifications. Alternatively, one could modify savings
directly as C is modified by the shape parameter.

Now, let w be a vector with n elements, where all the elements are non-negative and
equal to or less than one, such that the sum of the elements w; is equal to one.

Multiplying (2.2) by w, , taking the sum over d = 1,2, ... ,n, and applying the result to
any Hamiltonian cycle, we get:

2.6) C@)+ Y w, S @)=Y w, (K, +R,)
d=1 d=1

47

Equation (2.6) states that we have unlimited possibilities for choosing the saving

" matrix, since the second part of the left hand side can be interpreted as a weighted
matrix of the n different saving matrices. Alternatively, one can say that choosing a
specific weight vector w, defines a new depot different from any of the original nodes.

In a similar way we can of course use (2.2) to get
Q2.7 C+Yw,S =) w,K'=K
d=1 d=1

for the matrices involved, again disregarding the diagonal elements. Note also that the
shape parameter can be replaced by a weighted saving matrix with w'= aw . Further,
equation (2.6) incorporates all previous attempts to modify the saving values.

Now. Let i and j be two indices. Then, by (2.2) we get - apart from the diagonal -
(2.8a) §'-8§' =K' -K’

or if one prefers to use (2.3)

(2.8b) S(@)-S(p)=(K,-K,)+(R,—R))

Equation (2.8b) states that the difference between two sets of savings corresponding to
the same permutation equals the sum of the differences between the corresponding
column and row sums. If C is a symmetric matrix we get:

(2.8¢) S'(@)- S (p)=2(R, - R))

Further, let ¢ and v be two permutations. Since the right hand side of (2.3) or (2.6) is
the same for every permutation, we have:

(2.9 C(@)- C(v)=S5*(v)~ S (9)

Equation (2.9) states that the difference between two Hamiltonian cycles measured in
the original cost matrix C, equals the difference between the corresponding savings in
any of the saving matrices, but with an opposite sign. Equation (2.9) reflects the fact
that the savings are linear admissible transformations of the original cost matrix.

2.2 Direct Applications

Equations (2.3) or (2.6) open up for several potential applications, apart from the
obvious observation that the sum of the costs of a Hamiltonian cycle in C, and the
corresponding savings in any of the saving matrices, is a constant. The cost directly
incurred by the original cost matrix is complementary to the cost incurred by any of
the infinitely many saving matrices. In principle, one can equivalently use any

48

(weighted) saving matrix in attacking the TSP problem, and hope for easier or faster

" roads to an optimal solution. What has been achieved by these transformations, is that
the original problem has been transformed into a new metric that may reveal other
features of the problem than the original cost matrix could do alone. Some of these
possibilities are discussed in the following sub-sections.

2.2.1 Solving the TSP with Saving Matrices

As mentioned above, one can instead of minimising the costs of the original cost
matrix, maximise the savings in any of the saving matrices or a weighted combination
of these, in a model for TSP. This shows that the basic idea of Clarke and Wright was
a sound one, but was not fully utilised in the beginning. However, the results obtained
by trying this can be very limited.

Let F be any set of facets added to the restrictions in model 1 in chapter 1. This will
give some solution, possibly a fractional, creating a lower bound for the TSP when the
original cost matrix C is used in the objective function. Let U be the solution vector to
this, and w a weight vector for the savings.

The elements of the weighted matrix K in (2.6) are given by:

(2.10) ky =Y wyc, +c,)

d=1

It is easily seen that as long as (1.2) and (1.3) holds, then the solution vector U applied
on this matrix, gives the same value as the right hand side of (2.6). This means that for
a given set of facets, the value of the solution arising from the original matrix C, plus
the value of the solution from any weighted saving matrix, always adds up to the right
hand side of (2.7). In other words: It does not matter which cost matrix we use, the
bound created with F will basically be the same.

Then, in order to utilise some (weighted) saving matrix, one must use relaxations for
the TSP not containing (1.2) or (1.3) or their equivalents. Such formulations are
usually weaker than those above, in the sense that the bound given by a set of facets is
poorer.

We have tried with a 1-tree relaxation on a small example. This ended up with more
than forty sub-tour eliminating facets when we used the original cost matrix. Using
one of the saving matrices, we had to use approximately the same number of facets of
the same kind, but some of the facets were different in the two cases. Nothing much
seems to be gained from such a procedure.

2.2.2 Applications to Heuristics

The main result so far is that any saving matrix of the original matrix C, can be
viewed as a complementary matrix, that is we can apply the saving matrix instead of
the original matrix. A good solution - that is a solution with a high saving cost - will
unambiguously correspond to a low cost in C.

49

- Hart and Shogan, 1987, argue that the use of several heuristics is to be preferred when
trying to solve combinatorial optimisation problems, since we then are able to
generate several sub-optimal solutions and it is also preferable to have several
mathematical functions to govern the heuristic. It will be shown below, that
transformation to savings - weighted or not - gives a huge amount of new possibilities
for heuristics for TSP. Since any saving matrix is as good as the original cost matrix,
many of the elementary heuristics for TSP applied on the cost matrix C can now be
applied to the saving matrices with minor changes in the procedure. As a
consequence, quite different Hamiltonian cycles can occur, sometimes better and
sometimes worse. Moreover, any application of such heuristics can be applied an
unlimited number of times, since we can choose an infinite number of vectors w.
Choosing different weighted saving matrices may give very different cycles.

2.2.2.1 Nearest Neighbour

Instead of taking the nearest node in C, we take the most expensive node in the chosen
saving matrix. This particular heuristic can only be applied » times on the original
cost matrix, but n(n - 1) times on the saving matrices, even if we restrict ourselves to
choosing one of the weights to be one and all others equal to zero. Moreover, it can be
applied an infinite number of times if we choose a weighted saving matrix of some
kind.

2.2.2.2 Insertion Heuristics

All such heuristics involve choosing a new node that is not a part of an existing sub-
tour, using some criterion. Then, using some other criterion, this new node is made a
part of a new sub-tour containing all the nodes from the old sub-tour, plus the new
one.

Let E be the set of edges in the current sub-tour and & the node “closest” to this sub-
tour. Then one shall insert the node k between two nodes in the existing sub-tour. For
instance, this can be done by calculating the cost increases defined by:

2.11) AcGkj)=cy+c,;—c¢

ij

for all edges (i, j) in E, and then choosing the minimal increase as the criterion for
insertion.

Translated to a saving matrix we get:
(2.12) A Gk, j)=sp + 55 =5 =20, = (¢ + ¢y =¢;) =20, — Dok,)

where one should choose the edge (i, j) that gives the highest value, that is the “best
increase” in the savings. (2.12) shows that the best (minimal) triple also should be
used in the saving variant of the heuristic, since this choice gives the best (maximal)
triple. This means that we may get identical cycles in both cases. This will happen if,
from a given sub-tour, one must choose the same new node k.

50

However, this will not always be the case. Since the choice of the new node is done in
a saving matrix, and this node can be different from the one that should be chosen in
the original matrix, as is shown by the examples in chapter 5. Hence, as soon as a
selection criterion in the original cost matrix is modified to be applicable on a saving
matrix, the result can be very different, even if the insertion criterion will give the
same result for identical nodes.

This means that the following insertion heuristics mentioned in chapter 1 can behave
differently when applied to saving matrices:

Nearest insertion
Farthest insertion 1
Farthest insertion 2
Farthest insertion 3
Cheapest insertion
Smallest sum insertion
Largest sum insertion

On the other hand, there is no point in applying “random insertion” to a saving matrix
using insertion criterion (2.12), since the selection criterion in this case does not
involve any cost evaluations.

Again, in their original versions, all these heuristics can only be applied » times using
the original cost matrix, but using savings matrices one has the possibility of applying
it n(n-1) times, or even an infinite number of times.

2.2.2.3 Convex Hull

This heuristic is based on an Euclidean cost matrix that makes it possible to find a
convex hull. Changing the cost matrix to any saving matrix does not ensure such a
possibility, since not even the triangle inequality necessarily holds in a saving matrix.
Hence, the starting point of this heuristic — that is, finding the convex hull - must be
done in the original cost matrix C. Whether different cycles can be obtained by using
some selection criterion in a saving matrix, compared with a similar selection criterion
in the original cost matrix, will then depend on the selection criterion only.

2.2.2.4 The Saving Heuristic

In the original saving heuristic the savings are, as previously mentioned, ordered in a
decreasing sequence of lower and lower values. The savings are chosen such that in
the end one gets a path containing all the nodes, apart from the chosen depot node.

We are now in principle able to apply this heuristic an infinite number of times using
a weighted saving matrix as input.

In the original application, it is not necessary to calculate the savings connected with
the depot, since those savings are zero, and what we are searching for is a spanning

51

path, signifying that, we have to find (n-1) edges. By using a weighted saving matrix

" we are in a way creating a dummy node outside the underlying graph, and we must
search for a full Hamiltonian cycle, that is we have to find n different edges. None of
the weighted saving values need to be zero. The effect of the shape parameter in (2.5)
is the same, creating a depot outside the underlying graph.

Remark:

If one accepts the basic idea of the original procedure in the saving heuristic, one may
as well, with equation (2.3) in mind, do the same thing in the original cost matrix.

The elements of C are ordered in an increasing sequence. One then chooses elements
with larger and larger values until one in the end gets a cycle. Of course, edges
creating sub-tours and nodes with in- or out-degrees larger than two have to be
avoided. Such a heuristic will be a version of the nearest neighbour heuristic and
viewed at the background of (2.3) to be as good or bad as any application of the
original saving heuristic. This kind of heuristic is not directly mentioned in any of the
references treating heuristics for TSP. In principle, there will be no difference between
such a heuristic and the Clarke and Wright heuristic.

2.2.2.5 The Loss Heuristic

In the loss heuristic, the so called loss function LOSS(j) is basically calculated as the
difference between the nearest and the next nearest node, to any node not already
incorporated in the interior of a path. We can now do the same based on any saving
matrix, ie, calculate the difference between the savings corresponding to the node with
the largest saving, minus the node with the next largest saving. and then incorporate
the node with smallest loss in savings. For instance, based on fig 1.4 and a node from
category B we get:

(2.13) LOSS* (j)=s5 =55 =c4 —cy—(c, —¢;,) Vist#d

The criterion above clearly shows that the chosen nodes can be quite different from
the chosen nodes using the original cost matrix, and can be different from one saving
matrix to another. Hence, using saving matrices opens up for many more applications
with the same kind of thinking.

2.2.2.6 Heuristics Based on Minimal Spanning Trees

Kim’s and Christofides’ heuristics

There are two such heuristics. Kim’s heuristic is based on a doubling of the MIST for
C, and then creating an Eulerian cycle in this network. Following the Eulerian cycle
one creates a Hamiltonian cycle by taking shortcuts whenever necessary in order to
avoid nodes already visited. The second one - the so-called heuristics of Christofides -
is also based on the MIST, but instead of doubling the tree, one creates an Eulerian
graph by making a minimal matching among the odd nodes in the MIST.

52

In the same way, one can use any of the saving matrices by constructing MAST

- instead of the MIST, and then apply the two heuristics to this tree, making a maximal
matching in the Christofides’ case. Again, the possibilities for applying the heuristics
can be multiplied by #n, since the MASTs in different saving matrices can be quite
different from the MIST in the original matrix and different from each other.

2.2.2.7 Stretching Tree Heuristic - A New Heuristic Based on MIST

This heuristic has some resemblance with the two above since it tries to utilise the
structure of the MIST by trying to keep as many of the edges from MIST as possible,
but when this is not possible, other edges in the graph are used. The differences are
that one does not start with an Euler tour and that only a Hamiltonian path is created.
When this is accomplished, the path is closed by matching its end points.

Step 1: Construct the MIST

Step 2: Identify the leaves of the tree. Choose one of them, say i,. Let P be a
subset of the nodes. Put P = {i, }

Note that there is always at least two leaves in a tree, so step 2 can always be
performed.

Step 3. Follow the tree from the chosen node until a node with a degree larger,
or equal to three, is encountered. Call this node j. Such nodes are called
Junctions. Update P so it contains all nodes passed so far, so that P
contains all the nodes between the starting leave and the first found
junction.

Step 4 : Identify all nodes A = {i,, i,,i,......i, } not in P, and adjacent to the

junction j. Note that k is larger or equal to two. Find the pair (s,¢) such
that this pair corresponds to

minsc,, — ¢ }
kiea L H Tk

Delete the edge (s,j) from the tree and add the edge (s,7). The degree of
the junction j is by this reduced with one.

Step 5: If the degree of j is equal or larger than three, go to step 4. If the
degree of j is two, go to step 6.

Step 6: Addj to the set P. If P = N, then stop. If not, follow the tree until a
new junction is found and P is different from N. Then go to step 4.

If P=N, goto step 7.

Step 7: Close the Hamiltonian path, by connecting the ending nodes of the
path. Stop

53

Note, that since the number of degrees in any tree is 2(n -1) and that the “stretching”
part in step 4 involves only a polynomial number of calculations and possibilities, the
algorithm will stop in polynomial time.

The stretching heuristic based on saving matrices.

The stretching heuristic can of course be applied to any saving matrix starting with
MAST instead of MIST, and maximising instead of minimising in step 4. Note that as
long as the saving matrix is based on one of the nodes in the graph and not on a
weighted saving matrix, the saving values corresponding to row and column d are
zero. Hence, the construction of the Hamiltonian path can be done in the graph
without including the chosen depot node and the closing of the created Hamiltonian
path will be done without adding extra savings.

2.2.2.8 Tour Improvement Heuristics

Any tour improvement procedure that can be applied to C, can of course also be
applied to the saving matrices by interpreting "better” as "more expensive". However,
as will be shown below, the most used tour improvement heuristic - the so called -
change - will give the same result, whether it be applied to a Hamiltonian cycle with
costs in C, or to the correspondent cycle based on a saving matrix.

The reason for this is that a k-change procedure does not involve any selection or
insertion criteria based on costs. Starting with a certain Hamiltonian cycle, k edges or
arcs are deleted and replaced by k new edges or arcs, such that a different Hamiltonian
cycle comes forth. Many different cycles can be constructed in this way if k is larger
than two, but the construction does not involve any evaluation of costs. So, we have
the same set of new cycles independently of the underlying cost matrix, this being the
original one or any of the saving matrices. After every new cycle has been
constructed, one calculates the cost. Whether one does this in the original cost matrix,
or in any of the saving matrices, does not matter according to (2.3).

A variant of the k-change procedure

The standard procedure above depends only on the parameter k and the starting cycle,
constructing all possible new Hamiltionian cycles, and then choosing the best one as
the result of the heuristic, and can be modified in different ways. One of these is to
calculate the cost of each new cycle at once, and as soon as one finds one with a
smaller cost, this new cycle is used as an input cycle, starting the procedure from the
beginning again. But this will not have any consequences as far as the different cost
matrices are concerned. The cost matrices considered here are equivalent and
irrelevant as long as no selection or insertion criteria are used.

However, if the parameter k becomes large, the number of ways the k edges can be
chosen becomes large, and the number of different cycles that can be constructed
becomes huge, at least when the number of nodes is large or reasonably so. In order to
avoid too many calculations one can have some selection criteria for which edges to
delete from the input cycle. One such possibility is:

54

Selection criteria: Delete the k edges with the largest sum in C
Using a saving matrix, the criteria will be

Selection criteria: Delete the k edges apart from edges connected to the
chosen depot, which give with the smallest sum

In this way we will obtain different starting points for the main procedure.
Final remark

In the previous sub-sections, different heuristics have been discussed in the context of
alternative but equivalent cost matrices. Especially, it has been demonstrated that a
large number of such cost matrices can be created, and by examples show that the
different cost matrices create different cycles when applied in at least some of the
treated heuristics.

An interesting open question to ask is the following: Given a heuristic, is it possible to
find a specific cost matrix - say a weighted saving matrix - such that the optimal
solution will be found by the heuristic?

If the answer to this question is “‘yes”, then the optimal solution can be found in
polynomial time. On the other hand, the procedure for finding such a matrix may be —
and probably is - non-polynomial. If the answer to the question is “no”, there is still
the possibility that subsets of instances of TSP have such a property. However, this
open question will not be pursued in this thesis.

2.3 Savings and other Sub-graphs besides Cycles

We have seen above, that there is a very precise relationship between the cost of any
Hamiltonian cycle measured in the original cost matrix, and any saving matrix. A
natural question to ask, is whether there exists similar relationships if the sub-graph is
not a cycle, but some other well defined structure. In the following sub-sections some
of these questions are answered.

2.3.1 Savings and Assignments

An assignment is characterised by requiring one arc out from each node and one arc
into each node, but one does allow sub-cycles as opposed to a Hamiltonian cycle.
However, the cost of any assignment in a constant-TSP matrix will have exactly the
same value as any of the Hamiltonian cycles. Hence the equations in (2.3) still hold
for assignments. This means that (2.3) can be applied in the VRP case, see section 2.7.
Further, if a certain assignment is a lower bound for a TSP in the original cost matrix,
the same assignment will be an upper bound for the TSP measured in any saving
matrix. We can calculate the value of any of them with the help of the other and (2.3)

55

~ 2.3.2 Savings and Spanning Paths

Specifying the sub-graph to be a Hamiltonian path, where the starting and terminating
node is known, we can still find a relation similar to (2.3)

Let @ ,(s,t)denote a Hamiltonian path starting in node s and terminating in node .

We then have the following theorem:
Theorem 2.2

For any Hamiltonian path @ ,(s,t) in a complete graph
(2.14) C(qop(s,t))+Sd((pp(s,t)) =K,+R,-(c,+tc,) Vd

Proof: Let @ be the Hamiltonian cycle obtained by adding the arc ¢-s in the given
path. The cost of this cycle in the matrix K is then K, + R, . The cost of the arc ¢-s in
Kis c, +c,.

QED

The theorem shows that finding the optimal Hamiltonian path when the starting and
terminating nodes are given, can be done either by minimising the problem in the
original cost matrix, or equally well in any saving matrix by maximising the sum of
the savings. So, we have exactly the same situation as in the TSP case. Note also that
the cost for any Hamiltonian path¢ ,(s,7) is the sum of the path measured in the

original cost matrix plus the sum of the corresponding saving values for any of the
savings matrices, and will be on the periphery on an ellipse as described in figure 2.1.
The only difference is that for the same cost matrix C, the ellipse will be somewhat
smaller due to the deduction c,, +c,, in (2.14) compared to (2.3).

Let ¢ ,(s,~)and @ ,(-,7) denote Hamiltonian paths where only the starting node or the
terminating nodes are specified, respectively and let ¢ , denote a Hamiltonian path

where neither the starting nor the terminating nodes are specified. If one of these cases
occurs, relation (2.14) must be modified and it is not possible to obtain equations for
the relationship between the costs measured in the original cost matrix and the saving
matrices. But we can still obtain upper and lower bounds for such problems. These
bounds are given in corollary 2.2.

56

Corollary 2.2

For any Hamiltonian path of the type ¢ ,(s,—),9 ,(—,t)and ¢, we have for all
d .
K,+R,- (g{%{c i} *Ca)SC@,(s-)+5@, (s~ <K, +R,- (jxm}{c b+ Cu)

K,+R,-(max{c, }+c,) S Co,(-)+8 (@, (D) <K, +R,- (]g{ltifil}{cjd}+0,d)

je{t.d}

d .
K, +R, -maz({cid +c, 1S C@,)+S(@,) <K, +R, -?g?{cid +c,}

i,j#
Proof: The relations follow immediately from the proof of theorem 2.2.
QED

Observe that we also can find Hamiltonian paths as described in section 1.7, by
extending the graph by some artificial node and adding arcs or edges with special
values.

Suppose that one knows the starting and terminating nodes, and chooses to assign a
sufficiently large negative value -M to the arc (,s5). In this case, at least one of the
saving values will change for every choice of the depot and if the depot is chosen to
be either s or ¢, the right hand side of (2.3) will change as well. The second option is to
add a new node and arcs attaching this new node to the starting and terminating nodes.
Since no arcs are added to the other nodes in the original graph, (2.3) is difficult to
apply, since to calculate the savings and the right hand side of (2.3) one needs a
complete graph.

The same will be the case when either the starting node or the terminating node is
known. In this case, a new node is added and we add new arcs, but not in a way that
creates a complete graph. However, if neither the starting nor the terminating node is
known, then we add a new node and add arcs with zero costs to all nodes in the old
graph. By this procedure, the right hand side of (2.3) will have the same value, but all
the involved matrices will have the size (n+1)x(n+1), and everyone of the saving

matrices will have new elements s’ .. =c., and s° , . = ¢, , which then reflects the
id dj

i,n+l n+l,j

property of corollary 2.2

2.3.3 Savings and Trees

A path is a special kind of tree, so if we relax the premises of theorem 2.2 and
corollary 2.2, we cannot hope for more than the statements in these propositions.
However, it is still possible to obtain upper and lower bounds of any tree in a similar
way as above.

57

Let7 denote a tree in an undirected graph with n nodes. We then have the following

- theorem:

Theorem 2.3

For every tree T in an undirected graph with k nodes with degree 1, the following
relation holds for every d:

(2.15) R, +(n-k)min{c, } < C(1)+S“(1) S R, + (n- k)max{c,, }

Proof: Let deg(i) denote the degree of node i. In a tree, every node has a degree of at

least one. In the matrix K = [Cm +cdj] the cost of 7 is K(7)=R, + Y (deg(i)—l)c,, .

i=1
Since C+ S = K apart from the diagonal, we get (2.15).
QED

Note that in any tree the number of nodes with degree 1 is always two or more. A
special case is a path, which has exactly two nodes with degree 1 and then (2.15)
coincides with the last relation in corollary 2.2. Another special case is a hub. In such
trees all nodes except one have degree 1, and (2.15) becomes

Corollary 2.3

For every hub in an undirected graph we have that

(2.16) R, +min{c, }< C(1)+ $*(1) < R, + max{c,} Vd

2.4 Generalised Savings

In section 2.1 the basic relation (2.3) was established. These equations are based on
manipulations with the cost elements of the original cost matrix C. The saving
matrices as well as the constant-TSP matrix use elements only from this. However, we
can do much of the same as has been done above, without relating the two constructed
matrices so closely to the original one.

Let K = [a,. +b j] be a constant-TSP matrix where the a’s and the b’s are non-

nxn
negative numbers such that K > C. Hence, we can construct a third matrix S*, such
that

(2.17) sif =a,+b;,-c;

This new matrix can be seen as a generalisation of an ordinary saving matrix, where
we start from some kind of “virtual” node. The cost of travelling between this virtual
node and node i is a; if i is visited first, and b, if j is visited as the second node. Note

that (2.17) is a linear admissible transformation reversing the total order of the

58

Hamiltonian cycles, just as any of the traditional savings matrices do. The saving of
- taking both nodes on the same trip and in the sequence i before j, is then given by
(2.17), which again leads to a similar relation as (2.3), namely

(2.18) C@)+S"(@)=A+B

where A = zai and B = zbi , respectively.

i=1 i=1

Since the a@’s and the b’s can be chosen arbitrarily as long as K > C, we have created
an infinite number of generalised saving matrices which can be used as starting points
for all the heuristics mentioned in section 2.2. Note however, that in general we will
not have zeros only in one of the columns and the corresponding row. If C is
symmetrical and we want the generalised saving matrix to become symmetrical as
well, we must let K be symmetrical. This will happen iff a, = b, for all i.

2.5 Lower Bounds for TSP

In this sub-section we discuss some results based on section 2.1 where the aim is not
to determine optimal solutions, but rather say something about the ramifications of the
problem. Note, that if we know an upper bound, UB, for the optimal solution
measured in a saving matrix, a lower bound LB for the optimal solution measured in
the original cost matrix can be derived from (2.3) by

(2.19) C@)=K,+R,—-S°(¢")2K,+R, -UB(S*)= LB(C)

2.5.1 Simple Lower Bounds for TSP

The simplest lower bound for TSP will be the smallest cost multiplied with the
number of nodes. Let LBO denote this lower bound, that is

(2.20) LBO = nmin{c, }

Applied on the original cost matrix this bound will usually be very poor. A similar
upper bound on a saving matrix will be

(2.20b) UBO=n n}z}x{s,’j’}

Hence, an alternative lower bound for TSP measured in the original cost matrix will
by (2.19) be

2.21) K,+R, —nn}gx{sfj} < Clo")

Since the saving values in row and column no. d is zero, (2.21) can be sharpened to

59

222 LB3=K, +R, - (n-2)max{s], } < C(¢")

It turns out that in concrete applications the lower bound given by (2.22) can be
substantially better than (2.20)see chapter 5 for an example.

Another simple but better lower bound can be found by adding the smallest element in
each row. Let LBI denote this bound, that is

(2.23) LBl = gnljin{cy}

and let UBI be the upper bound in some saving matrix defined by

(2.23b) UB1 = Z mjax{s;}

In a similar fashion as was done in (2.21), we can find an alternative lower bound
(2.24) LB4=K, +R, —gm?x{s; l<cwh

Again (2.24) can be substantially better than (2.23), see chapter 5 for an example.

Finally, Webb, 1971, in his article about the so-called LOSS-heuristic, observes that
for each node, we must add the value of two arcs. Then taking the sum of the two
smallest costs in each line and dividing this by two and adding all these costs, we
obtain a lower bound for TSP. This kind of thinking is the main motivation behind the
LOSS heuristic. Let LB2 denote this lower bound, ie

(2.25) LB2 = % min{c, +c,
[t

i=

Again we define a similar upper bound UB2 by

(2.25b) UB2 = %Zmax{s; +si}
i=l i;r

In a similar fashion as was done above we get another lower bound for TSP by

combining (2.19) and (2.25) to get (2.26)

(2.26) LB5=K, +R, -%2 max{s; +s; } < C(¢")

it

= g

60

In order to illustrate the effects that can be obtained by the transformations in (2.22),
(2.24), and (2.26) the following small example below will suffice.

Example 2.1

Let the cost matrix C be given by

1 2 3 4 S
1 - 3 2 1 45
2 - 4 5 40
3 - 3 35
4 - 50
5 -

As can be seen from C the first four nodes are rather close to each other, and the fifth
node is far from the other ones.

| Node no.
Bounds with C** 5 42 47 |
1 66 70 81 |
2 65 69 72
3 76 77 80
[4 64 61 77
5 58 15
*) For the last five lines, (2.22), (2.24), and (2.26) are usec;ﬁ - o0 the bounds
**) In this line the three simple bounds are applied directly on i i53 50 cost matrix.

Apart from the last line in the table above, the lower bounds based on the saving
matrices, give substantial better lower bounds than making these simple bounds on the
original cost matrix only. Even the lower bound given by (2.22) seems to give very
good results, but this is partly due to the low number of nodes, and the effect will
probably be less marked when the number of nodes is increased.

Clearly the relationships between the lower bounds given by (2.20), (2.23) and (2.25)
are LBO < LB1 £ LB2, and similarly, and hence LB3 < LB4 < LB5. However, to find

general relationships between the first and second triple of the lower bounds seems to
be difficult.

2.5.2 Lower Bounds for Symmetric TSP Based on Trees.

In this sub-section we will restrict ourselves to the symmetric case.
One such lower bound is the MIST on C, or even better, the minimal 1-tree.

A better lower bound for TSP can be obtained by deleting one of the nodes in the
graph, constructing the MIST on the remaining nodes, and adding the two cheapest

61

edges. Doing this for all the nodes, one chooses the best lower bound. We will denote
- these 1-trees by 1-tree(C(d)) and they will be equal to

2.27) MIST(C(d)+c, . +¢, . -

where c_ . +c, . is the sum of the two cheapest edges attached to node 4 and C(d) is
oy)

the cost matrix for the original graph minus node d. In general we have the following
inequalities:

MIST(C) < 1~ tree(C) S max{MIST(C(@)) + ¢, . +c, .} -

Much in the same way one can use MAST + 1-tree on a matrix to obtain an upper
bound for the maximal Hamiltonian tour, but the MAST alone will not always be an
upper bound for this tour. However, with the help of the saving matrices we can prove
the following lemma.

Lemma 2.1

Lower bounds and upper bounds for the minimal and maximal Hamiltonian cycle in
any symmetric matrix C can be found by

2R, — MAST(S)and 2R, — MIST(S*)

respectively. Each d can be chosen independently of each other in the two
expressions.

Proof: Take any saving matrix S. Delete the node d from the graph and construct
MAST on the remaining graph. Then add the two most expensive edges connected to
the node d. Since all the edges connected to d have costs zero, MAST(S*) will be an
upper bound for the maximal Hamiltonian cycle in S¢. By (2.3) we get

C(@")=2R,-S5%(¢")22R, — MAST(S")

The result for the lJower bound follows. Similarly, we can make the minimal spanning
tree on the saving matrix, and we get the upper bound for the maximal Hamiltonian
cyclein C.

QED

One could try to utilise some weighted saving matrix in the same way. However, the
result in lemma 2.1 is based on the fact that the costs of the edges connected to the
depot are zeros. This will not be the case - in general - for any weighted saving matrix,
and we then have to add the two most expensive edges to the MAST in the weighted
saving matrix. This will in most cases lead to poorer lower bounds than the lemma 2.1
gives. The basic saving matrices transfer the information associated with the depot to
the other nodes and leaves the depot independent of any of the other nodes as far as
costs and savings are concerned.

62

- Note that the same remark shows that solving the TSP with help of any non-weighted
saving matrix, is equivalent to solving the maximum Hamiltonian path in the saving
matrix.

Note also that the result in lemma 2.1 is a concrete application of an observation done
by Held and Karp, 1969. They observe that adding real numbers g, to the cost

elements in a TSWP matrix, such that the edges have costs c;+a,+a; does not alter

the sequence of the costs of the Hamiltonian cycles, but may affect the identity of a
minimum spanning 1-tree. In the case treated here the added costs is a part of the
original cost matrix and is matched with finding a maximum spanning 1-tree in a
closely related matrix, namely a saving matrix.

A natural question to ask in connection with the lower bounds in lemma 2.1 is how
good these bounds are compared to other known lower bounds for TSP?

The following small example shows that in general the bounds given by lemma 2.1 for
a given node d can be both better and worse than the bounds given by the more
traditional graph considerations obtained by (2.27).

Example 2.2
Using the cost matrix of example 2.1, one finds that MIST(C) is 41 and I-tree(C) is

44. Making all lower bounds by (2.27) (second column) and the bounds found by the
lemma, gives the following table:

node 2Rd _ MAST(Sd) MIST(C(d)) + Coi ¥Cye -
1 82 45
2 82 43
3 81 50
4 79 44
5 79 81

As can be seen from these results, the lower bounds given by the lemma are best for
four of the five nodes. For node 5 however, (2.27) gives a better lower bound than the
lemma. But it is still the case that the best lower bound is obtained by the lemma and
not by (2.27). Comparing these results with the results obtained by the simple bounds
in the previous sub-section, one will see that the latter ones compete very well with
the bounds found by (2.27), and are only beaten by the best bound found by lemma
2.1.

It is my conjecture that this will always be the case. I have however, not been able to
prove this. Neither have I been able to find a counter example. In chapter 5, the
different lower bounds are compared using examples with more “normal” cost
matrices.

63

Basically, the lower bound given by lemma 2.1 is corresponding to a minimal 1-tree in
- the original cost matrix. As mentioned above, a bound can be obtained from the
original cost matrix when a node is deleted, a MIST is found by the remaining nodes,
and the two smallest edges from the deleted node are added to the MIST. In our case
here, however, the deleted node is the depot node. Since the savings from a depot
node to any other node are zero, the two bounds coincide. However, given a saving
matrix, one may of course delete any node from the graph, find the MAST among the
remaining nodes, and then add the two edges with the largest saving values from the
deleted node. This procedure creates a lower bound similar to that of lemma 2.1, but
the cost of the constructed 1-tree may of course be larger than the MAST in lemma
2.1 and hence produce a poorer bound for the TSP in question. For examples, see
chapter 5. The number of lower bounds, good or bad, constructed in this way will
nevertheless be ample. From each matrix C we can construct n saving matrices. From
each of these we con construct n different lower bounds by the procedure above.

Moreover, a given lower bound for the TSP in the original cost matrix C
automatically creates, by using (2.3), a corresponding upper bound for the TSP in any
saving matrix - weighted or not. The sum of the two bounds will be equal to two times
the appropriate (weighted) row sum. A new and better lower (larger) bound for the
TSP in C will of course create a new and better (smaller) bound in the saving matrix.

2.5.3 Bounds Based on Lagrangean Relaxation

Making a Lagrangean relaxation of a TSP creates a lower bound for any choice of the
multipliers. As always when applying Lagrangean relaxation, one has different
options for relaxing restrictions. If one chooses to relax both sets of equation in model
1 —that is (1.2) and (1.3) the Lagrangean function that we want to minimise in the
asymmetric case can be written as

(2.28) Sl —A - U+ XA+ T p,
i i J

where A, and y ; are the multipliers connected with the said equations. Since we want
to minimise, and the decision variables are supposed to be binary, we choose a U j to

be equal to one iff the corresponding coefficient in the Lagrangean function is
negative. Since we are relaxing equations the multipliers can take on both negative
and positive values.

Choosing the multipliers such that 4, + i ; ¢, foralli, j, the lower bound obtained

will be the sum of the multipliers. Such a sum can easily be obtained by solving the
following small LP model:

max(zi:li +;u1]

ST
Ad+p; <c
A it; 20

Any optimal solution to the LP model will give the best lower bound possible found
by the relaxation above. For further details and elaboration on this, see chapter 4,
section 3.

Similarly, one can relax a maximisation problem using any saving matrix as an input
matrix, and then getting upper bounds for the complementary problem.

(2.29) 22(55-5i—8,-)/u+25.-+281

where (2.29) is a function we want to maximise. Choosing the multipliers in (2.29) to
be 6, =c, —A,andg; =c, — u, itis easily checked that we obtain the same lower

bound for the minimising problem as with (2.28). Hence, the same bounds can be
obtained by the first Lagrangean relaxation as with any similar relaxation based on
any of the saving matrices.

Each of the saving matrices can give good lower bounds for the TSP problem for
instance with the help of lemma 2, the bounds given in subsection 2.5.1, or simple
assignments. These bounds will in general be different. A natural question to ask is
whether the information about one such bound obtained by a specific saving matrix
can be utilised to improve the bounds obtained for an other saving matrix, for example
with the help of Lagrangean relaxation? More precisely, let d and I be two nodes and
UB, and UB, be corresponding upper bounds found for maximising the respective

saving matrices, and let Z* be the optimal solution to the following model:

(2.30) max 3> 55U,

ST -

(2.31) Zu,j:l Vi

(2.32) iU,-,:l Vj

(2.33) ﬁz s;U, <UB,
T

If Z* is strictly less than UB, and UB,, we have by (2.19) improved the lower bound

for the underlying TSP. The restrictions in the model above consist of a knapsack
problem and an assignment problem. One can either try to solve the model as it is —
hoping to get better bounds - or one can relax some of the restrictions.

65

- By relaxing (2.33) we get an assignment problem which is easy to solve. However, it
turns out that this relaxation does not improve on the already known bounds. This can

be seen by the following argument. Let @™ and ¢™" be the maximal and minimal

ass

ma
ass

assignments respectively in the original cost matrix, and we then suppose that any of
the other known bounds are better than these bounds. The Lagrangean function
becomes

F(p)= 22(55 - psin)Ju + pUB,
i

where p is a non-negative Lagrangean multiplier. This function can be rewritten as

F(P)=2,cu U+ D¢ 20U~ P(ZCHZUU +2.6,2.U; }* (p=12. D .c;U; +pUB,
F T T PR o

Maximising this function under the assignment restrictions (2.31) and (2.32) can
easily be done by inspection when divided into two cases. First, let the multiplier be in
the interval [0,1]. Then

F*(p)=R,+K,-p(R,+K,))+(p-1DC(e ")+ pUB,

ass

This upper bound corresponds to the lower bound
LB;(0< p<1)=(LB, - C(@r))p+C@I")< LB,

where LB, corresponds to the lower bound given by (2.19) and the right hand side of
(2.32).

In a similar fashion, one can show that if the multiplier is strictly larger than one, it
will again be equal or less than LB, . Hence, in either case no improvement is

obtained.

Solving model (2.30) — (2.33) without relaxing any of the restrictions, may however
give better, ie lower upper bounds, and as a consequence larger lower bounds for the
TSP in question. Suppose that we have found fairly good upper bounds for the TSP
measured in the saving matrices based on nodes d and / by some simple methods, for
example one of those described in the previous sub-section. Then taking the upper
bound corresponding to node [as the right hand side of (2.33), the solution of the
model can give better bounds than any of the two known bounds. An example of this
will be given in chapter 5.

In principle, we can by using the model (2.30) — (2.33), obtain nxn different lower

bounds for the TSP in question. Choosing one of the saving matrices in the objective,
one can solve the model for » different bounds. However, it turns out that most of

66

these bounds will be equal and that one can only obtain at most n different lower
" bounds for the original TSP in this way. This can be seen as follows:

Let Z p be the optimal solution to the model when the saving matrix S7 is used in the

objective and Z; the optimal solution to the model when the saving matrix S?is

used. In restriction (2.33) we use the same saving matrix in both models with the same
upper bound.

Since the models are assignment models with and extra knap-sack restriction, we have
by equation (2.8c), that

Z,-Z,=2R,-2R,

Each of the optimal solutions are upper bounds for the TSP in their respective saving
matrices and as a consequence, give lower bounds in the original cost matrix. These
lower bounds are

LB,=2R,-Z,and LB =2R -Z,
Hence, the difference between these two lower bounds is
LB,-LB,=(2R,-Z,)-2R,-Z,)=0

In a similar fashion, better bounds can be found by Lagrangean relaxation, relaxing
restriction (2.31) and (2.32), and solving the remaining knapsack problem.

2.6 Savings and Vehicle Routing

If the TSP is extended to m-TSP or VRP one may ask whether equation (2.3) still
holds or not. The answer is yes, with the obvious modification that we cannot use a
cyclic permutation, but must restrict ourselves to admissible tours, ie we can only use
sub-tours containing the depot. Since the depot is supposed to be given 4 priory, any
application of the saving matrices is restricted to the saving matrix given by this
depot.

Let i = I denote the depot and ¢' describe the sub-tours. Then C(¢") denotes the cost
of the sub-tours, and S(¢@') will be the sum of the corresponding savings. If we have k
different sub-tours then 2k of the used savings will be zero, since any saving
connected to the depot will be zero. The non-zero savings will constitute disjointed
chains of nodes and edges instead of one chain containing all the nodes apart from the
chosen depot node in the TSP-case. Some of the chains may degenerate to single
nodes reflecting the fact that some sub-tours may contain only one customer. Since
(2.2) holds, it remains to be shown that K(¢') = 2R, . Let i and j be two of the 2k

67

nodes connected to the depot node 1. We will then have the following sequence as
- part of the k sub-tours:

SR N R
which gives the following cost elements in K:

k, +k,j =c,+c, e, +¢;=¢,+c,

This shows that the sum of the elements used in applying ¢'on K does not change the

sum. We then obtain equation (2.28), where it is implicitly assumed that the savings in
S and the elements of K are based on i =] as the depot node.

(2.28) C@)+S@)=K,+R

As in the TSP case, the difference between two solutions of a VRP problem equals the
difference between the corresponding savings. (2.28) shows that as in the TSP case,
using a saving matrix based on the given depot, is as good as using the original cost
matrix.

Equation (2.28) also opens for some of the applications described in the TSP case.
This holds for those of the simple heuristics described in sections 1.6 and 2.1 which
are adjustable to the VRP case. Note though, that we can no longer use the heuristics
in an infinite number of ways since the depot is fixed.

If the cost matrix C is symmetrical, then (2.28) will change to:

(2.29) C(@)+S(@")=2R,

The Fisher - Jaikumar heuristic for VRP

In section 1.5 a short description of VRP can be found. Many of the heuristics for TSP
described in chapter 1 can be adapted to VRP with more or less success. Another
approach for solving VRP is the specialised heuristic called the generalised
assignment heuristic, see Fisher and Jaikumar, 1981. This heuristic basically divides
the routing problem into two sub-problems, much in the same way as dispatchers do
when they plan routes for the vehicles manually. The first sub-problem consists of
assigning a set of customers to each vehicle so that the vehicles’ capacities are not
violated. These assignments are done in parallel, that is, every vehicle is taken into
consideration at the same time. In manual planning, this is done sequentially. The
dispatcher fills up one vehicle first, then a second one and so on. The second sub-
problem consists of solving a set of TSP, one for each vehicle. This will be reasonably
simple since the number of customers assigned to each vehicle in practical
applications will not be a very large number, and the TSPs can be solved without side
constraints.

68

A good overall solution depends on how good the assignment part of the heuristic is.
In order to obtain good solutions to this part, a selection of so called seed-nodes must
be done. Seed-nodes are customer nodes, and one chooses a single seed-node for each
vehicle and this vehicle must serve its seed-node. One must take care to select the
seed-nodes such that there is only a remote possibility that two seed nodes will be on
the same route in an optimal solution. When the seed-nodes have been selected, one
calculates the added cost of assigning the other nodes to the same vehicle by formula
(2.30). The formula is basically of the same kind as savings, ie: if we serve the seed-
node alone with its vehicle, a cost back and forth between the seed-node and the depot
is incurred. By assigning another node to the same vehicle an extra cost is incurred,
namely:

(2.30) c:, =c;, tc;—¢

jic = Ci i,

where i, is the selected seed-node for vehicle no. v. The number of vehicles must be

decided in advance of the solution of the problem. A generalised assignment problem
is now formulated and solved with these new cost elements.

Now, since the saving matrix relative to the given depot can be used as input, one can
calculate the loss of saving when serving a node j with a vehicle v attached to the seed
node i, , instead of calculating the increased cost with C as an input matrix. This

gives the following formula for the decrease in the savings in the symmetric case.
Note that the superscript usually applied to the saving elements is deleted, since only
one saving matrix is used.

(2.31) i =28, — (s, +8, +8;) =5, =c;, —2¢,

(2.31) shows that the new cost elements can be found from the old ones, but values
can be different and can give quite other solutions compared to the same heuristic
applied with C.

2.7 Savings and Special Cases of TSP

In this section some minor extensions to known polynomial classes of TSP will be
dealt with. All the extensions are based on the admissible linear transformation that
takes place, when a cost matrix is transformed into a saving matrix. This
transformation gives a certain degree of freedom, in the sense that entries in a row and
the corresponding column in the saving matrix become zero.

2.7.1 Savings and Product Matrices

Leta, b and d be three vectors of dimension n, where the first elements in all vectors
are equal to zero.

69

Define a matrix C, such that

c;=a,+b;—dd,;
It is easily checked that the saving matrix based on node 1 as the depot, will be
identical with the product matrix defined by the vector d. The maximal cycle in the
saving matrix can be found in polynomial time, and hence the minimal cycle in the
original cost matrix. The definition of the matrix C reveals that this class of
polynomial TSP is a simple linear admissible transformation and the result is a trivial
one. However, to identify that a given matrix has this form can be difficult. This
difficulty can be circumvented by calculating the saving matrix, and checking whether
the saving matrix is a product matrix or not by lemma 1.3.

2.7.2 Savings and the Circulant-TSP

One does not know whether the class of circulant TSP is polynomial or not, but as
described in chapter 1, it is easy to find the smallest Hamiltonian path by applying the
nearest neighbour procedure to the cost matrix. We will call an nxn matrix almost
circulant iff the entries in the first row and column are constants, and deleting this row
and column gives a circulant (n-1)x(n-1) matrix. The constants in the first row and
column can be different. This rather special class of TSP matrices will be polynomial
solvable, since finding the Hamiltonian path can be done in polynomial time and
closing the path by including node no. 1 will cost two times the constant, whatever the
starting and terminating nodes of the path are.

Now let @ and b be two vectors of dimension n where the first elements in both
vectors are equal, and ¢, , k=2,3,...,n-1 be n-2 non-negative numbers. Define the

matrix C to be

a;ifi=1
c, = b, if j=1
a,; +b, —c, Vi, j22and (j~i) = k(mod(r - 1))

It is easily shown that the saving matrix based on node 1 as a depot, will become
almost circulant with zeros in the first row and column. The entries on the main
diagonal do not concern us. We then find the maximal Hamiltonian path in the saving
matrix, and this can of course then be done by applying the farthest neighbour
procedure to the circulant part of the matrix. The corresponding Hamiltonian cycle
will then be the maximal in the saving matrix, and the minimal one in the original cost
matrix.

2.7.3 Savings and the Small TSP

With a large matrix C with distinct values, we will understand a matrix where the
entries are governed by two vectors a and b with distinct elements, such that

70

c; = max{a,. Ng } As in subsection 1.7.2 we can assume, without loss of generality

~ and for simplicity of notation that a, > a, >......... 2a,. Let d,be the ith largest of the
2n distinct elements of the two vectors. Further, let D = {d1 7 PR d,, }and
n-1
d = Zi:ldi '
Theorem 2.4

Let S be a large matrix. The length of the largest Hamiltonian path in S is d iff one of
the following four conditions holds:

S1) For the same node i, both a, and b.are in D
s2) D={a,a,..... .a,)
S3) D={p,b,........ b}

S4) D={a,a,...a,,b,, b,y b, Jforsomek,1<k <n—2

Proof:
The proof follows very closely that of Gabovich, which can be found in Lawler et alt.,
1985.

Suppose that S2 holds. Then the entries in row i in the matrix C will be a,, since the

elements of the a vector will dominate those of the b vector. Hence, the matrix Cis a
constant TSP matrix. By corollary 1.1 the largest Hamiltonian path in such a matrix is

Y a,—min{a, }=d . If S3 holds, a similar result is obtained. If S4 holds, the arcs in D

can be organised into a path with cost d. Since this value is the largest possible for
combining n-1 arcs in any way, this will be a maximal path.

Suppose that S1 holds. Define the following subsets of the index set i:

D, ={la; e D Ab, e D}
D, ={la, e Db, e D}
D, ={la, e Db, € D}
D, ={la,e Db, e D}

By assumption, D, # J . Let E = {el 3€5 uennes 1€,,€ ,ezn} be the elements of the

el 3eeeeeees
two vectors ordered in descending order. If i € D,, then a, and b, will be among the n
first elements in E. Then there must exist a j such that a; and b, belong to the n last
elements in E, that is j € Djand vice versa. In other words, the cardinalities of

D, and D, must be the same. We then make a Hamiltonian cycle by starting with any
node in D, , then go to any node in D_, and so visiting every node in D, in any order,
Continue to any node in D, , then to any node in D, and visit every node in D, in any

order. Then return to a node in D, (if any left) and then go back and forth between the

71

remaining nodes in D, and D, until every one is visited and then return to the starting
node. The cost of this cycle will be d'=7Y " d, . Since all the entries in the cost matrix

are distinct each arc of a cycle must have a different value, and the values in D are the
largest one, and the cost of any cycle must be at least d’. Hence the constructed cycle
above is an optimal one. From this cycle we delete the smallest one and obtain a
Hamiltonian path with cost d.

Now, suppose that neither S1, S2, S3 nor S4 hold. Then D will contain at least one b
followed by some a. A path with cost d must have arcs corresponding precisely to the
costs in D, therefore in such a path some arcs have a cost corresponding to some a
values, and some that correspond to b values. Hence somewhere along the path. a
b, must be followed by an a, , but that is not possible unless s = ¢, which is impossible
by a.

QED

Note that a matrix made up from the sum of a constant TSP matrix and any
polynomial solvable matrix, will again be polynomial solvable, even if the sum does
not have the necessary properties. However, in order to realise that a matrix consists
of such a sum cannot always be done by inspection alone and some kind of
transformation is necessary. One such transformation can be by taking one of the
saving matrices. Then deleting the row and column corresponding to the chosen
depot, one may check whether the remaining matrix is large or not. If it is large, one
finds the maximal Hamiltonian path by the previous theorem. Adding the two
remaining arcs in order to obtain a cycle will give no extra costs, and this cycle will be
the shortest Hamiltonian cycle in the original cost matrix. We then have the following
corollary:

Corollary 2.4

Let A be any matrix such that for some node d, the corresponding saving matrix is a
large matrix with row and column d deleted, can be solved in polynomial time.

2.7.4 Savings and Pyramidal Tours

To find an optimal cycle among the pyramidal cycles one can follow a dynamic
programming scheme shown in Lawler et alt., 1985. To ensure that an optimal tour is
pyramidal, certain algebraic structures are imposed on the cost matrix. Such structures
seem in most cases to involve at least four cost elements, and sometimes as many as
twenty as is the case for asymmetric Demidenko matrices.

This scheme can easily be adapted to find a maximal pyramidal Hamiltonian path
starting in node 1 and going through ascending indices up to node n and then through
descending indices ending in some node, simply by extending the matrix by an
artificial node, and finding the shortest pyramidal cycle by taking the original matrix
and multiply each entry by minus one.

72

Monge matrices

Let C be a Monge matrix as defined in 1.7.7. The algebraic structure in C is preserved
if the matrix is transformed into a saving matrix. This can be seen from the following
simple calculations:

d d _ _ _ _ _.d d
Sy F S =CiqFCy;—CiHCy ey —C i 2C,FCu+C,+c,,—(c+c)=s,+s,

where inequality is obtained since C is Monge. Hence, in this respect nothing is
achieved by transforming the original matrix to a saving matrix.

On the other hand, we can start with a matrix which is not Monge, but which will
become Monge as soon as the first row and column is deleted. Hence the
corresponding saving matrix based on node 1 as the depot node will be Monge when
the first row and column in the saving matrix is deleted. This row and column contain
only zeros. Hence, by finding the longest pyramidal Hamiltonian path in the saving
matrix will be equivalent to finding the TSP in the original cost matrix. By the
introductory remark in this sub-section this can be done in polynomial time.

In the same simple way the structures of Van der Veen matrices, asymmetric and
symmetric Demidenko matrices, Supnic matrices, Kalmanson matrices, and
generalised distribution matrices, are preserved when the original cost matrices are
transformed to any saving matrix. The classes can then be extended by adding an
arbitrary row and column as described for the Monge matrices.

2.7.5 A new Class of Polynomial Solvable TSP

In some of the different c.:::ses of TSP treated so far, the underlying matrix can be
described with the help of two vectors. This is the case with the constant-TSP, the
product matrices and the Brownian matrices. The new class is partly described in a
similar way. Let @ and b be two vectors both with dimension »n and with zero as their
first element. The first row in the matrix consists of the elements in the vector @ and
the first column of the vector b. Each remaining entry below the main diagonal is
constructed in the constar- P way from the two vectors. The entries on the main
diagonal are zero. The rer: . -::g entries above the main diagonal can be any numbers.
More formally, let the matrix be denoted C. Then the entries are defined as

a Vj,i=1

b, Vi,j=1

;=10 ifi=j

b, +a; if i>ji,j#1
\any number if i < jii, j#1

In order to prove that this class of matrices is polynomial solvable, one calculate the
saving matrix for the matrix based on node 1 as the depot. As we have noted before
the first row, the first column, and the main diagonal in the saving matrix will then
consist of zeros. In general the saving values will be

73

SU =Cy +CU —C’.j

For the matrix in question, we get by definition that
s; =b,+a;-c;

Now, let i > j, and j > 1, that is, for all the entries below the diagonal. Then the
corresponding saving values become:

s; =b;+a,—(b+a;)=0

The saving values above the main diagonal, apart from the first row can be different
from zero and do not concern us. Hence, the saving matrix is an upper triangular
matrix and we can find the maximal TSP in this matrix. This cycle will then
correspond to minimal cycle in the original cost matrix.

Note, the class of matrices defined above, constitutes a vector space.

2.8 Savings and Edges

Finding optimal solutions to TSP can be difficult when the number of nodes becomes
large, whatever exact methods one uses. Having 4 priori knowledge about edges or
arcs that will be in an optimal solution, or similar knowledge about edges or arcs not
in any optimal solution, will in most cases make the burden of computation less. In
the next two sub-sections these aspect are dealt with.

2.8.1 Edges that are in an Optimal Solution

By an optimal edge (arc) we understand an edge (arc) (i,j) that is a part of an optimal
cycle. Warren, 1992, offers two theorems on how to find such edges or arcs. The first
theorem deals with the general case and is for convenience repeated below.

Theorem 2.5

Let o be a cyclic permutation on the n nodes such that 6(i) # j . If either

+c,

CptCitCioiy2Cogiy TCa+C;0rCioiy +C, 0 +C0iy 2C1 660 T €0y €4

where e = 67 (i) and f = 67" (j)
then (i,j) is an optimal arc.

The proof is based on a simple 3-exchange procedure, which preserves the directions

of the arcs not involved in the exchange procedure. The second theorem deals with the
symmetric case.

74

Theorem 2.6

Let G be a cyclic permutation on the n nodes such that o(i) # j and 6(j) # i. If either
P R [N
Cs+Cigiuy 2C5 +Coira(jy OT € +C 2¢; + ¢, wheree=0""(i) andf =07 (j)

then (i,j) is an optimal arc.
In this case the proof is based on a simple 2-change procedure.

Note that optimal arcs or edges can be found in time O(n*) . Note also, that to find

more than one optimal edge or arc at a time does not help very much. If one does
know two such arcs one cannot utilise this fact unless one in addition knows that both
arcs are on the same cycle. However, knowing that a certain edge or arc - say (i,j) - is
optimal, we can reduce the dimension of the TSP by one by deleting row i and column
J, setting the cost of (j,i) to infinity, rearranging the numbering and solve a TSP of
dimension (n-1) to optimality. This optimal solution can then be lifted back to give the
optimal solution in the original matrix.

If one has found an optimal edge in a symmetric instance of TSP, one can use this
information to find new lower bounds for the problem in the same way as was done in
(2.27) The difference is that we now can delete two nodes from the graph, namely the
two nodes given by the optimal edge, say (i,j) and all edges attached to these two
nodes Then, first, making MIST on the remaining nodes N — {i, j }, we then add the

edge again and the smallest remaining edge attached to i and the smallest remaining
edge attached to j. The resulting 1-tree will be a lower bound for TSP.

One question remains. Will the transformation to savings give different optimal arcs
when applied to the two theorems above? The answer to this question is negative. It is
easily shown that by replacing the cost elements in the premises of the theorems by
corresponding saving elements for some choice of the depot d, and changing the
direction of the inequalities, will give exactly the same result.

2.8.2 Edges or Arcs that are not in any Optimal Solution

An arc is called non-optimal for a TSP if no optimal solution contains it. A pair of
arcs is called a non-optimal pair for a TSP if no optimal solution contains the pair. A
triple of arcs is called a non-optimal triple if no optimal solution contains the triple.
We will start this sub-section considering non-optimal pairs, and to the best of my
knowledge this concept has not been treated before, or non-optimal triples either.

Theorem 2.7

Let C be a symmetric matrix and (i,j) and (s,t) two edges, all nodes different. If
c; +¢, >c, +c;,then (ij) and (st) is a non-optimal pair.

Proof: The proof is a simple 2-change procedure. Leto be a cycle containing the two
edges. By definition they are not neighbours in the cycle. Delete the two edges and

75

replace them by (i,s) and (j,¢). The new cycle has a cost that is strictly less than the
- cost of ¢ . Clearly, the pair must be non-optimal.

QED

Note, that given a non-optimal pair, one of the edges can perfectly well be a part of an
optimal solution, but not both. Hence, we can add to any model for TSP for any set of
non-optimal pairs, constraints of the type:

U, +U, <1

Theorem 2.8
Let C be a matrix.

If (i.j), (j,k), and (s,t) are three arcs, all nodes different, and
c; +c, +c, >c, +c, +c, thenthe three arcs comprise a non-optimal triple.

If (i,j), (k1) and (p,q) are three arcs, all nodes different, and
¢ +Cy+C,, >cy+c,, +c, then the three arcs comprise a non-optimal triple.

Proof: The proof is a simple 3-change procedure that preserves the direction of the
arcs not involved in the exchange procedure. Let o be a cycle containing the three
arcs. In the first case two of the arcs are neighbours and the third (s,¢) is not adjacent
to any of the other two. Delete the three arcs and replace them by (i,k), (s,i,) and (i,t).
The new cycle has a cost that is strictly less than the cost of ¢ . Clearly, the triple
must be non-optimal. In the second case none of the three arcs are adjacent. Delete
the three arcs and replace them by (i,l), (k,q) and (p,j) respectively. The new cycle has
a cost that is strictly less than the original one. The result follows.

QED

The proofs of the two last theorems follows very closely the proofs given by Warren
for theorem 2.x and 2.y, only the objective is the opposite, finding non-optimal arcs
rather than optimal ones.

Having identified a set of non-optimal triples, one can in a model for solving TSP add
restrictions of the following type for every triple:

U,+U, +U, <2

A natural question to ask is whether the two theorems above can give more
information if we use saving matrices instead. However, it turns out that this is not the
case. The conditions of the theorems are full-filled in the original matrix if and only if
the same is true for the saving matrices.

76

The two previous theorems do not provide single non-optimal edges or arcs. Such
- single arcs can be found by a technique provided by Jonker and Volgenant, 1982.
They offer two theorems. Only one of them will be treated here. However, some
notation is necessary.

Let F denote the set of non-optimal arcs identified at a certain point in the solution
process. F may be empty or non-empty. Further, let

(232) A,;J (C) = C,‘j - (C,‘k + ij)

for nodes k different from i,j. Note that if A’j.j (C) 2 Ofor all choices i,j, and k the
triangle inequality holds for the cost matrix C. Let

(2.33) 1 (C) = nﬁx{A’;j(cﬂp 2,9 # J5(p,q) £ (J,D:(p. k), (k,q) ¢ F}

Hence, in order to determine ufj (C), only arcs (p,q) that can be contained in a TSP
solution together with (i,j) are considered. If “5’ (C) does not exist, then the arc (i,j) is

non-optimal. What will happen if uf;(C) does exist? Jonker and Volgenant offer the

following theorem:

Theorem 2.9

k

If there exists a node k, k # i, j such that A, (C) > /.LZ.(C) , then the arc (i,j) is non-

optimal.
The proof is based on a simple 3-change procedure that preserves the direction of the

arcs not involved in the exchange procedure and the fact that any TSP solution that is
not 3-optimal is not optimal.

To identify whether or not a given node & is non-optimal and checking the premises of
the theorem takes O(n*) time. A different order for the values of k may influence
which and how many non-optimal arcs are identified. Hence, there may be some

virtue one in applying or more of the saving matrices. Transforming to a saving matrix
we get:

(2.34) AL (S) = (cyy +c4) = A (O)

Hence, one criterion can be found from the other, but the effect of applying a saving

matrix can be different. For example, even if the original cost matrix obeys the
triangle inequality, the corresponding saving matrices will not. So, redefining (2.xx) to

(2.35) 1 (€)= min{&, (Olp # g # ji(p.@) # (. (p. k). (k) € F

From theorem 2.9 we get the following corollary:

. N

- Corollary 2.5

Let S? be any saving matrix of the original cost matrix. If there exists a node k,
k#1i,j such that A’j.j $H< u; (S%), then the arc (i,j) is non-optimal.

2.9 TSPs with Identical Costs for every Cycle.

If one has a constant-TSP instance, the cost of every Hamiltonian cycle is the same.
Given two different instances of a constant-TSP, the cost of a Hamiltonian cycle in
one single instance can be the same as that of the other, even if each entry in the cost
matrices is different. This will happen if the sums of the elements of the two pairs of
vectors describing the cost matrices are equal. The same Hamiltonian cycle calculated
in two different equally sized cost matrices will of course, in general, have different
costs. An interesting question to ask then, is what kind of relations must there be
between two different matrices A and B if the cost of every Hamiltonian cycle shall be
the same in the two matrices? Ie, what kind of properties must the two matrices have,
if

(2.36) Vo,A(9) = B(p)

Now let S¢(A)denote the saving matrix based on the matrix A, and node d as the
depot, then S¢(A)(¢) denotes the cost of the Hamiltonian cycle ¢ calculated in this
matrix, and finally s; (A)the entries in S¢(A).

The following lemma gives a characterisation of matrices obeying (2.36)
Lemma 2.2

Let A and B be two nxn matrices with zeros on the main diagonal and k a constant.
Then it follows that:

Vo,A(@) = B(p)iff 3d,Vi, j # d;s; (A)-s; (B) =k and
(R,(A)+K,(A)~(R,(B)+K,(B))=k(n-2)

Proof:

Suppose that V¢, A(¢) = B(¢). Then by (2.3) it follows that

Vo,S?(AX@)- S (B)@) = (R,(A)+ K, (A)) - (R,(B)+ K, (B)) for any choice of
the depot node d. For each cycle ¢ the left-hand side of these equations consists of
2n parts and the right-hand side is the same for every ¢, hence a constant. If i or j are
equal to the chosen depot node d, s/ (A) = s; (B) =0. Hence, for the rest of the left-
hand side it follows that

‘o twgmdalubuall aoyvo” T
' sodssaibditd .o - «_ .

n

@3 Ve, ¥ (52 (A) = st (B))= (R, (A)+ K, (A) — (R, (B)+ K, (B))
:'.=¢:(i)=td

constitutes a set of linear equations with (n-1)! equations and 2(n-1)(n-2) variables.
The left-hand sides consist of (n-2) differences between two variables and all the
right-hand sides are equal. Now, setting

(R,(A)+ K, (A)~(R,(B)+K,(B))

(2.38) sid_‘p(i) (A) - s,.‘:p(,.) (B)= X,y +
n—-2
into (2.37) gives
(2.39) Vo, Y x40 =0
:',=(;(i)=td

constitutes a homogenous system of linear equations. The trivial solution is always a
solution to such a system, and so by (2.38), it follows that

(R, (A)+K,(A)—(R,(B)+K,(B))
n-2

(2.40) Siioty (A) = 870 (B) =

(R,(A)+ K, (A) - (R,(B)+K,(B))
n-2
hand side of the equivalence in the lemma. The second part follows immediately.

By setting k =

we have the first part of the right-

Now suppose that
3d,Vi, j# d;sj(A)-s; (B)=k and (R,(A)+K,(A))—(R,(B)+ K ,(B))=k(n-2).

We then have that

A@) = R, (A)+ K, (A) - §* (A)@) = R, (B)+ K, (B)+ k(n-2)= ¥ 2, , (4) =

i=1

Rd(B)+Kd(B)+k(n—2)—i(s" (B)+k)=

LU

R,(B)+K,(B)+k(n-2)- Z (s¢ o (B))-k(n-2)=R,(B)+K,(B)- S* (B)¢) = B(p)
QED

Lemma 2.2 shows that in a complete graph we have infinitely many matrices which
give the same costs when calculating the costs of the Hamiltonian cycles. Now, let for

any matrix letA, I, = {BIVgo;A(go) = B(go)}. Note that if A is in a polynomial class

then each B e I, can be solved polynomial as well, that is, we use the polynomial
instance as input to our TSP. Below are some questions asked, but not answered.

79

Question 1

Given an arbitrary matrix, will this matrix belong to a set I, such that A is
polynomial?

The answer to this question is probably “no”. If it turns out to be “yes”, then every
matrix can be reduced to a polynomial case, and hence every matrix can in principle
be solved polynomial, which seems to be a bit far-fetched and leads to the conclusion
that P = NP. On the other hand, if the answer turns out be “yes”, finding the
polynomial class or identifying such a class, may be as difficult as solving the original
TSP.

Question 2

If A is in a polynomial class, will every Be 1, be in the same class?

If this is the case, the construction in lemma 2.2 does not lead to any new information.
Question 3

Given the 1,, will some B € 1, be easier to solve than others for example in terms of

better lower bounds, easier or fewer facets? If “yes”, how is such easy matrices
identified?

Question 4

How do heuristics perform on the different members of 1, ?

Since the different saving matrices for all the matrices in [, are identical apart from a
constant, most heuristics will probably find the same cycles independently, regardless
of which saving matrix we use as an input to the heuristic. On the other hand, the
original cost matrices can be quite different, and yield different cycles when exposed
to a given heuristic.

80

Chapter 3

In the previous chapter the cost matrix of a TSP instance was divided into variants of
saving matrices and a constant-TSP matrix. These sorts of transformations are all
linear admissible transformations. In this chapter we will look at other ways to
decompose the cost matrix for a TSP instance. These decompositions will not be
linear admissible transformations.

In his article from 1990 Burkhard briefly discusses what he calls the approximation
problem:

“Let a cost matrix A be given. We want to approximate A by a cost matrix A* such
that

- The TSP with cost matrix A * is polynomial solvable, and
- The optimal solution with respect to A* is not “too far” away from the optimal
solution with respect to the cost matrix A.

A lot of questions arise in connection with this (latter) problem: Which special case
should be chosen? How can we measure the “proximity”? Are there (deterministic or
probabilistic) performance bounds for the approximation? Can classes of problems be
characterized which are well-suited for an approximation? And last, but not least,
computational studies are needed for such an approximation.”

Further, he remarks that “... special classes and heuristics have only been treated
separately up to now and no study combining these two approaches is available. But it
seems a promising task to base heuristics on special cases.”

Since this article was published, many new classes of special cases for TSP have been
found in addition to those treated in Lawler et alt, 1985. The latter ones certainly
inspired many of the articles referred to in section 1.7, but to the best of my
knowledge Burkardts suggestion that a general TSP instance could be approximated
by some well-solved case of TSP seems not to have been followed up in any degree.
Burkhard’s suggestion is briefly mentioned by Warren, 1994, but he does not follow
up this line of research. He concentrates on giving a brief, but very good overview of
special classes. The only case known to me using an approximation approach and
preceding that of Burkard, is Burkov and Rubinstein, 1983. They establish sufficient
conditions for the existence of a Hamiltonian cycle, find a solvable TSP class
connected with such graphs and use this solvable class to approximate general TSPs.

In this chapter, an approach other than that used by Burkov and Rubinshtein will be
followed, may be more in the line with what Burkard probably had in mind. Different

81

.decomposition schemes will be suggested and used for approximations for TSP, both
STSP and ATSP.

We will consider mainly how the so-called spectral theorem in linear algebra can be
used to decompose a square matrix into different sets of different and simpler
matrices, ie simpler to solve.

The literature on TSP is vast. The core of the problem is of course the combinatorial
nature of the problem. However, as we have seen, the structure of the cost matrix can
play an essential part when one tries to solve an instance of TSP. The fact that the cost
matrix of an instance of TSP, is a quadratic, usually non-negative matrix, makes it a
bit surprising that standard linear algebra does not seem to play any important part in
the literature about TSP, or other combinatorial problems related to TSP. There exists
of course some important exceptions as we have seen in chapter 1, notably the results
on constant-TSP by Berenguer, Lenstra and Rinooy Kan, which explicitly use
techniques and concepts from linear algebra. Another important application is a result
for quadratic assignment problems, where good upper and lower bounds for QAP are
established with the help of eigenvalues related to appropriate cost matrices for the
problem, see Finke et alt., 1987, Hadley et alt., 1989 and Hadley et alt., 1992.

3.1 Decomposition of Symmetric TSP and the Spectral
Theorem

In this section we will establish a decomposition of symmetric instances of TSP. The
decomposition will consist of a sum of polynomial solvable symmetric matrices, using
concepts and techniques from linear algebra. The concepts and techniques used are
standard, with one exception. These can be found in almost any introductory textbook
on linear algebra, eg Anton and Rorres, 1987. For convenience, the main results are
stated as four theorems below.

Theorem 3.1

If A is a quadratic matrix with real entries then the following are equivalent

a) A is an eigenvalue of A

b) There is a non-zero real vector x in R" such that Ax = Ax

c) The system of equations (A I— Ajx = 0 has non-trivial solutions
d) A is a real solution to the characteristic equation det(Al —A)=0

where I is the identity matrix.

Theorem 3.2

a) The characteristic equation of a symmetric matrix with real entries has only
real roots.

b) If an eigenvalue A of a symmetric matrix is repeated k times as a root of the

characteristic equation, then corresponding eigenspace is k-dimensional.

82

Definition 3.1

A square matrix A is called orthogonally diagonalizable if there is an orthogonal
matrix P such that P~ AP is diagonal.

Theorem 3.3
If A is a nxn square matrix, the following are equivalent:

a) A is orthogonally diagonalizable
b) A has an orthonormal set of n eigenvectors
c) A is symmetric

Since the cost matrix of TSP is supposed to be symmetrical and all its elements are
real numbers, then all the eigenvalues of the matrix will be real, and the corresponding
eigenvectors will be real as well. Let A,, k = 1,2,....,n denote these eigenvalues.

Further, we denote the eigenvectors corresponding to the eigenvalues by:

-

V., = [v,‘1 S ,v,m] for k=1,2,...,n.
The set of eigenvectors constitutes an orthonormal basis for the vector space R". Let

D be the matrix defined by D = [d,;] where d; =0 wheni # jand d,, = 4, . Further,
let

where A7 denotes the transpose of any matrix. Since the eigenvectors are
orthonormal the matrix P will be orthonormal as well, and hence the inverse matrix

P'=pP".
A standard result in linear algebra is then the so-called spectral theorem

Theorem 3.4

For any symmetric real matrix C, there exists real eigenvalues and eigenvectors such
that

3.1 C = PDP”

From (3.1) we get (3.2)

(3.2) c; = Avevy Vi

83

Lemma 3.1

Let @ be any cyclic permutation in the cost matrix C. Then the cost of the
Hamiltonian cycle will be:

-5 o

(3.3) C@)=Y A, <V, W, >
k=1

- - o
where W, = [vw.)]and <V, W, > is the standard scalar product of the two vectors

and the set of vectors V, forms an orthonormal basis for the vector space R".

Proof:

Let C(p) = ZC,._W) . Then substituting (3.2) into this expression gives
=l

Clp)= 2 2 AV Vioiw) = 2 A, 2} ViiVroti)
k=1 =

i=l k=l

Define VI”,‘ as in the lemma and (3.3) follows. The elements in each of the vectors
Vi”k are created by the same cyclic permutation of the elements of the vectors l_/,: .

R
~ Since ¢ is a cyclic permutation and the set of vectors V, constitutes an orthonormal
basis, it follows that:

1

N
-
R

Vv

]

’:F

|

<
N

1]

—

i=l1 i=l

and for different indices k and /, one gets

n

- 1 - -
<W.,W>= ViowViewn = zvk.ivl.i = <V,V> =0

i=l i=]

1

. QED
Note that the scalar products in (3.3) are always in the interval [-1,1]

In some cases the set of eigenvalues can contain identical eigenvalues. This will
happen if the characteristic equation, that is the determinant |C — AI| = 0, has multiple

solutions. If this multiplicity is s for some eigenvalue A, , then one can find an
orthonormal basis for the eigenspace corresponding to A4, . This eigenspace will have

dimension s. Together with the other distinct eigenvalues and their corresponding
eigenvectors, we can repeat the arguments above. Further, the values of the
eigenvalues can take any values, and the values of the elements of the eigenvectors
can take on any value in the interval [-1, 1]

Now, define n different symmetric product matrices by

84

(3.4) T, =[vivy] VK

The following corollary arises directly from (3.2)

Corollary 3.1

Let C be any symmetric and quadratic matrix. C can then be decomposed into a
weighted linear sum of n different symmetric product matrices

c=Y a7,
k=1

where A, is the k-th eigenvalue of C.

Hence, any symmetric instance of TSP can be transformed to a sum of » polynomial
solvable cases of TSP. This of course does not mean that the original TSP is
polynomial, since the optimal solutions for two different components do not need to
be identical. This observation leads to the next section.

3.2 A New Class of Polynomial Solvable STSP

In order to describe this new class, it is convenient to introduce the following concept.

Definition 3.2
A set of m linear independent vectors Av = [a,“.],i =12,.....,n,k=12,...m is called
homogenous ordered iff i >l then Vk,a,, 2 a,,. The set of corresponding symmetric

product matrices is called a homogenous ordered set of matrices.

Let Ax = [a ki],i = 1,2,.....,nbe m homogenous ordered vectors. Then the symmetric

matrix
C= i [a,u.a,q.]
k=1

is polynomial solvable since all the symmetric product matrices obtain their optimal
solution with the same cycle.

The choice of vectors can be restricted to a linear independent set of vectors, because

if B=aA= a[a,], for some scalara the corresponding matrix B, will be

B=a’ [a,.a ;] and hence the sum of A and B can be replaced by the symmetric product

matrix (1+a*)a,a, |

85

Finding polynomial algorithms for special cases of TSP can be difficult. Once
-identified, however constructing an instance of such a special case is usually easy, as
it is in this case. On the other hand, identifying whether an arbitrarily given square
matrix corresponds to a special case or not can in itself be difficult and some fairly
simple criteria are needed. Such criteria are known for some special cases of TSP as
for example for symmetric product matrices. One such criterion is given in sub-
section 1.7.5. However, two or more linear independent vectors with the property
above, will not necessarily create a new symmetric product matrix. Another way of
stating this is to say that the set of such matrices does not constitute a vector space.

In order to identify whether a given symmetric matrix is of the said kind, we need
another criterion. However, it seems not to be a straightforward way to identify such
criterion.

An approximation heuristic for positive symmetric matrices:

At the beginning of this chapter Burkhardt was cited, indicating the possibilities for
combining heuristics with classes of polynomial solvable TSP instances, to
approximate a given TSP. Here we will use this idea and approximate a symmetric,
positive TSP, with symmetric product matrices that are homogeneously ordered.

Step 1:

Solve the following LP-model

n
maxe,,
i=l
ST
x,+x Slnc; Vi ji#j

All variables positive

Let a, be the vector where a;, = e™ for all positive variables and zero otherwise.

Define the matrix A, as the corresponding symmetric product matrix. Let C, =C—A,.
This matrix is non-negative. Go to step k.

Step k:

Solve the following LP-model

max 3 x,
i=l
st
X, +x, <lnc, Vi ji# jande, >0
All variables positive
The ordering of x, shall be the same as for x,

86

‘Let E: be the vector where a, = e™ for all positive variables and zero otherwise.
Define the matrix A, as the corresponding symmetric product matrix. Let -
C,., =C, — A, . This matrix is non-negative. If there still exists positive entries in

C,.: goto step k+1. If not, stop.

The heuristic will create a sequence of non-negative symmetric product matrices with
the same optimal cycle. The sum of the matrices will be closer and closer to the
original cost matrix and hence create better and better lower bounds. The optimal
cycle for the product matrices will of course give an upper bound when applied on C.

3.3 Non-negative Matrices and the Spectral Theorem

In the first section symmetrical matrices and the spectral theorem were treated. At
least, for most applications of TSP the entries in the cost matrix will be non-negative
numbers, or can be made non-negative by adding some constant to all the entries
without changing the optimal solution. Introducing the non-negativity into the spectral
theorem opens for some further possibilities.

In order to obtain the main result in this section we need some more definitions.

Definition 3.3

A quadratic non-negative matrix A is primitive iff there exists a positive integer k such
that A* >0.

Definition 3.4

A matrix P is called a permutation matrix of the identity matrix I, iff P can be
obtained from I by interchange rows and or columns in I.

Definition 3.5

A quadratic matrix A is said to be reducible iff there exists a permutation matrix P
such that

PTAP = A, A,
0 A,

where A,, and A,, are quadratic matrices of smaller sizes than A.

87

Definition 3.6

By the spectral radius of A, we will understand
p(4) = max{|A,[}
where A, denotes the eigenvalues of A.

Lemma 3.2

Let C be the cost matrix for any instance of TSP, such that ¢; =0 and ¢, >0,i # j.

Then the matrix C is irreducible.
Proof:

By ordinary matrix multiplication one gets that C* > 0, that is, C is primitive. Any

positive matrix is per definition irreducible. Hence, C* is irreducible. It remains to
show that C is irreducible.

‘ Suppose that C is reducible. By definition there exists a permutation matrix P such
that

PTCP = [Cll CIZ]

0 G,
which gives

(P,Cp)kz[cn cu]*z[Bn Bu]
0 Cy 0 B,

where B, and B,, are quadratic matrices of smaller sizes than C. Any permutation
matrix is ortogonal, so we have P = P™' . This gives that

(PTCP)t =(P7'CP)* =P~'C*P=P7C'P
By combination we then have that C* is reducible.
QED

An important result on non-negative matrices is the following theorem.

88

Theorem 3.5 (Perron - Frobenius)
Let A be a non-negative, quadratic and irreducible matrix. Then

® A has a positive eigenvalue A, . A, is the spectral radius of the matrix.
e The eigenvector associated with A, is positive
o A, is a single root in the characteristic equation of A.

A proof of theorem 3.5 can for example be found in Graham, 1987.
We are now ready to formulate the main result of this section.

Corollary 3.2

Let C be the cost matrix for any symmetric, real instance of TSP, such that
c; =0andc; >0,i# j. Then C can be decomposed into a weighted linear

combination of n polynomial solvable i:atrices T, ; ie. symmetric product matrices

given by the eigenvalues A, and eigenvectors ‘_/,: of C such that

1. C=§lka and 7, =[v,‘iv,‘l_]

2. 2,>0, 4, 2|A,]Vk

-

3V >0
4. 3 A, =0
k=1

Proof:

The corollary follows directly from the previous results apart from point 4. Point 4
follows from (3.2), in that all the elements on the main diagonal are zero and that the
set of eigenvectors _/; forms an orthonormal basis for the vector space.

QED

Note that the matrix A,7; is a positive matrix, and that all the other matrices in the

decomposition can have both negative and positive elements. For all n we have at
least one negative eigenvalue. The decomposition does not represent a linear
admissible transformation. As mentioned above, each of the matrix components can
be solved to optimality in a polynomial time by theorem 1.10, but of course the
optimal cycles for different components need not be the same.

Let ¢ be an optimal permutation for the cost matrix C, and ¢, denote the minimal
Hamiltionian cycle for 7, if the corresponding eigenvalue is positive and the maximal

89

Hamiltonian cycle for 7, if the corresponding eigenvalue is negative. Corollary 3.2
"gives a lower bound for TSP, which can be found in polynomial time.

Corollary 3.3

Upper and lower bounds for an optimal solution in a real symmetric TSP instance are
given by the inequalities below:

min{Clp;)2 C0") 2 S AT @)
k=1

Proof:

The first inequality is trivial. By corollary 3.2 and the definitions of the cycles we
have:

Clo) =Y AT, (@) 2 Y 1T (9,)
k=1 k=1
QED

Note:

Corollary 3.3 can be used as a heuristic for any real symmetric matrix, much in the
same way as for example the Clarke and Wright, or the nearest neighbour heuristic in
the following sense: The decomposition gives basically n different optimal cycles one
for each of the components. Each of these applied on the original cost matrix gives an
upper bound. In addition we get a lower bound as a bonus.

Let ¢ be any permutation, and y,” denote the maximal Hamiltionian cycle for T, if
the corresponding eigenvalue is positive and the minimal Hamiltonian cycle for T, if

the corresponding eigenvalue is negative. Further, let A" and A~ denote the sum of the
positive and negative eigenvalues respectively.

Corollary 3.4

Upper bounds for any Hamiltonian cycle in a real, symmetric matrix C are

C(@)S Y AT, (y;) S 24" or C(@) S }nZAi
k=1 k=1

Proof:
The first inequality is proven just like the inequality in the previous corollary. The

next and poorer bound stems from the fact that the absolute value of the scalar
products involved in calculating the maximal or minimal cycles in the symmetric

90

product matrices all are equal or less than one and that A" = |/‘t'|. The last inequality

"can be proven in the following way:

By lemma 3.1 we have that

2 " n n
(C@) = (Zl,. <V..W, >) < (231)(2< V., W, >2]_<_ n(z,ﬁ)
k=1 : k=1 k=1 k=1

where the first inequality follows from the well-known Cauchy-Schwarz inequality.

The result follows.
QED

By equation (2.3) the original cost matrix can be replaced by any saving matrix. The
question is then, whether the saving matrices can be used in the same way as in
corollary 3.2 or not? Note however, that a saving matrix is reducible and can contain
negative entries, unless the triangle inequality applies. If the triangle inequality holds
for the original cost matrix any saving matrix will be non-negative, but it may still
happen that the saving matrices contain entries with zero value, outside the row and
column no. d. On the other hand if the original cost matrix is symmetrical, all saving

matrices will be symmetrical as well. Let §¢(d) denote the (n-1)x(n-1) matrix
obtained from S where row and column no. d are deleted. The characteristic
equation for $can then be written as |S“ - ,uI,,l = ulS ‘(d)—uI__,|=0 which shows

that 4 =0 is an eigenvalue for S¢, but we can still not be sure that S (d) is
irreducible and positive.

If S(d)is positive and irreducible then corollary 3.2 applies, and we can find the n -1
eigenvalues for S¢(d) which together with the last one, i =0, can be used to
decompose the saving matrix S“ in the same way as for the original cost matrix, ie

5 =iukR,‘ and R, =[v,"’,_,v,“’i]
k=1

—d 5d
where y, >0, 4, Zluk|,Vk,and Vi =[v,‘fi] is eigenvector no. k, V; >0.

Let y,” denote the maximal Hamiltionian cycle for R, if the corresponding
eigenvalue is positive and the minimal Hamiltonian cycle for R, if the corresponding

eigenvalue is negative. For each d Corollary 3.5 gives an upper and lower bound for
TSP, which can be found in polynomial time.

91

Corollary 3.5

If a saving matrix for a real symmetric matrix is positive and irreducible, upper and
lower bounds for the optimal solution are given by the inequalities below

minfcw))}2 C9") 228, - 3 1R, (W)

The lower bound in corollary 3.5 is of the same kind as the lower bound given by
(2.19). As in corollary 3.3, corollary 3.7 can be used as a heuristic, yielding lower
bounds for the TSP. Combining the two corollaries can give better results than just
using one of them.

3.4 Decomposition of m-TSP and the Spectral Theorem

If we have an m-TSP we can transform this slightly more complex situation to a
somewhat larger TSP as described in section 1.5 by making m - I copies of the depot,
which can be chosen to be node i = 1. Let C,, be the cost matrix for this extended

TSP, and C(1) the matrix C where the first row and column are deleted. We then have

that
0 D
Cm = T
D C(l) (n—m+Dx(n-m+1)

where D= [d,.j]m("_” = [c,j] Vi=12,....mand Vj=273,..... .n

mx(n-1)

Lemma 3.3

The matrix C, is irreducible.

Proof:

The matrix D consists of m identical rows where each entry is the cost from the
original depot to each of the other node. Hence D > 0, and the transposed matrix will
also be non-negative. C(1) is a symmetric, non-negative matrix with zeros on the main
diagonal. The square of any such matrix will be positive. By ordinary matrix
multiplication of partitioned matrices we get

m

ct o DD’ DC(1)
C(HD" DTD+(C())?

It is easily seen that this matrix is positive and hence is irreducible.
QED

92

Corollary 3.6

The matrix C, can be decomposed as the matrix C in corollary 3.2 using the

corresponding eigenvalues and eigenvectors. The lower bounds given by corollary 3.3
and 3.5 apply in the same way as will the upper bounds in corollary 3.4,

In order to perform the decomposition in corollary 3.8 we have to find the eigenvalues
and the corresponding eigenvectors. A natural question to ask is: How do these
eigenvalues and eigenvectors relate to the eigenvalues and eigenvectors of the original
cost matrix?

To say something about this we need the following theorem, which is called the
Cauchy inequalities. A proof can be found in Graham, 1987.

Theorem 3.6

Let A be a symmetrical nxn matrix with eigenvalues L1, 2 1, 2......... 2u, and Ban

(n-1)x(n-1) principle sub-matrix of A with eigenvalues A, 2 A, 2......... 2A, . Then
Uy 2A, 2, 24, 2. A, 22U,

This property is called the interlacing property of eigenvalues p, 2 u, 2......... 2 U,

Corollary 3.7

Let p, 2, 2........ 2 U,.._ denote the eigenvalues of C,, = [du] in corollary 3.8

and A, 2 4, 2......... 2 A, the eigenvalues of C.

Ifm=2wehavethat u, 24, 2u, 2.4, 2........ 2A, 2,
Ifm>2wehavethat p, 2A, and A, 2, |

If u, # 0is an eigenvalue for the matrix C, the m first co-ordinates for the
corresponding eigenvector are equal.

Proof:

The first two statements follow immediately from the interlacing property of
eigenvalues since C is the principle sub-matrix of C, and if m > 2, the argument can

be extended by taking a principle of a principle etc. of C,, .

Let V = [v;] be the corresponding eigenvector. By definition we then have that

n+m-1 1 n+m-1 1 n+m-1

W, = Zd,.].vj andso v, = — Zd,.jvj =— Zd,q.vj = v, . Since the m first rows in
ii=1 2 A 2 B

C,, are identical. QED

93

3.5 Decomposition of Asymmetric TSP and the Spectral

Theorem

In the case of an asymmetric real non-negative square matrix, we cannot any longer be
sure that the eigenvalues or the eigenvectors become real numbers but some of the
eigenvalues and or eigenvectors will be complex numbers or complex vectors. On the
other hand, one advantage of allowing complex numbers as eigenvalues is that all
matrices will have eigenvalues since, the characteristic equation can now be solved for

any square matrix. In order to pursue this a bit further, we need some more notations
and definitions.

In this section, the letter i will be exclusively reserved for denoting the imaginary unit,

thatis i =v—1. A complex number will be denoted as z = a+bi, where a and b are
real numbers and sometimes denoted as the real part of z, Re(z) and the imaginary part

of z, Im(z), respectively. The (complex) conjugate to a number z is z = a —bi. The set
of complex numbers will be denoted by C. Any matrix with complex entries will be
denoted with Latin capital letters other than C.

If A is a matrix with complex entries, the conjugate transpose A* of A is defined as

- -1

A=A

where A is a matrix whose entries are the complex conjugate of the corresponding

entries in A and A is the transpose of A.

A square matrix A with complex entries is called unitary iff A~ = A".

A square matrix A with complex entries is called Hermitian iff A= A"

A square matrix A with complex entries is called skew-Hermitian iff A* =—-A
A square matrix A with complex entries is called normal iff AA” = A'A
Every Hermitian matrix is normal and every unitary matrix is normal.

A square matrix A with complex entries is called unitarily diagonalizable iff there
exsists a unitary matrix P such that P~' AP is diagonal.

The so-called Euclidean inner product of two vectors in the real case, has to be
changed slightly but in an important way to make sense in the complex case.

Euclidean inner product is defined as:

94

UV =uv, +u,v, +......... +u,v

The basic results for square matrices with complex entries are summed up in the
following four theorems:

Theorem 3.7

If A is a nxn matrix with complex entries, then the following are equivalent.

a) A is unitary

b) The row vectors of A form an orthonormal set in C" with the Euclidean inner
product

c) The column vectors of A form an orthonormal set in C" with the Euclidean
inner product

Theorem 3.8

If A is a nxn matrix with complex entries, then the following are equivalent

a) A is unitarily diagonlizable

b) A has an orthonormal set of eigenvectors
c) A is normal

Theorem 3.9

If A is a normal matrix, then the eigenvectors from different eigenspaces are
orthogonal

Theorem 3.10

The eigenvalues of a Hermitian matrix are real numbers. The eigenvalues of a skew-
Hermitian matrix are pure imaginary numbers.

Note that in any square matrix A, any row vector will be the complex conjugate of the
corresponding column vector in the complex conjugate matrix A*. Now, let P be the
complex matrix consisting of the eigenvectors of a unitary matrix, where each

eigenvector constitutes a column vector, Vi = (v,,,V,5,......., ¥y,) . The complex

conjugate matrix P* = P~ then consists of the row vectors (V1,Vz,..-..... ,Vin). For

any unitary matrix A, we then have that A = PDP"' where D is a diagonal matrix with
the eigenvalues along the main diagonal.

By usual matrix multiplication we then have for any unitary matrix that

(3.5) a, = Z/'Lkvh;h
k=1

95

which is the complex counterpart of (3.2).
In general, the numbers in (3.5) are complex numbers.

Let A, =y, + p,i where u,,p, are real numbers, and v, =b, +d,i
and b,, and d,, are real numbers. Then substituting these expressions into the right-
hand side of (3.5) we get that

(3.6) Re(A, v, ve) = i, (b b, +d,d,)+ p,(bod, —b.d,.)
and
(3.7 Im(4, vks;’a) =M, (bladlu -b,d,)+ P (blubla +d,d,)

For any unitary asymmetric real square matrix, the imaginary parts must add up to
zero. Hence, for such a matrix we have the following straightforward theorem:

Theorem 3.11

Any unitary asymmetric real square matrix can be decomposed into a sum of 2n
symmetric product matrices, plus the sum of n skew-symmetric matrices, formed by n
asymmetric product matrices. The vectors forming the product matrices can be found
by finding the n eigenvalues and n eigenvectors of the given matrix.

Any normal matrix is unitary. Hence, any normal asymmetric real matrix can be
decomposed in the way indicated by theorem 3.11. Such matrices exist, but not every
real asymmetric matrix is normal. For normal asymmetric real matrices we have the
following straightforward corollary:

Corollary 3.8

Let A be a normal asymmetric real matrix with eigenvalues and eigenvectors defined

—_——

as above. Then there exists 4n real vectors b, d, , 11, and E,: such that
A= ZﬂkBk + Zﬂka +2pkEk
k k k .
where B, and D, are polynomial solvable symmetric product matrices [b, b,] and

[d, d,] respectively, and E, are skew-symmetric matrices [b, d, —b, d,]

Circulant matrices

Such instances of TSP are “almost” polynomial solvable, since the shortest
Hamiltonian path can be found very easily. However, it is still an open question
whether the TSP for circulants is polynomial solvable or not.

Note that for a matrix to be normal, we must have that AA*=A*A. This is equivalent
with

96

n n
L] »
VP’q’ZaPk% =2“pk“kq
k=1 k=1

where a:,q are the entries in A*. Due to the special structure of circulant matrices it is

easily shown that this class of matrices is normal. Hence, circulant matrices can be
decomposed according to corollary 3.10 above. Moreover, circulant matrices of the
same size have identical eigenvectors whatever the entries may be. These eigenvectors
are given by the so-called Fourier-matrix. The entries of the Fourier matrix F* of size
n is given by:

1 w(i-l)(j—l)

7

where w can be taken as any primitive n-th root of unity, or if one prefers:

e 2t .. 2¢;
w=e" =COS— +iSIn—
n n
A circulant matrix C is characterised by n different entries (c,,c,,cy,......,c,) where

the first is on the main diagonal, the next on the first stripe and so on. The eigenvalues
of the matrix is then given by

2(-1) (n-1)(j-1)

SN +c w

n

= j1
A =ci+c,w'™ +oyw

For details and proofs, see for example Davis, 1979.

Consequently, circulant matrices are in many ways easy to describe, and due to their
special structures explicit formulas for their eigenvalues and eigenvectors exist.
However, even being given these neat properties, it seems as if the spectral theorem
does not solve the open question about the polynomial solvability of circulants.

3.6 Hermitian Matrices and Asymmetric Real Matrices

As noted above, not every asymmetric real matrix is normal. So for a non-normal
asymmetric real matrix, we cannot be sure that it is unitarily diagonalizable. On the
other hand, any asymmetric matrix A can be decomposed into a symmetric matrix D
and a skew-symmetric matrix E in the following simple way:

A=D+E= a, +a, + a, —a,
2 2

Hence, to each asymmetric real matrix A, we can associate a Hermitian matrix H,,

where h, =d_, +e,i. On the other hand, given any Hermitian matrix, we can from

97

this associate a real asymmetric matrix, just by adding the real and imaginary parts of
- the complex entries in the Hermitian matrix.

Now, let ¢ be a Hamiltonian cycle in an asymmetric TSP instance with real cost
elements. Then naturally the cost of this cycle, A(@), will be a real number, whilst the
“c‘ost”, H ,(¢), in the corresponding Hermitian matrix may be a complex number. So,
to measure the cost of the cycle with the help of a Hermitian matrix cannot be done
directly, but it is easily observed that A(¢) = Re(H ,(¢))+Im(H ,(¢)). Hence, to find

the minimal cycle in A, will be the same as finding the cycle where the sum of the real
and imaginary parts of the complex numbers in the corresponding Hermitian matrix is
as small as possible.

Now, all eigenvalues for Hermitian matrices are real numbers. This means that all p,

in (3.6) and (3.7) above are zero. Hence the sum of the real and imaginary parts of a
Hamiltonian cycle in a Hermitian matrix will be the sum of elements of the following

type:
[Z/Jk (bk.rbkr +d,d,)+ (bk,de -b, d,)]
P

This gives the following theorem.

Theorem 3.12

. Let A be an asymmetric real matrix and let the corresponding Hermitian matrix H ,
have eigenvalues and eigenvectors as defined above. Then there exists 3n real vectors

B

b,.d, and 11, such that
A=Y B, +> D, +Y ILE,
k k k
where B, and D, are polynomial solvable symmetric product matrices [b b,] and

[d, d,] respectively, and E, are skew-symmetric matrices [b, d, —b, d,].
k, "k, k ko k, k, kg

In a similar fashion, we can assign to each asymmetric matrix A a skew-symmetric
Hermitian matrix H g, by defining the entries in this matrix as h, =e_ +d_,i. For

skew-symmetric Hermitian matrices the eigenvalues will have pure imaginary values.
Hence, the y, in (3.6) and (3.7) will become zero, leaving a decomposition of the

same kind as in theorem 3.12.
Final comment

Compared with real symmetric matrices, decompositions of real asymmetric normal
matrices with the help of the spectral theorem are more complicated, and indicate that
there may exist a significant difference between solving STSP and normal ATSP. The
same is the case when decomposition is made with the help of a Hermitian matrix.
The former can be decomposed into a sum of polynomial solvable matrices, while the
latter one seems to need a more complex decomposition involving matrices of a kind
that are known to be NP-hard. Viewed from the perspective of the spectral theorem,

98

then the ATSP appears to be more difficult than the STSP case. It has been noted by

- several authors, see for example Burkhardt 1979, that the numerical behaviour of
symmetric TSP is completely different from that of an asymmetric one. Some of these
differences may be explained by the differences of decompositions exposed in this

chapter.

99

Chapter 4

The different decompositions in the previous chapters are of course only some of
infinitely many different possibilities. In this chapter other decomposition schemes for
ATSP will be explored, mainly using a constant TSP matrix, a symmetric matrix and
a residual asymmetric matrix. In the second section an instance of TSP is decomposed
into a constant-TSP matrix, a symmetric matrix and a residual asymmetric matrix. In
addition, a new situation is considered where a sum of two Hamiltonian cycles is
solved simultaneously, the cycles being reversed of each other. The third and last
section contains decompositions of a matrix into a constant-TSP, a symmetric matrix,
and a skew-symmetric matrix, where the last one can be taken to be minimal in a
certain sense. However, we start this chapter with a sub-class of ATSP where the
decomposition is very simple.

4.1 Hamiltonian Symmetric Travelling Salesman
Problems

Usually, an asymmetric cost matrix will give at least some Hamiltonian cycles with
different costs when the sequence of nodes is taken in reversed order. However, this is
not always the case. For instance, in a constant-TSP, which in general will be
asymmetric, every Hamiltonian cycle will have the same cost.

A natural question to ask is: do asymmetric cost matrices exist such that they do not
yield a constant-TSP, but where every Hamiltonian cycle and its reverse have the
same cost? The answer to this question is yes.

Such a subset of ATSP is readily described by any matrix C such that:

(4.1 ¢, =a;+b, +d,

where D = [d,.j] is a symmetric matrix and K = [a,. +b j] is a constant-TSP

asymmetric matrix. Note that the transformation in (4.1) is a linear admissible
transformation. It is evident that the cost of any Hamiltonian cycle in every matrix C
of this kind will consist of a constant-TSP part where, all asymmetric aspects of the
matrix C are cancelled out. The symmetric part, which of course can give different
values for different Hamiltonian cycles, will nevertheless give equal costs for a
Hamiltonian cycle and its reverse.

100

We will as before use lower case Greek letters for denoting cyclic permutations
.reflecting a Hamiltonian cycle in the graph. For instance:

-

Q=i =i, —l—.....—~, =1

is a Hamiltonian cycle. The reverse will be denoted by:

A natural question to ask is whether there exist other classes than the one given by
(4.1) with the same property? The answer to this question is negative as lemma 4.1
demonstrates.

Lemma 4.1

Let C be a non-negative nxn matrix. We then have:

Vo,C(@)= C() < 3K,D20,D=[d,] ,.symmetric; K =[a,+b,] andc, =a,+b; +d,

Proof:

If K and D are as stated, then it is incidentally true by the comment at the beginning of
this section, that any Hamiltonian cycle and its reverse have the same cost.

In order to prove the second half of the lemma, we first solve the following LP-
problem:

4.2) maxia,.+ibj "’iidﬁ

i=1 i=l j=1
ST
4.3) aq+b,+d;<c; Vi, ji#j
(4.4) d; =_dj,. Vi, j

all variables non - negative

The solution to this LP-problem will create a matrix K and a symmetric matrix D,
both non-negative, such that :

a; + bj + d,.j < €,
for all i and j.

Let P be the set of edges such that:

P={(.j)c, >a +b; +d,;}

101

and suppose that P # & and let (s,z) € P. Then (,5) ¢ P and hence
"¢, =a,+b, +d,, becauseif c, >a, +b +d,, we could have chosen a larger 4 in

[5 *

the solution of the LP-model. Y(i,j) € P, we then have:

c; —¢C; >(a,. +b, +d,.j)—c.,. =(a‘. —aj)+(bj —b,.)

J

For every pair (i,j) not in P we will have equality in the above inequality.

Let 5be any cyclic permutation that contains at least one pair from P. We then have:

C(;) - C(‘(}) = z::,cm(,p) - Z:,CJ(,,,),: > z:,[(a.r ~ Q)) + (b:up) -b,)] =0

Which gives that C(@) > C(¢). Hence we have P # @ = 39;C(¢) # C(¢) or

equivalent V(;, C((;) = C((;) = P =(J, that is, there is no slack in the solution of the

LP-problem above and every inequality holds with equality.
QED

Lemma 4.1 justifies the following definition:
Definition 4.1

An asymmetric non-negative matrix, where the elements can be formed
as c; =a;+ b ;+ d,.j,d,.j symmetric and all numbers are non-negative, is called

Hamiltonian symmetrical.

In a different context, namely for the Chinese postmen problem for & different
postmen, Pearne defines these cycles as (just) symmetrical, see Pearne, 1994.
However, to differentiate between a symmetric matrix as such, and an asymmetric
matrix where each Hamiltonian cycle and its reverse have the same cost, definition
4.1 seems to be more appropriate.

It is easy to check whether a given asymmetric non-negative matrix is Hamiltonian
symmetrical or not. One just solves the LP-model in the proof of lemma 4.1. If the
optimal solution does not give any positive slack in the restrictions, then the matrix is
of the said kind. Other criteria are given in the theorem 4.2 below, but first it is
convenient to have a look at the set of Hamiltonian symmetric matrices as such.

It is easily seen that the set of all Hamiltonian symmetric matrices of a given size
forms a vector space. The theorem below gives the dimensions of these vector spaces.

102

Theorem 4.1

The dimension of the vector space consisting of all the nxn Hamilton symmetrical
n(n-—l)_l_ (n-1(n+4)
2 2 '

matrices is 2n—1+

Proof:

Let R, be the nxn matrix which has 1 at each element in the i-th row and zeros
elsewhere, K is the nxn matrix with 1 in the j-th column and zeros elsewhere, and
finally, M ;,
elsewhere.

i # j the nxn matrix with 1 in the positions (i,j) and (j,i) and zeros

As observed by Berenguer, 1979, any 2n-1 of the 2n matrices R, and K i forms a

linear independent basis for the vector space of all constant-TSP matrices of the same
size. Similarly any n(n-1):2 -1 of the n(n-1):2 matrices M, forms a linear independent

basis for the vector space consisting of all symmetric matrices of the given size. It is
easily checked that the combination of these sets of vectors forms a linear basis for

the stated vector space.
QED

Corollary 4.1

Let C be Hamiltonian symmetric and let S be a set of sub-cycles in the underlying
graph which forms a feasible solution to a m-TSP or VRP problem. Then the cost of
this solution will be the same as for the solution formed by the reversed sequence of
nodes.

Proof:

This follows directly from the fact that the property of a constant-TSP matrix holds
equally well for a set of sub-cycles as for a complete Hamiltonian cycle.

QED

Note:

Given a Hamiltonian symmetric matrix one can solve the TSP with the help of model
2, instead of using model 1, see chapter 1. Model 1 usually calls for more facets or
sub-tour eliminating restrictions than model 2.

Corollary 4.2

Any Hamiltonian symmetric matrix can be decomposed into a constant-TSP matrix
and a sum of symmetric product matrices.

103

- Proof:

The result follows directly from the comments above, and the decomposition for
symmetric matrices done by the spectral theorem in the previous chapter.

QED

Hence, this sub-class of asymmetric TSP instances is as easy or difficult to solve as
symmetric instances.

As a last point in this section, the following theorem shows that any Hamiltonian
symmetric matrix can be characterised in different ways. The theorem gives several
equivalent ways of identifying such matrices.

Theorem 4.2

Let C be any nxn matrix. Then the following statements are equivalent:

(a) C is Hamiltonian symmetrical

(b) C = K + D, where K is a constant-TSP matrix and D is symmetrical

(c) S*(C) is symmetrical for any node k

(d) C;—C;

if

%((R,. (©)-K,(0)-(R,(O)-K,(O) Vi, jii#j

Proof:

The equivalence between (a) and (b) is established from the results above. Suppose
that (b) holds. Note that every symmetric matrix has symmetrical saving matrices.
Then we have:

sk(C)=c, +c, —c, =(a, +b, +d,)+(a, +b, +d))—(a,+b, —d,) =

1

a,+b, +(d, +d, —d,)=a, +b, +si'J‘.(D)=ak +b, +sj’.‘,.(D)=sJ’.‘,.(C)

which gives (c). Then let (c) be given. Every Hamiltonian cycle for any matrix can be
solved either directly with the original matrix C - here asymmetric - or by finding a
corresponding Hamiltonian cycle in any of its saving matrices. The values of the
corresponding cycles are given by equation (2.4). Clearly every Hamiltonian cycle in

S*(C) has the necessary property. In the next section (d) will be dealt with.

QED

104

‘4.2 Optimal Pairs of Hamiltonian Cycles

A salesman travelling in a symmetric matrix need not concern himself about the costs
incurred, regardless of whether he travels in one direction or the other along a certain
cycle. This will in general not be the case if the matrix is genuinely asymmetric, but
not Hamiltonian symmetric. However, a slightly different situation will occur if the
salesman for some reason wants to travel a certain cycle in one direction at one time,
and every second time in the opposite direction. Even if one of the two sequences is
optimal, the sum of the costs of the two cycles does not need to be the smallest one.

It turns out to be possible to find “an optimal pair” of Hamiltonian cycles for

asymmetric matrices with the help of an appropriate symmetric matrix. It will be
convenient to introduce the following concepts:

Definition 4.3

Let C be any (genuine) asymmetric matrix and let ¢ be any Hamiltonian cycle. With
an asymmetric pair ¢ we will understand the pair of Hamiltonian cycles (;p;,.q;) With

every asymmetric pair we will associate the asymmetric cost A(a) + A(.q_)) for the

asymmetric pair. With the optimal asymmetric pair we will understand the
asymmetric pair with the smallest asymmetric cost

We can now formulate the following theorem:
Theorem 4.4

For any asymmetric matrix A, the optimal pair can be found by solving TSP in an
appropriate symmetric matrix.

Proof:
In subsection 3.1.6 it was noted that any asymmetric matrix could be decomposed

respectively into a symmetric matrix D and a skew-symmetric E matrix such that A =
D + E. Let ¢ be any Hamiltonian cycle.

Then -A(@) = D(¢)+ E(¢) and A((;) = D(¢) - E(¢) . Added together, these two
expressions yield that A(¢@) + A(.q_)) = 2D(¢) and the result follows.

QED
Corollary 4.6
Let ¢" and " be the optimal Hamiltonian cycles in A and D respectively. We then

have following string of inequalities:

< A < maxfay), AG))

o Lo = AW+ AW
A@") < mm{w), Ay)}s .

105

. Proof:

The two first inequalities are trivial. Since y " denotes the Hamiltonian cycle for the
optimal pair, we have that A(p") + A(}?) > A(y")+ A(y") Further, we have that

A(¢") < A(@") which means that 2A(¢") > A(y")+ A(y") which then gives the two
last inequalities.

QED

Corollary 4.7

Let ¢ and v be the optimal Hamiltonian cycles in A and D respectively. Then we
have that

2D(y") - max{ay), AW) < Alp")
Proof:

From the proof of theorem 4.4 and the definitions of the cycles we have that

A) +A@) =2D(9’) 2 2D(Wy")

Hence,

A(Q)2 2Dy’) A(@)

By corollary 4.6 we get that

2D - A@) 2 2Dy") - maxAw), AW) |

and the result follows.
QED

Corollary 4.6 gives lower and upper bounds for the reversed Hamiltonian cycle of the
optimal solution of TSP in A, and we can find these bounds by solving a symmetric
TSP in an appropriate cost matrix. Note also that the lower bounds described in
chapter 2 for symmetric matrices combined with corresponding saving matrices can
of course be applied on the symmetric matrix used for finding the optimal pair,
yielding lower bounds for the cost of the optimal pair as such. Corollary 4.7 gives a
lower bound for the asymmetric matrix calculated by the optimal solution in a
symmetric matrix.

106

Corollary 4.8

Let " be the optimal solution the symmetric matrix in the decomposition. If

A(y") = A(y") then v’ is the optimal solution to the asymmetric matrix too.
Proof:

For any cycle we have that A(p”) + A(.q_):) =2D(¢"). The right-hand side of this
equation will obtain its smallest value for the cycle y . By assumption of the

corollary it follows that A(y")= D(y"), and hence " will be the optimal cycle for A

as well.
QED

Corollary 4.8 states in a way that if A is a sort of restricted Hamiltonian symmetric
matrix, that is: If the cost of the optimal Hamiltonian cycle and its reverse are the
same, this optimal solution can be found with the help of a symmetric matrix. Another
way of illustrating this is to sort the Hamiltonian cycles into two sets. One set consists
of all Hamiltonian cycles where the costs of this cycle and its reverse are equal, and
the second set of cycles where these costs are different. It may happen that for certain
instances of TSP that the first set is a rather large set and the second fairly small, and
that the optimal solution belongs to the first set.

4.3 An Algorithm for the Asymmetric Travelling
Salesman Problem

In this section we will present an algorithm for the asymmetric TSP which tells the
user how close the solutions are to the optimum, and in many cases one can prove the
optimality of the best solution found as part of the procedure. The heuristic basically
consists of finding the optimal solutions to a related symmetric problem, or near
optimal solutions to the same symmetric problem.

Let C be an nxn asymmetric non-negative matrix and a;,b;,d;,e,

,j’

d; =d all be non-

[j ’
negative numbers.

107

The heuristic

Step 0: Solve the LP-model:
45) maxYa+3 b+ >d,
i=l i=l i=l j=t
ST

(4.6) a+b,+d;+e;,=c; Vi, jii#]
4.7) d,=d; Vij

all variables non - negative

Stepl: Find an optimal solution ¢ * to the symmetric TSP in D = [du]

nxn

a) If C turns out to be Hamiltonian symmetric, that is E = [e,.j] =0,

then stop and calculate the optimal value C(¢*) = Zai + ij + D(p*) .

i=1 j=1

b) If E= [e,.j]M 2 0 then denote the value C(¢*)= C(¢,) as the
first lower bound LB, . Further calculate

Co") = Xa,+ 3 b, + Dig*)+ min{Ee). E@))}

i=l .j=1

and denote this value as the first upper bound UB, . Go to step 2.

Step k:

Solve model 2 in chapter 1 with the added constraint (4.8).

(4.8) 0, 210,020 1 }

Denote the new optimal cyclic permutation as ¢, where d, denotes the cost of edge

e in the symmetric matrix D. (4.8) affirms that we shall exclude from our new
solution all previously found Hamiltonian cycles.

Calculate (K +D)@,)=Y.a,+ 9,b,+ D(@,) and let

i=1 j=1

LB, = max{LB,_,,(K + D)(¢,)}

Calculate C(9,) = Y a, + Y. b, + D(@,) + min{E((p_,:) E(@,)} and let

i=l j=1

UB, = min{UB,_,,C(¢,)}

108

If the current upper and lower bounds are equal, then stop. If not, go to step k+1.
It is always possible to find a solution to the model in step 0.

It is obvious that this procedure sooner or later will terminate inasmuch as the lower
bounds are increasing, and that the best upper bound will decrease, or at least be equal
to the previous one.

Note:

That the claimed upper bounds really are upper bounds, follows from the fact that
they simply are feasible s:i::tions - that is Hamiltonian cycles - in the asymmetric
matrix C.

The first lower bound is clearly a lower bound for any Hamiltonian cycle in C. This
follows from the fact that all elements in this matrix are equal or less than the
corresponding elements in C. Suppose now that there exists a Hamiltonian cycle
constructed by the heuristic, with a cost in K+ D that is larger than the optimal value
in C. The permutation that then gave the optimal value in C however, must have been
encountered ahead of this step and we would already have reached the optimum.

The procedure will produce two Hamiltonian cycles in each ster:. For each step one or
both of these may or may not be better than the best of the previous cycles. Each new
step in the procedure may or may not produce a larger lower bound for the ATSP.
Whether one gets a new and better lower bound in step & or not, will depend on
whether there exists another Hamiltonian cycle in D with the same cost or not.

The technique in step .~ '« :=ed by Jeromin and Korner, 1985, in a simpler version
and in another context. 2. ..:iw ase the symmetric part nor the residual
asymmetric matrix E, but oniy tne constant-TSP part. Th::ir main aim is to improve on
the worst-case ratio for heuristics by reformulating the original cost matrix, by
ensuring that the new matrix observes both the triangle inequality and being non-
negative. Note also that the value of the constant-TSP found in step 0, is exactly the
.Jower bound found by Lagrangean relaxation in model 1 by relaxing both the
restrictions.

The procedure above involves solving a symmetric TSP. In many cases this can be a
hard task. An alternative is to replace the symmetric matrix D by a matrix D, ;, that is

by a polynomial solvable matrix of some kind, but not necessarily symmetric. We
then have an approximation situation like the one suggested by Burkhard. Whether it
will be a good or bad policy to take the constant-TSP into the calculations, will
probably depend both o;: the original matrix and the chosen polynomial solvable
class.

Closely related to an upper bound found by a heuristic is the so-called worst case
ratio. The best known worst case ratio known so far is that for Christofides’ heuristic
based on minimal spanning trees and matching technique. This ratio is 1.5, and
ensures that any Hamiltonian cycle generated by this heuristic never exceeds 50% of
the cost of the optimal solution.

109

The following lemma gives the worst case ratio for the present procedure, which

- hardly can be regarded as a heuristic in the traditional sense, since it is based on
solving a symmetric TSP to optimum. Nonetheless, based on the more or less well-
founded assumption that solving STSP is easier than solving ATSP, there may be
some virtue in applying the procedure.

Lemma 4.2
The worst case ratio for the present procedure is 2.
Proof:

Step O in the heuristics gives values for the different elements in all the three matrices
K, D and E, such that the sum of the elements in K and D is maximal.

Suppose that a, +b; +d; <e; for some i and j. Then, the sum cannot be maximal
since it would then have been possible to increase eithera;,b ;ord;. Hence, for all i
and j, we have that a;, + b i+ dij 2 e;- We then have the following calculation for the
worst case ratio;

Co) K@)+Do)+E@) . E@) ... _,

Cw") K(p,)+D(®,) K(p,)+D(p,)

QED

Note:

If one can prove - and I have been unable to do so - that a;, +b; 2 ¢; and d; 2 ¢;

for all i and j in general, or if one has special structured matrices where this is the
case, the worst case ratio in lemma 3.2 can be replaced by 1.5. Further, if one has the
following three conditions d,.j 2e;,a 2e¢; and b]. 2e; for all i and j, the worst case

ratio becomes 1.33. This will not hold in general however, as shown by the example
in the appendix. It may nevertheless be possible that these conditions hold in special
structured matrices.

The above procedure relies on dividing the original asymmetric matrix into three
different matrices. For the heuristic to behave well, the numbers in the E matrix
should not be too large, or rather the gap between the first found lower and upper
bounds should not be too large, if one wants to find the optimal solution of the ATSP.
Another way of looking at this is to say that the heuristic will behave better, if the
variation of the elements in E is small. As a consequence, the costs of different cycles
measured in K+D will contain the main part of the costs of the cycles in C. The
variations of the costs for the same cycles measured in E, will not vary so much, due
to the relatively small variations in the elements in E.

110

However, as mentioned above, a matrix can be divided into two or more matrices in
. infinitely many ways. The point here being that the chosen way consists of three
different matrices where the difficulties concerning TSP are increasing.

Another way of dividing the original ATSP matrix is to take away as much as
possible of the symmetric part of the asymmetric matrix, that is, we claim K in step O
to be zero or more straightforward, construct the symmetric matrix

d; = ngn{cy,cji

The procedure can be performed using this symmetric matrix instead of dividing the
original asymmetric matrix into three parts, and hence not “taking away as much of
the asymmetry” as is possible. However, this simplification often has two effects: The
generated permutations do not yield as good solutions as fast as in the first case, and it
can be very hard to prove optimality.

As mentioned above, the numbers in the residual matrix E should not be too large in
order to ensure that the procedure works well and fast. A similar effect can be
obtained if the values of the elements of E are fairly constant. Then Hamiltonian
cycles in E will have costs that do not differ very much. Hence, the variation of the
values of the Hamiltonian cycles in the original cost matrix C, will mostly occur as
different costs in the corresponding cycles in D. Hence, the optimal cycle in D, or a
near optimal one, will be close to the optimal one in C. Stated in another way, C is
close to being a Hamiltonian symmetric matrix.

One way of obtaining smaller numbers in the matrix E in the procedure is to perform
an iteration process. The consequences of this process will be that the values of the
symmetric matrix D may become larger, and the values of the constant-TSP matrix K
may change and in many cases make the corresponding constant-TSP smaller.

The iteration process can be performed as follows:

Solve the LP-model in step O in the heuristic. If the E = [0], then we stop. If not, add
a new restriction to the model, forcing the values of the elements in the matrix E to
become less, that is any e should be less than some number less than the largest e
found in the previous try. Solving the LP-model once more we can either obtain a new
solutions with new matrices K, D and E, but where the elements of E are smaller than
in the previous case, or we may have a model without any feasible solution. In the
first case, we choose a more restricted upper bound for the elements in E and solve
the model again. In the second case, we relax the upper bound on the elements of E in
order to obtain a feasible solution.

It is fairly easy to find a matrix E with minimal elements in this sense. The
consequences can be that applying this triple of matrices to the procedure, one may
obtain better results faster. In a sense, we have by the iteration process obtained a
matrix E, where the variation of the elements is minimal.

The same procedure can of course also be applied if we choose D =D, for some
polynomial solvable class.

111

. However, there are other ways to divide the matrix C into different parts, relaxing the
condition that the residual asymmetric matrix has to be non-negative. It will still be
important to have a variation as small as possible among the elements of E.

One way of obtaining this is to solve the following problem:

49 min¥ ()

i=l j=1
ST
4.10) ¢, =e,+d, Vi jii#j
@11) d,=d, Vi ji#j

ij Ji

Since the objective is convex, we obtain the optimal solution by the first order
conditions. After first substituting (4.10) into the objective and setting the first
derivatives equal to zero, one gets:

C;+cC.
“12) d, = Vi ji#

which then by (4.10) gives:

c;,—cC;
(4.13) e, =—— Vi, jii#j
2
Since the matrix C is supposed to be non-negative, D will be non-negative as well.
Note that this decomposition is exactly equal to the one used in constructing the
Hermitian matrix in sub-section 3.6 and the way we decomposed an asymmetric
matrix in order to find the optimal pair in section 4.2. Hence, this decomposition has
the property that the variation of the elements in the residual matrix is minimal in the
sense above. This gives the following theorem.

Theorem 4.2

Any genuinely asymmetric matrix C can be divided into two matrices C=D + E,
where D is non-negative and symmetrical, and where E is skew-symmetrical and the
variation of its elements is minimal.

Theorem 4.2 has the explicit premise that the original matrix shall be split into two
different matrices - one symmetrical and one asymmetrical - giving a result which
minimises the variation of the elements of the asymmetrical part of the
decomposition. In this case, we do not utilise the possibility that some of the
asymmetry of the original cost matrix C can be taken care of by a constant-TSP
matrix. This is done in the next theorem.

112

Theorem 4.3

Any asymmetric matrix C can be divided into three matrices C = K + D + E, where K
is a constant-TSP matrix, D is symmetrical and non-negative and E is skew-
symmetrical and the variation of its elements is minimal.

The elements of the three different matrices are given by:

i) K= [a,. +b j] where the b’s can be chosen freely, but such that
1
b +b, < E((R,.(C) - K,(0))+(R,(C)- K ,(C)))and

a, =b, +—1—(R,.(C) -K.(0)
n

;e 1
i) dy =t +2—n[(R,.(C)—K,.(C))+(Rj(C)—Kj(C))]—(b,.+bj) Vi, jii # j

C; —Ci 1 .
iii) e,.j=—5————[(Ri(C)~K,.(C))—(Rj(C)—Kj(C))] i, ji # j
2n

Proof:

The theorem is derived from solving the following convex minimising problem:

n n 2
@19 mnYY,)

i=l j=1
ST
(4.15) c; =a,+b;+e;+d; Vi ji#j
(4.11) d,=d; Viji#j

Naming the objective F, substituting (4.15) into the objective and making the partial
derivatives gives:

oF

dij

oF : ,

—= (-2)) (c; —a;—b; —d;) Vi
i j=1

i

=-2c, ~u4,—b,—d;)-2(c, —a, ~b,—d,) Vi, j;i # j and

j#i
oF < :
- = (—2)2}(%. —a,-b,-d,) Vj

J oy
i#j

Setting the first of the derivatives equal to zero gives

113

c.+c, a +a, b, +b,
(4.17) d,.j="2"—'2’-—'2’Vi,j;i¢j

Summing (4.17) over j we get

R(D)=LR(O)+1k (0)-"=La —lZaj -
2 2 25

n—1 1
b——)Y b, =
2 2 21-2::‘ /

J#i J#i

(4.18)
% R,.(C)+Ki(C)—(n—2)a,.—Zaj—(n—2)bi—2bj]

j=1

The derivative with respect to a gives after summing over j, j different from i

(4.19) R(C)~(n-1)g, —ibj -R(D)=0
o

Substituting (4.18) into (4.19) gives:

R(C)-K,(C)—na,+nb,+Y,a,— 3 b, =0

j=1 j=1

Since we have a certain degree of freedom, we can choose to let Za ;= Zb i » Which
j=1 j=1
then gives:

(4200 a,=b,+ l[R,. (C)-K,(C)]
n

Substituting (4.20) into (4.17) gives:

Cij+c

@21) d, === f‘+_21_[(Ri(C)—Ki(C))+(Rj(C)—Kj(C))]—(b,.+bj) Vi, jii# j
n

and finally substituting (4.20) and (4.21) into (4.15) gives

(4.22) e,.,.=5""—2—0"‘-2in[(R,-(C)—K.~(c>)—(R,.(C)—K,.(c»] Vi, jii # j

From the last equation it easily seen that e, = —e,

Ji

QED

114

Corollary 4.9

If Vi;R,(C) = K,(C) then the decompositions in theorem 4.2 and 4.3 coingide

Proof:

Follows directly from the results in theorem 4.3 and by choosing the ’s to be equal to
zero.

QED

The following corollary is the promised part (d) of theorem 3.2, and enables us to
decide whether an asymmetric matrix is Hamiltonian symmetrical or not, simply by
comparing the differences between the symmetrical placed elements in the matrix,
and the rows’ and columns’ sums.

Corollary 4.10

An asymmetric matrix C is Hamiltonian symmetrical iff

&y =5 =~ (RAO)- K (C)=(R(O- K, (O] Vivjsi#]

y

Proof:

The result follows directly from (iii) in theorem 4.3 by claiming that the matrix E =

[0].
QED

Corollary 4.11

For any Hamiltonian cycle ¢ we have that E((;) = C((p_)—2-C_§_(p_)

Proof:

By the theorem 4.3 we have that

C; —Cj; 1 o
e, =——2— —[(R(C)- K,(O) - (R,(C)- K (C))] Vi, jii#
‘ 2 2n

The last part of the expression for the e-elements is constructed in the same way as the
elements in a constant-TSP matrix. This means that adding all the elements
corresponding to any Hamiltonian cycle, we will get all the row sums twice and all
the column sums twice, but with different signs. Since the sum of all the row sums
equals the sum of all the column sums in any matrix, the result follows.

QED
Theorem 4.2 and 4.3 give two different decompositions of an asymmetric matrix C. In

order to illustrate the differences between the two decompositions a small example is
offered in chapter 5.

115

- Note

For skew symmetric matrices, the cost of any asymmetric pair will be zero. As a
consequence, the optimal cost in any skew-symmetric matrix is non-positive. Further,
the optimal cycles for the symmetric matrices in theorem 4.2 or 4.3 can give good
upper bounds for TSP in the underlying asymmetric matrix, since we have that

Aly") < D(g")+ min{E((D'), E(qo')}S D(p")
Further, the decompositions made in theorem 4.2 and 4.3 can be used for finding
lower bounds for the original asymmetric matrix, by using the lower bounds created

by the saving matrices discussed and described in chapter 2. But first let E’ be the
symmetric matrix obtained by setting

e; = mm{e,y. €

This gives a symmetric matrix where all the entries are non-positive, since E is skew-
symmetric. Any graph in E’ will then have a lower cost than the same graph in E.

From the results in chapter 2 we then have:

Cly)=KW)+DWy)+EWy")2K(y')+LB,+LB, >
K")+2R, — Mast(S)+ (Mist + 1)(E*')

where " is the optimal cycle for TSP in C. The right hand side of the inequality

above can give good lower bounds, just by using simple lower bounds based on
symmetric matrices only.

116

Chapter 5

In this chapter some examples are given to illustrate some of the results in the
previous chapters. The examples are not very large and may not be representative for
all possible situations encounter in connection with TSP, but are meant as tools for
understanding and indications of what can be obtained. Most of the results of the
previous chapters are illustrated, but not everything. Further, ten different instances of
ATSP taken from a . : library in order to test the new procedure described in
chapter 4 are investiz:. . = 1 jast section some final remarks are given as well as
some suggestions for further research.

5.1 Examples Related to Chapter 2

In this section most of the results found in chapter 2 are illustrated with small
examples. Many of the examples will be interlocked.

Example 5.1.1 Traditional bounds

We will start with a simple symmetric matrix given in table 5.1.1. The main objective
will be to illustrate the different lower bounds discussed in chapter 2.

Table 5.1.1 Symmetric matrix D

Starting with finding some traditional lower bounds for the problem, the results are
summed up in Table 5.1.2

Table 5.1.2 Traditional lower bounds for matrix D

*) Smallest assignment found by model 1 is 0, with model 2, 22.

117

As can be seen from table 5.1.2, 21 is the best lower bound so far. The minimal

. spanning 1-tree is illustrated in figure 5.5.1. The dashed line is the smallest unused
edge added to the minimal spanning tree. The two simple lower bounds LBO and LB1
are zero, and the slightly more sophisticated bound LB2 is 16, see section 2.5.

4

Figure 5.1.1

The lower bounds in table 5.1.2 can usually be improved by deleting one node in the
graph, making the MIST among the remaining nodes and add the two cheapest edges
from the deleted node, by this creating a 1-tree in the graph. The results are shown in
table 5.1.3 below.

Table 5.1.3 1-trees created by deleting a node in the graph.

As can be seen from table 5.1.3 the lower bounds have improved substantially
compared with those in the previous table, the best being 39, found by first deleting
node 3.

Example 5.1.2 Bounds based on saving matrices

However, making use of the saving matrices, we obtain other values as lower bounds.
Since we can make similar bounds as in Table 5.1.2 for all eight saving matrices we
get a lot of different bounds. The maximal assignment corresponding to each of the
saving matrices will - after re-calculating the value to original cost matrix — as
mentioned in chapter 2, be the same as in table 5.1.2. The column 2R -MAST(S) in
table 5.1.4 is based on the lower bound in lemma 2.1. An overview of all the saving
matrices can be found in the appendix.

118

Table 5.1.4 Lower bounds for matrix D based on saving matrices.

The lower bounds found by LB3 are very bad, as are those for LB4. The situation is
more mixed when we look at LB5. Here we find a good lower bound by node 2. This
bound is better than any of the lower bounds found directly from the original cost
matrix given in table 5.1.2 and competes reasonable well with the bounds found by
the slightly more computationally complicated bounds in table 5.1.3. Real good lower
bounds are found in every case in the last column. The best is 50. This lower bound is
obtained when node 2 is chosen as the depot node. Except for node 1 and 6, the
bounds in the last column are better than any bounds in table 5.1.3. Note also that the
lower bounds for each choice of depot node becomes better and better.

The maximal spanning tree in saving matrix no. 2 is illustrated in figure 5.1.2 below.

Figure 5.1.2

119

Example 5.1.3 Bounds based on saving matrices and deletion of nodes

We can get several more lower bounds for the matrix D by combining the technique
used in table 5.1.3 with the lower bounds given by lemma 2.1. For each of the eight
saving matrices, we delete one node at a time and calculate the resulting 1-tree. The

results are shown in table 5.1.5.

Table 5.1.5 Bounds based on saving matrices and 1-trees.

Saving} o Deletednodes

4 |15
15 -51 25 51
50 50 50 54 2 13 -7 13
32 35 42 32 -25 -22 221 6 J
49 41 50 49 4 -3 -4 7
-1 4 -8 -6 47 41 41 47 |
-20 -39 -42 42 11 33 16 17
-3 -7 -9 -8 46 46 46 44
-24 N -24 41

Note that the values on the main diagonal are identical with lower bounds found in the

last column in table 5.1.4, since these values are obtained by calculating the 1-trees in

a saving matrix where the depot node is deleted.

From the table we see that the bounds vary very much. Good, new bounds are

obtained for each saving matrix with exception of saving matrix no. 1 and 6. Better or
identical bounds are obtained for saving matrix no. 2, 4, 5, and 7. The best bound is
obtained by using saving matrix no 2 and deleting node 4. The corresponding 1-tree in
the saving matrix is illustrated in figure 5.1.3 below. Note that the 1-tree in figure

5.1.4 is very close to become a Hamiltonian cycle. The only nodes with degrees

different from 2, are node 8 with degree 1 and node 2 with degree 3.

120

Figure 5.1.4

The example shows that there can be some virtue in taking the added computational
burden of finding all the nxn 1-trees.

Example 5.1.4 Bounds based on combinations of different upper bounds for the
saving matrices.

In this example model (2.30) — (2.33) will be applied systematically. As noted in
connection with this model in chapter 2, there is no need to use the model nxn times.
All lower bounds obtainable by this model can be found by choosing any of the
saving matrices in the objective and keeping this matrix in the objective. Then,
choosing the n different upper bounds corresponding to the lower bounds in the last
column in table 5.1.4 will give all obtainable lower bounds with this method.

In table 5.1.6 below this is done. In addition, the calculations are repeated for all
choices of saving matrices in the objective. The reason for this will be explained after
table 5.1.6. In table 5.1.6 the second column corresponds to the lower bounds for the
TSP in question found in tat ! 5.1.4 and the third column gives the upper bounds in
the corresponding saving matzices. The rest of the entries in the table are lower
bounds for the TSP given a specific upper (or lower) bound for a specific choice of
the objective. The upper bounds corresponding to the costs measured in the saving
matrices, can all be very different. These upper bounds are not shown in table 5.1.6.

121

Table 5.1.6 shows that all the previous known lower bounds are improved by this
technique. It also shows that the best lower bound is 54. This value is obtained by
using any of the saving matrices as input in the objective and using saving matrix no.
2 in restriction (2.33). The rest of the table shows what the theory told us would
happen, namely that the obtained lower bounds are equal for each choice of the input
matrix in restriction (2.33) whatever saving matrix is used in the objective.
Seemingly, a lot of unnecessary work has been done in table 5.6. However, the 8
different cases, all giving 54 as the value for the lower bound, are all assignments, but
can be different assignments with equal values. In the table these assignments are as
follows:

For saving matrices 1,7, and 8 we have the assignment
1-3-1;2-4-2;and5-6-7-8-5

For saving matrix no. 6 we have the assignment
1-3-1;2-4-2;5-6-5;and7-8-7

For the saving matrices 2, 3, 4, and 5 we have the assignment
1-2-8-6-7-5-3-4-1

which is a Hamiltonian cycle.

Hence, we have solved the TSP only by using simple upper and lower bounds and
solving assignment problems with a knap-sack restriction added.

If one tries to find the optimal solution directly by for example applying model 2 to
the matrix in table 5.1.1, the same optimal solution is found after adding two sub-tour
eliminating restrictions in one batch. It is not necessary to use IP.

In the next examples, we will use the TSP instance in table 5.1.1 as input to different

heuristics. This will be done by applying the original matrix directly to the heuristics
and then using the different saving matrices as well.

122

. Example 5.1.5 Nearest neighbour (NN)

In this example the naive heuristic nearest neighbour is applied to the original cost
matrix D and each of the saving matrices for the matrix. The costs of the resulting
Hamiltonian cycles are displayed in table 5.1.7 below. Since some of the matrices
contain identical values on some rows the following rule of performance has been
used when the heuristic is applied: If one has a choice between two or more nodes, the
node with the lowest index is chosen.

For the saving matrices, the heuristic is not applied to the starting node corresponding
to the depot node since any saving matrix has only zeros in this row.

Table 5.1.7 Costs of Hamiltonian cycles for the nearest neighbour heuristic

As can bee seen from the table above, applying NN to the original cost matrix give us
a cycle with cost 63 as the best result. Thiscycleis: 2-3-4-1-5-7-6-8-2.
Applying SAVI does not yield any better results, but a sequence of rather bad cycles.
SAV4 on the other hand gives two instances with cost 56. (It is the same cycle
generated for this matrix starting either with node 2 or 3). For all the other saving
matrices we get cycles with cost 54. From table 5.1.5 we know that 54 is a lower
bound for the TSP in question and we can conclude that NN finds the optimal solution
when applied to 6 of the eight saving matrices, but not to the original cost matrix. In
addition several good, but non-optimal solutions are found by the saving matrices,
which are better than those found with the original cost matrix.

Example 5.1.6 The Clarke and Wright heuristic

Applying the classical Clarke and Wright heuristic to the 8 saving matrices gives the
following result:

Table 5.1.8 shows that this classical heuristic finds the optimal solution in one out of
eight cases and finds very good solution in three other cases.

123

In chapter 2 it was mentioned that since the saving matrices are as good inputs to the

. TSP as the original cost matrix, we may as well use the Clarke and Wright algorithm
directly on the original cost matrix. Doing this we get the cycle: 1 -4-2-3-5-6-
8 — 7 - 1, with cost 76.

Example 5.1.7 Nearest insertion

Again we first apply the original matrix 8 times to this heuristic, and then we do the
same for each of the saving matrices. It is again a bit awkward to choose the depot
node as a starting node for a given saving matrix. Hence, this possibility is left out in
table 5.1.9 below, showing the results of all the other applications.

Table 5.1.9 Nearest insertion heuristic

61

70 61 75

74 54 54 54 54

54 54 61 61 61
- 61 61 61 61

67 - 67 56 67 !

69 69 - 55 63

56
74 | 74 | 56 | s4 | - |

As can be seen from table 5.1.9, the nearest insertion heuristic does not find an
optimal solution when the original cost matrix is applied. The best cycle is found
starting with node 6 and giving the cycle: 6-5-7-4-1-3-2-8 -6 givinga
cost of 61.Neither is an optimal solution found when the saving matrices based on
node 1, 5, 6, and 7 are used, but for the three latter ones, better solutions are found
than for the original matrix. For the other saving matrices an optimal solution is
found.

Example 5.1.8 Savings and product matrices

This example refers to sub-section 2.7.1. In table 5.1.10 an asymmetric matrix is
given.

Table 5.1.10 An asymmetric matrix

124

- Making the saving matrix based node 1 as the depot from the matrix in table 5.1.10,
we get the matrix in table 5.1.11

Table 5.1.11 A saving matrix based on the matrix in table 5.1.10

] 0 0 0 0 0
0 84 | 63 63 35 7
0 9% | 72 | 72 | 40 8
0 - 108 | 108 | 60 12
0 108 _ | 81 45 9 |l
0 108 | 8l - 45 9
0 60 | 45 | 45 ; 5
0 12 9 9 5 -

Since the saving matrix in table 5.1.11 is symmetric, we know that the original matrix
is Hamiltonian symmetric. Moreover, the saving matrix can be shown to be a
symmetric product matrix defined by the vectord = {0, 7, 8, 12,9, 9, 5, 1]. This vector
can be found by first observing that since the first row consists only of zeros, the first
element in such a vector must be zero as well. The rest of the elements in the vector
can be found by solving a set of equations for example using the six last entries in row
2. This gives the following six equations:

d2dj =S2j;j=3,4,5,6’7’8

Hence, the maximal Hamiltonian cycle can be found in polynomial time and as a
consequence, the minimal cycle in the original matrix.

Example 5.1.9 Savings and circulant matrices
This example refers to sub-section 2.7.2. In table 5.1.12 is given a set of values for the
first row and column and the chosen values for the ¢’s in order to calculate the rest of

the elements of the matrix C.

Table 5.1.12 Starting values for the matrix C

Using the values given in Table 5.1.12 we get the full //x]1 matrix C in table 5.1.13
and the corresponding saving matrix based on node 1 in Table 5.1.14.

125

Table 5.1.13 The resulting matrix C

0
0
0
0
0
0
0
0
0
0

As can be seen, the matrix in Table 5.1.14 is almost circulant. Now, applying
Theorem 2 on the circulant part of the saving matrix, starting with node 2 and using
the rule “farthest from” yields the Hamilton path:

2-10-8-6-4-5-3-11-9-7
with total cost in the saving matrix equal to 177. The first row sum of Table 2 equals
173 and the first column sum equals 220. By equation (2.3) the optimal TSP for C has
the cost 216 and is:

1-2-10-8-6-4-5-3-11-9-7-1

One can obtain different optimal Hamiltonian cycles by starting the process by
choosing some of the other nodes as a starting node.

Example 5.1.10 The new class of polynomial solvable TSP
This example refers to sub-section 2.7.5. Let the vectora = [0, 6, 4, 10, 2, 3, 5, 9] and

b=1[0,3,1,7, 12,9, 8, 6]. This gives the following matrix where the entries below the
main diagonal are formed as in a constant-TSP matrix with the help of the two

126

vectors. The entries above the main diagonal is chosen randomly and can in principle
. take any values.

Table 5.1.15 A partly constant-TSP matrix

0 6 4 10 2 3 5 9
3 0 15 13 25 12 6 14
1 7 0 20 13 18 25 4 |
7 13 11 0 16 27 19 12

12 18 16 22 0 22 17 10 f'
9 15 13 19 11 0 26 16
8 14 12 18 10 11 0 15
6 12 10 16 8 9 11 0

Making the saving matrix based on node 1 as the depot node gives the following
matrix:

Table 5.1.16 Saving matrix for the partly constant-TSP matrix

1
oo
o

-20 -6 3 -2

olo|ololojo]ole
olojolo|o|olo|ol
olo|o|ololo

The matrix in table 5.1.16 clearly is an upper triangular matrix and the maximal TSP
in the saving matrix can be found in polynomial time. Hence, we have found the
minimal TSP in the original matrix.

Example 5.1.11 TSP with identical costs for different matrices for each Hamiltonian
cycles.

In section 2.9 it was proved that there exists an infinite number of matrices which
have the same cost for every cycle. Now let A be the symmetric product matrix
constructed by the vector [10, 7, 8, 12,9, 9, 5,1] giving the matrix in table 5.1.17.

127

Table 5.1.17 The symmetric product matrix A

Remember that the matrix A can be solved in polynomial time.

From table 5.1.17 we get the saving matrix based on node 1 as the depot in the next
table, 5.1.18.

Table 5.1.18 The saving matrix S(A) based on node 1 as the depot

Now, let B be the symmetric matrix in table 5.1.19. Note that some of the entries in
the matrix are negative, whilst all the row sums are positive numbers. Hence, the
matrix B is not a symmetric product matrix.

Table 5.1.19 The symmetric matrix B

Based on the matrix B, we calculate the saving values for the same depot as we did for
A. The result is given in table 5.1.20.

128

Table 5.1.20 The saving matrix S(B) based on node 1 as a depot node

0
87 75 63 94
88 88 80 72
92 92 100 108 I

- 89 85 81
- 85 81
- 45

me—
m——

Now, using lemma 2.2 and comparing the entries in the two saving matrices S(A) and
S(B), one observes that the difference between the entries are always equal to 10,
except for the first row, ie k = 10. Further, the difference between the first row sum in
the two matrices A and B, is 30. Since we have symmetric matrices in our cases, we
shall take two times this difference, ie 60. On the other hand, with 8 nodes we have
that k(n-2) = 60. By lemma 2.2 we then have that the two matrices have the same
costs for the same cycles.

5.2 Examples Related to Chapter 3

This section deals with examples related to the spectral theorem.

Example 5.2.1 Decomposition of a symmetric matrix

We will use the symmetric matrix D from table 5.1.1 to illustrate how such a matrix
can be decomposed into 8 polynomial product matrices with the help of the spectral
theorem. Further, corollary 3.5 is applied in order to get upper and lower bounds for
the TSP in the matrix D.

The eigenvalues of the matrix are given in table 5.2.1 below.

Table 5.2.1 Eigenvalues for the matrix in table 5.1.1

-

The dominating eigenvalue is eigenvalue no. 8 and it is a positive number as it should
be according to the theorem of Perron — Frobenius. The sum of the eigenvalues is
zero. The corresponding eigenvectors are given in table 5.2.2

129

Table 5.2.2. Eigenvectors for the matrix in table 5.1.

1

0.4566
-0.3351 | 0.5002 | 0.2331 | -0.2701 | 0.2619
0.5013 | 204077 | -0.3868 | -0.3506 | 0.3612 |
0.0516 | -0.2394 | -0.1531 | -0.3284 | 0.2802
03257 | 0.0482 | -0.4954 | 0.2885 | 0.3475
-0.4479 | 0.3088 | 0.1521 | 0.4419 0.4245i
0.2243 | 0.1435 | -0.2963 | 0.3281 | 0.3201
0.0632_| -0.6067 | 0.5761 | 0.3174 | 0.3324

Note that vector no. 8 is a positive vector as predicted by the Perron — Frobenius
theorem.

Each of the vectors can now be used to construct a symmetric polynomial solvable
product matrix. If the corresponding eigenvalue is positive, one shall minimise. If the
eigenvalue is negative, one shall maximise. According to the alternative proof for
theorem 1.10 in chapter 1, the cycle giving the minimal cost is

1-8-2-6-4-5-3-7-1
and the cycle giving the maximal cost is
1-2-4-6-8-7-5-3-1

if the entries in the underlying vector form a descending sequence. Since the entries of
the eigenvectors in table 5.2.2 do not form such descending sequences, we have to
rearrange the entries. The results are shown in table 5.2.3.

Table 5.2.3 Optimal cycles and b

!

|

|

I]t
=N jWwiN|oo|
20|02 n| enfnfro|
Mww:\,%mw

=N —=][O\

-10.0296

-16.5892

-73.9613
+141.1229

+26.7733 |

!
|
I
I

—ION[RIN =N]|Wn
li)\lv—-(;OU\v—*-l:-'—‘
CL\(J\O\C'?\OOU)U)O\
LIA\I-LNOOO\N
! |

!

|

|

|

|

As can be seen from table 5.2.3, the upper bounds are in most cases very poor. Only
one good bound is found. We get a lower bound of 27, which is better than the
assignment bounds, and the bounds found by MIST and MIST+1. This new bound
can also compete with some of the bounds found in table 5.1.3, namely 1-trees created

130

by deleting a node from the graph, but the best of the latter ones are much better than
. 27.

Example 5.2.2 New class of polynomial solvable STSP
Now let A be the symmetric product matrix defined in example 5.1.10 and given in

table 5.1.15. Further let B be the symmetric product matrix given by the vector b =
[17,5, 8, 20, 15, 10, 4, 3]. The matrix C = A + B, then becomes the matrix in table

524.

Table 5.2.4 A matrix composed of the sum of two symmetric product matrces

It is easily checked that this matrix is not a symmetric product matrix. Hence, it
cannot be solved by the polynomial algorithm described in chapter 1 concerning
symmetric product matrices. However, ordering the co-ordinates of vector a in
decreasing order we will get 4, 1, 5, 6, 3, 2, 7, 8. Doing the same with the co-ordinates
for vector b, we get the same order. This means that the two components of the matrix
obtain their optima by the same cycle. This cycle can be found by the algorithm in
chapter 1.

Example 5.2.3 Asymmetric matrices and the spectral theorem
We will start with the asymmetric matrix in table 5.2.5.

Table 5.2.5 An asymmetric matrix A

The eigenvectors for this matrix can be found in table 5.2.6

131

Note that six of the eigenvalues are real numbers. The last two are complex conjugate
numbers of each other. The sum of the eigenvalues is - of course — still zero.

The eigenvectors are given in table 5.2.7

Table 5.2.7 Eigenvectors for the matrix in table 5.2.5

As can be seen from table 5.2.7 all the eigenvectors are real except no. 5 and 6. These
two eigenvectors are complex conjugate of each other.

—— —

By corollary 3.10 there exists 32 real vectors b, ,d, , i1, and ;: such that
A= ZNkBk +Zuka +ZpkEk
k k k

where B, and D, are polynomial solvable symmetric product matrices [b, b,] and

[d, d,], respectively, and E, are skew-symmetric matrices [b, d, —b, d,].
The vectors b—,‘:z,: ,E: and ;)_,: are the real part of the eigenvector k, the imaginary part

of the eigenvector %, the real part of the eigenvalue &, and the imaginary part of the
eigenvalue %, respectively. From the two previous tables, we have that

175. = 176. and d_s. = —d_ﬁ. . Moreover, ;)_,: and c?,: are zero vectors for all k except for 5 and
6. As a consequence, the matrix A can be decomposed in a much simpler way than

132

indicated by corollary 3.10, namely into 10 different matrices, where 9 is polynomial
. solvable product matrices and the last one is a skew- symmetric matrix. The
decomposition becomes:

8
A=Y W,B, -21.34[d,d,]+39[b,d, —bd;]

k=1
Example 5.2.4 Hermitian matrices and the spectral theorem
Again we will start with the asymmetric matrix in table 5.2.5. However, this time we
decompose the matrix into the two following matrices, one symmetric given in table

5.2.8, and one skew-symmetric given in table 5.2.9.

Table 5.2.8 Symmetric component of the matrix in table 5.2.5

Now, by using the last two matrices, one can construct a Hermitian matrix. The
eigenvalues and the eigenvectors for this matrix are given in table 5.2.10 and 5.2.11,
respectively

Table 5.2.10 Eigenvectors for the Hermitian matrix

Note that all the eigenvalues are real numbers, as they should be for Hermitian
matrices.

133

By combining the different vectors constituting the eigenvalues and the real and
imaginary parts of the eigenvectors, the original matrix can be decomposed into
sixteen symmetric product matrices and eight skew-symmetric matrices, see theorem
3.12.

5.3 Examples Related to Chapter 4

Example 5.3.1 A Hamiltonian symmetric matrix

Let H be the asymmetric matrix in table 5.3.1. In addition to the cost elements, the
row and column sums are calculated.

Table 5.3.1 The matrix H with row and column sums

134

Solving TSP for the matrix H with model 1, gives an optimal solution of 230 and one
. has to add 6 sub-tour eliminating restrictions. The problem can be solved as LP. It is
difficult to realise that H is Hamiltonian symmetric just by looking at the elements in
the matrix. However, solving a simple LP, one easily finds that H can be decomposed
into to a sum of two other matrices, namely the symmetric matrix D in example 5.1.1,
given in table 5.1.1 and the constant-TSP matrix K constructed from the two vectors

a=1[6,12,2,14,3,4,12,48] and b=[2,8,0,12,0,0,9,44]. The sum of the elements in
these two vectors adds up to 176. Since an optimal solution in D can be found by
adding only two sub-tour eliminating constraints and that an optimal solution to H and
D coincides, this asymmetric TSP can be solved more easy as a symmetric TSP than
as an asymmetric one.

In theorem 4.2 two other criteria are stated as tools for identifying Hamiltonian
symmetric matrices. Calculating the saving matrix based on node 1 as a depot gives
the following result.

Table 5.3.2 Saving matrix for H based on node 1 as a depot.

0
0
0
0
0
0
0

As can be seen from table 5.3.2, the saving matrix is symmetric and hence H is
Hamiltonian symmetric.

The last criterion in theorem 4.2 concerns the difference between two entries in the
cost matrix placed symmetrically. In table 5.3.3 these differences are calculated for all
the pairs of H.

Table 5.3.3 h; —h; for all symmetric pairs in H.

135

For example the difference between the pair (3,6) and (6,3) can be seen to be —2.
. Calculating the right hand side of (d) in theorem 4.2 for i = 3 and j = 6 with the row
and column sums given in table 5.3.1. we get

—;—((R3 -K,)-(Ry —K,))= %((237 —247)—(282~276))=-2

The rest of the entries in table 5.3.3 can be checked in a similar way.
Example 5.3.2 Optimal pairs of Hamiltonian cycles

An optimal pair of Hamiltonian cycles is defined in chapter 4, definition 4.3. Theorem
4.4 says that finding such an optimal pair can be found by solving an appropriate
symmetric TSP. Now, let the asymmetric matrix be A identical with the matrix given
in table 5.2.5.

This matrix A is not Hamiltonian symmetric. Finding the optimal solution in the
matrix A with model 1, requires 6 sub-tour eliminating restrictions and the cycle is

1-4-3-5-7-6-8-2-1

with cost 230. The reversed cycle has cost 237. Hence, the cost of this asymmetric
pair has the cost 467.

Does a better asymmetric pair exist? In order to find the optimal pair, we construct the
matrix be as indicated by theorem 4.4 and given in table 5.3.4 and solve TSP with this
matrix and model 2.

Table 5.3.4 Symmetric matrix F for finding the optimal pair in matrix A.
fi =(a,.j +aﬁ):2

The optimal cycle in the symmetric matrix F turns out to be the same cycle as we
found for the optimal cycle in A. The cost in F is 233.5 and then the cost of the
optimal pair is 467. Hence, it turns out that in this case the optimal pair is the pair
found by solving TSP directly in A.

136

Example 5.3.3 An asymmetric matrix decomposed into three different matrices

Now, let A be divided into the three matrices K, D and E. K is the constant-TSP
matrix given by the vectors in example 5.3.1, D is the symmetric matrix in table 5.1.1
and E is given in table 5.3.5 below.

Table 5.3.5 The residual asymmetric matrix E were A = K+D+E

Njo|o|—|o|s|o|r |

|

—_———

Now, solving TSP for the matrix D gives an optimal solution ¢" =1-2-8-6-7 -
5-3 -4 -1 with cost 54 as stated above in example 5.1.4. Adding the cost 176 from
the constant-TSP given by K, gives a lower bound for TSP in A equal to 230. Now,

¢ (E)=7and ; (E)=0. This shows that ; is an optimal solution for A. TSP for A

is by this procedure solved as a symmetric problem and the approximation K+D
reduces the complexity of this small problem.

Example 5.3.4 An asymmetric matrix decomposed into a symmetric and a skew-
symmetric matrix.

In theorem 4.2 an asymmetr’~ - ‘rix was decomposed into a symmetric matrix and a
skew-symmetric matrix. UsL ;. ..;¢ same matrix A as in table 5.3.5 as an in-put matrix,
the decomposition will be the matrix F given in table 5.3.4 and the matrix FE given in
table 5.3.6 below. Note that this decomposition was also used when the same matrix
was transcribed into a Hermitian matrix in the previous section.

Table 5.3.6 The skew-symmetric matrix E constructed by theorem 4.2, based on the
matrix A.

137

- We have already seen that the optimal cycle ¢ in the matrix F is :
1-2-8-6-7-5-3-4-1

with cost 233.5. Calculating the cost for this cycle and its revered in the residual

matrix E, gives E(¢")=3.5and E(;;') =-3.5. Hence, an upper bound for the optimal

solution in the original matrix A is 233.5 — 3.5 = 230. This upper bound for an
asymmetric matrix is found by solving a symmetric matrix.

Example 5.3.5 An asymmetric matrix decomposed into a constant-TSP, a symmetric,
and a skew-symmetric matrix.

In theorem 4.3 the decomposition is done in a similar fashion as in theorem 4.2, but
some of the asymmetric aspects of the original cost matrix are taken away by
introducing a constant-TSP matrix. Repeating example 5.3.4 with an added constant
matrix K, we get the following three matrices K, D and E. The matrices are obtained
by applying the formulas (i), (ii), and (iii) in theorem 4.3.

The constant-TSP matrix K is constructed with the help of the two vectors given in
table 5.3.7. Note that the cost of any Hamiltonian cycle in this matrix is zero.

Table 5.3.8 The underlying vectors for the matrix K in theorem 4.3

The symmetric matrix turns out to be identical with the symmetric matrix F in table
5.34.

The skew-symmetric matrix is given in table 5.3.8.

Table 5.3.8. The skew-symmetric based on theorem 4.3

We have already found the optimal solution to the symmetric matrix in example 5.3.5.
Calculating the cost for this cycle in the new skew-symmetric in table 5.3.9, gives 3.5
and hence the reversed cycle has the cost 3.5, which the yields the same result as in
example previous example.

138

. Example 5.3.6 Lower bounds for asymmetric matrices using undirected trees.

As an example of finding lower bounds for an asymmetric matrix with the help of
trees taken from matrices, we will use the asymmetric matrix A in table 5.2.5 and its
symmetric component F in table 5.3.4 and the skew-symmetric component E in table
5.3.6.

From the skew-symmetric matrix E we first make a symmetric matrix where all the
entries are non-positive, by taking the negative values of the absolute values of the
matrix E. The minimal 1-tree in this matrix has the value —14.5 and is illustrated in
figure 5.3.1 below.

Figure 5.3.1
Then, calculating the maximal spanning trees in each of the saving matrices for the
symmetric matrix F, gives the values in the second row in table 5.3.9 The saving

matrices can be found in appendix 2.

Table 5.3.9. Lower bounds for TSP for the matrices F and A

139

The row denoted LB(F) gives different lower bounds for the TSP in the symmetric

. matrix F. The best bound is obtained using saving matrix no. 5. The maximal
spanning tree giving the value 266 in this saving matrix is illustrated in figure 5.3.2
below. This lower bound is less than 2% from the optimal solution of 233.5. The last
row in the table gives lower bounds for the asymmetric matrix A. Since the entries in
this matrix are integer numbers, we can use the smallest integer larger than MAST(S)
+ (MIST+1) as a lower bound for TSP in A. The best bound is 215.

4

@

Figure 5.3.2

5.4 ATSP Instances from a Public Library

The following ten ATSP instances can be found at http/testdata/tsp/tsplib/atsp. The
names used in the table below are the names used in this library. In addition the
number of nodes is given, the optimal solutions, the minimal assignments and the
necessary number of sub-tour eliminating constraints applied to reach an optimal
solution in each case.

Table 5.4.1 Overview of TSP instances found in public librar

140

. The above TSP instances were all applied to the procedure in chapter 4, that is the
matrix was decomposed into a constant-TSP matrix, a symmetric matrix and a
residual asymmetric matrix. The original matrix is denoted C, and the other three K, D
and E, respectively.

Then the matrix D is solved to optimum in a standard fashion by branch and bound.
This gives two results. One will be a lower bound for the TSP for the original matrix
found by summing the cost of the TSP in the constant matrix K, plus the cost of the
optimal solution of D. This lower bound is denoted K+D* in the table 5.4.2 below.
The second result will be that the procedure above generates an upper bound for the
TSP in the original matrix, namely the cost incurred by the optimal Hamiltionian

cycle for the symmetric matrix D, denoted ¢, , ie , the upper bound will be C(¢,).

Table 5.4.2 Upper and lower bounds for TSP for the ten cases.

43 12.5 131 | 142475 | 807 | 73
12 7 11 17 18 a4 17

—

1483 | 1489.5 | 1614 | 5356 | 13941.75 | 955 | 1425
1530 1613 | 1776 | 6905 | 14422 | 5620 | 1608

47 123.5 | 162 | 1549 | 480.25 | 4665 | 183
1860 | 2021 | 2400 { 13039 | 14796 | 5633 | 2038

330 408 624 | 6134 374 13 415
_254 | 35.7 [48.7 | 1434 6.1 490 | 43.0 "
Table 5.4.2 shows that the decomposition scheme finds the optimal solution in only
one out of the ten cases, namely for Br17. The number of sub-tour eliminating
constraints used for finding the optimal value for the symmetric matrix D given in the
second row, is usually less than the number of such restrictions used when the optimal
cycle for C was found, see table 5.4.1. Only for the case P43, the number of

restrictions turns out to be the same. In many of the cases there is a substantial
decrease in the number of restriction necessary.

The lower bounds found are substantial better than the assignments found by using the
original cost matrices. In most of the cases these bounds are rather close to the
optimal solutions as can be seen from row no. 5 in table 5.4.2. Again there is one
exception, namely the same case as above, P43 and partly that of Ftv53.

The upper bounds found, ie the cost C(¢},), are in general not so good. This means
that the entries in the asymmetric residual matrices E used in the optimal cycle for D,
is in general positive elements and not zeros. There is again one exception where the
procedure gives a good upper bound, only 13 above the optimal solution, namely P43.

The last row in table 5.4.2 is calculated as if we do not know the optimal solution and

is the standard way of calculating a maximal deviation for a given cycle, when a
lower bound is known. The numbers are calculated as follows:

141

C(¢,)— (K + D¥)
K+D*

In order to see whether there can be some connections between the structure of the
original matrices and the matrices used in the decompositions, the average of the
entries and the variations of the entries in the involved matrices are calculated in table
5.4.3.

Table 5.4.3 Average values and variation of the entries in the applied matrices.

‘at es var(E):
C K D E C K D E | var(C)
Br17 | 14.53 0 1440 | 0.13 | 348 0 340 | 0.25 [0.00071
|| Ftv33 | 128.5 | 34.5 | 785 | 15.5 | 3443 | 467 | 2424 | 581 0.17
Ftv3ds5 | 1352 | 376 | 814 | 163 | 3747 | 517 | 2626 | 621 0.17
Ftv38 | 1386 | 383 | 844 | 159 | 3813 | 483 | 2687 [585 0.15
| Ftva4 | 1369 | 32.8 | 888 | 153 | 3709 | 353 | 2867 | 529 0.14
Ftva7 | 1424 | 33.1 | 90.1 | 193 | 3951 | 370 | 2925 | 857 0.22
' Ft53 | 4929 | 98.6 | 201.5 | 1929 | 141419 | 6690 | 14292 | 121799 | 0.86
|Ry43p 1146.6 | 260.8 | 841.4 | 44.4 | 532096 | 11175 | 376719 | 142596 | (.27
P43 | 5937 | 3.44 | 982 | 492.0 [2327353 73 19793 | 2048215 | .88

{FtvsS | 1318 | 24.1 91.8 15.8 | 3433 | 239 | 2770 | 600 0.17 |

From table 5.4.3 one can see that for the first 5 and the last instance, the average value
of the entries in the residual matrices E are rather small compared to the average value
in the original matrices. This means that very much of the costs have been absorbed in
the constant matrices and the symmetric matrices in each instance. Hence, finding the
optimal cycle in the symmetric matrices D and adding the cost of the constant-TSP in
the associated matrices K, can give good lower bounds for the original cost matrices.
This seems to be fairly well illustrated in table 5.4.2. Here, reasonably good lower
bounds are found for the same 6 instances. On the other hand, the opposite is found
for the two cases Ft53 and P43. In these cases the average values of the entries in the
residual matrices FE, are rather large, as are the variations of the same entries. In these
two cases the lower bounds in table 5.4.2 are rather poor. The same effect can be seen
taking the ratio between the variation of the entries in E and the corresponding
variation of the entries in the original cost matrices C, that is the numbers in the last
column in table 5.4.3. Here, in the first case, these ratios are small (less or equal to
0.17), and the latter case, the ratios are 0.88 and 0.86 respectively. The two last
instances in the tables above seem to be some where in between the two extreme
cases.

Hence it may be some virtue in calculating the average of the entries in the residual
matrix and the variation of these and compare these indicators with the similar
numbers for the original matrix. If the indicators are small, then there may be hope
that the procedure described in chapter 4 can give good lower bounds. If they are
large compared to the similar numbers for the original cost matrix, then there may be
little hope of achieving any substantial improvements in the lower bounds.

Further, if the variations of the entries in the residual matrices are rather small, the
different costs forthcoming by applying different Hamiltonian cycles will probably

142

tend to have a relatively low variation as well. This means that the upper bounds

. found by the procedure will mostly depend on the optimal solution for the symmetric
matrix. This effect is to a certain degree reflected in table 5.4.3 by the first five and
the last case. In these cases the upper bounds are at least not very far from the optimal
solutions.

5.5 Final Comments and Further Research

Final comments

This thesis has mainly been concerned with different decomposition schemes for the
underlying matrix for a TSP instance. The different decompositions discussed can be
divided into different categories.

One such category will be the linear admissible transformations. Such transformations
just adds a constant number to any Hamiltonian cycle and will not in general make it
easier to solve a given TSP to optimum. However, such transformations can be
utilised in other ways.

One such way is described in chapter 2. Here, a special linear admissible
transformation — namely savings - is used to establish that the sum of any Hamiltonian
cycle measured in the original cost matrix plus the cost of the same cycle measured in
a given saving matrix always is the same. This fact can be utilised in several ways.
One such application is to use any of the saving matrices as input to any standard
heuristics for TSP. The examples in chapter 2 show that there can be substantial
improved in the performance of some of the heuristics when this is done. A second
approach is to use the same fact to find simple lower bounds for TSP. These lower
bounds are basically found in a traditional way, ie by constructing spanning trees and
spanning 1-trees, but now on a saving matrix and finding maximal spanning trees. In
combination with the basic relation described in chapter 2, such an approach can give
much better lower bounds than can be obtained by the original matrix alone. Further,
the new obtained lower bounds can be used in combination with fairly easily solved
IP problems — that is assignment problems with one added knap-sack restriction. This
can give further improvements and in some cases even solve the original TSP. Finally,
the basic relation from chapter 2 can be used to formulate new polynomial classes of
TSP. However, these classes are rather small, that is, the extensions from already
known classes will not be very substantial, and basically no knew techniques are
offered. On the other hand, transforming the original cost matrix into some saving
matrix can reveal hidden structures in the original cost matrices.

A second way to apply a linear admissible transformation is in the context suggested
by Burkhardt. This approach is used in chapter 4. Here decompositions of the original
cost matrix are used to make approximations to the original cost matrix in different
ways. Two new concepts are introduced. The first one - called Hamiltonian
symmetric matrices. In such matrices, which are easy to identify, it does not matter in
which direction the cycle is performed. So, instead of searching for the optimal
solution in an asymmetric matrix, it is sufficient to use a symmetric matrix. Hence, in
such planning situation the added complexity of an asymmetric cost structure can be
avoided. The second concept is the optimal asymmetric pair in asymmetric matrices.

143

The best pair of a cycle and its reverse can be found, by solving a symmetric TSP. In
. both these cases, no approximations are taking place.

Another way to decompose an asymmetric matrix is to divide it into three matrices

C = K+D+E, where K is a constant-TSP matrix, D is a symmetric matrix, and E a
residual matrix. Deleting the residual matrix E, one has an approximation for the
original matrix C. Whether this will be a good or a bad approximation will depend on
the entries in E. If these entries are small or at least do not vary a lot, then we will
have a good approximation. The examples in this chapter show that either can be the
case. Some indications of what to expect can be done by calculating the average and
variation of the entries in E.

In chapter 3 the cost matrix is decomposed into a set of polynomial solvable matrices
in the symmetric case. In the asymmetric case one must have a set of skew-symmetric
matrices as well. These skew-symmetric matrices are constructed as differences of
asymmetric product matrices. The results in chapter 3 indicate that solving
asymmetric TSP in general will be more difficult than solving symmetric ones. In the
symmetric case, the decomposition can be used to find a lower bound for the TSP
instance.

Further research

In chapter 2 some new methods of producing good lower bounds for symmetric TSP
were developed. However, it has not been possible to find definite relations between

" these new bounds or between these new bounds and the more traditional ones. It
would have been very convenient to know more about which bounds are the best ones
obtainable under given conditions.

Evidently, the new way of finding lower bounds discussed in chapter 2 should be
tested on many more and larger TSP-instances than is done in this thesis. In a similar
fashion traditional heuristics should be applied to the same TSP-instances using the
different saving matrices as input to the heuristics. Further, one should also try how
weighted saving matrices behave when used as input to such heuristics. Personally I
doubt that using weighted saving matrices to find good lower bounds is a promising
path to take. Weighted saving matrices are usually matrices where no row or column
will consist of zeros only. This will probably lead to poorer lower bounds. However,
introducing weighted saving matrices, give an enormous amount of cost matrices for
the same TSP. Now, let a certain heuristic be given. Could one find a set of weights
such that this heuristic gives an optimal solution? If so, the problem of finding an
optimal solution will be equivalent to finding such a set of weights. Of course it may
well be that finding such a set can be as difficult as finding an optimal solution in the
first place.

In chapter 2 it was observed that the cost of a Hamiltonian cycle has a precise relation
to a specific ellipse. Ellipses have been studied for a very long time and much is
known about them and they have a lot of nice properties. It may be possible to utilise
these properties in some way in the context of TSP.

144

In chapter 3, a decomposition of a quadratic and symmetric cost matrix is performed
. with help of the spectral theorem. The cost matrix can be decomposed in to a certain
number of polynomial solvable product matrices.

This decomposition can be used to obtain lower bounds for the original TSP as a side
effect we get some upper bounds as well. Further testing is necessary in order to find
out whether these bounds are good enough to defend the added computational burden
of finding the eigenvalues and eigenvectors.

It will also be interesting to find special structured matrices that yield eigenvectors
and eigenvalues that are easy to handle and either give good lower bounds, good
upper bounds or even new polynomial classes for TSP. One such example, could be a
symmetric cost matrix of some kind yielding eigenvalues that have the same ordering.
Such a matrix will then be polynomial solvable.

Asymmetric matrices seem to be more difficult to describe with the help of the
spectral theorem. However, a step forward would be to decide whether the skew-
symmetric matrices necessary to complete the decomposition for asymmetric matrices
are NP-hard or not. If they are, then it seems to strengthen the view that asymmetric
matrices in general are more difficult to solve than symmetric ones. If such skew-
symmetric matrices turn out to be polynomial solvable, the symmetric and
asymmetric matrices are more alike in this respect.

Burkhardts original idea was probably not to have decompositions of a cost matrix
yielding equality between the involved matrices, but rather an inequality. Further, he
suggests using only matrices that can be solved in polynomial time. In chapter 4, one
polynomial class is used but also two which in general will not be polynomial.
Formalised Burkhardts idea could be something like the following:

Find two matrices K and P such that K is a constant-TSP matrix and P is polynomial
solvable such that

K+P<LC
where C is the original cost.
The problem will then be to find suitable candidates for the matrix P.
Further research in this direction will probably yield some rewards.
In the last sub-section in this chapter ten different cases from a public library were
tested in context with the content in chapter 4. Similar tests ought to be performed on

such large matrices in the context of techniques described in chapter 2. Further,
several more matrices ought to be tested as well.

145

References

Anton, H and Rorres, C

Baki, Md. Fazle and
Kabadi, Santosh
Balas, Egon

Ball, Magnanti, Monma
and Nembhauser (editors)

Ball, Magnanti, Monma
and Nembhauser (editors)

Bellmore, A. and Hong, S.

Beltrami, E.J. and
Bodin, L.D.

Berenguer; X

Biggs, N.L., Lloyd, K. E.
and Wilson, R.

Biggs, N.L.

Bodin, Golden, Assad and
Ball (ed)

Brey de, M.J.D. and
Volgenant, A.

Burkard, Rainer E.

“Elementary Linear Algebra with Applications”, John
Wiley and Sons, 1987

“Pyramidal traveling salesman problem”. Computers &
Operations Research 26 (1999) pp. 353-369

“The Prize Collecting Travelling Salesman Problem”.
Network, Vol 19 (1989) pp 621-636.

“Network Models” Handbook in Operations research
and management science, Volume 7, North Holland,
1995a

“Network Routing” Handbook in Operations research
and management science, Volume 8, North Holland,
1995b

“Transformation of multi-salesman problem to the
standard traveling salesman problem” J.ACM 21,pp500-
504, 1974

“Network and vehicle routing for municipal waste
collection”. Networks 4, pp 65 - 94,1974

*“ A Characterization of Linear Admissible
Transformations for the m-Travelling Salesman
problem” European j. Oper. Res. 3, pp 232-249. [4:2],
1979

“Graph Theory, 1736 - 1936”. Clarendon Press, Oxford,
1977

“T. P. Kirkman, Mathematician” Bull. London
Mathematical Soc.,13, pp. 97-120, 1981

"Routing and Scheduling of Vehicles and Crews. The
State of the Art" An International Journal Computers &
Operations Research. Special Issue, Vol. 10, nr.2
Pergamon Press ,1983

“Well-solved cases of the 2-Peripatetic Salesman
Problem” unpublished, paper presented at symposium
on combinatorial Optimization (C096),1996

“Travelling Salesman and assignment Problems: A

Survey” Annals of Discrete Mathematics 4 (1979) pp
193-215

146

' Burkard, Rainer E.

Burkard, R.E. and
Sandholzer, W.

Burkard, R.E. and
Van der Veen, J.A.

Burkard, Deineko, van
Dal, van der Veen and
Woeginger

Burkov, V.N. and
Rubinshtein, M.L.

Clarke, G and Wright, J.W

Colorni, A., Dorigo, M
and Maniezzo, V.

Current, John and
Schilling, David

Davies, Philip J.

Deineko, V.G, van Dahl, R
and Rote, G.

Deineko, V.G. and
Woeginger, G.J.
Desrochers, M and

Laporte, G

Edmonds, J and Johnson,
E.L.

“Special Cases of Travelling Salesman Problems and
Heuristics”. Acta Mathematicae Applicatae Sinica, Vol.
6, no. 3, pp 273 - 288, 1990

“Efficiently solvable special cases of bottle-neck
travelling salesman problems”. Discrete Applied
Mathematics, 32, pp 61-76, 1991

“Universal conditions for algebraic traveling salesman
problems to be efficiently solvable”
Optimization 22, pp 787-814, 1991

“Well-Solvable Special Cases of the TSP: A Survey”
Karl-Franzens-Universitiat Graz & Technische
Universtit Graz, Bericht Nr.52, 1995

“ A sufficient condition for existence of a Hamiltonian
circuit and a new solvable case of the travelling
salesman problem”. Large scale systems in information
and decision technologies”, Volume 4, pp 137 - 148,
1983

Scheduling of Vehicles from a Central Depot to a
Number of Delivery Points" Opns. Res. 11, pp 568-581,
1963

“An Investigation of some Properties of an Ant
Algorithm”. Proceedings of the Parallel Problem
Solving from Nature Conference, Brussels. R. Ménner
and Manderick (eds), Elsevier Publishing,1992

“The Covering Salesman Problem”, Transportation
Science, Vol.23, No. 3, 1989, pp 208-213

“Circulant Matrices” John Wiley & Sons, 1979
“The convex-hull-and-line Traveling Salesman
Problem; A solvable case”, Information Processing

Letters 51, pp 141 - 149, 1994

“A solvable case of the quadratic assignment problem”.
Operations Research Letters 22 (1998), pp 13-17.

“Improvements and extensions of the Miller-Tucker-
Zemlin subtour eliminating constraints”. Operations
Research Letters 10, pp. 27 — 36, 1991

“Matching, Euler Tours and the Chinese Postman”,
Mathematical Programming 5, pp 88 - 124, 1973

147

. Eilon, S; Watson-Gandy,
C. and Christofides, N.

Finke, G., Burkard, R.E.,
and Rendl, F.

Fisher, M.L. and
Jaikumar, R.

Flood, M.M.

Gabovich, E. Ya

Gaikov, N-E.

Garfinkel R.

Gaskell, T.J.

Gendreau, M. Laporte, G.

and Semet, F.
Golden, B., Levy, L. and
Dahl, R.

Golden, B.L. and
Assad, A.A. (ed)

Golden, B.L.,
Magnanti, T.L. and
Nguyen, H.Q.
Graham, Alexander

Hadley, S.W., Rendl, F.
and Wolkowicz, H

“Distribution Management: Mathematical Modelling
and Practical Analysis”. Hafner, New York, 1971

“Quadratic Assignment Problems”. Annals of Discrete
Mathematics 31, pp 61-82,1987

“A Generalized Assignment Heuristic for Vehicle
Routing”. Networks, vol. 11, pp. 109 - 124, 1981

“The Traveling-salesman Problem” Oper. res. 4, pp 61 -
75, 1956

“The Small Travelling Salesman Problem” (in Russian)
Trudy Vychisl. Tsentra Tartu. Gos. Univ. 19,pp 27-51,
1970

“On the minimization of linear form on cycles” (in
Russian) Vestsi Akad. Navuk BSSR Ser. fiz.-Mat
Navuk 4, p.128, 1980

“Minimizing Wallpaper Waste, Part 1: A Class of
Traveling Salesman Problems” Operations Research, 25
pp 741-751,1977

“Bases for vehicle fleet scheduling”, Operations
research Quarterly, 18 (1967) 281

“The covering tour problem”. CRT. - 95 -08.
Centre de Recherche sur les transports., Université
Montréal, 1995

“Two generalizations of the Traveling Salesman
Problem”. Omega, vol. 9, no.4, pp. 439-441, 1981

“Vehicle Routing: Methods and Studies” , North
Holland, 1988

“Implementing vehicle routing algorithms”, Network, 7,
pp 113-148, 1977

“Nonnegative matrices and applicable topics in linear
algebra” John Wiley & Sons, 1987

“A New Lower Bound via Elimination for the Quadratic

assignment problem”, Research Report CORR 89-5,
Faculty of Mathematics, University of Waterloo, 1989

148

Hadley, S.W., Rend], F. “A new lower bound via projection for the quadratic
. and Wolkowicz, H assignment problem”. Mathematics of Operations
Research, Vol. 17, No. 3 (1992), pp. 727-739.

Hardy, G., Littlewood, JE. “Inequalities”, Cambridge University Press, (first ed.

and Pélya, G 1934), second edition 1952, reprinted 1991

Harel, David “Algorithmics, the Spirit of Computing” Addison-
Wesley, 1988 ‘

Hart, J.P. and Shogan, “Semi-greedy Heuristics: An Empirical Study”

AW. Operations research letters, Vol. 6, no.3, pp 107-114,
1987

Halskau,@ and Jornsten, K “ The Clark and Wright Heuristic Revisited” Nordic
Operations Research Conference, 1995, NOAS’95

Held, M. and Karp, RM. “T*= ::avelling-salesman problem and minimum
ning trees.” Operations Research 18, pp 1138-1162,
7y

Held, M. and Karp, R M. “The travelling-salesman problem and minimum
spanning trees: Part II” Mathematical Programming 1,

pp 6-25, 1971
Jonker, R. and Volgenant, *“ Identification of Non-optimal Arcs for the Traveling
T. Salesman Problem”. Oper. res. letters. vol.1 no. 3, pp
85-88, 1982

Jiinger, M., Reinelt, G. and “The Traveling Salesman Problem”. Annotated
Rinaldi G. Bibliographies in Combinatorial Optimization, John
© Wiley & Sons, 1997, Chaper 13.

Kabadi, Santosh and “Gilmore-Gomory type traveling salesman problem”.

Baki, Md. Fazle Computers & Operations Research 26 (1999) pp. 329-
351

Koopmans, T.C and “Assignment problems and the location of economic

Beckman, M activities”. Econometrica, 25, pp53 -76, 1957

Krarup, Jakob “The Peripatetic Salesman and some related unsolved

problems”, in Combinatorial programming: methods
and applications, ed B. Roy; Reidel Publishing
company, Dordrecht, 1975,pp 173 - 178

Laporte, Gilbert “The Traveling Salesman Problem: An overview of
exact and approximate algorithms”. European Journal of
Operational Research, 59, pp. 231-247,1992

149

Laporte, Gilbert and
- Martello, Silvano

Lawler, Eugene
Lawler, Eugene
Lawler, Lenstra et alt(ed)

Lenstra, J. K. and Rinnoy
Kan, A.H.G.

Lin, S.

Lin, S. and Kernighan,
B.W.

Little, Murty, Sweeny and
Karel

Miller, C.E.,
Tucker, AW. and Zemlin,
R.A.

Nembhauser, G and
Wolsey, L

Norback, J. P. and Love,
R.F.

Norback, J. P. and Love,

R.F.

Noschang, Mark H.

Or, L

“The selective travelling salesman problem”. Discrete

Applied Mathematics 26, 1990, pp 193-207

“A solvable case of the traveling salesman problem”
Math. Programming1, pp 267-269, 1971

“Combinatorial Optimization. Networks and Matroids”.
Holt, Rinehart and Winston, 1976

“The Traveling Salesman Problem. A Guided Tour of
Combinatorial Optimization”, John Wiley & Sons, 1985

“A Characterization of Linear Admissible
transformations for the m-Travelling Saelesman
Problem: A Result of Berenguer”

European Journal Oper. Res. 3, pp 250 - 252, 1979

“Computer solutions for the traveling salesman
problem”. Bell System Tech. J., 44, pp 2245 - 2269,
1965

“An effective heuristic algorithm for the traveling
salesman problem.” Oper. res.21, pp 498 - 516, 1973

* An algorithm for the travelling salesman problem”
Operations Res. 11 (1963) 979

“Integer Programming Formulation of Traveling
Salesman problems”. Journal of the Association for
Computing machinery, 7, pp. 326-329, 1960

“Integer and Combinatorial Optimization”. John Wiley
& Sons, 1988.

“Geometric approaches to solving the traveling
salesman problem”. Management Sci. 23,pp 1208 -
1223, 1977

‘“Heuristic for Hamiltonian Path problem in Euclidian
twospace”. J. Oper, Res. Soc. 30, pp 363 - 368, 1979

The Traveling Salesman Problem — a Review of Theory
and Current research”. http://www.ececs.uc.edu/-
mnoschan/sale.html

“Traveling Salesman-Type Combinatorial Problems and
their Relation to the Logistics of Regional Blood
Banking” Ph.D. thesis, Northwestern University,
Evanston, IL.

150

Orloff, C.
Paessens, H.
Papadimitriou, C.H. and

Steiglitz, K

Pearn, W.L.
Ramesh, R. and Brown, K.

Reinelt, Gerhardt

Revelle, Charles S. and
Laporte, Gilbert

' Rote, Giinther

Sarvanov, V. L

Skiena, Steven S.

Stewart jr., W. R.

Svetska, J and Huckfeldt,
A"

Van der Cruyssen, P and
Rijkaert, M. J.

“Routing a fleet of M vehicles to/from a central

facility”, Networks 4pp 147-162, 1974

“The saving algorithm for the vehicle routing problem”.
European J.of Op.res., 34, pp 336-344, 1988

“Combinatorial Optimization, Algorithms and
Complexity”, Prentice-Hall, 1982

“Solvable cases of the k-person Chinese postman
problem”. Operations Research letters, 16, pp 242 - 244,
1994

“ An efficient four-phase heuristic for the generalized
orienteering problem”. Computers Ops Res., Vol. 18,
no. 2 pp. 151-165, 1991

“The Traveling Salesman. Computational Solutions for
TSP Applications” Springer Verlag, 1994

“The plant location problem: New models and research
prospects”. OR Chronicle, Operations Research, Vol. 44
No. 6 (1996), pp 864-874

“The N-line Traveling Salesman Problem”. Networks,
vol.22 pp. 91 - 108, 1992

“On complexity of minimising a linear form on a set of
cyclic permutations” (in Russian) Dokl. Akad. Nauk
SSSR 253, pp 533-534, 1980. English translation Soviet
Math. dokl. 22, pp 118-120, 1980

“The Algorithm Design Manual”, Springer, 1998

“A computationally efficient heuristic for the traveling
salesman problem” Proc. 13th Annual Meeting of S.E.
TIMS, pp75 - 85, 1977

“Computational experience with a M-salesmen traveling
salesman algorithm”, Management Sci. 19, pp 790-799,
1973

“Heuristic for the asymmetric travelling salesman

problem”. J. Oper. res. Soc. 29, pp 697 - 701, 1978

151

Van der Veen, J.A.A:

Vo-Khac

Warren, Richard H.

Warren, Richard H.

Warren, Richard H.

Webb, M. H. J.

Wong, Richard T.

Yelow, P.

“An O(n) algorithm to solve the Bottleneck traveling

Salesman Problem restricted to ordered product
matrices”. Discrete Applied Mathematics 47, pp 57 - 75
, 1993

“La régularisation dans les problémes combinatoires et
son application dans les problémes de tourneés.” rev.
Francaise Automat. Informa. Recherche Opérationelle 2
(1971) 59

“Classes of Matrices for the Traveling Salesman
Problem”. Linear Algebra and its Applications, 139, pp.
53-62,1990

“Optimal Arcs for the Traveling Salesman Problem”
Appl. Math. Letters, Vol.5, no. 3 pp. 13-14, 1992

“Special Cases of the Traveling Salesman Problem”.
Applied Mathematics and Computation, 60, pp. 171-
177, 1994

“Some methods of producing approximate solutions to
travelling salesman problems with hundreds or
thousands of cities.” Oper. res. Quart. 22, pp 49 - 66,
1971

“Integer Programming Formulations of the Traveling
Salesman Problem”. Proc of the IEEE international
conference on Circuits and Computers. Pp. 149-152,
1980

“A Computational Modification to the Savings Methods

of Vehicle scheduling” Operational Research Quarterly,
vol. 21, p. 281, 1970

152

Appendix 1

The saving matrices for the symmetric cost matrix in table 5.1.1.

Saving matrix based on depot in node 1

Saving matrix based on depot in node 2

153

Saving matrix based on depot in node 4

Saving matrix based on depot in node 5

154

Saving matrix based on depot in node 7

Appendix 2

The saving matrices for the symmetric cost matrix in table 5.3.4

Saving matrix based on depot in node 1

155

Saving matrix based on depot in node 2

Saving matrix based on depot in node 4
Node | EERrEEEE L

Saving matrix based on depot in node 5

156

~Saving matrix based on depot in node 6

Saving matrix based on depot in node 8

Node

|

157

