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Chapter 1

Preliminaries

1.1 Introduction

The main aim of this dissertation is to study two central issues in natural resource prob-

lems. First, mathematical models of dynamic resource exploitation are developed (Clark

and Munro 1975; Clark 1990; Sandal and Steinshamn 1997). The models developed

in this work are quite simple but still cover a wide range of issues in the area. They

apply from the extreme case of no regulations, i.e., an open access fishery, to the case

of the sole owner fishery, where full regulation is assumed. The bioeconomic analysis is

based on the aggregated or lumped-parameter models'. Biological details such as age-,

sex-structure are not taken into account when modeling the system. The biological func-

tion employed throughout the paper is the general production type". Different growth

functions are used in the analysis. While these models have been perpetually criticized,

they remain the bases of most theoretical and empirical analyses. Several extensions

have been proposed to include ecological, environmental and other effects (see Clark

1990). The consequence is an increase in the dimension and complexity of the problem.

Throughout the dissertation, a single cohort or year-class model is employed. The pur-

lThe reasons why we are using these models are that, the data available for the empirical tests in

this thesis are aggregated and also the models are simple to analyze.
2These models have been applied in the theoretical and empirical studies of the Arctic cod stock (see

Sandal and Steinshamn 1997(a,b))
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1.1. INTRODUCTION

pose is to demonstrate the potentials of the new and efficient techniques of the inverse

methods. However, these techniques can efficiently be used to analyze more realistic and

complex systems.

Appropriate models of real biological and economic systems are often differential or dif-

ference equations. These mathematical models are used to describe real phenomenon.

In this work we formulate the original problems using differential equations and then

use simple approximate difference schemes in the practical applications. Most real world

fisheries may be better represented by discrete mathematical models (Clark 1990; Con-

rad and Clark 1987). The approximate discrete fisheries models are then employed to

estimate physical quantities such as the growth rate in a way that makes the models

more useful and pragmatic.

Second, computational techniques are developed in the context of the mathematical tools

of the inverse methods and data assimilation (Bennett 1992; Evensen et al. 1998; Lawson

et al. 1995). Inverse methods are employed to either estimate the variables of a dynam-

ical system or to fit model dynamics to observed data. They can be used to improve the

understanding of a system by analyzing historical data and/or to forecast future states

of the biological and economic variables of a fishery. When used to fit dynamics to data

it is simply referred to as model fitting (Spitz et al. 1997). The formulation is known as

the variational adjoint method or "strong constraint formalism" (Sasaki 1970; Smedstad

and O'Brien 1991)). The techniques can also be employed to perform sensitivity anal-

ysis of model parameters. A critical role of sensitivity analysis is to identify the most

important input parameters whose changes affect the solution the most. The issue of

sensitivity of input parameters is discussed later in the dissertation.

To estimate the dynamical variables, two approaches are commonly used; the sequen-

tial approach of Kalman filtering (Kalman 1960) and the variational approach known

as the weak constraint formulation (Sasaki 1970; Talagrand and Courtier 1987). Weak

constraint problems are formulated by admitting model errors, i.e., the model dynamics

are assumed to hold approximately. This is a more general and realistic formulation

because some of the neglected variables and uncertain inputs are accounted for as mod-

eling errors which must be minimized. These techniques are novel and efficient. They

present economists with boundless new opportunities and the potential to perform more

2



1.1. INTRODUCTION

realistic bioeconomic analysis. The increasing power of computers and the efforts in data

acquisition by biologists and economists further strengthen our faith in the application

of the inverse methods in resource modeling.

The computational part emphasizes optimal estimation methods (Gelb 1974). State and

parameter estimation in dynamical systems have both been discussed in detail. The

inverse problem is cast in a generalized least squares framework (Bennett 1992; Greene

1997). A criterion function is defined subject to the dynamical constraints and the con-

trol variables are automatically tuned until a solution which is as close as possible to the

historical data is obtained.

An outline of this thesis is as follows. The main body of the dissertation is made up of

four chapters. Chapter two contains a paper on the application of data assimilation to a

simple bioeconomic fisheries model. The population dynamics here take the form of the

surplus production model with the popular logistic growth function .. In modeling the

economics, the Cobb-Douglas production function is assumed. Additional assumptions

were made which led to a linear proportional feedback relationship between the standing

stock and the rate of exploitation of the stock. The variational assimilation method

together with a Monte Carlo procedure was used to estimate the input parameters. The

weak constraint formulation was then used to find improved estimates of the state vari-

able.

In chapter three, the same biological and economic models were used as in chapter two.

However, different growth models, i.e, the logistic and the Gompertz functions (Clark

1990) were used. The paper compared the estimates of these two functions when used to

analyze the North East cod stock (NEACs) data (see Anon. 1998). The results suggested

that it may be more appropriate to use the logistic growth function for the NEACs.

The remaining chapters are extensions of the previous ones. The dimension of the prob-

lems in these chapters is increased from the simple I-dimensional (single) ordinary differ-

ential equation to more complex 2-dimensional problems of coupled nonlinear ordinary

differential equations. In chapter four, a sole owner problem was posited. The manager

is assumed to maximize a stream of discounted economic function subject to a natural

constraint, e.g., the Schaefer dynamics equation (see Clark 1990). The mathematical

objective function is assumed to be unknown and an attempt was made to uncover the

3



1.2. BIOECONOMICS

form of the objective function of the sole owner. To avoid any inconsistencies, twin ex-

periments were performed. That is, data were generated from the model itself and the

model parameters were retrieved by the variational adjoint method.

Chapter five takes a quite different approach to modeling in fisheries management. The

industry dynamics are modeled in a more general fashion. While the population is as-

sumed to follow the Gordon-Schaefer dynamics, the industry dynamics are assumed to

be driven by changes in an index of performance which can be positive, negative or zero.

In an application to the NEACs, the industry was characterized as an open access fish-

ery and the initial conditions as well as the model parameters entering the performance

index and the biological function were estimated.

To apply the new techniques to real world fisheries data, the NEACs is used. Time series

of observations of the actual catch and the estimated stock biomass were provided by

the Norwegian fisheries directorate(See Anon. 1998). The data spans over the period

since immediately after World War II (1946) until 1996.

To make the dissertation easily accessible and more appealing to readers we discuss and

present a brief overview of the models and the computational methods. A summary of

the work is also given.

1.2 Bioeconomics

Natural resource models (fisheries) have two principal components; a biological part

which defines the natural constraints, e.g., ecological and environmental constraints, and

an economic part which characterizes the operation of the industry (fishery). The latter

defines the objective function of the management, the technological constraints, etc (see

Homans and Wilen 1997). These two elements when suitably merged yield a bioeconomic

model. In the remainder of the subsection, we describe the bioeconomic fisheries models

studied in the dissertation. The models are formulated in continuous form mainly for

mathematical convenience and tractability. However, discrete approximations of the

models would be used in an application to the NEAC stock.

4



1.2. BIOECONOMICS

For the sake of generality, we present the population dynamics in a vector notation as

dx
dt = F(x, h,t) (1.1)

where x is a vector of biologically interacting species that may coexist in an ecosystem,

h is a vector of controls and F a linear or nonlinear operator. The resource industry

employs some inputs in the production process. These are called factors of production.

They determine the rate at which the resource is exploited. The production function

describes how the inputs are combined in the production process. In general, the rate

of harvesting of the stock is related to the biomass and the inputs in a rather intricate

manner. However, several useful approximations are made. It is a common practice

in economics to assume a Cobb-Douglas specification (Clark 1990) in the analysis of .

resource problems. For purposes of exposition and simplicity, we define the vector form

of the production function as

h=h(q,e,x) (1.2)

where e is a vector of fishing efforts, q is a constant vector and by definition, hj=qje~j x~

is the jth output function, where bj and Cj are constants. The output hj depends on

two important inputs, the stock biomass and the level of effort expended in fishing. Xk

is the kth stock biomass. In the fisheries economics literature it is often assumed that

harvest is linear in effort and stock level, i.e., bj = Cj = 1. The harvest function then

reduces to hj = qjejXk where Qj is the i" catchability coefficient. This results in the

catch per unit effort which is proportional to the biomass. Several implicit assumptions

underly the hypothesis including uniform distribution of fish, etc. The natural way to link

the biology and economics of fishing is through the instantaneous mortality parameter

h. Where h = Qjej is generallya function of time. However, we shall assume that

Ij is constant throughout our analysis. That is a constant fishing mortality rate or

proportional removal rate of the standing stock policy is applied. This yields a simple

harvest law which can be used by the management authorities to set total allowable

catch quotas (TAC) if reliable stock estimates are available.

In fisheries management one often encounters the concept of a sole owner where a single

5



1.2. BIOECONOMICS

firm or agent has full rights over the resource. A sole owner's problem is the maximization

of stream of discounted net economic benefits. This can be mathematically expressed as

rTf
max Jo II(x, h, t)dt (1.3)

subject to

dx
dt

x(O)

F(x, h, t) (1.4)

(1.5)Xo

where II is the net economic benefits and TI is the time horizon which can be finite or

infinite. The problem stated above is in general a nonlinear control problem (Clark and

Munro 1976). Solutions of the problem can be obtained by the use of the calculus of

variations or optimal control theory (Kamien and Schwartz 1984). The degree of sophis-

tication of the problem depends on the assumptions made in the analysis. For example,

when II is linear in the control variable(s), the optimal solution is the popular bang-bang

solution (see Clark 1990). Under some fairly relaxed assumptions, Sandal and Stein-

shamn (1997b) derived an analytical feedback formula for a quadratic revenue function.

In general however, closed-form solutions are unattainable and approximate numerical

solutions are the only realistic alternatives (see Conrad and Clark 1987; Quentin et al.

2000).

Another approach to modeling the dynamics of the fishery was taken in the last part

of the dissertation. This approach is rare in the literature and aims at restating the

fact that more realistic assumptions can be incorporated in our economic models. The

behavioral model is based on the assumption that the managers have an index of per-

formance upon which their decision to invest or otherwise is hinged. The industry will

make its investment decisions by, for instance, evaluating the average or marginal profits

or even the profits and vary outputs accordingly (See Smith 1969). A simple example

in which the industry is assumed to vary its output growth rate klh in proportion to a

given function cp is

dh
dt = ,hcp(x, h) (1.6)

6



1.3. NUMERICAL TECHNIQUES

where x is the capital stock and 'Y is a constant of proportionality. Notice that if> is a form

of reaction function for the industry in question. One advantage of this model is that

more realistic hypotheses about the industry can be made. These hypotheses can hence

be tested using real data. The three classes of models discussed above are combined with

data to demonstrate the new techniques of inverse methods and data assimilation.

1.3 Numerical Techniques

One of the main objectives of this research is to develop numerical methods for the

analysis of bioeconomic fisheries models. This section will present the problem and

discuss some of the numerical solution methods.

1.3.1 Inverse problem

The use of mathematical models to simulate a real process is an example of a forward

problem (Hannesson 1975). Inputs of the model dynamics such as the initial conditions

and the parameters of vital importance are prespecified in a forward problem. The real

world fishery is then simulated using the model to study different scenarios.

An inverse problem can be formulated as follows. Given the model dynamics with as

yet unknown or unspecified inputs and a set of observations, what are the values of the

controls that give model forecasts that are as close as possible to the observed quantities.

There are many ways of formulating the inverse problem. In the literature of inverse

methods and data assimilation, different approaches have been taken. The common

frameworks are the maximum likelihood formulation (Carrera and Neuman 1986(a,b,c)),

the Bayesian formulation (Hamorn and Challenor 1997) and the least squares methods

(Bennett 1990; Spitz et al. 1998; Yu and O'Brien 1992). The least squares method is

the most used in empirical works (Bennett 1992; Lawson et al. 1995).

The inverse problem can be posed as follows. The dynamics, the initial conditions and

the parameters are allowed to contain errors

dX A

dt = F(X, Q) + F(t) (1.7)

7



1.3. NUMERICAL TECHNIQUES

X(O)
Q

(1.8)

(1.9)

(1.10)

where X is the state vector, Xo is the best guess initial condition vector, x, is the vector

of initial misfits, Q is a vector of parameters and Q is the vector of parameter misfits.

The term fr is the dynamical residuals. The dynamics are assumed to approximately

satisfy the constraints while the inputs, i.e., the initial conditions and the parameters,

are uncertain.

In real life, measurements are often available. These observations may be sparse and

noisy. The measurement equation is described as

(1.11)

where X is the measurement vector, € is the observation error vector and 1£ is a lin-

ear measurement operator. The misfits are assumed to be independent and identically

distributed "iid" random deviates. The linear measurement operator may be defined as

(1.12)

where Ti is the measurement location in time, TI is the time horizon, 8 is the Dirac

delta function and i denotes a component of the measurement functional which is a

vector with dimension equal to the number of observations. It is crucial to note that

the inverse problem is often ill-posed. That is, it is characterized by nonuniqueness and

instability (Yeh 1986). To remedy this, smoothing or regularization is recommended

(Navon 1997).

1.3.2 Some statistical assumptions

To describe the errors in the model, the data and the parameters, we require some

statistical hypotheses. For our purpose in this paper the following hypotheses will suffice

fr(t) = O,

8



1.3. NUMERICAL TECHNIQUES

.Ko =0,
~T ~ -1XOXO =WXO

E= 0,

Q=O,

FQ=O,

Q€=O

QTQ=WQ1

F€=O

where the T denotes matrix transpose operator. The W's are the weighting matrices

which are ideally the inverses of the error covariances of the observations. The overbar

denotes the mathematical expectation operator.

1.3.3 The penalty function

The fitting criterion or the estimator is defined in a more general form as

where, the first term is the data misfits, the second term is the parameter misfit, the third

term is the model residuals and J, is a smoothing or regularization term (See Evensen

1994). Such a formulation results in an unconstrained minimization problem (Luen-

berger 1984). If the model dynamics were assumed to hold exactly, i.e, F = 0, the above

problem reduces to a constrained minimization problem (Bennett 1992; Bertsekas 1982;

Luenberger 1984). The problem is efficiently solved using the variational adjoint tech-

nique which provides an efficient way of calculating the gradient of the penalty functional

through the use of the Lagrange multipliers. Other techniques of parameter optimization

such as the simulated annealing and the Markov Chain Monte Carlo (MCMC) (Harmon

and Charlenor 1997) are available. It is important to reiterate that the methods intro-

duced in this work do not require analytical form of the functions to be estimated.

In data assimilation one can derive the adjoint equations in continuous form and then

solve them. Alternatively, the adjoint code may be derived directly from the model code,

i.e., the computer code of the model equations (Lawson et al. 1995). When solving the

continuous problem with discrete data, the forcing term in the E-L equations comes in

9



1.3. NUMERICAL TECHNIQUES

as impulse into the system thereby introducing periodic shocks which can create prob-

lems with convergence in the optimization part (See Lawson et al. 1995; Smedstad and

O'Brien 1992). To deal with that, one may add a regularization or smoothing term in

other to ensure stability of the inverse problem. For this dissertation, this approach is

not taken because the chances of introducing errors in the process are high. By assuming

that data is available at every grid point, the effect of the impulse or masking function

is turned off. It is then possible to solve both the forward and backward equations at

the same grid point.

1.3.4 Solution methods

Once an appropriate estimator is in place, the next task is to choose a suitable and

efficient solution method. Several methods of solving the inverse problem exist. One

approach is to derive the Euler Lagrange (E-L) equations and then solve them. The E-L

equations are in general nonlinear and coupled and are often difficult to solve. The as-

sumption of perfect dynamics decouples the system which is then solved by the forward

and backward integration of the E-L equations (Smedstad and O'Brien 1991; Yu and

O'Brien (1991,1992)).

The representer technique can be used to solve the E-L equations. It is an optimal tech-

nique for linear models (Bennett 1992; Evensen 1994). By expressing the solution of the

coupled E-L equations as a first guess solution plus a linear combination of representers,

the original two-point boundary value problem reduces to a sequence of initial value

problems which are easier to solve (see Bennett 1992; Eknes and Evensen 1997). With

nonlinear models, some numerical linearization is necessary.

The so called substitution algorithms avoid the integration of the forward and backward

models. Examples are the gradient search methods and the statistical methods such as

the simulated annealing (Kirkpatrick et al. 1983; Kruger 1992; Matear 1995).

Gradient search methods are the most popular methods of minimization of the penalty

function. A variety of these methods ranging from the simplest (descent method) to the

most advanced (Newton's method) have been used in the literature (Luenberger 1984;

Gill et al. 1981). The quasi-Newton algorithm lies between the descent and the New-

10



1.3. NUMERICAL TECHNIQUES

ton's method. The method used in this research is a variable-storage or limited memory

quasi-Newton method developed by Gilbert J. C. and Lemarechal of INRIA in France.

The other substitution algorithm is the simulated annealing. It is a statistical and a

derivative free algorithm. This algorithm is characterized by its up and down hill moves

in order to find the global minimum (Goffe et al. 1992). More general objective functions

can be used including discontinuous functions.

Sequential data assimilation algorithms such as the Kalman filter, the extended Kalman

filter (Gelb 1974) and the newly developed Ensemble Kalman filter (Evensen 1997) have

also been extensively used. In sequential assimilation, the model is integrated forward in

time and the solution updated whenever measurement is available. For linear models the

optimal sequential algorithm is the Kalman filter (see Gelb 1974; Evensen 1994). The

extended Kalman filter has been used with nonlinear models but some linearization is

required. Recently, the extended Kalman filter has been proposed for model parameter

estimation (Navon 1997). Not much work has been reported so far on the success of the

algorithm in parameter estimation.

1.3.5 Error analysis

The estimates of the parameters obtained using the data assimilation methods are often

uncertain. In order for the solution of the model parameters to be complete, it must

include estimates of the uncertainty in the optimal model parameters. If the errors

in the observations are assumed to be normally distributed this information about the

uncertainty is obtained by analyzing the Hessian matrix H (Tziperman and Thacker

1989; Matear 1995). The Hessian matrix is defined as

(1.13)

where p's are the parameters for some i, j =l, ...m, m is the number of parameters. By

expanding the cost function about the optimal parameters Cp) using Taylor series and

11



1.3. NUMERICAL TECHNIQUES

neglecting higher terms, we have

J = Jmin + (p - p)TH(p - p) (1.14)

If the neglected terms were sufficiently small, then the uncertainties in the optimal pa-

rameters are normally distributed with mean zero and error-covariance matrix defined

as the inverse of the Hessian (Matear 1995). The error-covariance matrix provides in-

formation about the distribution of the optimal parameters. The diagonal elements of

the error-covariance matrix therefore provide a measure of the width of the distribution

for the different parameters. These uncertainties can also be obtained by separately

perturbing each model parameters and observing the effect on the output of the model

or by using Monte Carlo methods.

1.3.6 Some numerical concerns

Our main concern in this subsection is to point out some of the potential problems that

may be encountered when using simplified numerical schemes like the one (simple Euler)

applied in this work. Throughout the rest of the thesis, a simple first order difference

scheme was used to approximate the continuous models developed. This may be quite

a simplified approximation in general but for the bioeconomic models used in this work

this scheme seems to work fine. We have used a time step of 0.1 which corresponds

to one year. For this particular analysis the time step used is small enough to ensure

absolute stability of the scheme (see any introductory book on numerical analysis). It

must be noted that in making a choice of the approximate scheme it is vital to performed

stability analysis of the scheme one is using. Other higher order approximations such

as the centered difference scheme, are available which may yield more accurate solution

of the model equations. For simplified models the gains may not be that significant.

This is however a digression since the focus is not numerical analysis of ODEs but the

implementation of data assimilation methods in resource problems.
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1.4 Conclusions

This chapter presents the preliminaries of the dissertation. It serves to put the remaining

chapters together by unifying the main ideas. First, a broad and extended introduction

was given. The objectives of the research were stated and the fundamental concepts and

ideas presented.

Mathematical modeling and computational methods in bioeconomics have been the focal

points of the work. Three different dynamic economic resource models have been devel-

oped. They are continuous time models with the Schaefer growth model as the biological

foundation. The new and efficient techniques of inverse methods and data assimilation

were also discussed. Both the weak and strong constraint problems have been studied.

The remaining chapters are also briefly discussed in the order in which they appear.

Some of the main results of the papers are stated.

A more general formulation for fitting numerical resource models to data in which the

models can be considered as providing either weak or strong constraints is introduced

with some success. The main strength of the work is that, this approach is a generaliza-

tion of the statistical regression analysis. This dissertation has laid the foundation for

exploring the advanced techniques of inverse methods and data assimilation in economics

(resource). These techniques are novel and efficient. They present economists with extra

ordinary opportunities and potentials in future. With increasing power of computers

and an expansion in the volume of data available these methods we hope will become

indispensable to economists. More research is however required in order to exploit all

the efficient features of the techniques.

13
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Assimilation of real time series data into a dynamic
bioeconomic fisheries model:

An application to the North East Arctic cod stock

Abstract

This paper combines' the new and elegant technique of inverse methods and a Monte

Carlo procedure to analyze real data for the North East cod stock (NEACs). A simple

nonlinear dynamic resource model is calibrated to real time series of observations using

the variational adjoint parameter estimation method of data assimilation and the Monte

Carlo technique. By exploring the efficient features of the variational adjoint technique

coupled with the Monte Carlo method, optimal or best parameter estimates with their

error statistics are obtained. Thereafter, the weak constraint formulation resulting in a

stochastic ordinary differential equation (SODE) is used to find an improved estimate

of the dynamical variable(s). Empirical results show that the average fishing mortality

imposed on the NEACs is 16 % more than the intrinsic growth rate of the biological

species.
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2.1. INTRODUCTION

2.1 Introduction

Two important sources of information to bioeconomists and other researchers are the

modelon one hand and the data on the other. The model is an embodiment of the

scientific beliefs of the researcher. Mathematical or numerical models have been used

extensively by economists to gain useful insights in the analysis of natural resource prob-

lems (Clark 1990; Hannesson 1993; Sandal and Steinshamn 1997). The other source is

the observations obtained from field measurements. Unfortunately, this vital source has

not been fully exploited thus far. Advanced and efficient techniques of combining these

two sources of information need to be developed. This paper employs the technique of

data assimilation and inverse methods (Bennett 1992) in which all the available infor-

mation is used in the analysis of the North East Arctic Cod stock (NEACs).

Inverse methods are a set of methods employed to extract useful inferences about the

real world from measurements. In other words inverse methods can be defined as a set

of mathematical techniques for reducing data to acquire useful information about the

physical world on the basis of inferences drawn from observations (Menke 1984). In data

assimilation, observations are merged with a dynamical model in order to determine, as

accurately as possible, a description of the state of the system. It can be used to estimate

the variables of the dynamical model and/or the parameters of the model. It also leads

to the resolution of mathematically ill-posed modeling problems (Bennett 1992).

In general, there are two forms of assimilation, sequential assimilation and variational

assimilation. In sequential assimilation, the model is integrated forward in time and the

model solution updated whenever measurements are available. A typical example is the

Kalman filter (Kalman 1960; Gelb 1974) which is an optimal algorithm for linear dy-

namics. Variational assimilation, on the other hand aims at globally adjusting a model

solution to observations available over the assimilation time interval. Two different for-

malisms exist in variational methods: the method of strong constraint popularly known

as the variational adjoint method and the method of weak constraint which is related to

the penalty methods (Smedstad and O'Brien 1991). The strong constraint formulation

is shown to be the limiting case of the latter where the model is assumed to be perfect.

In this paper, a variational inverse formulation will be employed to estimate the gener-
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2.1. INTRODUCTION

alized inverse of the stock and the poorly known input parameter(s) of a bioeconomic

fisheries model. This technique has been applied with success in parameter estimation

in an Ekman flow model (See Eknes and Evensen 1997; Yu and O'Brien 1991).

During the last quarter of the century, many important developments have taken place

which have affected the structural setup of fisheries management. An important example

is the U.N. law of the sea in the late 1970s. The law resulted in the Extended Fisheries

Jurisdiction (EF J) from maximum of 12 to 200 nautical miles, for coastal states. It

empowered, for example, Norway to manage the Barent sea cod together with Russia,

Iceland and The Faroe Islands. This calls for annual quotas being determined a priori

at the inception of each fishing season. This paper will aim at addressing the question

of quota determination. The recent influx of data from both fisheries biologists and

economists due to improved observational and measurement methods necessitate the de-

velopment of techniques in which as much information as possible can be extracted.

Inverse methods and data assimilation methods have broad application and a wide range

of advantages which is demonstrated by its extensive usage in operational meteorology,

oceanography and other fields. These advantages can be explored in bioeconomics to

a great extent. First, it can be used to analyze the incoming data to extract useful

information which will lead to important policy implications about the operation of a

fishery. This in effect will help answer some of the unanswered questions in this area.

Traditionally, data assimilation and inverse methods are used to estimate variables of dy-

namical models, using all the available information from the model and the information

about the true state from the data. However, these techniques have also been proposed

as a tool for parameter estimation in dynamical models (Evensen et al. 1998). The basic

idea is that it should be possible to use mathematical tools to formulate inverse problems

for parameter estimation given additional information in a form of measurement data.

Thus, one may attempt to search for model parameters resulting in a model solution that

is closest to the observations. Notice here that this technique is new and has obvious

advantages compared with the traditional methods. The technique can be applied with

equal force to both an open access fishery and the sole owner fishery. It is highly suitable

for complex and high dimensional problems. Multidimensional fisheries models are more

realistic as ecosystem effects may be incorporated.
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2.2. THE VARIATIONAL INVERSE FORMULATION

Parameter estimation has been used extensively in economics and other fields. However,

very few studies have so far been reported in which the techniques in this paper have

been used. For all we know, no such study has been made in fisheries bioeconomics. The

reason may be attributed to lack of data and computer power in the past.

The purpose of this study is threefold. First to introduce the powerful tool of data

assimilation in the management of renewable resources such as fisheries. Second, to ex-

ploit the elegant and efficient properties of the inverse methods in order to extract the

best information from the available measurements. Third, to estimate the parameters of

the growth and production relations and thereby estimate the stock and harvest quotas

under a dynamic constraint.

The remainder of the paper is structured as follows. Section two presents the general for-

mulation of the inverse methods and discusses the null hypotheses. In section three, the

estimator is defined and a comprehensive discussion of the solution method presented.

The least squares method is used to define a scalar objective functional emphasizing the

link between this technique and the theory of statistical estimation. In the fourth sec-

tion, a simple bioeconomic model is defined. The biological base is the Schaefer growth

function. It is tied to the economics by a catch per unit effort type of production func-

tion. Section five is a historical discussion of the NEACs and a sensitivity analysis of

the parameters of the model. Finally, the results are presented in section six with an

equilibrium analysis using the estimated parameters.

2.2 The Variational Inverse Formulation

A variational inverse problem can be formulated as either a strong constraint problem

where the model is assumed to be perfect, i.e., the model holds exactly or the weak

constraint formalism (Sasaki 1970) where the model is allowed to contain errors. In

modeling a system, several assumptions are often made both for mathematical conve-

nience and tractability. Several uncertain inputs are also used in the model resulting in

a model that approximately represents the real system. Modeling errors are unavoidable

in many situations. Thus, adding a term to the model that quantifies the errors makes
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2.2. THE VARIATIONAL INVERSE FORMULATION

the model more realistic. It is sometimes a common practice among some researchers

to assume a model that is perfect then vary some of the free parameters such as the

initial conditions of the model in order to find the solution which best fit the data (Yu

and O'Brien 1992). Such a formulation is known as the strong constraint problem. It

is shown that the strong constraint problem is a limiting case of the weak constraint

problem (see Bennett 1992).

In this paper, the variational adjoint technique will be employed to fit the dynamic

model to the observations. We then use the estimated parameters in an inverse calcu-

lation using the weak constraint formulation. In the first problem the control variables

are the input parameters. Using the variational adjoint method the gradients of the

cost functional with respect to the control variables are efficiently calculated through

the use of the Lagrange multipliers. The gradients are then used to find the parameters

of the model dynamics which best fit the data. In the second case however, the model

variables are the control parameters. The gradients of the variables at each grid point

are calculated and the values used to search for the minimum of the cost functional (see

Bennett 1992).

2.2.1 The data and the model

To formulate the problem, a general nonlinear scalar dynamic model together with the

initial condition is defined as

dx
dt

x(O)

(3

u+a

(2.1)

(2.2)

(2.3)

g({3; x) + q(t)

{30 + {3

where 9 is a nonlinear operator, (3 is a parameter(s) to be estimated and is assumed

poorly known. The terms a, {3 and q(t) are random white noise terms and are defined

as the errors in the first or best guess of the initial condition (u), the parameter(s) ({30)

and the model formulation respectively. Such a formulation is referred to as the weak

constraint general inverse problem (Evensen et al. 1998). The task involves solving for

the optimal dynamical variables while updating the model parameters. The result is a
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solution of the model that is closest to the observations and simultaneously satisfies the

model constraints approximately. If the errors in the initial condition and/or the model

formulation are assumed to vanish identically, i.e., a = ° and q 0, then we retrieve the

strong constraint parameter estimation problem.

The model is one source of information which in general is the physical laws governing

the system, e.g., the population dynamic model of the Schaefer (1964) type. Additional

available information is the set of observations given by

d = 1£[x] + € (2.4)

where d is the measurement vector, 1£ is a linear operator that relates the observations

to its model counterpart and € is the vector of measurement errors. The errors may be

due to instrumental imprecision and from other sources.

2.2.2 Some statistical assumptions

To describe the errors in the model, the data and the parameters, we require some

statistical hypotheses. For our purpose in this paper the following hypotheses will suffice

a= 0,

qTq = W;;l
a2 = w-1a

q(t) = 0,

l= 0,

{3 = 0,

where the scalars w' s are the weights and the T denotes matrix transpose operator.

That is, we are assuming that the errors are normally distributed with zero means and

constant variances (homoscedastic) which are ideally the inverses of the optimal weights.

The assumption of unbiasedness is very common in the literature (see Bennett 1992).

The overbar denotes the mathematical expectation operator. It will be, however, more

realistic to make the variances more general by allowing cross-variances, but this will

not be used in this paper. The linear measurement operator may be defined as

(2.5)
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where Ti is the measurement location in time, T, is the time horizon, 6 is the Dirac

delta function and i denotes a component of the measurement functional which is a

vector with dimension equal to the number of observations. In the subsequent sections,

we shall present a simple but detailed discussion of the strong and the weak constraint

formalisms.

2.3 The Least Squares Estimator

In data assimilation, the goal is to find a solution of the model which is as close as possible

to the available observations. Several estimators exist for fitting models to data. In this

paper, we seek residuals that result in model prediction that is in close agreement with

the data. Hence the fitting criterion is the least squares loss function! which is the sum

of the model, data, initial residuals and parameter misfits. This is given by

(2.6)

where w/3, wq, ui« and ware scalar constants. We have thus formulated a nonlinear

unconstrained optimization problem. The last two terms in (2.6) are penalty terms on

the dynamics and the initial condition respectively.

To derive the strong constraint problem as a special case, define A = wqq and Aa = waa

where q = Oand a = O, i.e., both the dynamics and the initial condition are perfect.

This is equivalent to assigning infinitely large weights to the dynamics and the initial

condition. The cost functional reduces to

(2.7)

where Js is the cost function for the strong constraint problem. Inserting A and Aa in

(2.6) we obtain the Lagrange functional for the variational adjoint method. The nec-

essary condition for an optimum (local) is that the first variations of the cost function

110ssis used here to avoid any confusion with the economic cost function. The terms loss, penalty

or criterion are used to mean cost function as is normally used in the literature.
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with respect to (wrt) the controls vanish aJ = o.
There are many efficient algorithms for solving unconstrained optimization problems

(Luenberger 1984). The once used most are the classical iterative methods such as the

gradient descent, the quasi-Newton and the Newton methods. These methods require

the derivatives of the cost functional and the Hessian for the case of the Newton methods.

However, nonconventional methods could be used. For example, methods of optimiza-

tion without derivatives and statistical methods such as simulated annealing could be

used to find the minimum of the cost functional at a greater computational cost. Their

advantage is that a more general cost functional including discontinuous functions could

be used. The inherent problem of local solutions in the line search methods is said to be

absent in simulated annealing (see Goffe et al. 1992; Matear 1995).

In order to make the paper accessible to more readers we avoid the mathematical and

computational details but give a comprehensive verbal explanation of the methods.

One approach of solving the inverse problem is to derive the Euler-Lagrange (E-L) sys-

tems of equations and solve them. The E-L systems derived from calculus of variations

or optimal control theory (see Kamien and Schwartz 1980) are generally coupled and

nonlinear and require simultaneous integration of the forward and the adjoint equations.

The task easily becomes arduous and very often impractical. Such a procedure is called

the integrating algorithm. In the variational adjoint formulation, the assumption ot a

perfect modelleads to the decoupling of the E-L equations. The forward model is then

integrated followed by the backward integration of the backward equations. For the weak

constraint inverse problem, the approach here avoids solving the forward and backward

models but uses the gradient information to efficiently search for the control variables

that minimize the loss function subject to the constraints. Given the cost functional,

which is assumed to be continuous with respect to the controls, find the derivatives wrt

the controls and then use the gradients to find the minimum of the cost function. The

second procedure is referred to as the substituting algorithm and is generally efficient in

finding the local minimum. In the case of the variational adjoint method, the algorithm

is as follows:

• Choose the first guess for the control parameters.
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• Integrate the forward modelover the assimilation interval.

• Calculate the misfits and hence the cost function.

• Integrate the adjoint equation backward in time forced by the data misfits.

• Calculate the gradient of J with respect to the control variables.

• Use the gradient in a descent algorithm to find an improved estimate of the control

parameters which make the cost function move towards a minimum.

• Check if the solution is found based on a certain criterion/.

• If the criterion is not met, repeat the procedure until a satisfactory solution is

found.

The solution algorithm for the weak constraint inverse problem is similar except that

the gradients are not calculated from the backward integration of the adjoint equations

but are obtained directly by substitution. The procedure is outlined below.

• Choose the first guess for the control variables.

• Calculate the misfits and hence the cost function.

• Calculate the gradient of J with respect to the control variables.

• Use the gradient in a descent algorithm to find an improved estimate of the control

variables which make the cost function move towards a minimum.

• Check if the solution is found based on a certain criterion.

• If the criterion is not met repeat the procedure until a satisfactory solution is found.

2For example, :! :s: e, IILl:!11 :s: e may be appropriate convergence criteria. Where f is a small number.
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2.4 The Bioeconomics

Fisheries management and bioeconomic analysis have been given considerable attention

in the last two decades. Fisheries economists have for the past years combined biological

and economic theory to understand and address management issues concerning the most

important renewable resource stock, i.e., the fish. Questions about efficient exploitation

and conservation measures are being raised both in the academic literature and in the

media.

The mainstay of bioeconomic analysis is the mathematical models. In this paper we

advance a little further by combining information both from the theoretical model of

a fishery and the actual field observations. In formulating the bioeconomic model, we

require a reasonable biological submodel as a basis. Following the tradition in the litera-

ture, we propose an aggregated growth model of the Schaefer (1964) type. Let x denote

the total stock biomass and h denote the rate of harvesting from the stock. We represent

the dynamics of the stock as

dx x
- = rx(l- -) - h
dt K

(2.8)

where r, K are the intrinsic growth rate per unit time and the environmental carrying

capacity in 103 tons respectively. The growth law for this fishery is assumed to follow

the logistic law (Schaefer 1964). The dynamics of the stock depends on the interplay

between terms on the right hand side of the equation. The stock will increase if h is

less than the growth term and decreases if h is greater. If human predation ceases, i.e.,

h = 0.0 then the stock will increase at a rate equal to the natural growth of the stock.

The stock biomass will increase towards the maximum population size K. This simple

model describes a year-class model of the Gordon-Schaefer type. It basically describes

the dynamics of an exploited fishery by linking the biological dynamics and the economics

through the general production function h(t).
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2.4.1 The production function h

In this paper the general Cobb-Douglas production function h(e, x) is defined as

(2.9)

where e is the fishing effort, q, b and c are constants. The production function quantifies

the rate of production of the industry and describes how the inputs are combined in the

production process. It depends on two important inputs, the stock biomass and the level

of effort expended in fishing. In the fisheries economics literature it is often assumed

that harvest is linear in effort and stock level, i.e., b = c = 1. The harvest function

then reduces to h = qex where q is the catchability coefficient. This results in the

catch per unit effort which is proportional to the biomass. Several implicit assumptions

underly the hypothesis including uniform distribution of fish, etc. The natural way

to link the biology and economics of fishing is through the fishing footnote That is

the instantaneous average fishing mortality mortality parameter rate f instantaneous

average fishing mortality. Where / = qe is generallya function of time. In this paper

we will specialize a bit by assuming a nonvarying / over time. That is a constant fishing

mortality rate or proportional removal rate of the standing stock policy is applied. This

yields a simple harvest law which can be used by the management authorities to set total

allowable catch quotas (TAC).

To understand the nature and kind of policy used in the management of the NEACs, we

apply a simple feedback relation to analyze the data. The assumption may be unrealistic,

but we still hope that much practical insight will be gained and will lead to better

understanding of the fishery. Thus, the harvest function for the linear case is

h=/x (2.10)

where f is the unknown, or poorly known economic parameter, to be estimated. This

formulation appears quite simple but may be of immense contribution to our understand-

ing of the practical management of the NEACs. It can be considered as a first order

linear approximation of the true harvest function. The function proposed is by no means
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supposed to be the complete and absolute characterization of the feedback specifications

but is considered as a useful and practical approximation of the true one. To reiterate,

our purpose is to be simple and to construct a model that is tractable which will lead to

some important policy implications.

Some remarks about the model

Linking the biology of the exploited species and the simple approximate harvesting or

TAC rule above yields

dx x
- = rx(l- -) - Ix
dt K (2.11)

put in another form gives

dx rx2
-="(x--
dt K

(2.12)

where "( = (r - J) is the difference between the intrinsic growth rate and the fishing

mortality rate. Let us call this the residual growth rate of the species. The residual

growth rate can be positive, zero or negative at least theoretically. If no fishing mortality

is imposed on the stock ("(= r, I = 0.0) then it grows to its maximum population level K

at a rate equal to the natural growth. If I is positive but less than r the population will

settle at a level less than K. For the critical scenario where fishing mortality balances

the intrinsic growth rate ('Y = 0.0) the population is driven to extinction. This case can

be seen mathematically as

dx
dt K

(2.13)

It is also the case where I exceeds rand "( becomes negative. The population will be

driven to zero even faster. The dynamics are shown as

dx rx2
-="(x--
dt K (2.14)

The predictions of this simple model are evident in the case of most commercial fisheries.

Many important fisheries have collapsed in recent times. An example is the Norwegian

spring spawning herring (Bjorndal and Munro 1998).
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2.5 The North East Arctic Cod stock

The NEACs is the most important demersal species along the coast of Norway and

Northern Russia. This fishery has played an important economic role within the coastal

communities for the past thousand years. The NEAC stock has for the past half century

experienced large variations which result in a corresponding variation in the annual

harvest quantities. The stock size fell from its highest level in 1946 of 4.1 million tons to

the lowest in 1981 of .75 million tons. However, the stock seems to be recovering from

the depleted state in the 1990s due to improved management strategies. In this study,

a time series of observations from 1946 to 1996 is used. The variables are the annual

stock and harvest ' measured in 103 tons. In what follows, we present a brief qualitative

description of the data (see Anon. 1998).

Figure 2.1, is a plot of the stock divided by a factor of three and the harvest. The

stock and the harvest have generallya downward trend with periodic oscillations. Apart

from the first few years the directions of fluctuation in both the stock and the harvest

are the same. It may be observed from the graph that there exists some proportional

relationship between the harvest rate and the level of stock.

3Total internationallandings as reported in ICES 1998.
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Figure 2.1: Time series plot of the stock and harvest rates of the NEACs. The stock size

is scaled by a factor of one-third.

2.5.1 Sensitivity analysis

Input parameters of bioeconomic models are crucial in the analysis of the system. To

provide good simulations, precise and reasonable parameters are required. Unfortunately,

the values of these parameters are highly uncertain which translate into the output of

the models. Sensitivity is a measure of the effect of changes in the given input parameter

on a model solution. It quantifies the extent that uncertainties in parameters contribute

to uncertainties in the model results (Navon 1997). Several analytical techniques of

sensitivity analysis exist. To quantify the uncertainties of the kth parameter, we define

the following sensitivity index IBk

(2.15)

where Zt is the original model prediction and the zf is the perturbed prediction. The

results of the sensitivity of the biological and economic parameters are shown below. The
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parameters are each perturbed to 90 percent of their original values. These parameters

are ranked in an increasing order of importance. Note that the units of rand fare

(/year) and the unit of the carrying (average) capacity K is in kilo-tons. The sensitivity

index is dimensionless.

Parameters Original values New values ISk

r 0.450 0.405 1.50

K 6000.0 5400.0 1.68

f 0.400 0.360 5.09

Table 2.1: Sensitivity index of model parameters.

The fishing mortality parameter is the most important and the growth rate is the least.

The maximum population of the species is the more sensitive biological parameter which

confirms the results of an earlier paper (Ussif et al. 1999a). The results indicate the

fishing mortality rate is in fact very critical in the model. This outcome is used in the

subsequent experiments to guide us in regard to which parameters to vary and which to

give more attention.

2.6 Results

The empirical results of the research are discussed and shown in this section. All the

results are based on actual observations of the NEAC stock for the period from 1946 to

1996. The results of the variational adjoint parameter estimation are presented. They

are followed by the weak constraint inverse results and then a steady state equilibrium

analysis is performed. Note that twin experiments were performed using both clean and

noisy data to test' the assimilation algorithm.
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2.6.1 Estimation of the growth and yield functions

The combined variational adjoint-Monte Carlo technique was used to fit the bioeconomic

model to the observations assuming that the fishery is exactly governed by the simple

model. The model contains three input parameters: the intrinsic growth, the carrying

capacity and the human predation coefficient. These are all important to a fisheries

manager. Estimating all the parameters at the same time for this simplified model

may pose a problem of identification. To obviate the bottleneck, the least sensitive

parameter in the model is exogenously but randomly selected and then the other two,

namely the carrying capacity and the fishing mortality rate, are optimally determined

using variational adjoint methods. Relying on some physical information from experts,

a range of r values between .25 and .45 is chosen. A subsample of 3005 was randomly

drawned from the population. Using this sample, the variational adjoint method is used

to find the optimal estimates of the parameters. The statistic of choice in this paper is

the mean even though there are other estimators that are efficient. In table 2.2, we show

the parameter estimates and their standard deviations.

Parameters r (fyr) K (1000 tons) f (fyr)

Estimates 0.3499 5268.4 .4076

se (0.0578) (868.3) (0.0579)

Table 2.2: Estimated parameters and their standard deviations.

These estimates are all reasonable and intuitively appealing. What is astounding is that

the model has been able to capture the salient features of the NEACs. The estimated

rate of capture of the stock exceeds the intrinsic growth rate of the species even when

the population was highly vulnerable.
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6.2 State estimation of the stock biomass

Inverse methods and data assimilation can be used to estimate the variables of a dynam-

ical system or the parameters of a dynamical model, using all the available information

from the model formulation and the set of observations. The former embodies all the

beliefs of the modeler about the system she or he is interested in studying. They may

use economic and biological theory as well as intuitive reasoning in order to construct a

ID Iel that approximately represents the system. In the weak constraint formulation, the

del dynamics are assumed to approximately hold. The fisheries model employed in

this paper is quite oversimplified. Many important variables such as the environmental

effects and predation from other species are disregarded. The harvest function is also a

ple first order approximation. All these factors make the model quite unrealistic. To

remedy this, we accept a certain unknown level of error in the model by adding a term

that quantifies the errors and their uncertainties.

A cost functional measuring the disagreements between the data and the model predic-

tions was defined, and a penalty term appended which penalizes the model misfits. A

model prediction that is as close as possible to the data, is sought in a least squares

sense. The optimization procedure used in this paper is the classical quasi-Newton

method (Gilbert and Lemarechal 1991). The results are shown for two cases. The first

case uses the solution of the variational adjoint method as the first guess solution. That

is the parameter estimates from the first method were used to solve the model and the

solution is taken as the best guess to start the optimization. To show that the algorithm

is robust to the initial guess of the solution, a constant equal to the average of the first

case is used as the first guess. The results are shown in the figures below. The circles

denote actual data, the broken line is the first guess which is the solution of the strong

constraint problem in case 1.
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Figure 2.3: Graph of the stock biomass: case 2.

36



2.6. RESULTS

very much on the initial guesses. However, the convergent rate is slightly affected by the

choice of the initial guesses.

2.6.3 Equilibrium analysis using the deterministic model

The use of the population dynamic equation assumes the existence of equilibrium in the

model. This section briefly discusses this concept in this application. At the steady state

time is no longer important and the stock biomass becomes constant at a level x*. This

implies the time rate of change of the population is identically zero, i.e., the net growth

of the stock balances the rate of harvesting

dx = O
dt '

x*
h*= rx*(l--)

K

It follows then that for the linear harvest function we have

x*
fx* = rx*(l--)

K
(2.16)

where f is as defined previously. Hence the steady state biomass is

(2.17)

Ideally, the fishing mortality rate should not exceed the intrinsic growth rate of the

biological species, i.e, f < r for a fishery that is overexploited and is under rehabilitation.

If the fishery is unexploited and initial stock is to the right of the maximum sustained

biomass level then higher mortality rates may be applied in order to quickly adjust

it to the desired optimal state. The equilibrium stock is a function of the biological

and economic parameters. It is clear that if the carrying capacity (e.g., the aquatic

environment) increases, x* will increase and vice versa. The effect of small change in r is

similar. However, increasing fishing mortality will result in a decline in the equilibrium

biomass.

The concept of maximum sustainable yield has been the practical management objective

for many fisheries (Clark 1990). The NEACs is not an exception to the rule. For the

compensation model used in this paper, the xmsy = K/2, i.e., 2634.2 103 'tons. The
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figure below shows the historical state of the NEACs from 1946 to 1996 and the xmsy.

A careful study of the time series reveals some interesting observations. The fishery was

in 1946 at a level of about 80 percent (4231.9 103 tons) of the carrying capacity. It was

fished down to about 50 percent (xmsy) of K by 1958. It then remained at about that

level forming a window until the late 1970s when the situation got completely out of

control. However, due to the inherent stochastic nature of the biological species coupled

with inadequate knowledge of the biology and economics of fishers/managers, the goal

failed to yield results. This occurrence might also be attributed to the shortsightedness

of the politicians and also the conflict of interest between the two major participants

(Norway and Russia) in the exploitation of the stock.
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Figure 2.4: Plot of the stock and harvest rates (tons) vs. time (yrs).

The state of the stock continued to dilapidate and by 1983 it was at its worst level of less

than 20 percent of the carrying capacity. The trend has, however, changed and the 1996

estimate of stock indicates a sign of recovery. Recent observations, however, indicate

that the stock is again in deep trouble.
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2.6.4 Conclusion

This paper uses a novel approach of data assimilation into dynamical models to analyze

real data for the NEACs. Model parameters were estimated by the variational adjoint

technique in combination with a Monte Carlo procedure. The variational adjoint tech-

nique provides an efficient way of calculating the gradients of the loss functional with

respect to the control parameters. The estimates are as expected, the fit to the data is

also g .idwith the model amazingly capturing the trend in the data but failing to capture

the oscillations. This is not surprising because the model is deterministic and does not

have the ability to absorb the random events in the system. The estimated parameters

are then used in an inverse calculation to find an improved estimate of the stock using

the full information available in the form of observations and the model dynamics. The

weak constraint model however does very well in capturing the stochasticity in the data.

The key results of the paper are that for the NEACs the average intrinsic growth rate is

about 0.35 per year and the maximum population that the environment can support is

about 5.3 million tons. The fishing mortality rate is about 0.41 per year which is greater

than the intrinsic growth rate. This implies the annual harvest or production from the

fishery is consistently above the net growth curve. This is intuitively supported by the

persistent decline of the stock since 1946. It is important to be reserved in generalizing

the findings in this paper. The reason is that the model used in this paper is very simple

and does not absolutely represent the fishery. Finally, the inverse and data assimila-

tion methods have proven very efficient and can be very useful in analyzing, testing and

improving resource models.
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A new approach of fitting biomass dynamics models to real
data based on a linear total allowable catch (TAC) rule:

An optimal control approach

Abstract

A non-traditional approach of fitting dynamic resource biomass models to data is de-

veloped in this paper. A variational adjoint technique is used for dynamic parameter

estimation. It provides a novel and computationally efficient procedure for combining all

available information in the analysis of a resource system. Two alternative population

growth models: the Schaefer logistic and the Gompertz model are used for estimating

parameters of simple bioeconomic models by the method of constrained least squares.

A simplified feedback rule is used to tie the biology and economics of fishing. The coef-

ficient of determination (R2 statistic) is used to evaluate the goodness of fit. Estimates

of the parameters of the model dynamics are reasonable and can be accepted. The main

inference from the work is that the average fishing mortality is found to be significantly

above the maximum sustainable value.
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3.1 Introduction

In spite of the growing criticisms of the biomass dynamics models or the surplus growth

models (Clark 1990; Schaefer 1967), they remain the biological basis for most bioeco-

nomic analysis. The trend in bioeconomic literature indicates that these models will

continue to be in use for some time. Parameter estimation has been the greatest

source of difficulty in applying the generalized biomass dynamics models in manage-

ment schemes(Rivard and Bledsoe 1978). The bulk of the research in this area has

been done by fishery biologists in the past. Several methods have been developed for

fitting these models to observed data. Three approaches have been commonly used to

fit surplus production models to observations: effort averaging methods, process-error

estimators, and observation-error estimators (see Polacheck et al. 1993). Polacheck et

al. (1993) used real and simulated data to compare the approaches and concluded that

the methods yield different interpretations of productivity, e.g., the maximum growth

rates. The method of effort-averaging, like many others, assumes that the stock is in

equilibrium relative to effort. Ludwig et al. (1988) compared the method of totalleast

squares (TLS) and the approximate likelihood (AL) method. They found the two meth-

ods to be consistent with some significant differences. For instance, the method of TLS

involves more computations than the AL method. Least squares methods have also been

used to estimate the Schaefer production model (e.g, the intrinsic growth rate) (Uhler

1979).

In bioeconomics, identification of model input parameters has not been accorded the

attention it so deserves. Simulations of these models have mostly been performed us-

ing hypothetical values of the model parameters. Useful qualitative insights have been

gained in a more general setting. However, issues of quantitative and operational nature

have largely been ignored. Of interest to managers of resource stocks such as fish are

questions about the size of the standing stock, the sustainable yield, the net growth, etc.

To better advise managers on these important issues, bioeconomists ought to develop

techniques of improving and efficiently estimating the existing bioeconomic models.

In view of the above arguments, we introduce a novel and advanced approach of fitting

biomass dynamics models to measurements. The technique in this paper is an optimal
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control (variational adjoint) method of model parameter estimation (Lawson et al. 1995;

Smedstad and O'Brien 1991). For recent applications of data assimilation techniques to

biological and ecosystem models see (Lawson et al. 1995; Spitz et al. 1997; Matear 1995).

The variational adjoint technique of data assimilation determines input parameters of

a dynamical model using time series of observations of the state variables of the model

dynamics. A least squares criterion function is defined subject to the natural dynamic

constraints governed by the simple generalized population dynamics models. The vari-

ational adjoint technique is then used together with a quasi-Newton algorithm (Gilbert

and Lemarechal 1991) to iteratively search for the minimum of the cost 1 functional.

That is the difference between the data and the model solution. The method is very

powerful and computationally efficient for parameter optimization. A major strength

of the method is that it is highly suitable for high dimensional problems. It can also

effectively handle nonlinear models. We also point out that this method does not require

analytical forms of the functions estimated but only the numerical values which distin-

guishes it from existing methods.

Two functional forms of the existing biomass dynamics models (Clark 1990) in combina-

tion with a simple proportional exploitation rule will be used to estimate the biological

and economic input parameters e.g, the fishing mortality rate, using real data for the

North East Cod stock (NEACs). The bioeconomics employed in this analysis is quite

simple. It combines simplified surplus growth models with a simple linear yield or har-

vest function to analyze the data. The biological functions contain parameters that are

very crucial in determining certain important quantities of interest to fisheries manage-

ment and researchers. Estimates of parameters such as the intrinsic growth rate and

the environmental carrying capacity are rare for some important fish stocks around the

world. Accurate measurement of these parameters are in fact very difficult if not impos-

sible. As a consequence, quantities of considerable importance to management such as

the maximum sustainable yield (MSY) are unreliable.

The goals of this paper are to demonstrate the potentials of the variational adjoint tech-

nique in the empirical analysis of natural resource systems, to apply the technique to

lWe shall use loss, penalty or criterion in order to avoid confusion with costs in economics terms.
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the NEACs for two different growth models and to make some inferences such is the

MSY from the data. The paper is organized as follows. Section 2 is a discussion of

the methodology used in the analysis. In section 3, we present the biological and eco-

nomic submodels. The biology and economics are merged by the fishing mortality factor

through a simplified yield function. In section 4 we present and discuss an empirical

application of the model and conclude the paper.

3.2 Data Assimilation Methods

According to Sasaki (1970), a variational inverse problem can be cast as a weak con-

straint inverse problem where the model is allowed to contain modeling errors or the

strong constraint problem (Bennett 1992; Evensen et al. 1998), where a perfect model

is assumed. The weak constraint problem is a more general formulation with the strong

constraint problem as a simple special case where the model weight is assumed to be

infinitely large. It is a common practice among some researchers to assume a model

that is perfect then vary some of the free parameters such as the initial conditions of the

model in order to find the solution which best fit the data. Such a formulation is known

as the strong constraint problem. In this paper, the variational adjoint technique will be

employed to fit the dynamic resource models to the observations. Using the variational

adjoint method the gradients of the cost functional with respect to the control variables

are efficiently calculated through the use of the Lagrange multipliers. The gradients are

then used to find the parameters of the model dynamics which best fit the data.

Data assimilation systems consist of three components: the forward model, the adjoint

or backward model and an optimization procedure (Lawson et al. 1995). The forward

model is our mathematical representation of the system we are interested in studying,

e.g., an open access or a sole owner fishery model. The adjoint model consists of equa-

tions that provide a method of calculating the gradient of the cost function with respect

to the control variables. The gradients are then used in a line search using standard opti-

mization packages to find the minimum of the cost function. Most optimization routines

are based on iterative schemes which require the correct computation of the gradient of
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the cost function with respect to the control variables. In the variational adjoint formu-

lation, computation of the gradient is achieved by using the adjoint equations forced by

the model-data misfits. The model equations are run forward in time while the adjoint

equations are run backward in time which are then used to calculate the gradient of the

cost function.

An important step in data assimilation is the choice of the criterion function for the

goodness of fit. The commonly used fitting criterion is the generalized least squares

criterion. It can be defined with no a priori information about the parameters or with

prior information about the parameters incorporated as a penalty term in the criterion

function. Some researchers argue that since some information about the parameters and

their uncertainties are always available, adding the information is a plausible thing to

do (Harmon and Challenor 1997; Evensen et al. 1998).

3.2.1 Perfect dynamics

In this paper we will assume perfect dynamics and initial condition(s). This implies that

we are neglecting modeling errors. The model dynamics will be governed by a simple

ordinary differential equation given by

dx
dt

x(O)

g(p;x)

u (3.1)

(3.2)p Po+P

where g(p; x) is a nonlinear operator, p is a vector of parameters to be estimated and

is assumed poorly known and u is the first or best guess initial condition of the model.

The vector Po is the first guess of the parameters and p is a vector of random white noise

term. Assume that we also have a set of observations of the state variable(s) which are

related to the true state in this simple linear fashion

xobs = x +v (3.3)

where xobs and x are the observed and the model forecast vectors respectively, and v

is the error vector in the observed values. The additive stochastic error term is quite
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general so far. In the subsections that follow, we will put some structure to the form of

the noise term. Inverse methods combine the theoretical information contained in the

model and the information about the true state from the data to optimally estimate the

model parameters.

3.2.2 The estimator

One of the major components of data assimilation techniques is the choice of the esti-

mator. Many estimators exist that are attractive in the literature. However, the least

squares estimator has been the popular one among researchers partly because of its

simplicity and mathematical convenience. The least squares fitting criterion is defined

as

(3.4)

where x is the prediction of the model, xobs is the observed or measured quantity. The

W is the inverse measurement error covariance matrix, i.e., the weightng matrix and is

assumed to be positive definite and symmetric and T denotes the transpose operator.

Uncertainties in the parameters are represented by the symmetric positive definite co-

variance matrix W;l. The first term in the loss function is the sum of the squares of the

model-data misfits v = (x - xobs) and the second term is a penalty on the parameters.

If the model parameters are poorly known then greater penalty is imposed, i.e., they are

given less weight and vice versa. To simplify the calculations, we make the following as-

sumptions about the errors and their uncertainties. The model-data and the parameter

misfits are assumed to be Gaussian mean zero and constant variances. That is we have

Ev = O, Evv" = W-1 = w-1I (3.5)

(3.6)EpA = O EpApAT = W-1 = w-1I, p p p

where the capital letter E denotes mathematical expectation operator, I's are unit ma-

trices and the scalar constants w-1 and W;l are the variances of the random errors in the

measurement and the parameters respectively. In view of the above assumptions, the
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cost function :J can be identified with a normal probability distribution function. Thus,

minimizing the cost function is equivalent to maximizing the likelihood, i.e., the best fit

corresponds to the most likely outcome of the measurements. For the experiments in

this paper, W = 1.0 and wp = 0.0 will be used.

3.2.3 Minimization technique

Minimization of the cost functional :J subject to the dynamics is a constrained optimiza-

tion problem (Luenberger 1984; Bertsekas 1992). A computationally efficient/ technique

for the minimization of the cost functional is the variational adjoint method. It consists

of transforming the constrained problem into an unconstrained optimization problem via

the use of the undetermined Lagrange multipliers. It is then possible to use a gradient

search method to find model parameters that yield predictions which are as close as

possible to the observations. To illustrate the numerical procedure, we use the discrete

equivalent of the continuous model dynamics

Xn + g(p; xn)dt, (3.7)

(3.8)Xo u, O::; n ::;N - 1

where N is the number of observations and dt is the time step. The discretization scheme

used is a simple forward difference scheme. The discrete form of the Lagrange functional

is constructed as follows
N Np

C =WL (Xn - x~bS)2 + WPL(Pi - 'Pi)2
n=l i=l
s-:

+L An(Xn+l - {Xn + g(p; xn)dt}) (3.9)
n=l

where An is the value of the multiplier at time step nand Np is the number of model

parameters which are the control variables of the problem. It is important to note here

that we are assuming that data are available at every grid point which is the most ideal

situation. The extrema conditions for the problem are

(3.10)

2This is compared with when calculating the gradients using finite difference approximation or when

using techniques such as simulated annealing.
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8£ =0
8xn
8£ =0
8Pi

From these equations, we obtain

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

where ~p.£ is the derivative with respect to the ith parameter and .!!.fLa
ais the tangent, Xn

linear operator. It is immediately seen that equation (3.13) recovers the model dynam-

ics, i.e., the forward model, equation (3.14) gives the backward model forced by the

model-data misfits and equation (3.15) is the gradient with respect to the parameters.

To find the model parameters that give model forecasts that are as close as possible

to the observations using the classical search algorithms, correct values of the gradi-

ents are required. Methods of verifying the correctness of the gradient are available

both numerically and analytically where possible (see, Spitz et al. 1997; Smedstad and

O'Brien 1991). We have in this paper checked all gradient calculations to ensure reli-

able parameter estimates. The optimization procedure used for the minimization is the

quasi-Newton procedure developed by Gilbert and Lemareehal (1991). Implementation

of the variational adjoint parameter algorithm involves the following steps.

• Choose the first guess for the control parameters.

• Integrate the forward modelover the assimilation interval.

• Calculate the misfits and hence the cost function.

• Integrate the adjoint equation backward in time forced by the data misfits.

• Calculate the gradient of .J with respect to the control variables.

• Use the gradient in a descent algorithm to find an improved estimate of the control

parameters which make the cost function move towards a minimum.
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3.3. THE DYNAMICS OF THE BIOMASS

• Check if the solution is found based on a certain criterion (e.g., J ~ E) for some E .

• If the criterion is not met, repeat the procedure until a satisfactory solution is

found.

3.2.4 Goodness of fit measure

To examine the performance of the method we need a statistical measure of how the

predicted and the observed variables covary in time. An appropriate parameter may be

the correlation coefficient R. For the vectors x and xobs, the correlation coefficient is

given by

(3.16)

where the bars denote the means or expected values of the random variables and N is the

number of observations. Notice that R is a dimensionless quantity and lies between -1

and +1 inclusive. From the R relation, another important quantity called the coefficient

of determination R2 can be calculated. The coefficient of determination is defined as

R2 = SSR/ SST, where SSR is the variance explained and SST is the total variance

(see Greene 1997).

3.3 The Dynamics of the Biomass

Management of many fisheries have often been based on the simplified population dy-

namics models of the Schaefer type (Sandal and Steinshamn 1997; Clark 1990). It is

apparent that these models will continue to be used for some time in the management

of some of the important commercial species around the world. While efforts are under-

way in the development of more realistic models, it is appropriate to explore techniques

of identifying the inputs of the existing models. A strong biological base is a key to

good simulation and optimization analysis in renewable resource management. The sur-

plus production models, though very simple, can be quite a good approximation of the
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complex dynamics. A continuous surplus biomass dynamics model is proposed for this

analysis. The basic form of the mathematical equation is

dx- = g(x) - hdt
(3.17)

where x(t) is the biomass at time t, h(t) is the rate of depletion of the population due

to human activities, e.g., commercial and recreational fishing; 9 is the natural additions

to the biomass. Two functional forms of the net growth of the population will be in-

vestigated in this paper, i.e., the Schaefer logistic and the Gompertz functions will be

used.

3.3.1 The net growth models

Two variants of the growth models are considered in this paper. Biological species

grow by the gift of nature. The structure of their growth is quite complicated requiring

sophisticated mathematical functions to adequately model them. Fortunately, there are

simpler models that reasonably and approximately represent the intricate growth models.

Two of the simplest parameterizations in fisheries management are

{
rX(l-;)

g(x) =
rx ln{ ~)

where x is as defined previously, r is the intrinsic growth rate per time (yr), K is the

maximum population level of the biological species in kilo-tons. The first is the Schaefer

logistic growth which is a special case of the modified logistic when the exponent is unity

(Clark 1990, Haakon 1998) and the second is the Gompertz function. Note that the

logistic function is a second order Taylor approximation of the Gompertz function.

The production function for a resource industry can be assumed to depend only on the

stock biomass and the effort expended in fishing. The simplest form of the exploitation

rate is the Gordon-Schaefer type of production function where the rate of removal of the

stock is assumed to be linearly related to the effort and stock size. The coefficient of

proportionality q in this case is called the catchability coefficient, i.e., h = qex, where e
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is the fishing effort. For the present purpose, this simple linear model will be employed.

That is, we apply a proportional fishing criterion in order to analyze the fishery.

Let I = qe be the fishing mortality rate per uint time, then the simple rule takes the

form

h(x) = f x (3.18)

which implies that at any given level of the population a fraction I will be removed. The

above formula (3.18) explicitly assumes exploitation of the species to the last fish. This

is an oversimplification of the reality. However, it may serve as a good approximation

of the complex system. For example, in the extreme situation where fishing becomes

economically unprofitable or if on a purely ecological or social ground a moratorium is

warranted, i.e., the fishery is closed which corresponds to I is set to zero. The fishing

mortality parameter I is a policy instrument for the management authorities. It is a

quite simple and an easy to use formula. Once accurate and reliable methods of stock

assessments are available, the rule can be used to set quotas appropriate for the objective

of the fishery.

Using the relation for h in (3.18) and (3.2), the biology of the stock is tied to the

economics by the fishing mortality I. In Figure 3.1 below, we show plots of the growth

functions using arbitrary values of the parameters. The values of the parameters rand

K are the same for both the functions. A straight line curve with a slope equal to 0.407(

see Ussif et al. 1999a) representing a linear in stock yield function is also shown (Note

that the unit on the vertical axis is in kilo-tons).
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Graph of surplus growth functions and yield vs. biomass
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Figure 3.1: The growth models with r=.35, K = 5300. The vertical axis is measured in

kilo-tons.

The graph of the logistic is symmetric about one half the carrying capacity (averagej''

while the Gompertz is asymmetric and is skewed towards the left. For the same K, the

latter predicts lower MSY biomass (equal to (Kle), where e""'" 2.71 is the exponent oper-

ator and a corresponding higher MSY. In practical applications, the Gompertz function

seems inappropriate for less resilient species. The combination of high MSY and low

MSY biomass prescribed by this model can result in an unpardonable mistake on the

side of management in case of recruitment failures.

3.4 An Application to NEACs

The NEACs is the most important demersal species along the coast of Norway and

Northern Russia. This fishery has played an important economic role within the coastal

3The carrying capacity is assumed constant in this application which is another simplification in our

models. It may be more realistic to allow it to vary with time.
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communities for the past thousand years. The NEACs has for the past half century

experienced large variations which result in a corresponding variation in the annual har-

vest quantities. The stock size fell from its highest level in 1946 of 4.1 million tons to

the lowest in 1981 of 0.75 million tons. A time series plot of the history of the stock

indicated a sign of recovery from its worst state in the mid 90's but recent reports show

that the fishery is again in deep trouble (see Figure 3.2 below).
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Figure 3.2: Graph of actual harvest and the stock biomass. The stock biomass is divided

by a factor of three.

In this study, a time series of observations from 1946 to 1996 is used. The data was

obtained from the International Commission for the Exploration of the Sea (ICES) report

of the Arctic group (See Anon. 1998). The variational adjoint method is used to fit the

hypothesized dynamics to the observations. The NEACs provides a good example to

which the data assimilation method can be tested. To estimate the parameters, the

intrinsic growth rate is assumed fairly known by fixing its value to 0.3499 (This value

is obtained from Ussif et al. 1999b). One of the reasons why we are imposing such a
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restriction is to reduce the number of the parameters. The justification is that the r is less

sensitive of the two biological parameters. We then have two parameters i.e. Kand f to

estimate. The other parameters of the models are then estimated. The optimization was

started by randomly generating reasonable initial guesses using a uniform random deviate

intrinsic function. By seeding the generator, different initial guesses were used to check

for the presence of local extrema. For all the experiments in this paper the convergence

criterion for the optimization is 11~.711/11~.7111 ~ 10-6 where ~.7 and ~.71 are the

gradients of the current and initial points respectively and 11.11is the norm operator.

The performance of the algorithm is very impressive. Convergence was obtained in a

few iterations in all the runs. The best fit parameters and the R2 values are shown in

the table 3.1 below.

Parameters Logistic Gompertz

r* 0.3499 0.3499

K 5268.5 5499.99

f 0.4076 0.4964

R2 0.550 0.529

Table 3.1: Model parameters for the biomass dynamics models. The units are (/year)

for the rand f and kilo-tons for K.

The star in the table 3.1 means those values were restricted. The Schaefer logistic and

the Gompertz functions tend to give plausible estimates. The fit to the data is quite

good for both models with the logistic model explaining about 55.0% of the data while

the Gompertz function explains about 53% of the data. It is observed that the estimates

for the latter model are relatively higher than the former.

Plot of the actual biomass data and the solutions of the models using the estimated

parameters shown below.
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Figure 3.3: Plot of stock biomass vs. time

The two models have captured the general trend in the data. They fail to capture the

stochastic component present in the data. Next, the growth functions are presented on

the same graph with the actual harvest data. The goal is to showone of the findings

of the paper. That is, the stock is exploited at an unsustainable rate leading to the

alarming state of the fishery. Figures 3.4-3.5., show the plots of the actual harvest and

growth curves against the biomass. The plus sign represents the actual harvest while

the solid line represents the net growth curve. The logistic growth model predicts that

the harvest rate has been persistently above the net growth curve see Figure 3.3 below.

At the lower end of the graph, we notice that the actual harvest is close to the growth

curve and is below it on a few occasions. One interesting observation is that several

points tend to cluster around the maximum sustainable yield (MSY). This gives a more

acceptable picture of the actual fishery.
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Figure 3.4: The logistic growth model.

The forecasts of the latter model, i.e., the Gompertz model, is quite similar to the predic-

tions of the logistic model but appears to point to other factors for the recent troubles of

the fishery rather than excessive harvesting of the stock (Figure 3.4). Several important

fisheries have collapsed due to overexploitation (see Bjorndal and Munro 1998).
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Figure 3.5: The Gompertz growth model.

To further discuss the results of the paper, we provide estimates that might be of consid-

erable interest to managers of the NEACs. An important caveat however is that, while

these values are quite reasonable, a direct translation of the results to the NEAC stock

may not be advised.

The use of surplus growth functions implies there exist a certain level of biomass at

which natural additions to the stock are greatest. This occurs at the extremum point

of the concave growth functions. For each model an f exists that will direct the stock

to the sustainable level. In the case of the Schaefer logistic, a simple algebra yields

optimal fishing mortality rate for an MSY policy equal to one half the intrinsic growth

rate (f = r /2) if the population is below the sustainable biomass level. The table 3.2

below shows some quantities of practical interest pertaining to the NEACs.
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Parameters Logistic Gompertz

r* 0.3499 0.3499

K 5268.5 5499.99

XMSY 2634.25 2023.33

MSY 460.9 707.96

Table 3.2: Sustainable parameters for the two biomass dynamics models.

Estimates of XMSY and MSY quantities are shown in rows 3 and 4 of table 3.2. The

Schaefer logistic model seems to out perform its counterpart, i.e., the Gompertz model.

It gave a lower MSY estimate but a higher value of optimum sustained biomass. These

estimates are quite appealing and are more acceptable than the predictions of the Gom-

pertz. The MSY for the Gompertz is around the values of TAC in the late 90's. The

sustainable biomass level of around 2.0 million tons may be a bit low. However, it may

not be advisable to completely discard the results from the Gompertz model since there

are other important factors that may account for the troubles of the fishery. For instance,

factors such as sea pollution and unfavorable weather conditions may be accountable for

the recent sorry state of the NEACs stock.

3.4.1 Conclusions

The NEACs fishery is analyzed using an optimal control approach of dynamic model

parameter estimation. Two alternative growth models are proposed and used in the

analysis. The production relation for the fishery is assumed to be linear in the biomass

and constitute a simple feedback rule. A quite restrictive assumption of constant fishing

mortality is made which yields a proportional fishing policy. The model dynamic equa-

tion is nonlinear in the parameters and quadratic in the stock. A least squares criterion

measuring the discrepancy between the data and its model equivalent was minimized

subject to a dynamic constraint. The variational adjoint method is used to efficiently es-

timate the parameters. Parameter estimates from the Schaefer logistic and the Gompertz
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models are reasonably good. That is they are within acceptable range for the NEACs.

Both models have about the same explanatory power R2 = .55. This seems quite rea-

sonable since the models were able to capture the trend in the data but failed to capture

the periodic oscillations. It is obvious that the models are not sophisticated enough to

explain the random events inherent in the system. Ecosystem effects and environmental

variability are very important variables and ought to be included in the model. Pre-

dictions from these models are consistent with many recent experiences in fisheries and

other natural resource stocks. Both the stock biomass and the amount harvested have

been declining while fishing mortality is increasing due to technical innovations. More

powerful boats are being developed and other advanced fishing equipments are available

making the population more vulnerable to exploitation.

This paper has demonstrated the utility of the data assimilation methods in dynamic

parameter estimation for two alternative resource models. It exposes the strengths and

weaknesses of the simplified biomass dynamics models and provides model solutions that

are in close agreement with the observations. The methods have numerous additional

capabilities that are worth exploring in the future. Bioeconomists may find these meth-

ods indispensable if questions that interest managers most have to be answered and if

more realistic models become readily available.
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Estimation of biological and economic parameters of a bioeconomic
fisheries model using dynamical data assimilation

Abstract

A new approach of model parameter estimation is used with simulated measurements

to recover both biological and economic input parameters of a natural resource model.

The procedure efficiently combines time series of observations with a simple bioeconomic

fisheries model to optimally estimate the model parameters. Using identical twin exper-

iments, it is shown that the parameters of the model can be retrieved. The procedure

provides an efficient way of calculating poorly known model parameters by fitting model

results to observations. In separate experiments with exact and noisy data, we have

demonstrated that the variational adjoint technique of parameter estimation can be an

efficient method of analyzing bioeconomic data. Results of sensitivity analysis of the

model parameters show that the environmental carrying capacity (e.g., habitat) is the

most important input parameter in the model.
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4.1 Introduction

In this paper we use a very simple bioeconomic fisheries model to introduce a new

technique of optimally estimating the parameters of a dynamic fisheries model and to

demonstrate its potential usefulness. The approach is known as data assimilation. In

data assimilation mathematical or numerical models are combined with available mea-

surements in order to improve the model itself or to improve the model forecasts. The for-

mer application is known as model fitting (Smedstad and O'Brien 1991; Yu and O'Brien

1991; Lawson et al. 1995; Spitz et al. 1997). A variety of these techniques such as

the Kalman Filter (Kalman 1960; Gelb 1974), the Extended Kalman Filter (Gelb 1974;

Evensen 1994), Optimal Interpolation (Lorenc 1986) and the Variational Data Assim-

ilation (Smedstad and O'Brien 1991) are already in common use. These techniques

have extensively been used in areas such as groundwater hydrology and petroleum reser-

voirs (see for example Carrera and Neuman 1986(a,b,c); Yeh 1986) and more recently

in ecosystem models (Spitz et al. 1997; Matear 1995). The technique in this paper is

the so called variational adjoint parameter estimation. This method minimizes a precon-

structed loss or criterion function which is defined by the differences between the data

and the model forecasts. The optimal or best fit parameters are obtained by minimizing

the loss function subject to the dynamical constraints via the so called adjoint equations

which map the predefined loss function into the gradient with respect to the control pa-

rameters (Lawson et al. 1995; Spitz et al. 1997). The gradients are then used iteratively

in a descent or Newton type of algorithm in order to search for the minimum of the loss

function.

Application of these techniques is spreading very rapidly to many areas such as physical

and biological systems (Spitz et al. 1997). Lawson et al. (1995) applied the technique

of data assimilation to the well known and extensively studied predator-prey model in

biology. In another application, Gauthier (1992) applied data assimilation with an ad-

joint model technique to the Lorenz model. Other techniques of data assimilation are

the simulated annealing (Kirkpatrick et al. 1983; Kruger 1992) and the hybrid Monte

Carlo techniques (Harmon and Challenor 1996). These are stochastic in nature and may

be very costly to implement. Data assimilation is also widely used in meteorology and
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oceanography to estimate initial and boundary conditions. For reviews of these meth-

ods in meteorology and physical oceanography refer to (Bengtsson 1981; Navon (1986,

1997)).

Research in bioeconomics of fish stocks has been based on simple aggregated biological

models (Schaefer 1954). Classical growth models such as the logistic and the exponential

functions are the commonly employed models in the qualitative analysis of fish stocks

(Sandal and Steinshamn 1997(a,b,c); Clark 1990).

The reality of these models has not yet been rigorously tested. Data assimilation gives

us the opportunity to test these models using the available data which is assumed to be

more realistic than the models themselves. More realistic bioeconomic models of renew-

able resource stock may be multidimensional and highly complex. They may contain

many parameters such us the intrinsic growth rate, the catchability coefficient, and the

environmental carrying capacity whose values are extremely difficult to measure. Pa-

rameterization of the models become mathematically untractable and impractical. As a

consequence, biologists and bioeconomists have found it necessary to introduce simpler

models. The issue of identification, i.e., the problem of estimating parameters so that

the model predictions are more realistic and useful, has been raised by many natural re-

source economists (Clark 1990). However, adequate attention has not been given to the

problem. Instead, economists have focused on the analytical considerations leading to

a neglect of most of the vital questions resource managers/fishers are mostly concerned

about, e.g., what is the safe biomass level (Deacon et al. 1998), etc.

Due to the progress in data collection and processing in recent times from both the fish-

eries biologists and economists and the advances in computer technology, techniques of

data assimilation which are both data and computer intensive have good future prospects.

The assimilation technique introduced in this paper has some advantages compared to

the conventional techniques. First it is very attractive and computationally efficient to

implement. Second, it can be used for more realistic and complex dynamical models of

bioeconomic systems. Third, it can be used to adjust both the initial conditions and the

parameters of the model. Fourth, it can also be used to estimate the variables of the

dynamical model.

A variational adjoint formulation will be used in this paper as an alternative approach
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to the widely used regression analysis in economics. It is a more general formulation

than the traditional regression. It can be used for linear and nonlinear models and is

highly suitable for more realistic models where closed form solutions are unattainable.

The methods can be used to simultaneously estimate a large number of parameters. It

can also be used to perform sensitivity analysis of the input parameters of the model.

Most of the optimization algorithms used in variational adjoint parameter estimation are

iterative. Parameter estimation in dynamical systems is generally nonlinear even if the

model is linear (Evensen et al. 1998). Consequently, the loss function may contain mul-

tiple extrema. Notice that as with all iterative techniques, one should expect problems

with convergence to the global optimum due to flat regions in the domain of search.

The technique introduced in this paper provides a more general and novel approach of

incorporating information from field measurements into bioeconomic models. Primarily,

the focus of the paper is to demonstrate the applicability of the methods in natural

resource economics. The plan of this paper is as follows. First, the technique of data

assimilation will be introduced and discussed. Second, the variational adjoint "strong

constraint" (Sasaki 1970) method will be presented and the solution algorithm outlined.

Third, the bioeconomic fisheries model will be presented and a sensitivity analysis per-

formed to investigate the importance of the input parameters to the response. Fourth,

identical twin experiments with clean and noisy data will be performed and the result

discussed. Finally, we discuss and summarize the work. The mathematical details are

relegated to the Appendix.

4.2 Data Assimilation

Variational adjoint technique determines an optimal solution by minimizing a loss func-

tion that measures the discrepancy between the model counterparts to the data and

the available measurements. The method leads to the solution of the model equations

that best fits the available measurements throughout the assimilation interval in a least

squares sense. Data assimilation systems consist of three components: the forward model

with a criterion function, the adjoint or backward model and an optimization procedure
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(Lawson et al. 1995). The forward model is our mathematical representation of the

system we are interested in studying, e.g., an open access, a regulated open access or a

sole owner fishery.

The adjoint model consists of equations obtained byenforcing the dynamical constraints

through Lagrange multipliers and provide a method of calculating the gradient of the

loss function with respect to the control variables. The gradients are then used in a line

search using standard optimization packages to find the minimum of the loss function.

Most optimization routines are based on iterative schemes which require the correct

computation of the gradient of the loss function with respect to the control variables.

In the variational adjoint formulation, computation of the gradient is achieved through

the adjoint equations forced by the model-data misfits. The model equations are run

forward in time while the adjoint equations are run backward in time which is then used

to calculate the gradient of the loss function.

An important step in data assimilation is the choice of the criterion function for the good-

ness of fit. The commonly used criterion is the generalized least squares criterion. It can

be defined with no a priori information about the parameters or with prior information

about the parameters incorporated as a penalty term in the criterion function. Some

researchers argue that since some information about the parameters and their uncertain-

ties are always available, adding the information is a plausible thing to do (Harmon and

Challenor 1997; Evensen et al. 1998).

4.3 The Penalty Function

In variational adjoint parameter estimation a loss functional which measures the differ-

ence between the data and the model equivalent of the data is minimized by tuning the

control variables of the dynamical system. The goal is to find the parameters of the

model that lead to model predictions that are as close as possible to the data. A typical

penalty functional takes the more general form

1 {Tf A T A

3[X, a] = 2" Jo (X - X) W(X - X)dt
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(4.1)

where X is the observation vector, X is the model equivalent of the data, ao is first

or best guess of the parameter vector and a is the parameter vector to be estimated.

The period of assimilation is denoted by TI and T is the transpose operator. The W/s

are the weight matrices which are optimally the inverses of the error covariances of the

observations. They are assumed to be positive definite and symmetric. The second term

in the penalty functional represents our prior knowledge of the parameters and ensures

that the estimated values are not too far away from the first guess. It may also enhance

the curvature of the criterion function by contributing a positive term Wa to the Hessian

(second order derivatives) of .:r (Smedstad and O'Brien 1991).

For this analysis, it will be convenient to assume that the errors are not serially correlated.

This implies that the covariance matrices are now diagonal matrices with the variances

along the diagonal. We further assume that the variances are constant. Then the weight

matrices can be written as W = wI and Wa = waIa where the I's denote unit matrices

and the smalllettered ui' s are the weights. The discretized loss function becomes

(4.2)

where P is the number of parameters and N is the number of observations. One special

case is the choice of the weights equal to unity which leads to the least-squares procedure.

The frequently made statistical assumption about the errors in the literature is that of

normality. If this assumption is satisfied, then the optimal least squares estimators are

the maximum likelihood estimators.

4.3.1 The variational adjoint method

Construction of the adjoint code is identified as the most difficult aspect of the data

assimilation technique (Spitz et al. 1997). One approach consists of deriving the con-

tinuous adjoint equations and then discretizing them (Smedstad and O'Brien 1991).

Another approach is to derive the adjoint code directly from the model code (Lawson

72



4.3. THE PENALTY FUNCTION

et al. 1995; Spitz et al. 1997). For this analysis, it might be instructive to derive the

adjoint equations using the first approach. Consider the forward model equation

BX
at

X(O)
F(X,a)

Xo

(4.3)

where X is a scalar or vector of model variables, & represents vector of model parameter

errors, F is a linear or nonlinear operator, and Xo is the vector of initial conditions.

Formulating the Lagrange function by appending the model dynamics as a strong con-

straint

1fT! BX£[X, a] = J + - M( -B - F(X, a))dt
2 o t .

(4.4)

where M is a vector of Lagrange multipliers which are computed in determining the best

fit. The original constrained problem is thus reformulated as an unconstrained problem.

At the unconstrained minimum the first order conditions are

B£
(4.5)BX =0

B£ =0 (4.6)BM
B£ =0 (4.7)
Ba

It is observed that equation (4.5) results in the adjoint or backward model, equation

(4.6) recovers the model equations while (4.7) gives the gradients with respect to the

control variables. Using calculus of variations or optimal control theory (see Appendix),

the adjoint equation is

W(X-X)

O (4.8)

and the gradient relation is

fT! BF T
D..a.7 = - o [Ba] Mdt +Wa(a - ao) (4.9)
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The term on the RHS of (4.8) is the weighted misfit which acts as forcing term for the

adjoint equations. It is worth noting here that, we have implicitly assumed that data

is continuously available throughout the integration interval. Equations (4.3) and (4.8)

above constitute the Euler-Lagrange (E-L) system and form a two-point boundary value

problem. For details of the derivation see the Appendix.

The implementation of the variational adjoint technique on a computer is outlined below.

• Choose the first guess for the control parameters.

• Integrate the forward modelover the assimilation interval.

• Calculate the misfits and hence the loss function.

• Integrate the adjoint equation backward in time forced by the data misfits.

• Calculate the gradient of E with respect to the control variables.

• Use the gradient in a descent algorithm to find an improved estimate of the control

parameters which make the loss function move towards a minimum.

• Check if the solution is found based on a certain criterion (e.g.II~JII ::; E).

• If the criterion is not met repeat the procedure until a satisfactory solution is found.

The optimization step is performed using standard optimization procedures. In this

paper, a limited memory quasi-Newton procedure (Gilbert and Lemarechal, 1991) is

used. The success of the optimization depends crucially on the accuracy of the computed

gradients. Any errors introduced while calculating the gradients can be detrimental and

the results misleading. To avoid this incidence from occurring, it is always advisable

to verify the correctness of the gradients (see, Smedstad and O'Brien 1991; Spitz et al.

1997). Verification of the adjoint code is performed by a simple Taylor series expansion

of the penalty functional about a certain vector of the control variable x, i.e.,

(4.10)
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where 'Y is a small scalar, u is an arbitrary vector (see, Smestad and O'Brien 1991;

Lawson et al. 1995). Defining a function q,('Y) and rewriting (4.10) we have

q,( ) = .J(x + 'Yu) - .J(x) = 1+ O('Y)
'Y 'YUT ~x.J(x)

(4.11)

Hence, in the limit as 'Y approaches zero, the value of q,('Y) approaches unity. If the

scalar 'Y is small, the values of the function q,('Y) will be approximately equal to one.

4.4 The Bioeconomic Model

This section presents the bioeconomic fisheries model. It is an aggregated or lumped

parameter model of a single cohort or year-class (Clark 1990). The population dynamics

of the fishery will be modeled as

dx
- = f(x) - h
dt

(4.12)

where h(t) is the harvest rate from the stock, x(t) is the stock biomass, f(x) is the

growth function which for this analysis we will use the simple logistic model. That is

f(x) = rx(l - x] K) where rand K are positive constants called the intrinsic growth

rate and the environmental carrying capacity respectively. The biological model specified

above depends on two parameters (r, K). These parameters are little known in the

scientific community for most fish stocks around the world. Accurate measurements of

their values are difficult if not impossible. Statistical estimation methods were devised

by (Schaefer 1967). This paper has similar goals of devising mathematical methods of

estimating the parameters of the model equations (differential equations), testing the

realism of the models against the observational data and subsequently improving the

models.

The economics is also simple in this analysis. A hypothetical sole owner is envisaged.

The goal of the management is to maximize a given discounted net economic function

(4.13)
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where h(t) is the control variable, Tt is the time horizon which may be finite or infinite

and 7r(h) is a rescaled or normalized economic function given by

7r = ah - h2 (4.14)

where a is an economic parameter to be estimated. The objective function is assumed

to depend explicitly only on the harvest rate from the stock. This could be commercial,

social or even political. For a commercially managed fishery, the objective may be

maximization of discounted rents accruing from the exploitation of the biological species.

A socially oriented manager may optimize the total utility or aim at conserving the stock.

As oppose to these two objectives, a politically motivated goal may be to protect peoples

jobs.

In the above formulation, fl is the discount rate which has been commonly set to the

current interest rate. It may however be plausible to estimate the value of the discount

rate from available data. That is instead of pre-setting the value, we allow the data to

tell us what its value is for the fishery we are modeling. Theoretically, the optimum

equilibrium conditions are met if the marginal productivity of the resource in question

is equal to the discount factor or the social time-preference. However, this may not be

the case in a real-world scenario. There are many convincing reasons why one will think

that the managers time-preference is significantly different than the market interest rate.

Another important input in the analysis of resource models is the time horizon. In this

paper, the time horizon is a free parameter. It can be preset exogenously or it can be

determined as an endogenous parameter in the problem. Hence, in spite of the quite

restrictive form of the performance index in this paper the control problem is to some

extent quite general. Various special cases can be formulated and discussed. The case

considered here is a fixed horizon control problem.

Maximizing the above problem (4.13) subject to the natural constraint is a nonlinear

optimal control problem (Clark and Munro 1970). The technique has been discussed by

several authors (e.g., Kamien and Schwartz 1981)

Application of maximum principles to the above problem yields the following two system
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4-4. THE BIOECONOMIC MODEL

of coupled nonlinear ODEs (see Clark 1990; Appendix).

dx
dt
dh
dt

x
rx(1- -) - h

K
2x

-O 5(a - 2h)(8 - r(1 - -)). K

(4.15)

(4.16)

Analytical solutions of the system of nonlinear ODEs are in general unobtainable. How-

ever, approximate numerical solutions of these equations are easy to obtain if the neces-

sary initial and boundary conditions are specified. In reality however, the initial condi-

tions that lead to the separatrix solution are not precisely known a priori. Given a set of

data, a solution could be found by either manually or automatically tuning the poorly

known initial and/or boundary conditions as well as the free parameters of the model

until a satisfactory solution is obtained. This could easily and efficiently be achieved by

the use of the data assimilation technique introduced in this paper.

Identical twin experiments will be used throughout the analysis. That is data will be

generated from the model itself using Monte Carlo simulations. This guarantees that

the model and the data are consistent and serves as a good test of the varitional ad-

joint algorithm. A moderate objective of the paper is to demonstrate the usefulness of

this approach in resource modeling, hence the use of this simple model which is fairly

known and used in bioeconomic fisheries analysis. To carry out the experiments, reason-

able parameter values will be chosen for the model and a variational adjoint parameter

estimation technique will be used to recover the parameters.

4.4.1 Equilibrium analysis

The equilibrium behavior of the simple fishery model in this paper is studied. For an

infinite horizon problem, the optimal path for the dynamics is the separatrix leading to

the equilibrium point. At the optimal equilibrium, the following conditions hold: : = O

and ~~= O which implies that rx*(1- i) - h* = O and -0.5(a- 2h*)(8 -r(1- 2r)) = O.

This gives rise to these equilibrium points: (h* = a/2 , h* = rx*(1- x*/K)) and

( 8 = r(1- 2x* / K), h* = rx*(1-x* / K)). Notice that the first equilibrium is a bliss point

(i.e., point at which the benefits are maximum) and most rewarding from the economic

viewpoint if achievable. It is the theoretical optimum for the quadratic benefit function
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defined above.

• Case 1. For the case of the bliss point the optimal equilibrium harvest and stock
2r±yl4r2_8ar

are h* = a/2 and x* = 4T/K K , where the term under the square root sign

is restricted to be nonnegative. Many interesting observations are made here.

Notice here that when the term under the square root sign is zero, we recover the

maximum sustainable yield (MSY) optimum x* = K /2~ If the square root term is

large compared to 2r, we have a single equilibrium. However, if the square root

term is small compared to 2r two different values exist for the equilibrium stock

and the larger may be preferred. A larger standing equilibrium stock leads to

higher sustained yield for the capital asset .

• Case 2. This case leads to the equilibrium biomass x* = K(l - 8/r)/2. The term

8/ r, i.e., the ratio of the discount factor to the growth rate, is what is referred to

as the bionomic growth ratio (Clark 1990). Setting 8 = Oyields the MSY policy as

usual. The optimal equilibrium harvest h* is obtained by simply substituting the

x* into the equilibrium stock-harvest relation above. The second case seems to be

embedded in case one if 8 = Jr2 - 2ar / K.

To illustrate the technique, we use the population dynamic model with the popular

logistic growth function as in Sandal and Steinshamn (1997) and Homans and Wilen

(1997). We choose the biological parameters based on the views of some scientists for

the North East Arctic Cod stock (NEACs). For this biological species a value between

0.2 and 0.5 per year for the growth rate and between 5000 and 7000 Kilo-tons for the

carrying capacity are considered reasonable. Immediately after World War II, biologists

have estimated the stock biomass for NEACs to be at about 4230 Kilo-tons which is

believed to be greater than the x M SY.

For the ensuing analysis, we assume that r = .35 per year and K = 6000 Kilo-tons. We

also assume that the management objective is the maximum sustainable yield (MSY)

policy in most parts of the paper. Using these values the XMSY = K/2 = 3000 Kilo-tons

and the corresponding YMSY = rK/4 = 525 Kilo-tons. From case one, a = 2y implies
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a = 1050 Kilo-tons. To get simulation results which are of the same order of magnitude

as in the case of NEACs values, we use the hypothetical stock values of 2300 Kilo-tons

and 10% of the stock for the harvest rate as the initial conditions of our model.

4.4.2 Scaling

The performance of an optimization algorithm generally depends on the particular choice

of the variables of the problem. Change of variables is usually recommended in practical

applications (Luenberger 1984; Yu and O'Brien 1995). To study the effect of different

choices of the parameter scales we rescale the variables by introducing the following

transformation: Let x = pz and substituting in

dx
dt
dh
dt

xrx(1- -) - h
K

2x
-0.5(a - 2h)(8 - r(1 - K))

yields:

dz
dt
dy
dt

zrz(1 - -) - y
k
I 2z

-0.5(a - 2y)(8 - r(1- k))

(4.17)

(4.18)

where: z = x] p, y = hip and a' = alp. The scaling factor p will be allowed to vary and

the effect studied later in the paper. The small k is the normalized carrying capacity

given by k = Kip. It must be noticed that the quantities are now nondimensional. It

may easily be checked by dimensional analysis.

4.4.3 Sensitivity analysis

Models of physical, biological and economic systems have input parameters on which

their predictions depend. Some of these parameters are more important than others.

Sensitivity is a measure of the effect of changes in the given input parameter on a model
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solution. It quantifies the extent that uncertainties in parameters contribute to uncer-

tainties in the model results (Navon 1997). Several analytical techniques of sensitivity

analysis exist. The approach here is numerical method of calculating sensitivity of model

response to input parameters. Let the quantity X depend on a parameter a. Then the

absolute Sa and relative S; sensitivities with respect to a can be defined respectively as

Sa = aX(a)
aa

(4.19)

and

Sr = aX(a)_a_
åo X(a) (4.20)

S; is a nondimensional quantity which has the interpretation of percentage change in the

output due to 1 percent change in the input parameter. To economists, equation (4.20)

is an equivalent measure of elasticity. Input parameters will be perturbed from their true

values and the model integrated over a given time horizon. Sensitivity of the output to

the discount factor has not been studied in this paper. Its effect has previously been

studied by, among others, (Sandal and Steinshamn 1997c). The results are graphed and

discussed.

Figure 4.1. is a plot of the unperturbed solution and the solutions with each of the

parameters reduced by 1% of their values. Results of the sensitivity analysis show that

the model solution is sensitive to all the biological and economic parameters. The growth

rate appears to have least effect on the model outputs while the carrying capacity has

most influence (see Figure 4.1.).
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Figure 4.1: Phase plane plots of the sensitivity analysis.

It is observed that perturbing the parameter by larger values (10%) results in large

distortion of the solution. Hence, care must be taken when choosing the initial guesses

in a parameter estimation.

4.4 The Twin Experiments

As a first step we use artificially generated data (twin experiments) to test the perfor-

mance of the data assimilation method. This will avoid any inconsistencies between the

data and the model. First clean or exact data, i.e., data without measurement errors,

will be simulated by integrating the model equations from known initial conditions and

the parameters whose values are to be recovered. Second, stochastic errors will be in-

troduced using random number generators from standard packages. The model will be

solved and a certain level of noise added to the "true" solution. The data is assumed

to be related to the model in a linear fashion, i.e, xn = Xn + En where En denotes the

stochastic error term. In all the experiments to be carried out, we assume that data is
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available at every grid point. This might not be the case however in practice as data is

sparse in time. For an actual fishery, biological and economic time series of observations

may be available only on an annual basis.

4.4.1 Experiment with clean data

Several experiments were performed using data without any type of errors. That is, the

exact solution of the model is used as the measurements. We investigate the effects of

adding a priori knowledge of the parameters in the formulation of the penalty functional.

Two results are shown here. Figure 4.2. is the plot of the parameters against the

number of simulations for the case where we assume no a priori information, i.e., complete

ignorance about the parameters. In Figure 4.3., we incorporated some information about

the parameters and their uncertainties. Recovery of the model parameters was achieved

in a few iterations depending on the initial guess. The convergence of the minimization

procedure did not seem to depend very much on the initial guess of the parameters as

long as they are fairly reasonable guesses. The graph of the normalized loss function

shows a sharp decrease in its value. In about 2 iterations the value of the loss function

fell to about 5% of the initial value. Not surprisingly, its value vanished at the optimum.

This is expected in a twin experiment with a perfect data.
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Figure 4.2: Plot of the parameters and the normalized loss function vs. no. of simula-

tions: No penalty on parameters.
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Figure 4.3: Plot of the parameters and the normalized loss function vs. no. of simula-

tions: With penalty on parameters.
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The conclusion drawn from the two cases with penalty and without is that, once the

penalty is included, it becomes incumbent to have reasonably good prior (best) guesses of

the parameters or their uncertainties or both. In fact, in this experiment, we encountered

problems with recovering the parameters if our best guesses were a bit away and the

weights relatively close to the data weights. If the weights were correctly chosen, the

gains compared to the first case with no information on penalty were not very substantial.

An initial best guess of 10% from the true parameters required data-to-parameter weight

ratio of at least 106 for convergence.

4.4.2 Experiment with noisy data

For this experiment, the data is contaminated with normally or Gaussian mean zero

and constant a2 variance N(O, a2) distributed random errors. Similar experiments as

in the case with perfect data were performed. We have made several runs to study

various effects of adding different level of random noise to the solution of the model

equations. With no penalty on the parameters, estimates were relatively further away

from the "true" ones. Convergence to the "true" solution was quite difficult signifying

the existence of local minima as the level of noise becomes significant. Very accurate

initial guesses were required. This does not, however, indicate any serious setback in

the variational adjoint parameter estimation. The aim of the assimilation is to adjust

the free parameters such that the model predictions are as close as possible to the

data. What happens is that the data is given large weight if there is no penalty on the

parameters. Including prior information on the parameters results in better recovery of

the parameters if the best guesses were quite good. The most troubling aspects of the

experiment with a penalty on the parameter is the choice of the weights. Plots of the

experiments are shown in the figures below. Figure 4.6. shows the simulated data and

the best fit solutions. The level of noise added to the model solution to some extent

affects the rate at which the parameters are recovered as well as the accuracy of the

estimates.
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4.4 Summaryand Conclusion

This work to our best knowledge represents the first attempt to explore the highly ad-

vanced and attractive method of parameter estimation in resource economics. It serves

as a link between data and the model formulation. The basic idea is to find parameters

of a dynamic fisheries model which yield model results that are as close as possible to

the observed quantities. To achieve this goal a loss function measuring the distance

between the model results and the data was predefined and the parameters estimated

through an iterative process using the variational adjoint method. In the variational

adjoint technique the model is assumed to hold exactly "strong constraint formalism"

and the free parameters of the model are adjusted until the model predictions are as

close as possible to the observations. A gradient search technique was used to iteratively

explore the parameter space in order to find the minimum of the loss function.

In a few experiments we have demonstrated the utility of the variational adjoint tech-

nique in recovering model parameters such as the growth rate of a bioeconomic model.

These parameters are vital in understanding the dynamics of the exploited species which

can lead to a more accurate and realistic management policies. The results of the dual

experiments show that model parameter sets can easily be estimated using both the

information from measurements and the model formulation. In the experiment with

clean data, parameters were recovered to within several orders of magnitudes in a few

iterations.

The outcome of the sensitivity studies shows the relative importance of the input pa-

rameters. It is observed that the environmental carrying capacity is the most important

parameter, i.e., small uncertainty in its value leads to large uncertainty in the output

of the model. For an effective MSY policy, it is important to know very precisely the

value of K. For most animal species around the world, the carrying capacity has been

diminishing overtime. Implementation of MSY policy will require accurate and revised

estimates of K regularly. It may thus be tempting to think that one of the reasons

why MSY policy has not been very fruitful is due to lack of knowledge of the K, which

means our estimate(s) of the sustainable stock biomass is not dependable and hence the

MSY. From the little experience gathered, it may be advised that a sensitivity analysis
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be performed prior to parameter estimation.

To conclude, the paper has accomplished the following. A novel approach to dynamic

model parameter estimation method has been introduced with reasonable degree of suc-

cess using a simple bioeconomic model. The idea here is quite unique in a sense that both

biological and economic theory were combined in the modeling of the resource system.

In this case the parameter estimates are optimal compared to the situation where either

a biological or an economic theory alone is used. Its potential in handling nonlinear

models is also demonstrated and thus it is important to explore more of the capabilities

of the method in future.

APPENDIX A

A.l Mathematical Derivations

This section is reserved for the more technical aspects of the paper. First, it will present

the mathematical formulation of the bioeconomic model pertaining to the optimal man-

agement of the stock in a sole owner context. Second, derivation of the adjoint model

code will be presented in detail.

A.2 Derivation of the bioeconomic model

A more general bioeconomic model is formulated. The objective and the growth functions

are assumed to depend on the stock biomass, the harvest and explicitly on time. This

will allow us to derive several special cases as they apply to different fisheries. Consider

the problem

[Tf
max Jo 7r(x, h, t)dt (A.l)

subject to

dx
dt F(x, h, t) (A.2)
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x(O) = Xo (A.3)

Defining the current value Hamiltonian function H(x, h, m, t)

H = 7r(x, h, t) + mF(x, h, t) (A.4)

where m(t) is the current value multiplier. Assuming an inner solution, the first order

conditions are:

dH
dh = 7rh + mFh = O,

dm
dt = 8m - Hx (A.5)

From (A.3) we have

(A.6)

equating (A.3) and (A.4), and rearranging yields

dh
dt

87rhFh - (7rx + (-~ )Fx)F~
7rhhFh - 7rhFhh

(7rhxFh - 7rhFhx)(F - h) + (7rhtFh - 7rhFht)
7rhhFh - 7rhFhh

(A.7)

Equations (A.2) and (A.7) constitute an n-dimensional dynamical systems.

APPENDIX B

B.l Derivation of the adjoint model

The adjoint equations are derived by forming the Lagrange functional via the undeter-

mined multipliers. The Lagrange function is

IT! ax
C[X, aj = .:J + o M( 8t - F(X, a))dt (B.l)
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Perturbing the function E

£,[X + ISX, aj .J[X + ISX, aj

+ f~! M(å(X ~ ISX) - F(X + ISX, a))dt (B.2)

fT! åX
£,[X + ISX, aj = .J + D.x.JISXT + o M( at - F(X, a))dt

_2fT! M(åISX _ åF ISXT)dt + O(ISX2)
o åt åX

Taking the difference (£,[X + ISX, aJ- £,[X, aj)

(B.3)

(BA)

Requiring that IS£' be of order O(ISX2) implies

(B.5)

By integrating the second term of the LHS by parts and rearranging, we have

åM + [åFJTM =W(X - X)
åt åX

M(Tf) = O (B.6)

which are the adjoint equations together with the boundary conditions.

90



REFERENCES

References

• Bengtsson, L.M. Ghil, M. and Kallen E. 1981. Dynamic Meteorology: Data As-

similation Methods, Springer, New York.

• Bennett, A.F. 1992. Inverse Methods in Physical Oceanography. Cambridge Uni-

versity Press, Cambridge.

• Carrera, J. and Neuman, S.P. 1986a. Estimation of Aquifer Parameters Under

Transient and Steady State Conditions:1. Maximum Likelihood Method Incorpo-

rating Prior Information. Water Resour. Res. 22(2), 199-210.

• Carrera, J. and Neuman, S.P. 1986b. Estimation of Aquifer Parameters Under

Transient and Steady state Conditions:2. Uniqueness, Stability and Solution Al-

gorithms. Water Resour. Res. 22(2), 211-227.

• Carrera, J. and Neuman, S.P. 1986c. Estimation of Aquifer Parameters Under

Transient and Steady State Conditions:3. Application to Synthetic and Field Data.

Water Resour. Res. 22(2), 228-242.

• Clark, W. 1990. Mathematical Bioeconomics, New York: Wiley and Sons.

• Deacon, R.T., Brookshire, D.S, Fisher, A.C, Kneese, A.V., Kolstad, C.D.,Scrogin,

D., Smith, V.K., Ward, M. and Wilen, J. 1998. Research Trends and Opportunities

in Environmental and Natural Resource Economics. Journal of Environmental

Economics and Management.

• Evensen, G. 1994. Using the Extended Kalman Filter with Multilayer Quasi-

geostrophic Ocean Model, J. Geophys. Res., 98(C9), 16529-16546.

• Evensen, G., Dee, D.P. and Schroeter, J. 1998. Parameter Estimation in Dynam-

ical Models. NATO ASI, Ocean Modeling and Parameterizations edited by E.

P.Chassignet and J. Verron.

• Gelb, A.(ed.) 1974. Applied Optimal Estimation. Cambridge: MIT Press.

91



REFERENCES

• Gilbert, J. C. and Lemareehal, C. 1991. Some Numerical Experiments with Variable-

storage Quasi-newton Algorithms. Mathematical programming, 45, 405-435.

• Gauthier, P. 1992. Chaos and Quadri-Dimensional Data Assimilation: A Study on

the Lorenz Model. Tellus, 44A, 2-17.

• Harmon, R. and Challenor, P. 1997. Markov Chain Monte Carlo Method for

Estimation and Assimilation into Models. Ecological Modeling. 101, 41-59.

• Romans, F. and Wilen, J. 1997. A Model of Regulated Open Access Resource Use.

Journal of Environmental Economics and Management, 32(1),1-21.

• Kalman, R. E. 1960. A New Approach to Linear Filter and Prediction Problem.

Journal of Basic Engineering, 82, 35-45.

• Kirkpatrick, S., Gellat, C. and Vecchi M. 1983. Optimization by Simulated An-

nealing. Science, 220,671-680.

• Kruger, J. 1992. Simulated Annealing: A Tool for Data Assimilation into an

Almost Steady Model State. J. of Phy. Oceanogr. vol. 23, 679-681.

• Lawson, L. M., Spitz, R. Y., Hofmann, E. E. and Long, R. B. 1995. A Data

Assimilation Technique Applied to Predator-Prey Model. Bulletin of Mathematical

Biology, 57, 593-617.

• Lorenc, A. C. 1986. Analysis Methods for Numerical Weather Prediction. Quar-

terly Journal of the Royal Meteorological Society, 112, 1177-1194.

• Luenberger, D. C. 1984. Linear and Nonlinear Programming. Reading: Addison-

Wesley.

• Matear, R. J. 1995. Parameter Optimization and Analysis of Ecosystem Models

Using Simulated Annealing: a Case Study at Station P. J. Mar. Res. 53, 571-607.

• Navon, I. M. 1986. A Review of Variational and Optimization Methods in Mete-

orology. In: Variational Methods in Geosciences, Y. Sasaki, editor, Elsevier, New

York, pp.29-34.

92



REFERENCES

• Navon, I. M. 1997. Practical and Theoretical Aspects of Adjoint Parameter Esti-

mation and Identifiability in meteorology and Oceanography. Dynamics of Atmo-

spheres and Oceans.

• Sandal, L. K. and Steinshamn, S. I. 1997a. A Stochastic Feedback Model for the

Optimal Management of Renewable Resources. Natural Resource Modeling, (vol.

10(1)).

• Sandal, L. K. and Steinshamn, S. I. 1997b. A Feedback Model for the Optimal

Management of Renewable Natural Capital Stocks. Canadian Journal of Fisheries

and Aquatic Sciences.

• Sandal, L. K. and Steinshamn, S. I. 1997c. Optimal Steady States and Effects of

Discounting. Marine Resource Economics, vol 10(12).

• Sasaki, Y. 1970. Some Basic Formulation in Numerical Variational Analysis, Mon.

Weather Rev., 98, 875-883, 1970.

• Schaefer, M. B. 1964. Some Aspects of the Dynamics of Populations Important to

the Management of Commercial Marine Fisheries. Bulletin of the Inter-American

Tropical Tuna Commission. 1, 25-56.

• Schaefer, M. B. 1967. Fisheries Dynamics and the Present Status of the Yellow

Fin Tuna Population of the Eastern Pacific Ocean. Bulletin of the Inter-American

Tropical Tuna commission 1, 25-56.

• Smedstad, O. M. and O'Brien,J. J. 1991. Variational Data Assimilation and Pa-

rameter Estimation in an Equatorial Pacific Ocean Model. Progr. Oceanogr.

26(10), 179-241.

• Spitz, H. Y., Moisan, J. R., Abbott, M. R. and Richman, J. G. 1998. Data As-

similation and a Pelagic Ecosystem Model: Parameterization Using Time Series

Observations, J. Mar. Syst., in press.

• Yeh, W. W-G. 1986. Review of Parameter Identification Procedures in Ground-

water Hydrology: The Inverse Problem. Water Resource Research, 22; 95-108.

93



REFERENCES

• Vu, L. and O'Brien, J. J. 1991. Variational Estimation of the Wind Stress Drag

Coefficient and the Oceanic Eddy Viscosity Profile. J. Phys. Oceanogr. 21, 709-

719 .

• Vu, L. and O'Brien, J. J. 1992. On the Initial Condition in Parameter Estimation.

J. Phys. Oceanogr. 22, 1361-1363.

94



Chapter 5

On the dynamics of commercial

fishing and parameter identification

Submitted

95



On the dynamics of commercial fishing

and parameter identification

Abstract

This paper has two main objectives. The first is to develop dynamic models of commercial

fisheries different from the existing models. The industry is assumed to have a well

defined index of performance based on which it either invests or otherwise. We do not

however, assume that the industry or firm is efficient or optimal in its operations. The

hypotheses in the models are quite general, making the models applicable to different

management regimes. The second is that a new approach of fitting model dynamics

to time series data is employed to simultaneously estimate the poorly known initial

conditions and the parameters of the nonlinear fisheries dynamics. The approach is a

data assimilation technique known as the variational adjoint method. Estimation of

the poorly known initial conditions is one of the attractive features of the variational

adjoint method. Unlike the conventional methods, the method employed in this paper,

requires relatively less data. Economic parameters were reasonably estimated without

cost and price data. The estimated equilibrium biomass is very close to the maximum

sustainable biomass which means open access in this case led to economic overfishing

but not biological overfishing.

Keywords: Data assimilation; variational adjoint method; index of performance; non-

linear dynamics; open access

JEL classification:Q22,C51
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5.1. INTRODUCTION

5.1 Introduction

The most common approaches of modeling the dynamics of a natural resource system

are by the routine application of the sophisticated techniques of the calculus of varia-

tions or optimal control theory and dynamic programming (Kamien and Schwartz 1984;

Clark 1990). The economic theory of an optimally managed fishery has been advanced

by many researchers. Clark (1990) discussed various models in some detail. Sandal and

Steinshamn (1997a,b,c) made some of the most recent contributions in the area. These

frameworks explicitly assume that agents are optimal and efficient. However, most real

world fisheries have historically not been optimally managed.

The dynamics of single species models have extensively been studied in the literature

of natural resource economics (Sandal and Steinshamn, op. cit.). Extensions have also

been made to include ecological effects from other species. The simplest is the predator-

prey model (see Clark 1990).

Commercial models of fisheries have previously been discussed by Crutchfield and Zell-

ner (1962) and Smith (1969). The latter provided a model of theoretical nature which

transforms specific patterns of assumptions about cost conditions, demand externalities

and biomass growth technology into a pattern of exploitation of the stock. Smith also

discussed the three main features of commercial fishing and mentioned the various types

of external effects representing external diseconomies to the industry. In two earlier

papers, Gordon (1954) and Scott (1955) noted that all of these externalities arise fun-

damentally because of the unappropriated "common property" character of most ocean

fisheries (Smith 1969).

In this paper, we develop some commercial fishing models that do not necessarily assume

optimal behavior of fishers. The goal is to develop models that are quite general and

have much wider possible applications. Models of natural resource exploitation consist

of two vital components. First, a sound biological base which defines the environmental

and ecological constraints is required. Second, an economic submodel that incorporates

the basic characteristics of the exploiting firms must be in place. For example, an in-

dustry or a firm may be assumed to vary levels of capital investments in proportion to

some measurable quantities such as the total profits (Smith 1969; Clark 1979).
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5.1. INTRODUCTION

This paper also focuses on a very important aspect of fisheries management that has

largely been ignored. Deacon et al. (1998) noted that much of the information managers

need is empirical, i.e., measurements of vital relationships and judgments about various

impacts. This area of the economics of fishing has not been adequately explored by

economists probably due to lack of data and computational power in the past. Much

of the research efforts were used in the search for qualitative answers to management

problems.

This paper employs a new and efficient method of advanced data assimilation known as

the variational adjoint technique (Smedstad and O'Brien 1991) to analyze real fisheries

data. In data assimilation, mathematical or numerical models are merged with obser-

vational data in order to improve the model itself or to improve the model predictions.

The former application is known as model fitting. Using the variational adjoint tech-

nique, in which the model dynamics are often assumed to be perfect, i.e., the dynamical

constraints are satisfied exactly (Sasaki 1970), appropriate initial conditions and param-

eters of the nonlinear fisheries dynamics are estimated. Nonlinear fisheries dynamics

are highly sensitive to the initial conditions and the parameters which are often exoge-

nously given inputs to the system. These inputs are very crucial in simulation studies.

Inverse methods and data assimilation are often ill-posed, i.e., they are characterized

by nonuniqueness and instability of the identified parameters (Yeh 1986). It may thus

be worthwhile to search for best initial and/or boundary conditions when using these

models in analysis. The reader may have noticed that this approach has major advan-

tages compared to conventional methods. It allows us to estimate initial conditions of

the model dynamics as additional control variables on equal footing as the model param-

eters. Thus, treating the initial biomass level and the initial harvest rate as uncertain

inputs in the system. Most recent models and traditional approaches consider the initial

biomass and harvest amounts as known and deterministic. It also provides an efficient

way of calculating the gradients of the loss function with respect to the control variables.

Most importantly, data requirements are significantly reduced. In this paper, parameters

entering the objective function of the industry have been reasonably estimated without

having to use data on prices and costs. Large number of parameters could be estimated

with observations on only a subset of the variables.
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5.2. DYNAMICS OF COMMERCIAL FISHING

The structure of the remainder of the paper is as follows. Section 2 is a detailed dis-

cussion of the dynamics of the commercial fishing model. It presents a more general

model without assuming any optimizing behavior. In section 3, we briefly discuss data

assimilation and some basic concepts of the techniques are defined. All technical details

are put in an Appendix. Section 4 is an application to the North East Arctic Cod stock

(NEACs). It discusses the results and summarizes the work.

5.2 Dynamics of Commercial Fishing

The dynamics of the fishing industry are developed and discussed in detail in this section.

A fishery resource has one unique characteristic, i.e., the ability to replenish by the laws

of natural growth. The dynamics of the stock for a single species are formally described

by the simple equation

dx- = I(x) - Y
dt

(5.1)

where x is the biomass in weight, dx Idt is the time rate of change of the stock and yl is the

rate of exploitation by humans. The growth "or natural addition" to the existing stock

is represented by the 1(.)operator and depend on the current stock. Several forms of the

growth model exist. For some species, the empiricallaw of growth is asymmetric. In this

paper, however, we will use the logistic growth law. The Schaefer logistic function takes

the form 1= rx(1 - x] K), where r is the intrinsic growth rate and K is the maximum

growth of the biological species if the population were not exploited. It is symmetric

about KI2 and has the following properties, 1(0) = I(K) = O, I(KI2)=max I.

To model the fishing industry, we define the following relationship between the rate of

increase or decrease of the exploitation of the fish biomass y and a function </>(x, y) such

that

dy .
dt = 'YY</>(x, y) (5.2)

lGordon (1954) assumed that harvest depends on stock and efforts while Smith (1969) assumed that

harvest is a function of the number of identical firms and the catch rate. Here no such disaggregation

has been made.
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5.2. DYNAMICS OF COMMERCIAL FISHING

where O< 'Y is a constant of proportionality and ø is a certain well defined value function

to be discussed shortly. The constant of proportionality reflects the rate at which capital

is being put in or removed from the industry or firm. For instance, if ø is positive one

may expect an increase in capital investment in the fishery and a decrease otherwise. The

function(s) defined by ø can take different parametric forms reflecting our hypotheses

about the operation of the industry. It may represent short or long run average costs of

fishing vessels, the marginal or average net revenues of a firm, etc. Different forms of the

ø functions will be discussed in detail. We will first model an industry that is perceived

to be a price taker in the output market.

Let p be the unit exvessel price of fish and c be the per unit cost of harvesting. Assume

for the first case that costs of fishing are linear in the harvest. Then, the average net

revenue is given by

c
Ø(x,y) = p --

x (5.3)

The average cost of harvesting is assumed to depend explicitly on the size of the stock

abundance. This takes into account the stock externalities, i.e., fishing costs decrease

as the population of fish increases. The assumption that the total net revenue of the

industry is linearly related to the harvest rate may be quite restrictive. We shall slack

this assumption of price taking and introduce some relevant nonlinearities in the model.

Next we discuss a model in which price depends on the rate of harvesting of the stock.

We shall continue to assume that costs are linear in harvest and inversely related to the

stock biomass. The average net revenue is defined by

cØ(x, y) = P(y) - -
x

(5.4)

where P(y) = a - by is the inverse demand function which is assumed to be downward

sloping and a, b are positive real constants. From the previous definitions of ø and the

industry model, equation (5.2), it is obvious that the rate of harvesting from the stock for

the industry is perceived to vary in proportion to the net revenue; that is the difference

between total revenues and total costs. Put another way, the output growth rate il/Y of

the industry is proportional to the average or marginal net revenues.
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5.2. DYNAMICS OF COMMERCIAL FISHING

Substituting these functions in equation (5.2) and combining with the population dy-

namics model, equation (5.1), the industry dynamics models are derived. This system

of equations (5.1)-(5.2) constitute coupled nonlinear ODEs. For the empirical analysis,

we will use the following models.

modell

dx
dt
dy
dt

f(x, T, K) - y

c,(p - -)y
x

(5.5)

In the first model, the term (py - cy/x) is the annual total profit (total revenues minus

total costs). Owing to the linearity of the net revenue in the harvest, the average net

revenue is equal to the marginal net revenue.

model2

dx
dt
dy
dt

f(X,T, K) - Y

c,(P(y) - -)y
x

(5.6)

In model 2, the demand function is downward sloping, i.e., the output of the industry

affects its market price and costs are linear in harvest and inversely related to the stock

biomass (Sandal and Steinshamn 1997b). Hence, the profit function is nonlinear both

in the harvest and the biomass. Incorporated in these models are the hypotheses about

the costs and the revenues. If the firms were optimizers, they should at least operate

at a level where average or marginal profits are positive. In the construction of such

behavioral models, an implicit assumption about the harvest rate being proportinal to

the number of firms or fishing vessels is made (see Smith 1969).

The system of equations contains these input parameters, the biological parameters

(T, K) and the economic parameters (r, p, a, b, c). It is possible to estimate all of the

parameters in the models but additional data may be required. To obviate the data

problem, we reduce the dimension of the problem by redefining the parameters: ø = ,p,
a = ,a, (3 = ,b, and 7 = ,c. That is, we now have these parameters (T, K, ø, a, (3, 7)
to estimate. Notice here that no data on prices and costs are necessary in order to fit

the models. The method enables us to fit the bioeconomic models without using data
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on economic variables which are often unavailable. These mathematical models of the

commercial fishing will be used to analyze real fishery data for the (NEACs).

5.3 Data Assimilation Methods

Data assimilation methods have been used extensively in meteorology and oceanography

to estimate the variables of model dynamics and/or the initial and boundary conditions.

These methods include the sequential techniques of Kalman filtering (Kalman 1960) and

the variational inverse approach (Bennett 1992). The variational adjoint method has

been proposed as a tool for estimation of model parameters. It has since proven to be

a powerful tool for fitting dynamic models to data (Smedstad and O'Brien 1991). The

methods have recently been used to estimate parameters of the predator-prey equation

(Lawson et al. 1995) and also some high dimensional ecosystem models (Spitz et al.

1997 and Matear 1995). The basic idea is that, given a numerical model and a set of

observations, a solution of the model that is as close as possible to the observations

is sought by adjusting model parameters such as the initial conditions. The variational

adjoint method has three parts: the forward model and the data which are used to define

the penalty function, the backward model derived via the Lagrange multipliers and an

optimization procedure. These components and all of the mathematical derivations are

discussed in an Appendix. An outline of the technique is also presented for those who

may be interested in learning the new and efficient method of data analysis.

5.4 An Application

The commercial fishing models developed in this paper are used in an application to

(NEACs). The fishery has a long history of supporting large part of the Norwegian and

Russian coastal populations. Data on catches and estimated stock biomass have been

collected since immediately after World War II. Different techniques of stock assessments

exist in fisheries management. The data on the (NEACs) are measured using the sta-

tistical Virtual Population Analysis (VPA) method. Catch data and biomass estimates
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obtained by the VPA may be somewhat correlated. This issue will not be dealt with in

this paper.

The history of this fishery is not dissimilar from other commercial fisheries elsewhere

around the world. It has supposedly been managed based on the common policy of the

maximum sustainable yield (MSY) which is the most employed for the most of the last

century. The historical data show a decreasing trend for both the stock biomass and

the yield. It is also observed that the data are highly fluctuatory which depicts the

inherent stochastic feature of a fishery resource. The data available on (NEACs) dates

back to 1946 until1996 (see Anon 1998). It is however intuitive to divide the period into

the pre-quota (1946-1977) and the quota (1978-1996) periods which represent different

management regimes. The first period may be dubbed the open access period and the

second the regulated open access (total allowable catch TAC) period. We will apply our

models to analyze the data for the first period. To analyze the second period, additional

constraints such as quota restrictions and minimum safe biomass levels Homans and

Wilen (1997) which reflect the regulations imposed by the management authorities are

required. We shall however concern ourselves about the first period.

In this study, we combine the nonlinear dynamics models developed in the preceding

section and the time series of observations to analyze the (NEACs). The technique in

this paper provides a novel and highly efficient procedure of data analysis. Model initial

conditions as well as parameters of the dynamics are estimated using the variational

adjoint method. First, artificial data generated from the model itself using known initial

conditions and known parameters were used to test the performance of the adjoint code.

All the parameters were recovered to within the accuracy of the machine precision. Both

clean and noisy data were used to first study the models. The results are not shown in

this paper. Next, real data were used to estimate the initial conditions and all the pa-

rameters of the model dynamics. Starting from the best guesses of the control variables,

the optimization procedure uses the gradient information to find optimal initial condi-

tions and parameters of the model which minimize the penalty function. The procedure

is efficient and finds the optimum solution in a matter of a few seconds. The estimated

initial conditions and parameters of the two different models are tabulated below. Note

the definition of the units: r (/year), xo, Yo, and K are in kilo-tons.
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Parameters Modell Mode12

r 0.3271 0.44305

K 5264.85 5257.55

() 0.13039

a 4.1368

(3 .00213

'T 309.01 7070.63

xO 3902.77 3670.00

yO 716.15 770.33

Table 5.1: Model parameters for the two dynamic models. Blank space means the

parameter is not present in that model.

All the estimated parameters are reasonable and as expected. From the table 5.1 above,

the estimated r's are different for the two different models. Model 2 which is more

complex than model1 gives a bigger r value. The maximum population K is about the

same for both models. The initial conditions have also been adjusted in both cases. Note

that the observed initial values were taken as the best guesses. To further explain the

performance of these models, we present some graphics of the time series of the actual

observations and the estimated quantities. Figure 5.1 is a plot of the actual observations

(Act. observations) and the models predictions (Est. model l and Est. model 2) of the

stock biomass using the estimated parameters.

104



5.4. AN APPLICATION

4~r------'------'------'------'------'-r==~~==~~
- - Act. observations
.... Est. model1
-- Est.model2

4000

I'· ,I
,I
, I
, I

I
I~3500

ti)

.§
'b

'" I

"r ", ,, 1\
I \
I Iti)

gj3000
E
.2..o

""uj2
(/)2500

,
\ f -
\ I I
\ I

I'

I
I / "1
/

2000
I

I ,I,
I,

1~0~-----L------~----~------~----~------~----~
1~ 1~ 1E 1~ 1~ 1~ 1m 1~

Time(yrs)

Figure 5.1: Graphs of the actual and the model estimated stock biomass for the two

models

It is observed that, model 1 predicts higher biomass levels and is generally steeper than

model 2. The models have both performed well in tracking the downward trend in the

data. Model 2 seems to do a little bit better overall and at the tail end of the data.

In Figure 5.2, we have the plot of the actual observations (Act. observations) and the

model predictions (Est. model 1 and Est. model 2) of the rate of harvesting.
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Figure 5.2: Graphs of the actual and the model estimated harvest for the two models

The fits are in general quite good for both models. Model 1 is more gentle overall. It

gives lower estimates initially and then higher afterwards. Model 2 tries to correct for

the occasional jumps in the data as shown in the figure. The models have generally

performed as expected and have shown some reasonable degree of consistencies with the

data. Note however that these data are highly random and may have large measurement

errors.

The models we have developed measure the performance of the industry in question

using the function cp(x, y). Industry equilibrium is attained when ~ = O. That is,

for an open access fishery, industry equilibrium is characterized by zero profits. The

parameters of the cp function have been estimated using the variational adjoint method.

For the (NEACs), it will be interesting to look at how the industry performed during

the open access regime. To illustrate, we will plot the revenues and the costs versus the

stock biomass for each of the two models. The revenue and cost functions are scaled by

the parameter "y and the unit of currency is the Norwegian Kroner (NOK).

In figure 3 the total revenues and total costs are graphed. The difference between these

represent the net profits. Costs were least when the stock size was largest but increased
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as the stock decreased. The profits were driven to zero when x* = c/p, i.e., the industry

is in a steady state. The industry equilibrium (point where total costs balance total

revenues) was reached at the stock level of x* = 2370 1Q3tons which is the so called open

access equilibrium. This is lower but very close to the xMsy=(K/2) level. A further

reduction of the stock led to unprofitable investments. Costs exceeded revenues as the

stock level fell beyond x* = c/p.
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Figure 5.3: Graphs of the total revenues and the total costs vs. estimated stock biomass

for modell.

Figure 5.4 is a plot of the revenue and cost functions. The shapes of the functions indicate

their level of complexities. The results of model 2 have some similar characteristics to

modell. However, the industry steady state occurred at a higher biomass level of about

3400 Kilo-tons. Extrapolation of the results of model 2 indicate another equilibrium

x* = 2440 1Q3tons close to the one predicted by model 1. This point satisfies the

equilibrium conditions j; = il = O. The hypothesis of a large industry whose output

affects the market price resulted in a multiple industry equilibria. The first is quite

unstable since only the industry reached equilibrium but not the biology. The biological

and industry steady state occurred at the second point (extrapolation not shown).
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Figure 5.4: Graphs of the total revenues and the total costs vs. estimated stock biomass

for mod-' 2.

1Il oot , iodels, costs are assumed to be inversely related to the stock biomass. This

underscores stock externalities in the models which appear to reasonably characterize

the (NEACs). Note that the cod is a demersal species and does not exhibit the schooling

characteristics of the species such as herring. Both models will attain bioeconomic steady

te at about the same biomass level of little below the MSY biomass level. The question

of which of these models is more appropriate for the (NEACs) is still immature to give

a definite answer to. More research needs to be done. What is certain is that with

more realistic models and data with less errors than the one available, it is possible to

operationalize modern fisheries management.

5.4.1 Summaryand conclusion

This paper, unlike most other papers, has addressed two major questions in bioeconomic

analysis and fisheries management. It developed simple dynamic fisheries models in a

way that is rare in the literature and employs a new and powerful approach of efficiently
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combining these models with available observations collected over a given time domain.

The variational adjoint method is used to simultaneously estimate the initial conditions

and the input parameters of the industry fishing models. An interesting finding of the

paper, is that, the steady state without regulation is not too far away from the MSY.

Which means that, open access in this case has meant economic overfishing but not nec-

essarily biological overfishing. It is observed that the technique used in this paper has an

added virtue compared to the conventional ones used in the literature. Initial conditions

of the model dynamics are estimated on equal footing as the model parameters. It is

highly versatile that, it enables researchers to include as much information as is available

to them. The estimates were all reasonable and as expected for the (NEACs). The mod-

els have quite reasonable explanatory power. However caution must be exercised when

interpreting the results due to the inadequacy of the models and the large measurement

errors in the data.

It has been demonstrated here that, dynamic resource models can be combined with real

data in order to obtain useful insights about real fisheries. Biological parameters such as

the carrying capacity and economic parameters entering the objective functions of the

industry are identified. These again can be used for dynamic optimization in order to

improve the economic performance of the fishery. The variational adjoint method has

proven to be very promising and deserves further research efforts not only in resource

economics but economics in general.

APPENDIX A

A.l Data Assimilation-A Background

This section formulates the parameter estimation problem and presents the mathematical

aspects of the variational adjoint technique. Numerical issues have also been briefly

discussed.
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A.1.1 The model and the data

The model dynamics are assumed to hold exactly, i.e., the dynamics are perfect. The

dynamics are described by the two models above. For the sake of mathematical conve-

nience, we use the compact notation to represent the model dynamics as

dX
dt

X(O)
Q

F(X,Q) (A.l)

(A.2)

(A.3)

where X = (x, y) is the state vector, Xo is the best guess initial condition vector, x, is

the vector of initial misfits, Q is a vector of parameters and Q is the vector of parameter

misfits. The dynamics are assumed to exactly satisfy the constraints while the inputs,

i.e., the initial conditions and the parameters are poorly known.

In real world situations, observations are often available for some variables such as the

annual catches and fishing efforts. The set of observations are often sparse and noisy

and are related to the model counterparts in some fashion. The measurement vector is

defined by

x = 1l[X] + e (A.4)

where X is the measurement vector, t is the observation error vector and 1l is a lin-

ear measurement operator. The misfits are assumed to be independent and identically

distributed "iid" random deviates. To describe the errors in the initial conditions, the

parameters and the data, we require some statistical hypotheses. For our purpose in this

paper the following hypotheses will suffice

x, =0,
t= O,

A AT -1x.x; =Wxo

ttT =W-1

Q=O,

where the T denotes matrix transpose operator. That is, we are assuming that the errors

are normally distributed with zero means and constant variances (homoscedastic) which

are ideally the inverses of the optimal weights. For this paper, it will further be assumed
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that the errors are not serially correlated. This implies that the covariance matrices are

now diagonal matrices with the variances along the diagonal. We further assume that

the variances are constant.

A.1.2 The loss or penalty function

In variational adjoint parameter estimation, a loss functional which measures the dif-

ference between the data and the model equivalent of the data is minimized by tuning

the control variables of the dynamical system. The goal is to find the parameters of the

model that lead to model predictions that are as close as possible to the data. A typical

penalty functional takes the more general form

1 [Tf
2T

f
Jo (Q - Qofw Q(Q -,- Qo)dt

1 [Tf+ 2T
f

Jo (X(O) - Xo)TW(X(O) - Xo)dt

1 [Tf A T A+ "2 Jo (X - X) W(X - X)dt

.J[X,Qj

(A.5)

where the period of assimilation is denoted by Tf and T is the matrix transpose oper-

ator. The W's are the weight matrices which are optimally the inverses of the error

covariances of the observations. They are assumed to be positive definite and symmet-

ric. The first and second terms in the penalty functional represent our prior knowledge

of the parameters and the initial conditions, and ensure that the estimated values are

not too far away from the first guesses. They may also enhance the curvature of the

loss function by contributing positive terms to the Hessian of .J (Smedstad and O'Brien

1991). The variational adjoint technique determines an optimal solution by minimizing

the loss function .J which measures the discrepancy between the model predictions and

the observations. The loss function is minimized subject to the dynamics. The con-

strained inverse problem above is efficiently solved by transforming the problem into an

unconstrained optimization (Luenberger 1984). Several algorithms for solving the un-

constrained nonlinear programming problem are available (Smedstad and O'Brien 1991).

Statistical methods such as the simulated annealing (Matear, 1995; Kruger 1992) and

the Markov Chain Monte Carlo (MCMC) (Harmon and Challenor 1997) have recently
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been proposed as tools for parameter estimation. The most widely used methods are the

classical iterative methods such as the gradient descent and the Newton's methods (see

Luenberger 1984).

.1.3 The variational adjoint method

Construction of the adjoint code is identified as the most difficult aspect of the data

assimilation technique (Spitz et al. 1997). One approach consists of deriving the contin-

us adjoint equation and then discretizing them (Smedstad and O'Brien 1991). Another

approach is to derive the adjoint code directly from the model code (Lawson et al. 1995;

Spitz et al. 1997). To illustrate the mathematical derivation, we use the first approach

ee details in Appendix). Formulating the Lagrange function l, by appending the model

uynamics as strong constraints, we have

(A.6)

where M is a vector of Lagrange multipliers which are computed in determining the best

fit. The original constrained problem is thus reformulated as an unconstrained problem.

At the unconstrained minimum the first order conditions are

dl, = O (A.7)
dX
dl, = O (A.8)
dM
dl,

(A.9)dQ =0.

It is observed that equation (A.7) results in the adjoint or backward model, equation

(A.8) recovers the model equations while (A.9) gives the gradients with respect to the

.ontrol variables. Using calculus of variations or optimal control theory, the adjoint

equation is derived by forming the Lagrange functional via the undetermined multipliers

M(t). The Lagrange function is

l, = .J + J~fM(~~ - F(X, Q))dt (A.lO)
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Perturbing the function E

£[X + 6X, Q] J[X + 6X, Q]

+ ~r M( å(X ~ 6X) - F(X + 6X, Q) )dt

which implies

J +~XJ6XT + f~!M(åå~ - F(X,Q))dt

2fT! M(å6X _ åF 6XT)dt O(6X2)
o åt åX +

Taking the difference (£[X + 6X, Q] - £[X, Q])

£[X+6X,Q]

(A.11)

~XJ6XT

2fT! M(å6X _ åF 6XT)dt + O(6X2)
o åt åX

Requiring that 6£ be of order O(6X2) implies

(A.12)

(A.13)

By integrating the second term of the LHS by parts and rearranging, we have

åM + [åF]TM =W(X _ X)
åt ex.

M(Tf) = O (A.14)

which is the adjoint equation together with the boundary conditions and from (A.8) the

gradient relation is

(A.15)

The term on the RHS of (A.14) is the weighted misfit which acts as forcing term for the

adjoint equation. It is worth noting here that we have implicitly assumed that data is

continuously available throughout the integration interval. Equations (A.7) and (A.8)

above constitute the Euler-Lagrange (E-L) system and form a two-point boundary value

problem. The implementation of the variational adjoint technique on a computer is

straightforward. The algorithm is outlined below.

• Choose the first guess for the control parameters.
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• Integrate the forward mod el over the assimilation interval.

• Calculate the misfits and hence the loss function.

• Integrate the adjoint equation backward in time forced by the data misfits.

• Calculate the gradient of E with respect to the control variables.

• Use the gradient in a descent algorithm to find an improved estimate of the control

parameters which make the loss function move towards a minimum.

• Check if the solution is found based on a certain criterion For example, .7 <

e, 11~.711::; f may be appropriate convergence criteria ..

• If the criterion is not met repeat the procedure until a satisfactory solution is found.

The optimization step is performed using standard optimization procedures. In this pa-

per, a limited memory quasi-Newton procedure (Gilbert and Lemarechal 1991) is used.

The success of the optimization depends crucially on the accuracy of the computed gra-

dients. Any errors introduced while calculating the gradients can be detrimental and

the results misleading. To avoid this incidence from occurring, it is always advisable

to verify the correctness of the gradients (see, Smedstad and O'Brien 1991; Spitz et al.

1997).
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