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Chapter 1 Introduction

This dissertation studies mean and volatility effects from non-synchronous trading in the Norwegian

equity market. Non-synchronous trading means that observed trade-ta-trade prices do not correspond

to true daily returns since securities do not trade every day at market close. Non-synchronous trading

may therefore affect daily return and volatility characteristics for asset, portfolio, and index series due

to the facts that the returns are not equally spaced at 24-hour intervals. Consequently, non-

synchronous trading is relevant to asset price and risk evaluation in general, risk management

calculations and valuations of derivatives. Moreover, due to changes in mean and volatility

characteristics, non-synchronous trading may affect relevant risk measures in capital asset pricing

models (mean-variance efficiency) and abnormal return calculations employing the market model in

event studies (bivariate non-synchronous trading). Traders, fund managers, and professional

corporate board members may therefore find non-synchronous trading effects to be relevant for their

decision and advisory business making. Moreover, regulators and policy makers may find non-

synchronous trading effects to be an important contributor to the important and ongoing liquidity

discussions for international capital markets. The direction of the relationship between liquidity and risk

premium is important to determine.

The dissertation's focus is on efficient mean and volatility specifications with the intention to obtain

identical and independently distributed model residuals for univariate and bivariate return series. By

applying lag specifications we define efficient conditional mean and volatility equations. Moreover, by

applying elaborate test statistics on these models' residuals, systematic factors due to non-

synchronous trading in both mean and volatility may be efficiently filtered from the adjusted raw

returns. Therefore, sorting return series across non-synchronous trading measures, this dissertation's

essays construct efficient conditional mean and volatility specifications and inspect liquidity effects in

return series. Consequently, these investigations may bring new insight into the asset pricing

processes and market dynamics in many equity markets globally.

The following steps are performed to obtain our objectives. Firstly, it will be important to relate mean

drift and serial correlation characteristics to various degrees of non-synchronous trading effects. Does

non-synchronous trading effects suggests changes to the conditional mean process relative to

continuously trade series? Secondly, it will be important to relate volatility weight to long-run average

volatility, and serial correlation characteristics to various degrees of non-synchronous trading effects.

Does non-synchronous trading induces changes to the latent conditional volatility process relative to

continuously traded series? Thirdly, it will be important to relate model misspecifications to various

degrees of non-synchronous trading effects. Does non-synchronous trading suggests model

misspecifications suggesting spurious parameters and systematic factors in contrast to continuously

traded series? As every equity market shows assets that occasionally do not trade for long periods of

time, these three important questions induce an increasing interest in equity markets for model

specifications accounting for non-synchronous trading effects in the conditional mean and volatility.
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To obtain a better understanding of non-synchronous trading, this dissertation, in contrast to much of

the international empiricalliterature on equity markets, therefore concentrate its investigations on

formal conditional mean and volatility specifications across a variety of liquid and illiquid return series.

By definition, illiquid series possesses non-synchronous trading effects in mean and volatility. Formal

conditional mean and volatility specifications across series may therefore show effects by changing

parameter values and changing optimal and efficient lags in mean and volatility specification.

Consequently, the dissertation aims at applying and extending a few econometric techniques solving

some issues of interest in conditional mean and volatility specifications across return series showing

varying degree of liquidity, which is often found in the world's equity markets. Below we introduce the

dissertation's main categories for investigations and how we want to approach the various domains.

The dissertation will in seven essays measure non-synchronous trading effects in three major topics.

The first three papers study mean and volatility effects in univariate returns series. Essay four and five

study effects for one-factor equilibrium models (the Capital Asset Pricing Model). Finally, essay six and

seven study effects on event studies employing the market model for abnormal return calculations.

Across increasing non-synchronous trading effects, all essays hypothesise asset series mean and

volatility parameter changes and in extreme cases, lag changes. The essays assume that the most

frequently traded return series induce continuous trading while lower trading volume introduce an

increasing non-synchronous trading effects into the mean and volatility of return series.

The first three essays study mean and volatility characteristics from univariate asset, portfolio, and

index series. The first paper measures aggregated average mean and volatility for asset samples

showing continuous versus one, two and three days of non-trading in an open (Monday to Friday) and

closed (Saturday, Sunday and holidays) market. The aggregated mean and volatility processes

contain important information for market participants and especially option traders. By assuming non-

synchronous trading effects, the following information may be exploited by market participants: The

predictability of asset returns may be exploited by investors and portfolio managers; policy makers

may enhance/limit liquidity for equity markets; and option traders may find that the option pricing

formula produces erroneous call and put prices for asset derivatives, due to a changing volatility

process. Moreover, investors and portfolio managers would appreciate suggestions for mean and

volatility process changes, asymmetric volatility and changes in return distribution characteristics for

asset and derivative valuations and especially risk management (Value At Risk).

The dissertation's second essay investigates non-synchronous trading effects applying a formal

conditional mean and volatility specification applying portfolio and index series. The main objective of

the essay is to pursue mean and volatility predictability for return series exhibiting non-synchronous

trading effects. The essay aims to show that a positive relationship between non-synchronous trading

and asset return predictability may suggest highly profitable strategies applying advanced econometric

mean and volatility models. Consistent and significant parameter value and lag changes across non-
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synchronous trading effects for the conditional mean, suggest predictability in mean rejecting the

Martingale hypothesis. Secondly, consistent and significant parameter value and lag changes across

non-synchronous trading effects for the conditional volatility, suggest predictability in volatility rejecting

the Independence hypothesis.

The third essay investigates non-linear and data dependence in asset, portfolio, and index series. The

main focus of the paper is (non-) linear mean and volatility model specifications applying elaborate

tests for model misspecifications. The essay therefore specifies (non-) linearity models for the mean

and volatility across asset, portfolio and index series exhibiting varying degrees of non-synchronous

trading effects. Elaborate test statistics investigate all model residuals for significant data dependence.

Suggestions of data dependence across asset series will be of outmost importance for traders,

investors, and portfolio managers, as significant data dependence induces missing systematic factors

and spurious model parameter values. Assuming that high non-synchronous trading effects suggest

significant data-dependence, the applied modelling framework does not appropriately specify non-

synchronous trading effects in the conditional mean and volatility equations. The result suggests a

need for increased liquidity to eliminate predictability for these return series. Importantly, for regulators

and policy makers, positive relationship between non-synchronous trading effects and data

dependence, suggest that intuitive, analytical and linear reasoning in this equity market becomes

extremely difficult.

The dissertation's essays number four and five investigates non-synchronous trading effects and the

one-factor equilibrium models (CAPM. For market equilibrium models, non-synchronous trading may

cause bias and spurious relationships in the moments and the co-moments of bivariate return series.

Therefore, the essays investigate changes in conditional mean and volatility specifications across non-

synchronous trading effects for univariate and bivariate dynamic CAPM specifications.

The fourth paper investigates the one-factor model employing four univariate index series; two equal-

weighted and two value-weighted indices all deducted the daily NIBOR' interest rate representing the

risk free rate, obtaining excess market return series. These four return series may show different

effects from non-synchronous trading due to the fact that non-trading may have stronger bearings in

the equal-weighted series than in the value-weighted series2. The investigation applies daily, weekly

and monthly return series. If the conditional CAPM holds for daily, weekly and monthly index series,

investors and portfolio managers may apply formal model specifications for asset pricing and relevant

risk calculations. However, by rejecting the conditional CAPM we may have to reject the mean-

variance relationship in formal asset pricing. Moreover, any signs of positive relationship between

model misspecifications at daily, weekly and monthly return intervals and non-synchronous trading

, NIBOR = Norwegian Inter Bank Offered Rate.
2 Due to the fact that trading volume and market value has high positive correlation as shown by
Campbell et al. (1997) page 130; quote: "We use market capitalization to group securities because the
relative thinness of the market for any given stock is highly correlated with the stock's total value;
hence stocks with similar market values are likely to have similar non-trading probabilities".
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effects suggest spurious mean and volatility characteristics inducing missing systematic factors. Factor

models may therefore be more appropriate for these index series.

The fifth essay investigates the one-factor model applying a bivariate specification model across series

showing various degrees of non-synchronous trading. In these bivariate models across varying non-

synchronous trading effects, asset and portfolio series are specified together with a proxy for the

market portfolio, which is assumed to be the all-market value-weighted index3, obtaining efficient

conditional mean and volatility specification for CAPM equilibrium. The model specification

investigates daily dynamics in asset series in relation to the dynamics of the market proxy across non-

synchronous trading effects. Irrespective of non-synchronous trading effects, an important question is

whether the conditional CAPM and the relevant risk measure (beta) constitute an appropriate

description of mean-variance pricing in equity markets. Therefore, if the conditional CAPM turns out to

be true, the conditional volatility specification may give interesting information to all market

participants. In contrast, if it is not true, the conditional CAPM model is not appropriate for the

conditional mean and volatility specifications. Moreover, if the conditional model across non-

synchronous trading effects shows model misspecification, investors, portfolio and fund managers

should show extreme care when interpreting variance/covariance results from formal asset pricing

models (the conditional CAPM). Several alternative forms of volatility specifications (variance/

covariance matrix) may be specified in the conditional mean equation hypothesising relevant risk

(covariance), residual risk (variance), and one dynamic factor (market variance) risk. These volatility-

in-Mean results may show new and interesting risk insights across non-synchronous trading effects.

Finally, as the conditional beta frequency distribution is readily available from the model output, we

may investigate whether the relevant risk measure (beta) shows any relationship to non-synchronous

trading effects. If we find a relationship between beta and non-synchronous trading effects, the CAPM

cannot be rejected, and we can reject model misspecifications, the results suggest a relation between

the degree of non-synchronous trading effects and relevant risk. These model results may be applied

to portfolio management for fund managers and investors establishing personal portfolios adjusting

risk profiles. Moreover, traders, portfolio and fund managers may evaluate the conditional CAPM

versus the residual risk model and the one dynamic factor model.

The last two essays of the dissertation investigate changes in conditional mean and volatility from non-

synchronous trading effects in non-event and event periods". Any changes in the conditional mean

and volatility parameters from non-event to event periods suggest a need to control for non-

synchronous trading effects, which are not usually corrected for in classical event studies. The sixth

paper investigates therefore the relationship between non-synchronous-trading effects and event-

induced conditional mean and volatility parameter changes. The motivation for the modelling efforts is

that changes in non-synchronous trading effects (and information flows) may disrupt profoundly the

3 The market index series location on or outside the efficient set will not be discussed in the thesis.
4 Event periods are periods with important information announcements to the public. For example, for
a merger announcement an event period may be defined as 40 days prior and 40 days after the
announcement day. Non-event periods are periods outside such event periods.
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classical event study's synchronous trading and constant volatility assumptions. Classical event

studies normally assumes constant volatility and synchronous trading in both asset and market proxy

series from estimation period to event period. The sixth paper aims therefore to show that non-

synchronous trading effects changes conditional mean and volatility specifications from non-event to

event periods. An alternative abnormal return market model specification may therefore show more

appropriate model specifications suggesting a sounder basis for abnormal return calculations. The

paper estimates mean and volatility equations for several non-event and event series restricting the

event series model parameters to be inside the ranges of non-event parameters. If the restrictions

show significance, a non-synchronous trading model specification is warranted.

The dissertation's last and seventh essay employ the suggested methodology from essay six and sets

out to perform a mean and volatility specifications individual assets controlling for non-synchronous

trading and changing volatility relative to a classical synchronous and constant volatility specification.

To take the advantages of model specification a simultaneous estimation and event period estimation

is performed. The essay test for the proportion for asset return series appropriately specified using

non-synchronous trading and changing volatility relative to the alternative of synchronous trading and

constant volatility. Finally, changes in model preferences are evaluated and discussed. The results are

important for the shareholders for acquirers and sellers, corporate boards, regulators and policy

makers owing to (1) do shareholders of acquirers (sellers) really obtain significant abnormal return in

event periods and (2) how efficient does the market reacts to event announcements? The first

question may signal a need for reduced merger and acquisition enthusiasm from especially acquirers

and the market for corporate control. The second question may induce rejection of the semi-strong

efficient market hypotheses suggesting weaker form market efficiency. Both questions are important

for traders as well as portfolio managers applying event information in their daily trading and portfolio

rebalancing. Finally, the test statistics may show the need for rework of classical event studies, which

applied synchronous trading and constant volatility assumptions.

Consequently, the seven essays constitute a collection of essays investigating mean and volatility

effects from non-synchronous trading. Each essayapplies econometric techniques to solve conditional

mean and volatility modelling to account for non-synchronous trading effects in observed return series

for equity markets. The essays aim to show the importance of controlling for these effects in formal

model specifications over several topics applying techniques in financial econometrics. The treatments

are not comprehensive so new findings may be achieved in other areas of international empirical

finance. For example, temporal aggregation for non-traded assets may be an interesting and extended

investigation for illiquid equity markets. The essays are arbitrarily ordered and therefore cross-

referenced. The research articles conform to the generally accepted standards of scientific inquiry and

provide pragmatic interpretations of findings. As each essay is intended for international journal

publication, each essay is complete and can be read independently of each other. Some of the

dissertation's essays may therefore overlap in especially the data and data adjustment sections, as

the data series are from the same equity market and period.
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Chapter2 Unifying theme and core hypotheses

The dissertation's investiqatlons bring evidence on workings of financial markets showing non-

synchronous trading effects. In particular, the dissertation investigates conditional mean and volatility

characteristics due to non-synchronous trading effects in several financial domains. As non-

synchronous trading suggests an unequally spaced return interval, it is of outmost importance to find

appropriate model specifications for liquid as well as illiquid return series. The dissertation aims

therefore to apply and extend financial econometric techniques solving some issues in non-

synchronous trading effects. Importantly, unequal spaced return intervals are most likely observed in

markets showing low trading volume. The essays aims therefore to construct model specifications that

eliminate potential serious biases in the moments and co-moments of asset return in thinly traded

equity markets. The investigations may therefore bring new insight into pricing mechanism and market

dynamics for these asset series. The tact that many equity markets contain return series exhibiting

non-synchronous trading, controlling for non-synchronous trading applying conditional mean and

volatility specifications may find interest in many international equity markets.

The investigations are performed and implemented in three topics in financial econometrics. The first

topic is univariate studies applying asset, portfolio and index return series. The second topic is one-

factor asset pricing models and especially the conditional Capital Asset Pricing Model. The third topic

in financial econometrics is abnormal return calculations employing the market model in classical

event studies.

The investigation of non-synchronous trading effects is performed applying formal conditional mean

and volatility lag specification using observed monthly, weekly and daily return series from the

Norwegian equity market. The time-period we investigate is from 1983/84 to 1995, constituting

approximately 125 months, 520 weeks and 2600 days of return observations. Firstly, we investigate

the conditional mean equation assuming drift and serial correlation in observed return series. During

periods of strong non-synchronous trading (non-trading) an asset's observed return is zero. When it

does trade, its observed return reverts to the cumulated mean return. Therefore intuitively, illiquid

series suggest moving average and negative serial correlation over time. Secondly, we investigate the

latent conditional volatility equation assuming elements from the long-run average volatility, moving

average and serial correlation. Again, during periods of strong non-synchronous trading (non-trading)

an asset's observed return is zero. When it does trade, its observed return is the cumulated mean

return, suggesting larger model error terms. These error terms are important ingredients for the

changing volatility modelling. Intuitivelyand relatively constant volatility, non-synchronous trading

suggests higher weight to the average long-run volatility, lower moving average and stronger serial

correlation in the latent volatility. Thirdly, we investigate whether the conditional mean and volatility

specifications show model misspecifications. Misspecifications suggest systematic factors in model

residuals. Therefore, intuitively, if our model specification is rejected, the conditional mean and

volatility specification does not appropriate model non-synchronous trading effects.
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The core hypotheses over financial econometrics topics are mean and volatility parameter and lag

changes due to non-synchronous trading effects. Moreover, non-synchronous trading in its extreme

may cause formal model misspecifications (systematic factors), suggesting a need for more elaborate

model specifications. To test for non-synchronous trading effects that our formal model specifications

cannot control for, we use the filtered residual series and employ elaborate test statistics testing for

model misspecifications. Hence, we hypothesise model misspecification for extreme non-synchronous

trading. The investigations are performed to identify implications for classical economic theories and

well-known empirical international results. As non-synchronous trading effects will most likely be

observed in low-liquid markets showing low trading volume, the Norwegian equity market may be a

good choice for time series selections and characteristics (see chapter 4). The unifying theme and

core hypotheses in this dissertation's seven essays and three financial econometric topics are

identified and discussed below.

The first essay from grand mean and variance ratios, proposes mean and volatility ratio hypotheses

applying Brownian motions in asset specifications with grand mean drift (p) and constant volatility

diffusion (cl) for open (Monday-Friday) and closed markets (Saturday, Sunday and holidays). The

essay's two core propositions hypothesise mean and volatility ratios, proportional to the number of

non-trading days in both open and closed equity markets. Moreover, the essay investigates an

adjustment to the Brownian Motions volatility assuming Poisson distributed trade arrivals. For

investors, portfolio and fund managers and liquidity traders in equity markets, the results may explain

observed increased volatility at close and open. Moreover, mean and volatility ratio changes across

non-trading grand totals may suggest asset return predictability.

The second essay applies the Bayes Information Criterion (BIC) (Schwarz, 1978) modelling

conditional mean and volatility specifications hypothesising changing mean and volatility across

portfolio and index series. The essay's first proposition hypothesises serial correlation and moving

average for the conditional mean equation (changing mean). The second proposition hypothesises

average long-run volatility weight, moving average and serial correlation in the latent conditional

volatility (changing volatility). The third main proposition hypothesises model misspecification due to

inappropriate conditional mean and volatility specifications. Symptoms of systematic mean and

volatility factor characteristics suggest spurious parameter results and systematic factors suggesting

asset return predictability. Note that the predictability is conditional on identification of systematic

factors contributing to insignificant model misspecification test statistics.

The third essay extends the model misspecification investigations in essay no. two, applying (non-)

linear mean and volatility specifications across asset, portfolio and index series. The essay

investigates three core hypotheses. The first core proposition hypothesises model misspecifications

applying a linear mean model and constant volatility (OLS-specification). The second core proposition

hypothesises model misspecification applying a non-linear mean and a constant volatility. The third

core proposition hypothesises model misspecification applying a linear mean and a conditional
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heteroscedasticity specification for the volatility. Finally, the fourth core proposition hypothesises

model misspecification applying a non-linear mean and a conditional heteroscedasticity specification

for the volatility. Consequently, the model tests the Martingale (linear mean) and the Independence

hypothesis (constant volatility). A non-linear mean will make intuitive, analytic and linear reasoning in

equity markets extremely difficult. Non-linear volatility suggests a changing volatility specification.

The interesting and important issue of whether less liquid equity markets alters known facts and

dynamics in one-factor models as for the capital asset pricing model (CAPM) are hypothesised in

essay four and five. The fourth essay performs a univariate investigation of the conditional CAPM. The

essay proposes three core hypotheses. The first proposition hypothesises a zero intercept (drift)

parameter and an influential variance measured by a constant aggregate risk aversion coefficient for

all three return intervals. These two is elements constitute the conditional CAPM proposition. The

second hypothesis is a conditional versus an unconditional volatility specification for all three return

intervals. Finally, the third proposition hypothesises model misspecifications for all return intervals and

model specifications. Misspecification suggests missing systematic factors and an inappropriate

conditional model specification.

A bivariate investigation of the one-factor model (CAPM) is performed in essay five. The essay

proposes two core hypotheses due to the tact that the specification gives access to the whole

variance-covariance matrix. The first proposition hypothesises mean equation effects from the

conditional covariance series (a contemporaneous CAPM specification), the conditional variance

series (residual risk specification) or the one-dynamic factor series (market variance specification)

across all return series. The second proposition hypothesises model misspecification for all bivariate

series. Model misspecification rejects the changing mean and volatility specification suggesting invalid

and spurious mean effects from the various forms of the conditional variance equation.

The two last essays in the dissertation investigate non-synchronous trading effects applying the

market model in event studies. Classical event studies in financial markets apply important

assumptions about synchronous trading and constant volatility across event and non-event periods.

The two essays hypothesise changing mean and volatility from non-event to event period in classical

event studies. That is, the effects from changing non-synchronous trading and volatility suggest

parameter differences from non-event to event periods. The result may reject earlier empirical

abnormal return findings. Moreover, many international authors have warned about failures in classical

event studies. An investigation hypothesising a rejection of synchronous trading and constant volatility

from non-event to event period, suggests therefore a need for changing mean and volatility market

model specifications in classical event studies.

The sixth essay hypothesises a need for changing mean and volatility specification from non-event to

event period due to changes in non-synchronous trading and conditional heteroscedasticity. The

essayapplies a Norwegian sample of mergers and acquisitions. By grouping asset series for sellers,

IntroFinish2.doc Page:8



acquirers and both, the essay hypothesises effects from non-synchronous trading. The core

proposition hypothesises conditional mean and volatility changes from non-event to event period. The

proposition hypothesises changes in mean and volatility characteristics from non-event to event

periods. Significantly changing non-synchronous trading and the volatility will suggest a need for a

new conditional mean and volatility specification for event studies.

The seventh essay hypothesises a non-synchronous trading and changing volatility specification

versus synchronous trading and constant volatility performing a classical event study for the merger

and acquisition firm sample in Norway first reported in Eckbo and Solibakke (1992). BIC preferred lag

specifications for mean and volatility due to non-synchronous trading are enforced. The first

proposition hypothesises an unchanged number of misspecification over methodologies across all

assets. The second proposition hypothesises no changes in parameter values and abnormal returns

across the methodologies.

Methodologies for modelling non-synchronous trading and changing volatility with diagnostics for

model misspecifications are presented in chapter 3.

References

Eckbo, B.E. and P.B.Solibakke, 1992, Bedriftsoppkjøp og Internasjonalisering: Beta, Tidsskrift for
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Chapter3 Methodology

The dissertation's seven essays investigate non-synchronous trading effects in three different

econometric topics in corporate finance. The first topic investigates mean and volatility characteristics

in univariate time series. The second topic investigates conditional mean and volatility specifications

for one-factor models (CAPM) and finally the third topic investigates conditional mean and volatility

processes calculating abnormal retums applying the market model in event studies. All seven essays

are empirical work using data series from the Norwegian equity market. The papers investigate mean

and volatility characteristics from non-synchronous traded relative to continuously traded series. This

chapter specifies empirical methodologies in modelling non-synchronous trading effects in mean and

volatility equations for the Norwegian equity market. The chapter also briefly described test statistics

for appropriate model specifications.

3.1 Introduction

The non-synchronous trading effect induces potentially serious biases in the moments and co-

moments of asset returns. Consequently, the means, variances, covariance, betas and (cross-) serial

correlation coefficients may become spurious. Consider, for example the daily closing prices of firms

quoted on the Oslo Stock Exchange and reported daily by the financial press. Note that the closing

price reported is the price at which the last transaction occurred on the previous day. In a thinly traded

equity market the closing price will generally not occur at the same time each day. Hence, the asset

may on one particular Monday quote its last reported trade at 14Q§,which will become the closing price

reported by the financial press that particular Monday even though the Oslo Stock Exchange closes at

16QQ• Moreover, the following day Tuesday, the last quoted trade was reported at 151§.This example

shows that referring to them as "daily" prices, we have implicitly and incorrectly assumed that they are

equally spaced in 24-hour intervals. Moreover, many firms listed on Oslo Stock Exchange reported

zero trading volume for several days in 1999, that is, several days of non-trading. The Norwegian

equity market exhibits low trading volume relative to elaborate markets in US and UK and contains

assets that show low trading volume relative to continuously traded assets (see chapter 4). The

market may therefore exhibit strong non-synchronous trading effects. In the same vein as for the

information flow, the characteristics of thinly traded assets may not be the same as that for actively

traded assets (Gallant, Rossi and Tauehen, 1992).

Several methodologies may be applied modelling non-synchronous trading effects. Internationally,

several theoretical and empirical studies have investigated univariate conditional mean and volatility

effects from non-synchronous trading (Lo & MacKinlay, 1990). Moreover, several studies have

investigated non-synchronous trading effects on the Capital Asset Pricing Model and the Arbitrage

Pricing Theory (Sharpe & Williams, 1977). These studies focus on changes in the mean process. In

contrast, this dissertation aims to model non-synchronous trading effects in both the mean and the
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latent volatility. Campbell et al. (1997) in their non-synchronous trading model, suggests low mean

effects, variance changes and serial correlation in the mean equation.

The non-synchronous trading effects will in this dissertation apply ARMA-GARCH methodologies 1,

which have its origin from Engle (1982) and Bollerslev (1986, 1987). The return process will in this

methodology applies ARMA specification for the conditional mean and (G)ARCH for the conditional

volatility. Therefore, the mean equation contains an explicit modelling of drift, autoregressive and

moving average effects and the volatility equation contains modelling of weight to long-run average

volatility, moving average and serial correlation" For all the lag specifications all the essays employ

the Bayes Information Criterion (BIC) for efficient lag specification for the conditional mean. The

Schwarz Bayes information criterion is computed as Ble = sn (ti) +k·P: ·log(n) with small values

of the criterion preferred. The criterion reward good fits as represented by small s, (B) but uses the

l P
term +'2' -;;- ·log(n) to penalise good fits obtained by means of excessively rich parameterisations.

The criterion is conservative in that it selects sparser parameterisations than the Akaike AIC

Information criterion (Akaike, 1969). Schwarz is also conservative in the sense that it is at the high end

of permissible range of penalty terms in certain model selection settings (Potscher, 1989).

The conditional mean process apply an ARMA specification to control for non-synchronous trading

effects. The conditional volatility process apply (G)ARCH (Generalised AutoRegressive and

Conditional Heteroscedasticity) specification for the changing volatility speciflcation". As for the

conditional mean, all papers employ the Bayes Information Criterion (BIC) for efficient lag specification

for the conditional volatility. Engle (1982) shows that a test of the null hypothesis that ei.t has a

constant conditional variance against the alternative that the ARMA theory follows through. That is,

employing the squared residual e;/ we can identify u and n in an ARMA (u,n) specification for the

conditional variance by applying the same methodology as the conditional mean ARMA (p,q)

modelling in the previous section. Below we give an overview of the ARMA-GARCH methodologies

employed in all the seven papers constituting this dissertation.

3.2 ARMA-(G)ARCH-in-Mean lag specifications with extensions

The history of ARMA-G)ARCH models is a short one but the literature has grown in a spectacular

fashion. The model has been applied to numerous economic and financial series. However, it has

seen relatively less theoretical advancement. The ARMA-(G)ARCH model has been applied to

numerous and diverse areas. For example, it has been used to test the CAAPM, the I-CAPM, the

1 ARMA is an abbreviation for AutoRegressive and Moving Average returns and GARCH is an
abbrebiation for Generalised AutoRegressive and Conditional Heteroscedasticity volatility.
2 Note that the dissertation does not focus on stationary time series. Differencing of the time series is
therefore not investigated.
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CCAPM and the APT; to develop volatility tests for market efficiency and to estimate the time varying

systematic risk in the context of the market model. In macroeconomics, it has been used to construct

debt portfolios for developing countries, to measure inflationary uncertainty and to examine the

relationship between exchange rate uncertainty and trade. For our purpose the ARMA-(G)ARCH

model is useful because it may capture some non-synchronous trading effects in illiquid markets.

In univariate and simplest possible form we specify ARMA (p,q)-GARCH(m,n)-in-Mean models

through the following equations (1)-(4):

Yt
P I

= Øo+ IØi' YI-i + PI .hl- +vl
i=1

(1 )

Ut

q

= Cl + IBi -e.;
j=1

(2)

- N(O, ht) og D(O, ht,w) (3)

m n

= ao + Iai .C1

2
_i+ If3} .hl_}

i=1 }=I

(4)

Equation 1 is the structural mean specification (for both linear and non-linear models), where y is price

change and Yt-; is lagged price changes. Equation 2 defines moving average, which is modelled by

measuring lagged residuals effect on price changes. Equation 3 defines the distribution of the

residuals (Gt); that is a normal distribution NO or a student-t distribution DO with w degrees of freedom.

Finally, equation 4 specifies the structural form of the conditional volatility (ht). ø is the vector for

lagged price changes (the AR-process), () is the vector for lagged residuals (the MA-process), ao is a

parameter for the weight to the long-run average volatility, al is the vector for the weights of the lagged

and squared residuals ito; (the ARCH-process) and p is the weights for the lagged conditional volatility

ht_j (the GARCH-process). From these specifications we obtain three important features for aur models

for non-synchronous trading effects in illiquid markets. Firstly, modelling serial correlation in the mean.

Secondly, modelling unconditional homoscedasticlty" but conditional heteroscedasticity (changing

conditional volatility). Thirdly, as ARMA-GARCH applies a maximum likelihood algorithm we are able

to model the high kurtosis and skew (leptokurtosis'') often found in illiquid markets, by applying

student-t distributed likelihood functions" with the degree of freedom estimated by the model.

Moreover, Ding et al. (1993) extends the symmetric GARCH model into asymmetric GARCH.

Asymmetric GARCH (AGARCH) models the volatility as (5):

h, = ao + Lai ,(1 e.; I-Yi 'Ct-i)r5 + Lf3) ·hl_} (5)
i=1 }=I

where al is the vector for the weights of the lagged residuals Ef (the ARCH-process). For the classical

asymmetric model we define 0= 2, while in "power" AGARCH model we also estimate o. It is n that

measures asymmetry in the volatility. The mean equation is identical to (1) - (3). Especially one model

3 For the stochastic volatility specification see Solibakke (2001b).
4 See Morgan, 1976.
5 Departure from normally distributed price changes.
6 See Gourieroux, C., 1997 og Campbell et al., 1997.
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has been applied many times in the international finance literature. The truncated GARCH (GJR)

(Glosten et ai, 1993) specifies the volatility as (6)-(7):

= Y; if and only if &t-i < O

= ao + ~::<ai +Åit)·t:/~i + i:J3} ·hl_}

i=1 }=I

(6)

(7)

If Ait > O, the GJR specification will generate higher values for ht when &t < O then when Et> O;

otherwise equal in absolute size. The mean equation is identical to (1) - (3). The Exponential GARCH

model (EGARCH) (Nelson, 1991) specifies the volatility by using the naturallogarithm. The EGARCH

model specifies the volatility as (8)-(9):

In ht = Øo + Iø} ·Inhl_} + IYi .(Bo' v.; + Yo' {IVI_i I-E I VI Ih
}=I i=1

(8)

(9)

Equation 8 shows the distribution of the residuals' and Equation 9 shows the structure in the

conditional volatility. Bo in Equation 8 defines the asymmetric volatility and v measures the thickness of

m n

tails in the distribution. Note that for all the GARCH specifications we require that I ai +I ø} < 1 ,
i=1 }=I

with the exception of EGARCH. EGARCH requires that ~j < 1. Also for this model the mean equation is

defined by (1) - (3). Finally, it is reasonable to expect that the mean and variance of a return move in

the same direction. Hence, introducing Jh, into the mean equation represents a measure of time

varying risk premium especially applicable for financial models. M(aximum) L(ikelihood) estimates of

the (G)ARCH-in-Mean model can be obtained by maximising the likelihood function using the BHHHB

algorithm. Note however, that the information matrix is no longer block diagonal, so that all the

parameters must be estimated simultaneously. This requires an iterative solution technique", also

known as non-linear optimisation. For estimation details see Section 3.6 below.

3.3 Interpretations of ARMA specifications

The ARMA specification in Equation 1 and 2 represent a serially correlated time series; that is, a

changing mean process. The Øo parameter represents a drift (predictable), Øi represent autoregressive
effects and Oi represent moving average effects. Significant serial correlation in the mean equation

suggests a rejection of the random walk hypothesis. One of the main contributors to serial correlation

seems to be non-synchronous trading. A high frequency (e.g., fitted to daily data) ARMA process

aggregates to a low frequency (fitted to say, weekly data) ARMA process. Hence, an efficient

conditional mean equation may control for non-synchronous trading removing any forms of systematic

7 In the exponential GARCH model we assume a General Error Distribution, which contains the normal
distribution as a special case (u = 2).
B the BHHH algorithm is described in: Berndt, Hall, Hall, Hausman (1974).
9 the technique is available in GAUSS ver 3.2.1.
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factors from the model residuals. Reported ARMA coefficients may therefore suggest predictability in

asset returns assuming constant non-synchronous trading and information flow. Moreover, multivariate

ARMA specifications may reveal cross serial correlation. Lead and lag structures between asset and

portfolio series may give additional insight into the way non-synchronous trading contributes to serial

correlation. However, if non-synchronicity is purposeful and informational motivated, then the serial

correlation should consider genuine and purely statistical models of non-synchronous trading are

inappropriate.

3.4 Interpretations of (G)ARCH specifications

The main reason for the success of ARCH models is that they take account of many observed

features of the data. Features as thick tails of the distribution, clustering of large and small

observations, non-linearity and changes in our ability to forecast future values are easily modelled

giving a wide range of interpretation alternatives to the models. The first interpretation was based on

the fact that econometricians' ability to predict the future varies from one period to another. Using a

conditional mean model usually does predictions. Uncertainty about the conditional mean can be

expressed by a random coefficient formulation 10. The second interpretation is a conditional mixture

model following the work of Clark (1973) and Tauchen and Pitts (1983). An interesting rationale for the

presence of conditional heteroscedasticity and heterogeneity in the higher order moments of asset

prices is presented in Gallant et al. (1991). Assuming that the observed return process yt can be

I,

written as y, = Il, +LSi where Si - IlD N(O, l). The Pt can be interpreted as a predictable
i=1

component, the Si 's are the incremental changes and It is the number of times new information comes

to the market in period t. It is a serially dependent unobservable random variable and is independent of

{Si }. The randomness of It produce a non-normally distributed Yt; it is in fact a mixture of normal

distributions. Note, we can view Yt as a subordinated stochastic process, where Yt - Pt is subordinate
I

to Si' and It is the directing process. We can now write y, = Il, + rI/v, with Vt - N(O, 1). Hence,

conditional on the information set n'_1 and It. the conditional heteroscedasticity normal distribution

emerges y, I n'_I' I, - N(ptollt). In practice, since It is not observable we can only work with the

conditional distribution Yt lilt-I. Following Gallant et al. (1991) the conditional variance is

I

Eky, - 11,)2 In,_I]= r2 E[I, In,_I]' Denoting Yr - Ilt = rI,lv, as the error term Et, the covariance

becomes COV(E,2,E;_,) = r4Cov(l,v; ,I,_jv,2_;) = r4Cov(l,,l,_;). Now assuming non-synchronous

trading in a market, it is quite plausible that the It's is serially dependent introducing correlation into the

squared errors. The (G)ARCH specification tries to capture this correlation.

10 For details see Bera et al. (1990, 1992) and Sentana (1991).
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The third interpretation is a non-linear model specification. One of the essential features of ARCH

models is Cov(e,2,e,~) * O, although Covie, ,e'-l) = O, for i= O. In otherwords, (G)ARCH

postulates a non-linear relationship between et and its own past values. Moreover, note that changes

in volatility are represented by changes in the conditional variance, linking volatility to a natural

measure of risk. Two more important interpretations are found in the intemationalliterature. Mizrach

(1990) developed a model of asset pricing and learning in which (G)ARCH disturbances evolve out of

the decision problem of economic agents. Errors made by agents are very persistent and dependent

on all past errors, leading the conditional variance to have an (G)ARCH like structure. Finally, Stock

(1988) established the link between time deformation and (G)ARCH models. Any economic variable,

in general, evolves on an "operational" time scale, while in practice it is measured on a "calendar" time

scale. A time deformation model of a random variable et can be approximated bye, = p,et-l +v, ,

where v, I nI-] - N(O,hJ, where h, = ao +ale'~l . Hence, when a relatively long segment of

operational time has elapsed during a unit of calendar time, Pt is small and hI is large. A number of

researchers have investigated the relationship between serial correlation and volatility 11. The general

result after introducing ARCH into the model", was that lower correlations were connected with

periods of high volatility. Non-synchronous trading and accumulation of news are possible

explanations. As some assets do not trade close to the end of the day and information arriving during

that period is reflected on the next days trading, serial correlation may emerge in price changes.

Furthermore, non-synchronous trading results in overaillower trade volume, which has a strong

positive relationship with volatility. Note especially, that when new information reaches the market very

slowly, for traders the optimal action is to do nothing until enough information is accumulated, leading

to low trade volume and high correlation.

These interpretations of ARCH effects suggest considerable affects from non-synchronous trading and

accumulation of information. This thesis may bring new knowledge into the international changing

volatility literature suggesting origins of (G)ARCH effects.

3.5 Multivariate ARMA-(G)ARCH lag specifications

Inter-related economic variables are a well-known fact. Hence, extension from univariate to

multivariate models is quite natural. Apart from possible gains in efficiency in parameter estimation,

estimation of a number of financial time series such as the systematic risk (beta) and the hedge ratio

requires sample values of covariance between relevant variables. Moreover, multivariate (G)ARCH

may also stem from the fact that many economic variables react to the same information, and hence,

11 See for example Kim (1989), Sentana and Wadhwane(1990), Ødegård (1991) and LeBaron (1992).
12 Ødegård (1991) found that autocorrelation decreased over time, which he attributed to new financial
markets. However, introducing (G)ARCH into the models, the evidence of time varying autocorrelation
became very weak.
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have nonzero covariance conditional on the information set. Applying two variables and using the

notation from 3.4 and the non-synchronous trading and aggregation of information interpretation, let

l l
- -

Yl,t = PI" + Tl,2VI., and Y2., = P2" + Tl/v2", where Yu and Yz) are two time series, driven by the

same directing process It, and [VI") _ N[(Q), ( 1
V2, O CI2

c t t ]JI~ i 2 is the bivariate counterpart of the univariate specification and

provides a rationale behind higher dimensional processes. H, can be expressed in either vector form

(VECH) or classical square matrix operations (BEKK). As the BEKK representation is almost

guaranteed to be positive definite, it will be easier to estimate. Moreover, the BEKK representation will

normally require a lower number of parameters to be estimated. Several attractive ways of simplifying

H, has been proposed in the literature. Finally, Diebold and Nerlove (1989) introduced that only a few

factors influence all variables (Yt, ... ,YN) and their conditional variances. The suggested a one factor

multivariate ARCH model represented by y, =}Jf, + 1]" where 1], = (1]1",· ..... , 1]N,,)' 1];" - (0,Gi),

i=1, .... ,N and the unobservable factor Ftis conditionally distributed as F, 10'_1 - N(O,hJ. Then

Var(y, lOt-!) = h,).,).! +diagta., ,......aNN) and we can specify a univariate GARCH process for

b; The effect of the common factor Ft on Yi is measured by A.i (i=1, ..... ,N).

3.6 Estimation

The estimation of ARMA-GARCH specifications from historical data is conducted by an approach

known as the maximum likelihood method. It involves choosing values for the parameters that

maximize the chance (or likelihood) for the data occurring. The analysis allows the return series (Yt) to

followa ARMA (P,Q) process, so that the ARMA model becomes Ø(B)(y, - p) = O(B)E" where B is

the lag operator and the GARCH(M,N) model becomes
M N

h, = E[E,2 IE,_pE,_2""] = ao + Ia;E,2_; +I fJ;hl-i . This latter equation can be written as
,=1 i=1

and m' = (m; : m~) = (ao,al , ... ,aM ;fJl' ... ,fJN)' Using this notation, maximum likelihood estimates

of the ARMA-GARCH model can be obtained following this procedure. Define 0 as the vector of

parameters in the model given by the mean equation and the volatility equation and partition it as

0= (m' : rp' ); rp' = (øl' ... ,ØM ;0p' ..,ON' p) being a vector containing the parameters in the

mean equation. We can also define 00 = (m~ : rp~) as the true parameter vector. The log-likelihood
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T

function for a sample of T observations is, LT(Q) = Tl II, (8) ,where I,(8) = -.5*(/n(2*pi) +
'=1

(&./hr2 + 2*ln(h)) in the Case of normal distributed returns and I, (0) = c - O.5*ln(h)-

((ø+1)/2) *ln(1 + (c"2)./(( tiJ-2)*h)), in the case of student-t distributed returns, where c =
Infact(O.5*( lU +1)-1) - O.5*ln(pi*( lU -2)) -lnjact(O.5* æ -I) and øts the estimated parameter

for the degree of freedom in the student-t distribution. Precise details of maximum likelihood estimation

may be found in, Engle (1982), Weiss (1986a, 1986b) and Bollerslev (1988). Several estimation

algorithms are available for computation. Among others, the Berndt, Hall, Hall and Hausmann (BHHH,

1974) and the Broyden, Fletcher, Goldfarb, and Shanno (BFGS, 1980) algorithms are readily

available. The maximum likelihood estimate 0ML is strongly consistent for 80 and asymptotically

normal with mean 80 and a covariance matrix t;-I, consistently estimated by r-I (~:: al, al,,ri,
,=1 ae ae

which may be obtained from a last BHHH iteration.

3.7 Diagnostics for model misspecifications

For all essays appropriate model specification is one of several important findings. Below we therefore

describe the methodologies used to test for data dependence in model residuals; that is, diagnostics

suggesting model misspecifications.

3.7.1 The ARCHtest statistic

The ARCH test statistic (Engle, 1982) is a test for constant conditional variance against conditional

heteroscedasticity, based on the Lagrange Multiplier principle. The test procedure is to run a

regression of the squared residuals on a constant and p lagged squared residuals. Then test the test

statistic T R2 as a i(p) variate, where T is the sample size and ~ is the squared multiple correlation

coefficient and p is the degree of freedom. The ARCH test is a test for Ho:constant conditional

variance against the alternative Ha:a conditional variance that obey an ARCH(P) specification. In fact,

if ARCH is present in the residuals, non-linear dependence in the time series cannot be rejected.

3.7.2 The RESETtest statistic

The Regression Error Specification Test (RESET; Ramsey, 1969) is a test statistic of linearity against

an unspecified alternative. It is a test against general model misspecification 13 and has certainly been

one of the most popular tests against misspecification of functional form.

In this paper it is carried out in three stages as follows:

J3 See also Tsay (1986), Spanos (1986) and Lee et al. (1993).

IntroFinish3.doc Page: 17



(1) We assume the linear part of the model is

Y, = f3' .z, +U, ' t= 1,.... ,T

where z, = (1, YH, .. -Yt-» xf1," .,XflJ'. We estimate p by OLS and compute u, = Y, - Y, where

Y, = p'.z, , and SSRo =Lu; .
h

(2) Then we estimate the parameters of u, = 8'·z, + L(/)} :z,(1) + u,
}=2

by OLS and compute SSR = LV,2 ,where Z;(j) = (Y:_l' ... ,y:_p,x:i" .. ,x~) ,j= 2, ... ,h.

(SSRo - SSR) / (h -l)
(3) Finally, we compute the test statistic: F = _;____;"-----.:.........:.-~

SSR / (T - m - h)

where m = p+k. k is in our case zero. As z, contains lags of y"~then (h-1)F has an asymptotic"/

distribution under the null of linearity. h was suggested by Thursby and Schmidt (1977) to be given the

value 4 for the best result. This test is an lagrange Multiplier (lM) type test against an logistic

Smooth Transition Regression (lSTR) model in which only one 'linear parameter' changes but the

investigator does not know which one. The RESET test is thus rather narrow in that if more than one

variable has a 'changing linear parameter' the regression no longer covers that possibility. Note,

however, that the constant in the first regression should not be involved in defining the z, and Z; in the

auxiliary regression, since the inclusion of such regressors would lead to perfect collinearity.

3.7.3 The BOStest statistic

3.7.3.1 The correlation integral

The correlation integral proposed by Grassberger and Procaccia (1983) is a measure of spatial

correlation in an m-dimensional space. let {,u,} be a real-valued scalar time-series process.

def

Construct the m-history process ,u,m = (,u" ,u,+I"", ,u,+m-I)' For c> O, the correlation integral at

embedding dimension m is given by14Cm,& = Hxe(xm ,ym)dF(xm)dF(ym), where X· e(·,.) is the

symmetric indicator kernel with X· e(x, y) = 1 if IIx -YII < c and O otherwise (indicator function), 11'11

represents the max-norm, and FO is the distribution function of ,u,m. Cm,& gives the mean volume of a

cube with diameter c. An estimator of the correlation integral for a sample size T for the process {J.ltl is

14 If {J.ltl is a strictly stationary, absolutely stochastic process, the integral defined below exists.
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!
given by the following U-statistic- cf. BOS (1987), Cm,e = (~ I I % . C(Il/m ,11.;) ,where

T l!>.«/!>T

2

f = T-(m-!).

3.7.3.2 The test statistic

Brock et al. (1988), Oeckert (1991) and Scheinkman (1990), henceforth BOS (Brock. Deckert and

Scheinkman), developed a test based on concepts that arise in the theory of chaotic processes. The

BOS test statistic is a test of the null hypothesis of LLd. for a univariate time series against an

unspecified alternative. That is, if {Ilt} is an i.i.d. process, then Cm,e = CCc, almost surely, for all c> 0,

r;;; Cme -(CIJ
m

d
m = 1, 2, .... The BOS test presents the following result Vm,e = "1" , ~ N(O,!), V C

Sm,e

> 0, m=2,3, .... , where sm,e is an estimator of the asymptotic standard deviation-O"m,e--of

Jf. (Cm c - (Cl Jm) under the null of LLd. Brock et al. (1991) used Monte Carlo methods to, ,

evaluate the choice of m and E: on the asymptotic normality of Vm.e- Their results suggest that

asymptotic normality of Vm,e holds well for sample sizes of at least 1000 observations, and for value of

c between 0.5 and 2 standard deviations of the data. They warned against relying on asymptotic

normality for values of Tim less than 200 observations.

The BOS test has been shown to be robust to the non-existence of fourth moments, which may

characterize stock returns (Brock and de Lima, 1995 and Hsieh, 1991). Hsieh (1991) points out that

the robustness of the BOS test to the non-existence of fourth moments is one of the advantages of the

BOS test over other tests of non-linearity such as Tsay (1986) and Hinich and Patterson (1985).

Moreover, the BOS test statistic has power against models that are non-linear in variance but not in

mean, as well as models that are non-linear only in mean. That is, a BOS rejection does not

necessarily mean that a time-series has a time-varying conditional mean; it could simply be evidence

for a time-varying conditional variance (Hsieh, 1991).

One-way to test whether conditional heteroscedasticity is responsible for the rejection of the i.i.d.

hypothesis is to apply the BOS test statistic to the residuals from a ARMA - GARCH model (Brock et al

1991, and Abhyankar et al. 1995). The trouble is that we cannot depend on asymptotic normality of

the BOS statistic. Hsieh (1991) overcomes this problem by using critical values of the BOS statistic for

simulated EGARCH process 15. However, a paper by de Lima (1995) shows that the asymptotic

distribution of the BOS statistic remains valid if the test is applied to the natural logarithm of the

squared standardized residuals from a GARCH model. This is because the BOS statistic is valid if it is

15 The simulation is based on 2000 replications, each with 1000 observations.
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applied to a data generating process that is additive in the error term. The GARCH process models the

error term in a multiplicative form, f.lt = uiZf, where f.lt is a random variable following the GARCH

process, z, is LLd. random variable, and Ut is the conditional standard deviation. The standardized

residuals from this model are z, = '" / O; in the nonnal case and z, = Il, I J (T~ .( q~ 2) in the

student-t" density case, where 77is the degree of freedom parameter. It follows that In(z2J = In(/ J -

In(u2J in the normal case and In(~ J = In(/J -ln(cldrr2l77)) in the student-t density case. Therefore,

the asymptotic distribution of the 80S statistic remains valid if it is applied to In(z2J (adjusted

residuals) in both the normal and student-t density case.

3.8 The methodologies and the dissertation's topics

3.8.1 Univariate Time Series applications

The univariate time series investigations consist of three essays. The main focus is conditional mean

and volatility specifications hypothesising non-synchronous trading effects. Serial correlation in mean

and volatility are carefully modelled applying 81Cefficient lag specifications. The mean effects from

contemporaneous volatility are parameter measured. Where relevant the essays focus on model

misspecifications implying inappropriate model non-synchronous trading modelling. The test statistics

are applied to test for data-dependence. Significant test statistics suggest lag specifications that do not

appropriately model mean and volatility processes suggesting a need for more elaborate model

specifications 17 .

3.8.2 One-factor models (CAPM)

In one-factor models (CAPM) mean and volatility equations controlling for non-synchronous trading

effects in moments and co-moments are clearly relevant. The first (second) essay tests the CAPM by

applying univariate (bivariate) excess return series, controlling for non-synchronous trading effects in

the conditional mean and volatility equations applying 81Cefficient lag specifications. Test statistics

investigate for remaining systematic factors suggesting inappropriate mean and volatility modelling.

Appropriate mean and volatility modelling suggests sound testing of the one-factor model in the

Norwegian equity market.

3.8.3 Event study applications using the market model

Controlling for mean and volatility effects due to non-synchronous trading effects are relevant in

classical event studies applying the market model. The dissertation's last two essays focus on event-

16 We have chosen a Student-t distribution as it has been found to suit Norwegian equity data well
(Solibakke,2001a).
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induced changes in the conditional mean and volatility specifications due to increased trading

frequency and information flows. The first essay investigates conditional mean and volatility

specification and parameter changes from non-event to event periods applying a Norwegian firm

sample of mergers and acquisitions. In particular, the essay firstly investigates lag specifications and

parameter changes in the mean and volatility equations and secondly investigates level shifts in the

conditional volatility. Significant parameter changes and shifts in the conditional volatility suggest a

need for more elaborate event study methodologies in financial econometrics. The last essay performs

a simultaneous time BIC efficient conditional mean and volatility specification versus an unconditional

OLS investigation (synchronous trading and constant volatility). The investigation calculates abnormal

returns and statistical significance from a firm sample of merger and acquisition in the Norwegian

market of corporate control. Firstly, the essay focuses on appropriate bivariate asset and index

specifications, obtaining conditional models showing a minimum of model misspecifications. Secondly,

any changes in parameter values are investigated. Significant parameter changes suggest a need for

change in event interpretations due to the BIC efficient conditional mean and volatility specifications.

Moreover, changes in parameter values suggest a need for a rework of many classical and

international event studies. Consequently, controlling for non-synchronous trading effects in

conditional mean and volatility processes may bring new insights to the market of corporate control.
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Chapter4 Stylised facts on Liquidity at Oslo Stock Exchange

The dissertation performs empirical research on market series exhibiting non-synchronous trading.

The modelling approach intends to build econometric models for mean and volatility equations trying

to satisfy all the characteristics of market return series. Return series exhibiting non-synchronous

trading seem to exist in the Norwegian equity market. This chapter will therefore describe in great

detail the characteristics of the Norwegian equity market applying returns from asset, portfolio and

index series. The propositions hypothesise an equity market containing return series showing low

trading volume, lead and lag structures and a need for adjustments for ergodic and stationary time

series. The forthcoming essays focus on non-synchronous trading effects, changing volatility and

potential data-dependence in model residuals inducing model misspecifications. The next three

sections show that the Norwegian equity market contains trading characteristics that make it a perfect

choice for empirical investigations of illiquid equity markets.

Chapter 4 is organised as follows. Section 4.1 investigates raw return characteristics in the Norwegian

equity market and focuses especially on trading volume and the relative non-trading frequency of

Norwegian assets, which is prolonged into Norwegian portfolio and index series. Trading volume in

Norwegian Kroner (NOK) proxies for asset trading frequencies. Section 4.2 investigates thin trading

implications applying cross-autocorrelations and lead-lag relations, which are thoroughly discussed in

Campbell et al. (1997). The section focuses on cross-autocorrelation matrices for trading-volume

sorted markets and asset, portfolio and index returns. Finally, Section 4.3 describes a general

adjustment procedure to obtain ergodic and stationary time series in the Norwegian equity market. The

adjustment seems particularly important for markets showing low trade volume.

4.1 Characteristics of Norwegian equity market return series

The dissertation applies daily, weekly and monthly return and trading volume series from individual

Norwegian stocks spanning the period from October 1983 to February 1994. Two sub-periods are

defined; one before the crash in October 1987 and one after the crash. Daily return series are defined

as In(Pi/Pi,t-l), where Pi,t is the daily closing price for asset i at time t. The daily series are aggregated

to weekly and monthly return series. Trading volume is defined as the total transaction volume in NOK

at day t for asset i including external trading (trading outside the organised market) for daily, weekly

and monthly periods. We use fifteen individual asset, four portfolio and four index series from the

Norwegian equity market. The fifteen time series are sorted from continuously traded (no. 1) to thinly

traded series (no. 15) according to the daily ratio non-trading days divided by number of listed days for

the entire period 1983 to 1994. The sorting is the identical in the two sub-periods. The individual asset

series are grouped into portfolio series at period t based on trading volume in NOK available from the

information set at t-1 (nt-I). We rebalance the portfolios each month and to avoid a too frequent shift of

component stocks among the asset portfolios, we employ the average daily trading volume for the last

two years. Two years of daily trading volume is chosen to obtain a time overlap of 95% for each
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portfolio restructuring 1
• The assets are therefore grouped into portfolios based on changes in trading

volume (NOK) over a considerable period. We emerge with four series; a thinly traded series that

contains the most thinly traded assets (Portfolio 1), an intermediate thinly traded series (Portfolio 2),

an intermediate frequently traded series (Portfolio 3), and finallya frequently traded series that

contains continuously traded assets (Portfolio 4). We four series contains all assets in the Norwegian

equity market, and on average, the four series contain at least 20-25 individual assets. Finally, we

include four market wide index series consisting of all the assets in the Norwegian market with two

equal-weighted and two value-weighted return series. The number of observations for the entire 10-

year period from 1983 to 1994 is 2611 daily, 512 weekly and 126 monthly observations. The sub-

period before the crash in October 1987 contains 1019 daily, 202 weekly and 50 monthly

observations. The sub-period after the crash contains 1546 daily, 306 weekly and 74 monthly

observations" Note that a two-month crash period is excluded from the sub-samples but are included

for the entire period 1983-94. Hence, we assume that market dumps are normal in equity markets.

Table 1 reports the three data samples. Figure 1 and 2 reports the value-weighted and all-market

index series and total market trading volume in Norwegian Kroner (NOK), respectively. This database

is our main vehicle for investigations we perform in the dissertation.

{Insert TABLE 1 Panel A, Panel B and Panel C about here}

The three panels in columns "No. of observations" and "Proportion traded" (column 2 and 3) show the

importance of the thin trading feature of the Norwegian equity market. For the sections "Individual

assets" for all three panels, the proportion traded show numbers far below one (continuous trading) for

many asset series. A proportion below one in column 3, suggests daily non-trading for individual

assets in the equity market. For the section "Portfolios" in all three panels, the "Low Volume" portfolio

also reports values below one, indicating non-trading even though the portfolio contains 20-25 assets.

Hence, this portfolio suggests that in 9% of all trading days, % of the Norwegian assets show non-

trading. The non-trading feature seems therefore to be substantial in the Norwegian equity market.

Moreover, note that the four index series are all-market series. Consequently, the index series will

contain many assets that contain the non-trading feature. Moreover, note that since trading volume

and market value are positively correlated", the equal-weighted index will show higher influence from

non-trading than the value-weighted index.

Table 1 reports additional characteristics for the twenty-four hour interval return series in our sample

for the three periods (column 4 to 9). The yearly mean column shows no particular pattern over the

1 Moreover, the first trading volume observation we have been able to collect for all assets in the
Norwegian equity market is registered 01.09.81.
2 The crash period in this study is defined as the two-month period October and November in 1987.
The estimation and specification results for the two sub-periods are not reported due to space
considerations. However, all results are available from the author upon request.
3 Campbell et al., (1997), page 130: "We use market capitalization to group securities because the
relative thinness of the market for any given stock is highly correlated with the stock's total market
value; hence stocks with similar market values are likely to have similar non-trading probabilities".
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trading volume sorted asset, portfolio and index series. However, the standard deviation shows a

considerable growth from continuously (trading proportion close to one) to thinly traded series (trading

proportion lower than one). This growth result in standard deviation suggests temporal aggregation in

return series due to non-trading. When trades do occur, the price changes are higher in absolute

values for non-traded relative to continuously traded assets. The daily maximum and minimum

numbers seem to confirm the temporal aggregation results. The high kurtosis numbers for the thinly

traded assets suggest an overrepresentation of zero returns. This is exactly what we would expect

from non-traded assets due to registered zero returns, when trading volume is zero. The skew results

seem to suggest an overrepresentation of negative extreme return observations for all series.

Moreover, in contrast to individual assets the portfolio and index series show highest negative skew for

the most frequently traded assets. For the individual assets in sub-period 1983 to 1987 (before the

crash) the skew is small and even positive for many individual assets and relatively small for portfolio

and index series. The crash in October 1987 may therefore have considerable influence on the skew

results for the entire period.

Finally, in Table 1 Panel A, which report characteristics for the entire period 1983 to 1994, we also

report some elaborate test statistics for non-normality (K-S Z-test4) data-dependence in the mean

equation (RESET\ data-dependence in the volatility equation (ARCH6
) and general non-linear

dependence (BDS\ Almost all test statistics report non-normality, non-linearity in mean, non-linearity

in volatility and general non-linear dependence. Consequently, elaborate model specifications need to

be conducted for all the reported asset, portfolio and index series from the Norwegian equity market,

which seem to report high non-synchronous trading in Table 1. We express this trading volume

influence in this dissertation by applying the term: The Norwegian thinly traded equity market.

Moreover, to elaborate the thin trading findings from Table 1, the next sub-section (4.2) will apply

cross-autocorrelations and lead-lag relations thoroughly described in Campbell et al. (1997) chapter 2

and 3, showing lead-lag between international markets and between Norwegian assets.

4.2 Lead-lag relations between markets and assets

The dissertation sets out to perform several empirical investigations of the thinly traded Norwegian

equity market. From the Norwegian characteristics found in Section 4.1 and Table 1, the dissertation

hypothesises that the Norwegian equity market show thin trading relative to more developed markets

(New York and London) and contains assets that show thin trading relative to continuous traded

assets. The dissertation therefore hypothesises equity market characteristics that exhibit non-

synchronous trading effects for asset, portfolio and index return series. Applying the definition

employed in Campbell et al. (1997), these non-synchronous trading effects arise when time series

from asset prices are recorded for our database series at time intervals of one length when they in fact

4 K-S is Kolmogorov-Smirnov. See Table 1 for a description of the test statistic.
S See Ramsey, 1969. See Table 1 for a description of the test statistic.
6 See Engle, 1982. See Table 1 for a description of the test statistic.
7 See Brock et al., 1988, 1991, Scheinkman, 1990). See Table 1 for a description of the test statistic.
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are recorded at time intervals of other, possibly irregular, lengths. For example, assume that we

possess the daily closing prices of a Norwegian firm quoted on the Oslo Stock Exchange and reported

daily in the financial press. Note that the closing price reported in the financial press is the price at

which the last transaction for the firm occurred on the previous day. In a thinly traded equity market the

closing price will generally not occur at the same time each day. Hence, the firm may on one particular

Monday quote its last reported trade at 14Q§,which will become the closing price reported in the

financial press that particular Monday even though the Oslo Stock Exchange closes at 1600. Moreover,

the following day Tuesday, the last quoted trade was reported at 1S.1Q.This example shows that

referring to them as "daily" prices, we have implicitly and incorrectly assumed that they are equally

spaced in 24-hour intervals. Hence, non-synchronous trading may induce potentially biases in the

moments and co-moments of assets returns. In particular, we focus on coefficients for means,

variances, co-variances, betas, autocorrelations and cross-autocorrelations in return series.

The fact that individual assets, portfolio and index series show positive cross-autocorrelation across

time can now be exploited to suggest trading differences between equity markets. We will apply cross-

autocorrelations relationships (Campbell et al (1997) and Lo and MacKinlay (1990» showing

international equity markets lead-lag relations. Campbell et al. measures lead-lag relations using daily,

weekly, and monthly return series. For this work, non-symmetric co-variances between international

equity markets suggest lead and lag structures. To gauge the degree of asymmetry in the co-

variances the difference between first-order autocorrelations and the transposed first-order

autocorrelations is reported. Moreover, to show that the Norwegian equity market show lead-lag

relations between assets, we apply the same methodology between individual Norwegian assets.

4.2.1 Lead-lag relations between intemational markets

The investigation applies daily value weighted indices from USA (US), United Kingdom (UK) and

Norway (N) for the time period from 1984 to 1998. S&PSOO(US) index shows highest liquidity,
A

followed by FTSE3S0 (UK) and TOTX (N). Table 2 reports the first-order autocorrelation matrices ri
for the vector of three index series using daily (Panel A), weekly (Panel B) and monthly (Panel C)

return intervals. An interesting pattern emerges from Table 2: The entries below the diagonals of ti (1)
are always larger than those above the diagonals (asymmetric matrices). To gauge the degree of

,
asymmetry in these matrices, the difference ti - ti is reported in the second column of the three

panels of Table 2. This column of Table 2 more apparently shows the intriguing lead-lag pattern,

where liquid index series lead less liquid index series. The result is valid for daily, weekly, and monthly

return intervals. By now applying a formal non-synchronous trading model the non-trading probability

and average time between trades may be calculated. These simple lead-lag relations are also

confirmed in ARMA-GARCH lag specifications in Solibakke (1999). Our results therefore show that the

thinnest traded market index (Totx) in Norway, is lead by the more liquid market (Ftse3S0) in UK,

which is again lead by the most liquid market (S&PSOO)in USA.
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{Insert Table 2 about here}

4.2.2 Lead-lag relations tor individual assets

The first-order autocorrelation analysis for individual assets employs fifteen randomly picked assets

from the Norwegian equity market spanning the whole range of trading volume. Thus, the section aims

to show that liquidity for individual assets contribute to lead-lag relation insights. For brevity, Table 3

reports characteristics for six assets of these fifteen randomly selected assets. The first asset (F1) is a

continuously and frequently traded asset while asset six (F6) is characterized by a high non-trading

probability". Table 3 shows a high divergence in trading frequency for individual assets. For example,

asset F6 is only traded in approximately 30% of listed days on the exchange, while asset F1 is

continuously traded. Average trading volume is a decreasing function of the non-trading probability

and the standard deviation seem to increase the higher the non-trading. The mean return over assets

shows no clear patterns.

{Insert Table 3 about here}

Table 4 reports first order autocorrelation matrices tI for the vector of six individual asset series using

daily (panel A), weekly (panel B) and monthly (Panel C) return lntervals". An interesting pattern
A

emerges from Table 4: The entries below the diagonals of rI are usually larger than those above the

diagonals (asymmetric matrices). To gauge the degree of asymmetry in these matrices, the difference
,

tI - tI is reported in the second part of the three panels of Table 4. This part of Table 4 more

apparently shows the intriguing lead-lag pattern, where liquid assets lead less liquid assets. The result

is valid for daily, weekly, and monthly return intervals. By now applying a formal non-synchronous

trading model, the non-trading probability and average time between trades may be calculated". Our

results show that the thinnest traded assets (F6 and F5), is lead by the more liquid assets (F5, F4 and

F3), which again is lead by the most liquid assets (F2 and F1) in USA. Cross-autocorrelation and

autocorrelation is therefore important factors to consider in formal multivariate mean and volatility

specifications.

{Insert Table 4 about here}

4.3. Adjustment procedures for day and month anomalies, and location and scale effects

A financial time series investigation using formal statistical methods assumes the observed series as a

particular realization {X,}~ of a stochastic process. The stochastic process will be a family of random

8 See Solibakke (1997) for an unconditional and conditional probability of trading (duration models)
using Norwegian individual asset trading volume information.
9 As far as possible we have tried to exclude days where trading is halted for "news pending" or other
stock exchange regulations.
10 See for example Campbell et al. (1997) chapter 2, The Predictability of Asset Returns.
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variables defined on an appropriate probability space and can be described by aT-dimensional

probability distribution. The procedure of using a single realization to infer the unknown parameters of

a joint probability distribution is only valid if the process is ergodic 11. Moreover, stationary requires the

process to be in a particular state of "statistical equilibrium" (Box and Jenkins, 1976, p. 26). A

stochastic process is strictly stationary if its properties are unaffected by a change of time origin

implying a constant mean and variance as long as Elxtl2 < 00. Applying the conditions to only the first-

and second-order moments of the process this is known as stationary in wide sense (weak form). Note

especially that a process may possess weak stationary but not strict stationary conditions.

Figure 1 and 2 depicts the value-weighted all-market index series and the total market trading volume

in Norway from 1983 to 1994. The value-weighted index shows an approximate yearly growth of 12%

in this period. However, note the strong and erratic trend in trading volume for the Norwegian Market

in the same period. On average, the growth in the trading volume in Norwegian Kroner (NOK) is

approximately 32,9% per year.

{Insert Figure 1 and 2 about here}

The increase in trading volume suggests a need for testing for ergodicity and stationary in the

Norwegian time series. Moreover, several authors have reported anomalies applying Norwegian equity

market" return series. Hence, for all time series we perform procedures described by Gallant, Rossi

and Tauchen (1992) to adjust for systematic location and scale effects in all return series 13. The

procedure gives us series that become more homogenous allowing us to focus on the day-ta-day

dynamic structure under an assumption of stationary series without any disturbance to mean and

volatility characteristics. Moreover, the procedure validates inference of unknown parameters of a joint

probability distribution from the single realisation (ergodicity). The log first difference of the price index

is adjusted. Let tu denote the variable to be adjusted. Initially, the regression to the mean equation

m = X • fl + u is fitted, where x consists of calendar variables that are most convenient for the time

series and contains parameters for trends, week dummies, calendar and day separation variable,

month and sub-periods. To the residuals, U, the variance equation model u2 = x· r + 8 is estimated.

U2

Next.J " is formed, leaving a series with mean zero and (approximately) unit variance given x.
eX'Y

A U
Lastly, the series m = a + b- ( r-;:;) is taken as the adjusted series, where a and b are chosen so

vexy

1 ~ A 1 ~ 1 ~ A -) 2 1 ~ ( A -) 2 fi Ithat -. LJ tIl, = - .LJ tIl; and --. LJ (tIl; - tIl = --. LJ u; - u . The purpose of the Ina
T ;=1 T ;=1 T - 1 ;=1 T - 1 ;=1

location and scale transformation is to aid interpretation. In particular, the unit of measurement of the

11 Ergodic roughly means that the sample moments for finite stretches of the realisation approach their
population counterparts as the length of the realisation becomes infinite (Granger and Newbold, 1977)
'2 See Johnsen, 1995 and Gjølberg, 1987 among others.
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adjusted series is the same as that of the original series. We report the result for the thinly and

continuously traded portfolio series. Table 5 shows that for continuously traded assets, only the two

periodic definitions GAP3 and January 1stto January 07'hshow significant influence on the price

process. The volatility series report significant patterns for day of the week and for the month of

November. No other factors seem to influence the return and volatility series. For the thinly traded

series, Wednesdays and January 8thto January is" show significant influence on the price process.

The volatility series report significant patterns for day of the week and for the month of July. Note, the

continuously traded assets show early January effects (t" to 7'\ while thinly traded assets show mid-

January effects re" to 151
\ It seems that the continuously traded asset series lead the thinly traded

series. We plot the raw and adjusted time series for thinly traded and continuously traded assets in

Figure 1, panel A and B, respectively.

{Insert Table 5, Figure 3 and 4 about here}

Due to significant parameters in the OLS model, the adjustments to both thinly and frequently traded

assets make intuitive sense. Importantly, for both thinly and continuously traded assets, the raw and

adjusted time series seem to show small differences over time. Even more important for our

investigation, it seems there is no regime shifts in the time series.
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Table 1. Individual asset/Portfolio/Index series characteristics for the Norwegian Equity Market.
Panel A. Period 1983-1994. (crash October 1987 induded).

Individual No. of Prop. Yearly Yearty Daily Daily K-S ARCH RESET BOS
Assets: obs. Traded Mean std.dev. Max. Min. Kurtosis Skew l-stat (6) (12;6) m=2;&=1 m=3;&=1

1. VP-505560 2611 1.00 15.196 32.417 13.04 -20.27 8.405 -0.311 3.150 288.37 7.4905 8.507 10.11
2. VP-532720 2606 1.00 12.278 39.964 16.00 -17.20 5.102 0.424 3.151 83.200 4.3965 7.706 10.18
3. VP-430640 2611 1.00 25.140 33.153 13.44 -23.43 9.163 -0.374 2.962 70.856 18.259 8.025 9.468
4. VP-468440 2607 0.99 19.297 33.175 12.91 -20.93 7.441 -0.317 3.207 125.37 13.159 12.24 13.06
5. VP-403130 2604 0.99 1.023 57.347 22.33 -29.60 6.013 -0.279 3.203 181.60 3.4225 12.86 15.55
6. VP-392001 2611 0.97 8.598 46.407 26.76 -46.98 30.219 -1.314 3.448 254.25 1.8484 11.96 13.24
7. VP-317220 2609 0.92 28.981 56.390 19.84 -25.65 4.382 0.161 3.462 143.43 18.515 12.30 16.19
8. VP-507221 2369 0.90 -10.479 116.66 32.26 -45.84 3.929 -0.142 3.477 246.22 3.0610 13.91 17.79
9. VP-413560 25n 0.83 12.645 57.56 24.41 -33.69 11.892 -0.623 5.352 276.38 5.4025 10.86 14.61
10.vP-562085 2540 0.78 -8.830 231.74 192.86 -278.6 84.487 -2.763 10.618 271.39 4.9790 11.84 18.24
11.VP-526960 2566 0.62 1.076 163.33 89.85 -85.27 16.153 -0.206 6.634 270.34 2.7892 8.955 12.87
12.vP-513100 2515 0.57 42.318 130.70 81.20 -167.9 95.667 -3.984 8.731 203.48 4.3437 12.07 16.53
13.vP-314690 2383 0.52 -6.432 119.78 79.82 -61.42 26.567 0.984 10.089 357.26 2.4446 16.93 23.93
14.vP-311170 2499 0.43 34.618 108.42 53.59 -56.57 17.440 -0.562 10.813 291.68 4.0270 19.40 26.38
15.vP-523040 2146 0.33 1.964 116.98 107.21 -74.52 41.590 0.883 11.464 235.61 1.0785 15.43 20.63

Portfolios:
LowVolume 2611 0.91 21.456 32.553 10.80 -15.91 5.7203 -0.116 2.574 89.352 4.5614 7.472 8.143
Intermediate Low 2611 1.00 7.238 21.706 10.33 -14.53 11.180 -0.603 3.428 634.58 1.8810 8.379 10.53
Intermediate High 2611 1.00 3.405 22.047 11.55 -16.19 14.869 -0.987 3.676 638.75 0.1807 13.13 15.39
High Volume 2611 1.00 5.502 25.127 13.32 -23.06 26.146 -1.315 3.809 391.01 0.5791 16.19 19.10

Indices:
Equal Weighted Oslo 2611 1.00 7.676 17.610 11.42 -16.66 29.844 -1.546 4.580 630.15 1.8598 13.29 14.76
NHH Equal Weighted 2527 1.00 18.151 19.115 10.07 -15.03 16.838 -0.877 3.794 548.89 10.631 11.71 14.25
Value Weighted Oslo 2611 1.00 13.278 20.581 10.48 -21.22 36.143 -2.004 3.800 288.89 5.1850 12.65 14.91
NHH Value Weighted 2527 1.00 13.552 21.077 11.27 -20.90 34.n9 -1.968 3.796 296.23 5.8152 12.62 14.68
--------------------------------------------------------------------------------------------------------------------------------

VP-505560=Norsk Hydro, VP-532720=Saga Petroleum, VP-430640=Hafslund-Nycomed, VP-468440=Kværner, VP-
403130=Elkem, VP-392001=Det Norske luftselskap, VP-317220=Ganger-Rolf, VP-507221=Kirkland, VP-413560=Norske Skog,
VP-562085=Tandberg, VP-526960=Rena Karton, VP-513100=Nydalen Compagnie, VP-314690=Eidsiva, VP-
311170=Brogestad, VP-523040=Porsgrund Porselænfabrikk. The VP-XXXXXXs are therefore individual assets sorted from high
to low trading volume. Moreover, "low Volume" is a portfolio containing the mostthinly traded assets and "High Volume"
contains the most frequently traded assets. Finally, two equal-weighted and two value-weighted index series are induded from
the Norwegian equity market.

Yearly mean is daily mean multiplied by 252 trading days and yearly standard deviation is daily standard deviation multiplied by
the square root of 252 trading days. Skew is a measure of heavy tails and asymmetry of a distribution (normal) and kurtosis is
measure of too many observations around the mean for a distribution (normal). K-S l-test: Used to test the hypothesis that a
sample comes from a normal distribution. The value of the Kolmogorov-Smirnov l-test is based on the largest absolute
difference between the observed and the theoretical cumulative distributions. ARCH (6) : ARCH (, is a test for conditional
heteroscedasticity in returns. low {.} indicates significant values. We employ the OlS-regression =ao + a,*i.·.+ ...+a6*i•.s.
T*R2 is '1: distributed with 6 degrees of freedom. T is the number of observations, y is returns and R2 is the explained over total
variation. ae, al ... a6 are parameters. RESET (12,6) : A sensitivity test for mainly linearity in the mean equation. 12 is number of
lags and 6 is the number of moments that is chosen in our implementation of the test statistic.T*R2 is l distributed with 12
degrees of freedom. Finally, BOS (m=2,&=1): A test statistic for general non-linearity in a time series. The test statistic BOS
=Tl12*[Cm(cr*&)-C1(cr*&n, where C is based on the correlation-integral, m is the dimension and e is the number of standard
deviations. Under the null hypothesis of identically and independently distributed (LLd.) series, the BOS-test statistic is
asymptotic normally distributed with a zero mean and with a known but complicated variance.



Table 1. Individual Asset/Portfolio/Index characteristics for the Norwegian Equity Market.

PANEL B: Period 1983-1987. (before the crash in October 1987).

No. of Prop. Yearly Yearly Daily Daily
Individual Assets: Observ. Traded Mean deviation Maximum Minimum Kurtosis Skew
1. VP-505560 1021 1.00 20.2690 30.3308 9.4386 -9.9571 2.7096 0.1791
2. VP-532720 1017 0.99 9.4767 38.6201 15.8971 -10.0689 5.4959 0.7216
3. VP-430640 1022 0.98 46.5469 32.9545 10.5613 -9.7213 3.0290 0.3895
4. VP-468440 1018 0.98 23.8117 31.4618 8.3457 -8.4929 2.4350 -0.1161
5. VP-403130 1015 0.99 7.8879 34.7823 12.2605 -9.4246 2.5242 0.2826
6. VP-392001 1022 0.96 34.2618 35.3953 11.6754 -9.6149 2.3993 0.2023
7. VP-317220 1022 0.83 52.9822 62.2176 20.3172 -31.8317 7.3511 0.1902
8. VP-507221 1009 0.93 10.3353 90.8420 26.9697 -27.3424 2.5640 0.0376
9. VP-413560 1015 0.59 25.1306 42.3586 18.4158 -14.3036 5.9957 0.1170
10.vP-562085 990 0.54 -40.3946 114.863 40.5465 -40.5531 6.8991 -0.1975
11.VP-526960 1020 0.59 1.8113 64.0576 22.2964 -22.2964 4.5529 -0.0031
12.vP-513100 1002 0.43 38.7784 48.7684 16.1313 -14.2986 3.5116 0.0131
13.vP-314690 988 0.45 -15.0536 80.9840 37.9490 -29.7252 6.3330 0.3806
14.vP-311170 990 0.35 31.0354 85.3893 40.5586 -36.0130 14.721 0.3149
15.vP-523040 1007 0.27 24.1920 100.920 31.5910 -49.2386 10.710 -0.9456

Portfolios:
LowVolume 1022 0.86 11.5332 22.4079 7.1418 -5.3251 1.0620 -0.0491
Intermediate low 1022 1.00 18.2834 13.6279 4.3342 -4.6447 2.7425 -0.3078
Intermediate High 1022 1.00 9.0217 17.2026 4.0898 -6.4375 3.5686 -0.6725
High Volume 1022 1.00 9.7217 17.3120 5.0685 -6.4698 2.8969 -0.5084

Indices:
Equal Weighted 1022 1.00 11.3187 12.3212 3.7935 -5.1569 4.9717 -0.7271
NHH Equal Weighted 1022 1.00 9.9133 12.8491 3.2823 -4.1326 3.3566 -0.5843

Value Weighted 1022 1.00 8.6181 14.7039 4.4844 -4.3649 1.9451 -0.2986

NHH Value Weighted 1022 1.00 10.0816 14.4191 4.4710 -5.0366 2.7519 -0.4359
...---------------------------------------------------------------------------------------------_ ......_------------------------

See Table 1. Panel A for a description series and test statistics.



Table 1. Individual assetiPortfoliollndex characteristics for the Norwegian Equity Market.

PANELe: Period 1987-1994 (after crash period)
Individual No. Of Prop. Yearly Yearly Daily Daily
Assets: Observ. Traded Mean deviation Maximum Minimum Kurtosis Skew

1. VP-505560 1546 1.00 22.3156 28.7122 10.9610 -9.8888 4.3009 0.1278
2. VP-532720 1547 1.00 24.2300 37.1896 12.9812 -12.6254 2.3282 0.2518
3. VP-430640 1547 1.00 20.2613 29.3544 7.8767 -10.6563 2.9705 -0.0086
4. VP-468440 1547 0.99 23.3745 32.0047 14.4500 -12.7143 5.5106 0.2209
5. VP-403130 1547 0.99 14.6289 65.8346 28.3066 -33.8782 8.7066 -0.2570
6. VP-392001 1547 0.97 0.8901 48.5731 18.0183 -23.7785 7.2061 -0.3481
7. VP-317220 1545 0.95 21.4935 49.2509 17.3093 -14.2614 2.6465 0.2918
8. VP-507221 1318 0.76 -14.8811 132.4724 44.8025 -55.9616 9.6744 -0.4798
9. VP-413560 1516 0.83 12.4658 59.5667 24.5122 -29.3761 8.9024 -0.3704
10.vP-562085 1503 0.65 13.4264 283.8298 161.1774 -230.4338 40.1676 -1.8342
11.vP-526960 1500 0.42 10.8942 205.9428 109.8612 -96.5081 16.9691 -0.3550
12.vP-513100 1449 0.42 51.2486 165.5793 91.7187 -174.9785 78.0626 -2.3078
13.vP-314690 1326 0.39 9.1281 141.6753 58.7787 -51.0826 9.7346 0.1376

14.VP-311170 1433 0.38 43.4562 123.7460 77.3190 -55.9616 20.2976 0.7081
15.vP-523040 1092 0.28 -11.5236 130.5414 59.7837 -55.9616 15.8117 -0.3334

Portfolios:
LowVolume 1547 0.97 -2.2367 37.5609 10.7153 -15.9911 4.6601 -0.0610

Intermediate low 1547 1.00 -7.5019 24.2255 7.2915 -11.3647 4.8492 -0.1927

Intermediate High 1547 1.00 3.0173 21.7502 8.7645 -10.5545 7.4429 -0.3601

High Volume 1547 1.00 3.2342 25.6842 12.3118 -12.2878 9.4502 -0.2045

Indices:
Equal Weighted 1547 1.00 -0.2280 17.5637 6.6717 -9.6965 7.9538 -0.5667

NHH Equal Weighted 1547 1.00 0.6475 19.9151 7.4230 -9.8052 5.8222 -0.1356

Value Weighted 1547 1.00 3.6568 19.8875 8.8818 -11.3701 9.8390 -0.4833

NHH Value Weighted 1547 1.00 2.6227 20.6236 9.2644 -12.5005 11.5817 -0.6560
---------------------------------------------------------------------- ..-------------------------------------------------
See Table 1, Panel A for a description series and test statistics.



Table 2. First-order Autocorrelation Matrices for Three Differently Traded Indices
t r-r

Totx Ftse3S0 S&PSOO Totx Ftse3S0 S&PSOO
Daily Totx 0.0810 -0.0376 -0.0857 Totx 0.0000 -0.2027 -0.4949

Ftse3S0 0.1651 0.0973 -0.0650 Ftse3S0 0.2027 0.0000 -0.3884
S&PSOO 0.4092 0.3235 0.0182 S&PSOO 0.4949 0.3884 0.0000

Totx Ftse3S0 S&P500 Totx Ftse350 S&P500
Weekly Totx 0.1451 0.1021 -0.0627 Totx 0.0000 -0.0986 -0.2130

Ftse3S0 0.2008 0.2522 0.0159 Ftse3S0 0.0986 0.0000 -0.2272
S&PSOO 0.1503 0.2432 0.0051 S&PSOO 0.2130 0.2272 0.0000

Totx Ftse3S0 S&PSOO Totx Ftse350 S&PSOO
Monthly Totx 0.1274 -0.0879 -0.1850 Totx 0.0000 -0.3003 -0.3425

Ftse3S0 0.2124 0.1217 0.0619 Ftse3S0 0.3003 0.0000 -0.0903
S&PSOO 0.1574 0.1522 0.0639 S&P500 0.3425 0.0903 0.0000

._-----_._--------_ .._ .... _ .._---------_ ...-----~_._ ..._--_ ..----.----------------.--------------------_.
t= first order autocorrelation matrix, t' = transposed first-order autocorrelation matrix
Totx=Value-weighted index Oslo; Ftse3S0=Value-weighted index 350 assetsLondon,
S&PSOO=Standard& Poor 500 asset index, New York



Table 3. Characteristics for differently Traded Assets at Oslo Stock Exchange

F1 F2 F3 F4 F5 F6
Mean 0.0590 0.0992 0.1100 0.0550 -0.0104 0.0679

Standard
deviation 2.0569 2.0924 3.3437 3.0252 3.5607 3.1889
Maximum 15.0227 11.1974 22.3144 30.2281 31.8454 35.6675
Minimum -25.1853 -26.9221 -26.7702 -51.9875 -40.5465 -25.1314

Average daily
trading volume 141165 84822 37913 24274 7655 6010

Number of
Trading days 2619 2598 2179 1549 395 198
Number of

non-trading days 11 185 326 370 334
Probability 100.0 % 99.6% 92.2 % 82.6% 51.6 % 37.2 %

._-------------------------------------------------------------------------------------------_.
Fl =Continuous traded asset; F6=Thinly Traded Asset, F2-F5= Relative Intermediately Traded Assets



Table4. First-order Autocorrelation matrices for trading volume sorted assets=

Panel A. Daily Returns
['1 F6 F5 F4 F3 F2 F1
F6 0.01418 -0.00279 -0.01613 -0.02019 -0.00357 -0.00588
F5 0.01593 0.01172 -0.00482 -0.00979 -0.01401 -0.00781
F4 0.02423 0.01709 0.02870 0.02733 0.03772 -0.03266
F3 -0.00313 0.02936 0.09778 0.13284 0.06881 0.05602
F2 0.03214 0.03903 0.11099 0.07288 0.09087 -0.00758
F1 0.00058 0.01193 0.08101 0.06773 0.09621 0.06529

I'1 - ["1 F6 F5 F4 F3 F2 F1
F6 O -0.01871 -0.04036 -0.01706 -0.03571 -0.00646
F5 0.01871 O -0.08190 -0.03916 -0.05304 -0.01974
F4 0.04036 0.08190 O -0.07044 -0.07327 -0.11367
F3 0.01706 0.03916 0.07044 O -0.00408 -0.01170
F2 0.03571 0.05304 0.07327 0.00408 O -0.10379
F1 0.00646 0.01974 0.11367 0.01170 0.10379 O

Panel B: Weekly Returns
['1 F6 F5 F4 F3 F2 F1
F6 -0.06863 -0.01927 0.00999 0.06219 -0.03259 0.01549
F5 0.06350 -0.08637 -0.01812 0.05678 0.05844 0.06020
F4 0.01865 0.03447 -0.09682 0.01139 0.01437 0.02013
F3 0.14394 0.06468 0.12186 0.16633 0.07035 0.09982
F2 0.05711 0.07142 0.10275 0.08550 0.09994 0.12855
F1 0.07184 0.16170 0.04637 0.10535 0.05944 0.01040

I'1 - ["1 F6 F5 F4 F3 F2 F1
F6 O -0.08277 -0.00866 -0.08174 -0.08970 -0.05635
F5 0.08277 O -0.05259 -0.00789 -0.01298 -0.10150
F4 0.00866 0.05259 O -0.11047 -0.08837 -0.02624
F3 0.08174 0.00789 0.11047 O -0.01516 -0.00553
F2 0.08970 0.01298 0.08837 0.01516 O -0.06911
F1 0.05635 0.10150 0.02624 0.00553 0.06911 O

Panel C: Monthly Returns
['1 F6 F5 F4 F3 F2 F1

F6 0.16759 0.11201 -0.18271 0.06533 -0.09803 0.00883
F5 0.15534 -0.00932 0.06792 0.04604 -0.10011 0.09429
F4 0.04053 0.06061 -0.12812 0.00065 -0.10209 -0.04590
F3 0.30249 0.08938 0.08794 0.09880 0.00766 0.19024
F2 0.18417 0.14286 -0.01962 0.12261 0.06457 0.16282
F1 0.13538 0.04268 0.03892 0.11937 -0.06755 0.09231

['1 - ["1 F6 F5 F4 F3 F2 F1

F6 O -0.04333 -0.22324 -0.23715 -0.28219 -0.12655
F5 0.04333 O 0.00731 -0.04334 -0.24297 0.05161
F4 0.22324 -0.00731 O -0.08729 -0.08247 -0.08482
F3 0.23715 0.04334 0.08729 O -0.11495 -0.07087
F2 0.28219 0.24297 0.08247 0.11495 O -0.23037
F1 0.12655 -0.05161 0.08482 0.07087 0.23037 O

* See Table 2 for description of the columns F1 to F6



•

Table 5. Data adjustment Coefficients for Thinly and Continuously traded assets

INTR
THUS
WEON
THUR
FRIO
GAP1
GAP2
GAP3
GAP4
GAPS
HOllO
Jan01-07
Jan08-15
Jan16-23
Jan24-31
FEBR
MAR
APR
MAY
JUN
JUL
AUG
SEPT
OCT
NOV
OEC2
OEC3
OEC4
TRO
TR02

Thinly Traded Assets
Return Series In(residuaI2)

Coeff. t-value Coeff. t-value
1.2712 {1.6234} -2.2497 {2.5163}
-1.3991 {1.9100} 1.7195 {2.0361}
-1.5432 {2.0922} 1.6990 {2.0803}
-1.4321 {1.9401} 1.7372 {2.2524}
-1.3520 {1.8278} 1.8850 {1.2358}
-0.2806 {0.5526} -0.7097 {0.2005}
-0.3723 {0.3880} 0.2177 {0.9212}
0.2764 {0.2891} -0.9960 {0.3965}
-0.2789 {0.3461} -0.3615 {1.4978}
-0.5926 {0.9694} 1.0357 {1.5292}
-1.1985 {1.2459} 1.6636 {1.1924}
0.7566 {1.8124} 0.5629 {0.9912}
0.8501 {2.1755} -0.4380 {0.9260}
0.7136 {1.8262} -0.4092 {0.1872}
0.5226 {1.4522} -0.0762 {1.5350}
0.3913 {1.2557} -0.5412 {1.2914}
0.2580 {0.8315} -0.4532 {0.8897}
0.1917 {0.6096} -0.3165 {1.4622}
0.3321 {1.0453} -0.5255 {0.6507}
0.1999 {0.6432} -0.2288 {1.7108}
0.1926 {0.6243} -0.5971 {2.0604}
0.3740 {1.2113} -0.7198 {1.6557}
0.1316 {0.4289} -0.5747 {0.7745}
0.1892 {0.6187} -0.2679 {0.7854}
0.1348 {0.4392} -0.2725 {1.5372}
0.5179 {1.3255} -0.6792 {1.4531}
-0.0352 {0.0901} -0.6421 {0.1820}
0.6947 {1.6510} -0.0866 {0.1806}

1.0148 {1.6041}
0.3112 {0.5080}

Continuously Traded Assets
Return Series In(residuaI2)

Coeff. t-value Coeff. t-value
0.6179 {1.0289} 0.3083 {0.3418}
-0.6091 {1.0843} -1.9881 {2.3783}
-0.4861 {0.8594} -2.0890 {2.4819}
-0.4395 {0.7763} -2.1362 {2.5360}
-0.3517 {0.6200} -2.3382 {2.7699}
0.4098 {1.0522} 0.3792 {0.6545}
0.5478 {0.7445} -2.1334 {1.9482}
1.4975 {2.0423} -0.2389 {0.2191}
-0.4608 {0.7455} -0.0730 {0.0794}
0.3157 {0.6733} 0.5589 {0.8012}
-1.1835 {1.6042} 0.2578 {0.2350}
0.8645 {2.7003} 0.6253 {1.3130}
-0.1162 {0.3878} 0.5782 {1.2972}
0.0683 {0.2279} 0.4563 {1.0237}
0.0912 {0.3304} 0.5686 {1.3852}
-0.0279 {0.1168} 0.2285 {0.6424}
0.0733 {0.3082} 0.2066 {0.5837}
-0.0773 {0.3204} 0.1599 {0.4457}
-0.1358 {0.5575} 0.2971 {0.8196}
-0.2774 {1.1639} -0.1425 {0.4018}
0.0410 {0.1735} -0.1955 {0.5553}
-0.1922 {0.8116} 0.4430 {1.2573}
-0.1879 {0.7982} 0.2768 {0.7906}
-0.1930 {0.8229} 0.4293 {1.2305}
-0.3830 {1.6275} 0.7462 {2.1322}
0.1905 {0.6357} 0.8168 {1.8326}
-0.4338 {1.4477} 0.4373 {0.9811}
0.2140 {0.6632} -0.0867 {0.1806}

0.9449 {1.4809}
0.0513 {0.0831}
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Stock return volatility in thinly traded
markets. An empirical analysis of trading
and non-trading processes for individual
stocks in the Norwegian thinly traded
equity market

P. B. SOLIBAKKE

Department of Business Administration and Economics, Molde College, P.O. Box 308.
N-6401 Molde. Norway

ff?
This paper reports studies of the volatility of prices for individual stocks in the thinly
traded Norwegian equity market during periods of trading and non-trading when the
market is open for trading and closed. Building a model using Brownian motions,
returns and variance ratios in trading and non-trading periods can be hypothesized.
The model presents results that show an identical volatility in periods in which the
market is open but no trades occur, and in periods of frequent trading. Furthermore,
when the market is closed (weekends and holidays), the volatility is almost identical to
consecutive days of trading. That is, the observed that on correspondence between
return variance and transaction arrival is dependent on whether the market is open,
and not simply on whether the stock is trading. This finding prevails after adjusting for
non-synchronous trading using Poisson distributed trade arrivals.

I. INTRODUCTION

Bachelier (1900) first developed the random walk model
(that uses a stochastic process called Brownian motions),
tT,::c;:;i:ssumesthat security prices from transaction to trans-
ac'{;~nare independent, identically distributed random vari-
ables. Bachelier's model, together with the central limit
theorem, suggest that price changes are normally distributed
and that their variances will be linearly related to the time
interval. In the literature, one prominent explanation for the
observed departure from Bachelier's model is the mixture of
distributions hypothesis. This maintains that trade-to-trade
asset returns exhibit leptokurtosis because they are reallya
combination of return distributions that are conditioned on
information arrival. This means that periods of little or no
information arrival result in observed return distributions
different from periods when information arrives frequently.
This means again that return distributions on thinly traded
stocks should differ from the distributions of stocks that are
traded often. A thinly traded stock might not be traded for

days, and when it is traded, it is often traded on low volume.
Non-trading pricing processes are therefore an important
factor for the understanding of return distributions.
Furthermore, non-trading pricing processes must be under-
stood in both open and closed markets. In other words, are
the non-trading return characteristics influenced by active
and inactive markets?
This paper studies the returns and variance of thinly

traded stocks in the Norwegian equity market. The
Norwegian market has a sufficient number of thinly traded
stocks (long periods of non-trading) that makes it possible
to study both open and closed market processes. By devel-
oping a model for non-synchronous trading, return and
variance ratios can be hypothesized for consecutive days
of trading versus k numbers åf non-trading days in open
and closed markets. Any differences can help one to under-
stand the processes behind the information arrival and
return processes. To the author's knowledge a simul-
taneous comparative study of closed and open markets
has so far not been performed.
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As the Norwegian market is a competitive dealer market,

the results from this study should be applicable to a num-
ber of lowly traded and emerging markets in Europe,
America and Asia. Moreover, as this study analyses non-
trading processes in the Norwegian computerized trading
market, it should also be applicable to the US OTe (over
the counter) market, which is both a computerized and thin
market.
The paper is organized as follows. Section II gives a

literature review. Section III defines a model for the stoch-
astic return process. Section IV gives the empirical data,
the results/findings of the variance ratio analysis and,
finally, Section V summarizes findings and draws conclu-
sions.

II. LITERATURE REVIEW

In order to investigate the nature of the returns of differ-
.,,,.~ently traded stocks, a good starting point is the return
t,;~;;;generating model set forth in Scholes and Williams (1976,

1977). This formulation models returns and transaction
arrivals and is discussed fully in Section III. Most studies
in this literature review confirm that returns and volume
are simultaneously jointly determined and are linked to
information arrival. Therefore, if we can determine how
returns and trades are distributed, this gives increased
understanding of how information changes affect the mar-
ket (including its micro-structure).

Returns in open and closed markets

When stock markets are closed, no trades occur. Thus
although investor expectations about returns may have
changed, or information arrives that would alter the
expected return on a stock, price effects are not observable
until the markets reopen. A common problem, therefore, in
theoretical and empirical studies of financial markets is the

=_ identification of returns when the markets are closed or in
p::;~;non-trading periods. Many theoretical models of the return-

generating process assume that price changes are indepen-
dent of when and how often trades occur. That is, there
exists a 'true' price whether or not a trade occurs. Thus,
under this proposition a return is generated both over week-
ends and evenings when the market is closed and in a thin
market like the Norwegian when the market is open but the
asset is not frequently traded (Scholes and Williams, 1976,
1977; Lo and MacKinlay, 1990). This assumption draws
theoretical justification from models of symmetrically
informed traders, for example Marshall (1974) and
Rubinstein (1975), in which prices can change without trad-
ing as investors' expectations change in unison.
An opposing hypothesis is that returns and transactions

occur only when information arrives. With regard to
returns, Ross (1989) assumes that information arrives
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.'. "" lo

",

P. B. Solibak
thro~~ a Martingale process, and though no-arbit~
conditions, demonstrates that return variance is direc
related to the Bow of information. Similarly, transacti
arrivals are also likely related to the Bowof information
this case, price changes when there is new information a
the price changes are coincident with trades. Non-tradi
periods could represent periods in which no informati
arrives and hence price and return do not change.
The true relationships between information arriva

transaction frequency and return probability lie somewhe
between these two extremes. For instance, French and R,
(1986) find that prices are more volatile when markets a
open than when they are closed. Their results suggest th
there is a continuous component to the return, as well as
component that is driven by the information arrival. If o
assumes further that information arrival is more likely
happen when markets are open, then one is likely to fil
that trading frequency is positively related to the mean ar
variance of returns .
In an early discussion of the distinction between tradir

and non-trading periods, French (1980) tested two altern
tive models of the process generating stock returns. Und
the first, the calendar time model, returns are generate
continuously in calendar time. The alternative tradir
time model suggests that returns are only generated durir
active trading. He found that neither model was supporte
by US data.

French and Roll (1986) examined the difference betwee
variances on trading and non-trading days. Using the dai:
returns they found that the hourly variance when the Ne
York exchanges are open was roughly seventy times tr
hourly variance when they are closed. To explain th
phenomenon they test several hypotheses. Their resul
indicate that, on average, approximately 4 to 12% (
daily variance is driven by noise trading. The rest can t
explained by differences in the flow of information durin
trading and non-trading hours, most of which, they asser
is private information.
Barclay et al. (1990) extend French and Roll (1986) an

test the three hypotheses above and are in favour of tl
private information hypothesis. In particular, they find n
evidence for either the public information or the nois.
trading hypothesis. Furthermore, their results suppe:
rational trading models in which private informatio
revealed through trading causes variance. Booth an
Chowdhury (1996) confirm that stock return variance
are larger during trading hours than during non-tradin
hours, and provide evidence consistent with the privat
and public information ,hypothesis and against the noise
trading explanations. Subrahmanyan (1991) shows tho
when informed traders are risk averse, noise trading raise
price volatility because these traders respond less aggres
sively to an increase in noise trading than do risk-neuter
informed traders. Further, De Long et al. (1990) sugges
that the presence of a certain type of noise traders, 'positiv
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feedback traders', may lead to an increase in volatility. This
occurs when informed speculators, rather than taking posi-
tions opposite the positive feedbaclc; traders, reinforce the
market price movement (away from. its fundamental value).

In other research in a similar vein, Lockwood and Linn
(1990) examine the hourly variance of market returns dur-
ing 1964-69. They find that variances during the trading
day are from 2.34 to 4.37 times greater than the overnight
period. McInish et al. (1985), Harris (1986) and M~Inish ~t
al. (1990) examine intra-day stock returns over brief pen-
ods and find that market volatility is high near the open
and close of the trading day and that volatility is greater
the greater the time since the last trade.

Returns in thin markets

In a theoretical development of the role of thinness in se-
curities markets, Cohen et al. (1978) use compound
Poisson processes to model the discrete time arrival of
transactions. They show that under heterogeneous expecta-
tiljE?, variance is inversely related to the market value of a
stock. Using total market value as an inverse proxy for
thinness, they find that thinness is a significant determinant
of variance. Silber (1975) investigates empirically the effect
of thinness on stocks listed on the Tel Aviv Stock
Exchange. He finds that two salient characteristics of thin-
ness are a large bid-ask spread and a large variability in
price per unit of excess demand. Moreover, he examines the
relationship between price change volatility and the follow-
ing variables: (l) the volume traded of each security, (2) the
total supply outstanding of each security, (3) the number of
stockholders, (4) the total asset of the firm and (5) the
number of days on which no trading occurred in each
security during a particular interval. His results show that
the volume of trade is the best indicator of lack of thinness
for the equity market. In the bond market, the number of
days of no trading is the most consistent indicator of thin-
ness followed by volume traded and size of the issue.

Because securities in thin markets often trade only once
e\~'::~ several days, there exists a measurement problem for
empirical studies that use daily returns. Observed trade-to-
trade does not correspond to true daily returns since se-
curities do not trade every day at market close. Therefore,
any use of reported daily returns rather than true returns
results in the econometric problem of errors in variables.
As shown by Scholes and Williams (1976, 1977), failing to
account for the non-synchronous trading problem results
in overstated variances and spurious auto- and cross-
correlations. In addition, ordinary least squared estimators
for alphas and betas in the market model are biased and
inconsistent.

Lo and MacKinlay (1990) develop a stochastic model of
non-synchronous asset prices that accommodates the prob-
lem of non-trading. In particular, their model assumes
more realistically that the time between trades is stochastic

:. .... :.
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rather than limiting the model by forcing a trade per day
as Scholes and Williams did (1976, 1977). Lo and
MacKinlay also derive closed-form expressions for the
unconditional means, variances and covariance of observed
returns as functions of the non-trading process: Among
other results, they find that non-synchronous trading
does not affect the means of individual returns, while, on
the other hand, it increases the observed variance of these
same security returns.

This study is slightly different from Lo and MacKinlay's
in that multiple-day return variances including one or more
non-trading days, will be compared to variances measured
over consecutive trading days given that the number of
non-trading days in each multiple-day return observation
is known. Consequently, the relation ofmeasured variances
to true variances in the presence of non-synchronous trad-
ing and non-trading and conditional on a known number
of non-trading periods must be developed.

III. A MODEL FOR A CONTINUOUS
STOCHASTIC RETURN GENERATING
PROCESS

Assume that the return is a continuously compounded rate
R, per trading period {r - l, r]. The price of the asset at
time r is log-normally distributed and denoted Pl> so
R, = In (Pr/Pr-l) and normally distributed. We therefore
assume further that Pr is a Brownian motion with par-
ameters J.' and (fl selected so that E(Rr) = J.' and
Var (Rr) = (f2. The simplest representation of the (arith-
metic) Brownian motion is:

R, = J.'dr + a dz,

where dz, is the increment of a Wiener process, defined as
dr, = er . Ydt, where er has zero mean and unit standard
deviation, E(dzr) = O and Var (dr.) = E«dr)2) = dr. J.' is
called the drift parameter and a the variance parameter.
Note that over any time interval dr, Rr, is normally distrib-
uted, and has expected value E(Rr) = J.'dt and variance
Var (Rr) = (f2 • dr. Furthermore, note that a Wiener pro-
cess has no time derivative in a conventional sense;
dZr/dr = er' (dr)-1/2, which become infinite as dr ap-
proaches zero.

In general, the return Ra•b over a time period {a, b} is
given by

Ra.b = In (Pb/ Pa)

where Pa and Pb are the observed prices at time a and b
(a < b). When a and b is constantly changing among the
component stocks, this may cause non-synchronous
trading.
If we assume that the return generating process Ra,b fol-

lows an arithmetic Brownian motion a model for Ra•b is
given by
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Fig. l. Observed versus actual retum

where dzb - dzø is normal with mean O and variance b - Q.

Let c - l+ v be the time of the last trade during trading
period {t - l, c} and let k be the number (k = O, 1,2,3) of
trading periods after {c - l, t} in which there are no trades.
This time definition gives a definition of v that is the time
until the last trade of the day t. This means that there is at
least one trade during {t - l + k + l, t - 1+ k + 2}. Let u
be the time for the trading period {t + k, t +k + l}. We
illustrate the notation in Fig. l.

RObs represents the observed k + l period return based
on-the last trades in period {t - l, t} and {t + k, t + k + I}.
Assuming that k and v are independent and that u and v are
identically, independently distributed, employing Equation
l leads to .

RObs= ,u«c + k + u) - (t - l + v» + CT(dz(t+k+u)

- dz(/_I+.)

= ,u(k + l + u - v) + CT(dz(/+k+u) - dz(/_I+.)

Using the standard result from statistical calculus gives us
the expected return E(R°bs) for a given day equals

E(R°bs) = ,u«k + l + E(u) - E(y)) + CT(E(dz(/+k+u) Ik)

- E(dz(l_I+.) Ik»)

= ui]: + l) + CT(k+ 1)(0)

= ,u(k + l)
(F+
:~:f That is, the expectation of the observed return is equal to

the true mean one-period return multiplied by k + l. This is
consistent with both Scholes and Williams (1976,1977) and
Lo and MacKinlay (1990) who find that mean returns are
unaffected by non-synchronous trading.

To compute the observed variance for Robs,
Var (RObSjk), we can use the fact that

Var (A) = Var (E(A I B)) +E(Var(A lB))

Thus,

Var (RObSIk) = Var (E(RObs I k,u, Y))

+E(Var(RObs I k,u,y))

Some algebra leads to

:. '" 11
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=Var(,u(k+ l +u- Y» +E(tl(k+ l +u- Y))

= ,u2 Var (O + u - Y) + (T2 E(k + l + u - y)

Now, since u and yare identically and independently d
tributed

(l)
Var (~bs Ik) = 2,u2 Var (u) + tl(k + l)

which provides a general form of the relationship betwe-
observed and true variance.

Equation 2 allows for correction of .the variance
measured returns in thin markets. If we determine the va;
ance of the measured returns, their means, and the varian
of the time interval between the beginning of a day and t:
last trade, then the true variance of returns can also l
determined. However, unless we assume a specific distr
bution for the trading process, Var(u) cannot easily l
determined and a closed-form relationship between mea
ured and actual returns cannot be obtained.

IV. EMPIRICAL DATA AND RESULTS

Data

The study uses daily and return series for Norwegian stod
spanning the period from October 1983 to February 199·
This high frequency time series database gives at most 261
observations for each firm.

Daily trading volume data was obtained from the 'Osl
Børs Informasjon' database. All stocks in the database aj
used in the analysis. We have divided the period into tw
subperiods; one period from October 1983 to Septembe
1987 (1019 observations) and one period from Decemb.
1987 to February 1994 (1546 observations). Daily stoc
returns are calculated as the change in the logarithm (
successive closing prices.

Sample firms satisfied the following criteria:

(l) The firms are listed at the Norwegian Stoc
Exchange and information of daily ask, bid an
settlement prices including trading volume are avai
able.

(2) The firms must have at least five observations of twc
day returns including one non-trading day.

Return observations on consecutive days were mor
numerous than two-days' returns that included one nor
trading day. Thus, consecutive-day variances are in gener;
estimated with more precision than variances measure
over k + l days where k is the number of non-tradin
days. The intersection of these selection criteria yielde
227 sample firms spanning the whole period.
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Table I. Summary statistics of trading and non-trading days in the three periods under examination are presented below
for each firm in the sample

Nontrading Trading Percentage
Period Statistic Listed days days days of trading days

I June 1983 Mean 1531.27 611.93 918.75 60.05%
February 1994 Standard deviation 826.54 591.54 691.28 27.52%
Number of firms: 227 Minimum 52.00 12.00 33.00 4.54%

Maximum 2681.00 2361.00 2660.00 99.25%

I June 1983 Mean 914.56 342.85 571.36 63.87%
1 October 1987 Standard deviation 277.07 309.50 314.64 28.22%
Number of firms: 127 Minimum 65.00 11.00 23.00 6.68%

Maximum 1092.00 1019.00 1081.00 98.99%

1 December 1987 Mean 1042.10 424.69 616.98 58.94%
1 February 1994 Standard deviation 464.37 366.08 420.94 27.03%
Number of firms: 183 Minimum 52.00 9.00 16.00 4.31%

Maximum 1547.00 1418.00 1538.00 99.42%

Listed days are the total number of days in each period for which a firm was listed as a trading stock. Non-trading days
are the number of listed days on which the market was open and volume was zero, while trading days are the listed days
with non-zero volume. Trading days as a percentage of totallisted days is presented in the last column.

@;
Results

Table 1 presents summary data on frequency of trading
and non-trading for the stocks in the sample. As can be
seen from Table 1, not all stocks were listed for the entire 6-
year period. In order to determine the percentage of trad-
ing days for a given stock, only days on which the stock is
listed and a first settlement price is quoted are considered.

Among the stocks in the sample, there is quite a large
range in the frequency of trading. For the entire period
from l June 1983 to l February 1994, the mean percentage
of trading days is 60.05%, while the minimum is 4.54%
and the maximum 99.25%. Thus the sample contains both
frequently and infrequently traded stocks. Finally, note
especially that the periods have quite different numbers
of listed days. Moreover, the main reason for dividing
the periods as shown above is the crash in October 1987
and the fact that the Oslo Stock Exchange switched to an
~!':1:gronic trading system in March 1988.
'''::-'i'~''

Observed mean and variances over trading and non-trading
periods when the market is both open and closed. If the
return-generating process is, as is commonly assumed,
geometric Brownian motion, then stock return means and
variances are linearly related to the time interval, and
thus they are constant across trading and non-trading
periods of the same length. Therefore, the mean and vari-
ance of returns over a period in which there is no trading
for n days should be n times the mean and variance re-
spectively of a weekday return that is measured between
consecutive days of trading. To test these hypotheses, for

each firm continuously compounded returns are calcu-
lated for each day, returns are calculated for k = l, 2 and
3 non-trading days (zero trading volume)! and returns
are calculated for Mondays (k = 2) and holidays (k = l).
Figure 2 illustrates this calculation for a consecutive
return (k = O) and a three-day return (k = 2). Thus, for
k = O, the return is the calculated continuously com-
pounded return using closing prices at t = l and t = 2.
With two days of non-trading, also shown in Fig. 2, the
3-day return is calculated as the continuously com-
pounded return over 3 days using closing prices at t = 2
and t = 5.

From these returns, means and variances are calculated
at the firm level for each category (k = O, 1,2,3, Mondays
(k = 2) and holidays (k = l». Each firm has a mean and
variance of returns for consecutive days of trading and for
periods in which there are l, 2, and 3 days of non-trading
when the market is open, and for periods in which there are
1 and 2 days of non-trading when the market is closed. To
be included in the comparison of k = O and k = l returns, a
firm had to have five observations of each return. Similarly,
to be included in the k = O versus k = 2 comparison, a firm
had to have at least five observations of each. The same
constraint was imposed for k = O versus k = 3, Mondays
(k = 2) and holidays (k = l) comparisons. This means that
frequently traded firms which appeared in the k = O versus
k = l comparison were not likely to appear in the k = O
versus k = 3 comparison.

The means and variances 'calculated above are then, in
turn, aggregated across firms as grand averages for each
period. Thus each time period provides a mean and vari-

INon-trading periods greater than 3 days implies that only observations within the 5 weekdays are accounted for.

, .~
.; .•... 10.1
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Fig. 2. Trading and non-trading return calculations

ance across firms for consecutive days of trading, each of l
to 3 days of non-trading, Mondays (k = 2) and holidays
(k = 1). Formally, the grand means and variances for a
given k and period are calculated as

E(Ro
bS

Ik) = ~k' [t(~k' (tR~bS))] (3)

and

8f'var'(RObs Ik) = ~ . [t (~.f:(R~bS ,- E[RobS I k])2)]
k .-1 k n=l

(4)

where

Table 2. Sample means

P. B. Solibakk
R~'oI = total returns for finn n in period ij

N/c = total number of observations for a given finn
and non-trading period k; n

M/c = total number of firms in the sample non-trading
periods.

Table 2 presents the mean returns for each period. Th
null hypothesis is that the non-trading day mean retur
E(J(''01 Ik) should be k + l times the consecutive da
returns. The alternative is that the non-trading day mea:
return E(J(''01 I k) is different from k + l times the con
secutive day returns.

Hypothesis l:

Ho: E(R°bs Ik) = (k + 1)J,L, for k = 1,2,3,

Mondays (k = 2) and holidays (k = 1)

for k = 1,2, 3,

Mondays (k = 2) and holidays (k = 1)

Using at-test, 2 when the market is open we find th.
probability that Itl takes a value higher than the calculatec
value for the degrees of freedom is very high (> 90%). This
suggests that when the market is open the null hypothesi.

Number of Consecutive-
non-trading Number of day mean Mean return
days k firms return-k = O k = 1,2,3

l 218 0.29074825 -0.15545964
2 159 0.29927974 -0.50128789
3 105 0.31726758 -0.64096307
Mondays 224 0.25280417 0.08760102
Holidays 173 0.17203636 0.65244010

l 133 0.30190492 0.08846285
2 94 0.30755424 0.07781368
3 72 0.37591182 - 0.17648476
Mondays 134 0.21119597 0.38462166
Holidays 89 0.08411117 0.42821442

1 177 0.31982536 -0.11076306
2 121 0.33456256 -0.71609132
3 89 0.39928584 -0.65447482
Mondays 195 0.29716997 -0.02975241
Holidays 138 0.22903584 0.76729028,

Period:

l June 1983-
February 1994

\ -r,
. ~'l June 1983-

1 October 1987

l December 1987-
l February 1994

Returns over k + l days are measured between the last transaction on a pair of trading days ~nd
include k non-trading days. The third column shows the number of firms in a given period that has at
least 5 observations for a particular k. In each sample period, the 'mean returns are calculated at the
firm level for both consecutive daily returns (k = O) and for non-trading periods (k = 1,2,3, Mondays
and holidays). These are then aggregated to find mean returns for consecutive days of trading and for
non-trading and for non-trading periods,

.'. \,. ~
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cannot be rejected at 5% for any k non-trading days. That
is, the mean returns may in fact be an integer multiple of
the time interval. The result is consistent for all non-trading
days when the market is open over all three periods.
However, note the close-to-zero and negative returns for
the non-trading days in all periods in contrast to positive
returns for consecutive days of trading. Furthermore, when
the market is closed, the results still show the same favour-
able attitude towards the null. That is, the mean returns are
in fact an integer multiple of the time interval. For days
following Mondays (k = 2) and holidays (k = l) we find
the probability that Itl takes a value higher than the calcu-
lated value for the degrees of freedom is also higher than
90%. That is, one (two) day(s) ofnon-trading returns when
the market is closed may in fact be equal to l (2) days of
consecutive day returns. The results are consistent over all
three periods. The first hypothesis shows therefore no sig-
nificant results and is probably driven by the fact that var-
iances are largely relative to the magnitude of mean
returns. Therefore, to extend and further analyse the
~2!'ms, a second hypothesis that mean k + l day returns
are equal to zero are tested. This hypothesis is set out
below.

Hypothesis 2:

Ho: E(R°bs I k) = O, fork= 1,2,3,

Mondays (k = 2) and holidays (k = l)

fork= 1,2,3,

Mondays (k = 2) and holidays (k = 1)

For all non-trading cases when the market is open and
closed, using the same form of l-test as above, the null
hypothesis cannot be rejected at S%. That is, the mean
returns for all non-trading categories may in fact be zero.
The result is consistent over all three periods. This result is
also probably driven by large variances relative to mean
returns. Finally a third hypothesis that mean k + 1 day-
n~~::2.nsare equal to mean consecutive returns is tested.
This hypothesis is set out below.

Hypothesis 3:

Ho: E(RObs I k) = u; fork= 1,2,3,

Mondays (k = 2) and holidays (k = 1)

fork = 1,2,3,

Mondays (k = 2) and holidays (k = l)

When the market is open and closed all the non-trading
cases cannot reject the null hypothesis at S%. That is, the
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mean returns are in fact equal to the consecutive day mean
return. Therefore, all three hypotheses above cannot be
rejected.

However, some observations are interesting and readily
available. For the non-trading cases when the market is
open, consistent positive mean consecutive day returns
are found. The returns are remarkably stable showing
results of about 0.3% to 0.4% for all three sample periods.
The consecutive daily returns for all three periods are low-
est for k = l and highest for k = 3. This suggests that fre-
quently non-traded firms show positive returns when they
are traded for consecutive days. A possible interpretation is
that lowly traded firms (periods of non-trading) are
rewarded with a highly daily return when they are traded
for consecutive days. Therefore for lowly traded firms a
possible interpretation of our results is that there is a trad-
ing effect in the market. The positive-trading return effect
seems to increase the less the firm is traded in the market.
Moreover, the non-trading periods k mean returns are
mainly negative except for k = 1 and 2 in the first sub-
period 1983--87. However, the returns are close to zero.
Therefore, results suggest that firms experience higher
negative returns the longer the non-trading period. In this
case a possible interpretation is that there is a non-trading
effect for long non-trading periods. The non-trading nega-
tive return effect seems to increase strongly from k = l to
k = 2 and 3. Trading volume in the form of the number of
trading and/or non-trading days is therefore a candidate
for an independent variable in cross-sectional regressions
of daily stock returns.l
Finally, results also suggest a shift in the well-known

Monday effect. For the sub-period 1983--87 a high positive
daily Monday effect is found beyond other days the aver-
age consecutive trading day returns. This result also dom-
inates the whole period 1983--94. However, studying the
period 1987-94 shows negative and close-to-zero Monday
returns. This return is far below the other days' average
consecutive trading day returns. Therefore, the well-known
Monday effect seems to have moved from positive before
the crash to negative after the crash. Probably more inter-
esting is the consistently positive returns following holidays
for all three time periods.

In summary, the result of the sample means suggest posi-
tive consecutive trading and negative non-trading mean
return effects in the market. Moreover, it seems that the
longer the non-trading period the higher the negative mar-
ket means return effect. We now turn to the variance ratios.
Finally, returns following holidays show consistently high
positive returns and the Monday effect has moved from a
positive to a negative anomaly.
Table 3 shows the results for the return variances. In the

rightmost columns of this table, the average variance ratio
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Table 3. VariDnce ratios

Number of Ccnseeutive- Meanvariancenon-traiiing Number of day variance Mean variance ratio
Period daysle firms -1e=0 le = 1,2. 3 le = l, 2. 3
l JUDe 1983- l 218 16.383864 28.322080 l.n8657
Febnwy 1994 2 159 16.688568 40.646385 2.435583

3 105 16.866576 52.244640 3.097525
Monday 224 16.124898 16.213218 1.005477
Holiday 173 14.489125 14.053013 0.969901

1 JUDe 1983- 1 133 11.965577 18.290556 1.528598
1 October 1987 2 94 12.895828 26.237021 2.034536

3 72 13.949368 42.770345 3.066114
Monday 134 11.127184 10.154260 0.912563
Holiday 89 9.586768 9.094071 0.948607

1 December 1987- l 177 19.891649 32.743578 1.646097
l February 1994 2 121 18.947065 47.538090 2.508995

3 89 20.477151 60.083678 2.934182 •
Monday 195 19.087888 18.993608 0.995061
Holiday 138 15.652051 15.760224 1.006911 •

* Statistical significance for the first hypothesis set forth above in the table header at a 5% confidence level.
** Statistical significance for the second hypothesis set forth above in the table header at a 5% confidence level.
Returns over k + l days are measured between the last transaction on a pair oftrading days and-include k non-trading days on which th
market is open but no trades occur. The third-column shows the number offirms in a given period that has at least 10 observations for
particular k. In each sample period.jhe variances are calculated at the firm level for both consecutive daily returns (k = O) and for non
trading periods (k = l, 2, 3, Mondays and holidays). These are then aggregated to find mean variances for consecutive days of tradin
and for non-trading periods. Dividing the non-trading period variance by the consecutive day variance results in the mean variance ratic

for each sample period and non-trading duration kare
presented. Variance ratios are determined by dividing vari-
ance measured over k + 1 days for k = 1, 2, 3, Mondays
(k = 2) and holidays (k = l), by the variance of consecu-
tive day (k = O) returns."
If returns follow a random walk, the variance ratio of

each trading day category should equal k + 1.This hypoth-
esis is set out below.

Hypothesis 4:

Var (RObSIk)
Ho' bs =k+1 fork=1,2,3,

. Var (RO I k = O)
Mondays (le= 2) and holidays (k = 1)

Var(RObSIk)
HA: Var (RobsIk = O) :f:. k + 1 fork = 1,2,3,

Mondays (k = 2) and holidays (k = 1)

The conventional method of using the F-testS for testin
variances across samples is to take their ratio, adjust fo
degrees of freedom and compare this to one. In our case, t(
perform the F-test in this fashion, one must first multipl;
Varo by k + l or divide Var k + l by k + 1 and then pro
ceed with the conventional method. For example, a vari
ance ratio based on two-day returns with k = l day of non
trading should equal two.
Employing an F-test for each period and for each cate

gory k, the 5% level of the null from hypothesis 4 is showr
by a • to the right of each k for each sample. That is, for al
three periods and all non-trading periods (k = 1,2, 3) th.
random walk hypothesis cannot be rejected. Variances or
periods that include one or more non-trading days appeal
to be equal to the prediction of the random walk model
This suggests that the return variance occurs both on trad
ing and non-trading days.6
Consider the variance ratio over the entire sample perioe

2 The r-statistic use: t = I(Rk/(k + 1)) - ~/o-I, where Rk is k non-trading days return, m is the consecutive days of trading return, o- is the
standard deviation, k is the number of non-trading days. The statistic gives the probability that Itl takes a value greater than the
calculated value for the stated degrees of freedom. This is thus a two-tailed test.
J A non-parametric integrated hazard function is therefore of considerable interest. •
4 Note that all variance ratio calculations are done within the same firm and the numbers reported.are the average over all the firms in the
sample.
SThe F-test uses: (ui/fl )/(a3./!i) =, where ui and o-i are independent X2 variables with li and f2 degrees of freedom respectively.
6 Heinkel and Kraus (1988) suggest a model-of non-trading stocks, which may fit the empirical data well. These authors assume that the
return variance of individual stocks on days in which they do not trade is equal to the return variance of the market portfolio. Firm-
specific information accumulated over non-trading days is then aggregated on to the first day of trade following a non-trading period
They then estimate betas through an iterative GLS procedure.

:. \,. »
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for k = l, that is 1.7287. Ifreturn variance on the first day
of trade after a one-day non-trading period is equal to
consecutive day variances, then the non-trading day vari-
ance is 86.44% of the variance over one consecutive trading
day. The same number for a two-day (three-day) non-
trading period is 81.19% (77.44%) of the variance of a 2
(3) day period of consecutive trading.

To consider the situation when the market is closed we
study the Monday and holiday results. The non-trading
days will be days when the market is closed. That is, for
all three periods and both Mondays and holidays the ran-
dom walk hypothesis is rejected. Variances on periods that
include l or 2 non-trading days when the market is closed
do not follow the prediction of the random walk model.
This suggests that the return variance occurs only when the
market is open regardless of trading or non-trading
periods.

We now explore the conjecture that the variance of
returns occurs primarily on days when the market is
open. Such a test is performed by using the hypothesis
C:rfi:t the variances of consecutive days o~ trading when
l..!.i.i: market is open, are equal to the vanances of those
periods that include non-trading days when the market is
open (k = 1,2,3) and closed (Mondays and holidays).
This is equivalent to testing the hypothesis that the ratio
of variances is one: .

-
Hypothesis 5:

. Var (RObs I k) _ l
Ho· Var (RObS I k = O) -

Mondays (k = 2) and holidays (k = 1)

fork= 1,2,3,4,5,6

Var (RObs I k) 1
HA: Var (RObs I k = O) i:

Mondays (k = 2) and holidays (k = l)

fork= 1,2,3,4,5,6

2'·t,'le 3 ~hows that this null hypothesis can be rejected over
;C'chree periods for non-trading days when the market is
open. However, the null hypothesis cannot be rejected over
the two non-trading days when the market is closed. That
is, for Mondays and holidays the variance is constant; for
non-trading days when the market is open, the variance is
(k + l) the variance of consecutive days of trading.

Variances and variance ratios - adjusted for non-synchro-
nous trading. In this section it is assumed that the occur-
rence of trades follows a Poisson distribution. This means
that trades occur as a Poisson process with parameter A,
where A is the mean number of trades per period, and
that k is known. Let s = l - u represent the time remain-
ing in a given trading period after the last trade. Then s
is distributed exponentially A e-Ar(A > O) on O:S s < I

.:. '- ~.."
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with the probability of no trade during any trading day
o~. PROB (s ~ l) = i...x.e-Å.rds = e-Å. If s is con-
ditio~ed ?n at least one trade per trading day, the density
functton 15

..xe-Å'.r
I{s) = l -Å-e

Given the density function I(s) above, and remembering
that u = l - s, the conditional variance of u is calculated
using integration by parts:

O:::;s<l

Substituting Equation 5 into Equation 2 above provides
the relationship between observed variance and true vari-
ance, given that the process describing trades is Poisson:

Var (RDb.rlk) = 2J1.2

x [A2eÅ + er-Å) - 3 + 3eÅ _ A2 _ e(2'Å)]
A2(eÅ_ 1)2(_1 + eC-Å))

+o-2(k+ 1) (6)

Equation 6 is identical to Scholes and Williams' result
except that the k non-trading periods are not constrained
to be zero.

Now all the inputs necessary to relate the measured vari-
ance to the true variance are at hand. If an empirical esti-
mate is used for A, the mean arrival rate of transactions,
then this model provides an approximation of how much of
the observed variance is due to non-synchronous trading
and provides a means to correct measured variances for
non-synchronous trading.

Equation 6 captures the general form of the relationship
between observed and true variance. As in Scholes and
Williams, the observed variance is dependent on the
mean return and always overstates the true variance of
returns. Increasing time between trades increases the
observed variance. And as A increases, the observed vari-
ance quickly approaches the true variance; in other words,
as trading becomes more frequent, measurement problems
diminish. This is illustrated in Fig. 3.

To estimate A, the mean number of trades per period, the
number of trading days (days on which trading vol-
ume > O) is divided by the total number of trading days
possible. If one trading day is taken to be one period, this
provides an approximation of the empirical probability
density of trading for one day, This estimate can then be
used to estimate A.

The Poisson process is given by

P(X = x) = (A~) e-Åx.
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Var(u)

Fig. 3. The variance o/ u with increasing A (lambda)

where x = the number of trades, and>' = mean number of
trades per period. The probability of no trading is

tf:;:' .

~=:. P(x=O)=(~;)e-Å=e~Å
Therefore,

>. = -ln(P(X = O»

Table 4. Variance ratios. adjusted/or non-synchronous trading

P. B. Soltbakk,

~or::(X = O) we s~s:tute the percentage number of day.
ID e. year on w c there are no trades. Now usinr
Equations 5 and 6 the true variance dl can be estimat~
because all other variables are known empirically. Usinr
observed means and variances from the results above an~
estimated As using Equation 7, estimates of true variances
are calculated according to Equations 5 and 6 and pre-
sented in Table 4. Rearranging Equation 6,

~ = Var (RObs I k) - 2i[Var(u)]
k+l

(7)

As the mean transaction arrival rate increases, the variance
of u, the time between the beginning of the day and the last
trade is reduced. Given k constant and J.'i = J.' :f: O for all
firms i, more thinly traded stocks will have bigger adjust-
ments to measured variances. And, for a particular J.' and
>., as the length of the trading period increases, the correc-
tion to measured variances diminishes at a rate l/(k + l).

In Table 4, the significance levels in Table 3 prevail
for each variance ratio test after adjusting for non-
synchronous trading and non-trading when the market is
open and closed. In fact, the magnitudes of the adjustments
for non-synchronous trading do not materially affect the
comparisons. Non-synchronous trading alone is unable to
explain the difference in return variance between trading
and non-trading periods when the market is open and
closed.

Number of Consecutive- Mean varaince
non-trading Number of day variance Mean variance ratio
days k firms -k=O k = 1,2,3 k = 1,2,3

l 218 16.681249 29.761413 1.784124 -
2 159 16.929198 43.325007 2.559188 -3 105 16.839335 51.613798 3.065073 -Monday 224 16.355083 16.621279 1.016276 --Holiday 173 14.574597 15.400688 1.056680 --
l 133 12.374857 19.080943 1.541912 -
2 94 13.173797 27.784941 2.109106 -
3 72 13.889328 42.295576 3.045185 -Monday 134 11.319234 10.576255 0.934361 --Holiday 89 9.643568 10.145162 1.052013 --
l 177 20.309926 35.319905 1.739046 -
2 121 19.236521 51.487278 2.676538 -
3 89 20.433834 59.464833 2.910116 -
Monday 195 19.362259 19.512647 1.007767 --
Holiday 138 15.753671 17.366666 1.102388 --

Period

l June 1983-
February 1994

(:f,') Ju~e 1983-
,,::,'1 October 1987

l December 1987-
l February 1994

- Statistical significance for the first hypothesis set forth above in the table header at a 5% confidence level.
.. Statistical significance for the second hypothesis set forth above in the table header at a 5% confidence level.
Returns over k + 1days are measured between the last transaction on a pair of trading days and include k non-trading days on which the
market is open but no trades occur. The third column shows the number of firms in a given period that has at least 10 observations for a
particular k. In each sample period, the variances are calculated at the firm level for both consecutive daily returns (k = O) and for non-
trading periods (k = I, 2, 3, Mondays and holidays). These are then aggregated to find mean variances for consecutive days of trading
and for non-trading periods. Dividing the non-trading period variance by the consecutive day variance results in the mean variance ratio.
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V. SUMMARY AND CONCLUSIONS

Empirical studies of returns and transaction arrivals typi-
cally reject simple assumptions as (l) return means are
known to differ over weekends, holidays, and month of
the year (French, 1980; Gibbons and Hess, 1981); (2)
return variances are known to be lower during periods
when the market is closed including weekends (Fama,
1965), exchange holidays (French and Roll, 1986) and
overnight periods (Lockwood and Linn, 1990); (3) return
variances exhibit season differences such as across days of
the week (Lockwood and Linn, 1990) and near the open
close of trading hours (McInish et al. 1985; Harris, 1986;
Mclnish et al., 1990). An increasing body of evidence fol-
lowing GARCH specifications indicates that return var-
iances are also auto-regressive (French et al., 1992;
Solibakke, 1997).

Similarly, transaction arrivals do not appear to arrive
independently over time. For example, Jain and Joh
~;t,l.88) find that trading frequency is dependent on the
~::~~~of day when the market is open, namely, trading is
heavier at the beginning and end of the trading day and
lighter in the middle. In a semi-non-parametric GARCH
setting, Gallant et al., (1991) find that return variances are
serially, cross- and serially cross-dependent. That is, vari-
ance and volume are jointly determined both cross-
sectional and over time.

The results in this study indicate that return variances
are related to whether or not the market is open. In par-
ticular, return variances over non-trading periods from l to
3 days when the market is open appear to be significantly
equal to k + l the return variances over consecutive periods
of trading. However, return variances over non-trading
periods of l to 2 days when the market is closed, appear
to be equal to the return variances over one consecutive
day of trading. Therefore, in all periods, (l) variances for
all non-trading periods when the market is open did con-
form to 'the random walk model and (2) variances for all
tot-trading periods when the market is closed did not con-
form to the random walk model.

A model of non-synchronous trading and non-trading is
developed to allow for correction of the measurement error
inherent in periods of infrequent trading. Consistent with
other findings (Scholes and Williams, 1976, 1977; Lo and
MacKinlay, 1990), the model analytically shows that while
observed mean returns are unbiased, observed variances
consistently overstate true variances. The greater the non-
trading period, the lesser the measurement error in the
calculation of variances. Despite the correction for non-
synchronous trading, the results remain unchanged.
When the market is open variances are not affected of
trading/non-trading and when the market is closed the var-
iances are almost equal to consecutive days of trading.

• J
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ARMA-GARCH lag specification is employed to fit a model exhibiting nonsyn-
chronous trading and volatility clustering for the Norwegian thinly traded equity
market. In particular, characteristics of the conditional mean and conditional vola-
tility inhibited in thinly traded equity markets are investigated. Trading volume is
employed as a proxy measure for trading frequency. Low to no trading volume
induces thin trading and non-trading effects while a relative higher trading frequency
induces continuous trading. The main objective is to investigate trading frequency
differences in serial correlation and cross-autocorrelation in the mean equation and
volatility clustering in the volatility equation as well as any symptoms of data
dependencies in the model residuals, which imply ARMA-GARCH model mis-
specification. BIC efficient ARMA-GARCH lag specifications are employed for
the conditional mean and volatility and relevant mean and volatility parameter
measures introduced that are well known from the changing volatility literature.
The empirical results report consistent mean and volatility patterns over the increas-
ing trading frequency series. Nonsynchronous trading and non-trading effects show
a consistent pattern in serial correlation and cross-autocorrelation for the con-
ditional mean and the latent volatility exhibits a consistent pattern in past shocks,

• past conditional volatility, persistence and weight to long-run average volatility. In
contrast to the more relatively frequently traded asset series the most thinly traded
series report insignificant asymmetric volatility. Moreover, for the most thinly traded
series, specification tests suggest data dependence, which seems to be prolonged into
the equal-weighted index series. Hence, due to serial correlation and data depen-
dence in the model residuals the ARMA-GARCH lag specifications seem only
appropriate for relatively frequently traded return series.

I. INTRODUCTION tive thin market compared to more elaborate markets and
that the Norwegian market contains several asset series
that show very thin trading (non-trading) together with
many frequently and continuously traded series. I The
main motivation is therefore to investigate any differences
in the conditional mean and volatility from thinly to con-
tinuously traded series. Trading volume is applied as a

ARMA-GARCH lag specification for the conditional
mean and volatility is employed for a nonsynchronous
trading and changing volatility model characterizing the
thinly traded Norwegian equity market. Solibakke
(2000a) shows that the Norwegian equity market is a rela-

ISee Chapter 4 of dissertation (Solibakke, 2000a) for a definition and classification of thin trading for the Norwegian equity market.
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proxy measure for trading frequency. Return series is
observed and non-trading and therefore zero returns, is
characterized by zero trading volume in Norwegian
Kroner (NOK). As the Norwegian market exhibits long
return series with zero trading volume, trading volume
proxies well for nonsynchronous trading and non-trading
effects induced by the zero return series. To establish trad-
ing frequency series four portfolios are formed based on
trading volume in NOK. These four series and an equal-
and a value-weighted market index series become the main
empirical investigation focus. The dynamics in return series
are investigated that exhibit an increasing trading fre-
quency, employing ARMA-GARCH methodology to
model the conditional mean and volatility processes.
ARMA-GARCH estimations from thinly to continuously
traded series may give new and interesting information of
nonsynchronous trading and non-trading effects as well
as volatility clustering. The investigation is especially
interested in effects from autocorrelation and cross-
autocorrelation in the conditional mean and shocks, auto-
correlation, persistence and asymmetry in the conditional
volatility. Hence, this investigation studies the relationships
between trading frequency and conditional mean and vola-
tility dynamics in an estimation context that control for
nonsynchronous trading and conditional heteroscedasti-
city. Finally, to complete the model features, asymmetric
volatility is incorporated as well as a measure of residual
risk from the conditional volatility to the mean (in-mean).
To the authors knowledge the focus of trading frequency
and Schwarz (1978) preferred lead and lag structures for
the conditional mean and volatility specifications are new
and are not previously been carried out in international
studies.
The portfolio series are organized based on historic trad-

ing volume and are rebalanced monthly, where the thinnest
traded portfolio captures very thin trading, the intermedi-
ate thinly traded portfolio captures dynamics for thinly

• traded series and the two frequently traded portfolios cap-
ture medium to frequent (continuous) trading. All time
series are adjusted for systematic scale and location effects
and a correct lag structure for the conditional mean and
volatility are achieved by applying the Bayes Information
Criterion (Schwarz, 1978) preferred ARMA-GARCH-in-
mean lag specifications. Note that the univariate ARMA-
GARCH-in-mean specification represents a departure
from Brownian Motions (Bachelier, 1964) and random
walk. The specification explicitly allows for predictability
measures in both mean and volatility processes.

It is believed that the contribution of this paper is a higher
understanding of the workings of mean and volatility pro-
cesses in thinly traded markets, where nonsynchronous trad-
ing and non-trading effects as well as volatility clustering

P. B. Solibakke

may contribute significantly to the dynamics of asset pricing.
The specification contributes by the following model fea-
tures across varying trading frequency. First, the specifica-
tion seeks consistent coefficient dilTerences in the conditional
mean equation; that is, autocorrelation and cross-autocor-
relation. Secondly, consistent and significant coefficient dif-
ferences in the volatility equations may contribute to a
higher understanding of lagged shocks effects, autocorre-
lated and asymmetric volatility and the weight to long-run
average volatility. Thirdly, as the degree of leptokurtosis in
residuals measures the departure from the normal distri-
bution, any systematic and significant coefficient dilTerences
may contribute to a higher understanding of non-normal
returns. Fourthly, as the Bayes information criterion (BIC)
is employed for lag specification in both the mean and the
volatility equations, efficient ARMA-GARCH specification
is obtained in both mean and volatility. Any change in lag
structures may offer new and higher understanding of mean
and volatility dynamics for thinly traded markets. Fifthly,
as elaborate specification test statistics are performed and
single and joint tests for volatility prediction biases, any
misspecifications will be reported. .

An expansion path is followed starting from adjusted
raw returns and eventually specify both ARMA (mean)
and GARCH (volatility) specifications for all the employed
data series. As these Norwegian equity series contain assets
that show thin trading relative to continuous trading, this
investigation may contribute substantially to the inter-
national nonsynchronous trading/ and changing volatility
literature. Consequently, the ARMA-GARCH specifica-
tions for the Norwegian equity market may characterize
nonsynchronous trading and non-trading effects as well
as volatility clustering across varying trading frequency
series not earlier shown in international finance.

The remainder for this paper is therefore organized as
follows. Section II gives a literature overview of changing
volatility, nonsynchronous trading and volatility cluster-
ing. Section III defines the data and describes a general
adjustment procedure for systematic location and scale
effects in time series. Section IV specifies the ARMA lag
specification for the conditional mean and the GARCH lag
specification for the conditional volatility, employing the
BIC methodology to ensure efficiency. Section V reports
the empirical results and Section VI reports the findings
from the analysis. Finally, Section VII summarizes and
concludes our findings.

II. LITERATURE OVERVIEW

If a subordinated stochastic volatility model determines
asset returns, then returns during periods of nonsynchro-

2 See Solibakke (2000b) for non-trading characteristics for individual assets in the Norwegian equity market.
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nous trading and non-trading would differ from returns
during periods of synchronous and continuous trading.
Assuming trading frequency is a proxy for (non)synchro-
nous trading effects, it may be hypothesized that trading
periods containing low or no trading volume is character-
ized by mean and volatility processes different from pro-
cesses in trading periods containing high trading frequency.
Clark (1973) develops a subordinated stochastic process
model for speculative price series. He argues that observed
daily price changes are driven by two components; (l) a
subordinated (or conditional) price change process and (2)
a driving (or operational time) process. Clark found that
the variability of the observed price process differs from
one chronological time period to another, depending on
the volume of transactions. Hence, a mix of finite volatility
processes may describe price change series. Tauchen and
Pitts (1983) have later refined this research assuming a
stochastic volatility process. Moreover, Gallant and
Tauehen (1996) employ efficient method of moments to
estimate stochastic volatility models with diagnostics.
They find that stochastic volatility models describe market
characteristics well allowing for autocorrelation in both the
mean and volatility processes.

Other research supports the mixture of distribution's
hypothesis by testing subordinated stochastic process mod-
els of price change series and trading volume series.3,4
Harris (1989) argues that observed properties of daily
data are a consequence of similar properties of transaction
data. Because each transaction price change is leptokurtic,
leptokurtosis is a result of daily price changes when trans-
action data are aggregated to obtain daily data. Using a
mixture of distribution model for daily data that is con-
ditioned on the arrival of information in a given day,
Harris finds kurtosis, skews and heteroscedasticity in
daily price changes. His results also suggest that the daily
transactions count may be a useful instrumental variable of
estimating unobserved realizations of stochastic price var-
iances. However, the system is still incomplete, as the
dynamic properties of the information arrival process,
which is assumed to drive return, volatility and volume,
remain unspecified. Hence, in recent years it is found that
many analytical models of information arrival find that
returns and trading-volume are co-determined. For ex-
ample, Admati and Pfleiderer (1988) model the effects of
private information on order flow and that the trades of
several classes of investors (informed traders and discre-
tionary liquidity traders) will tend to cluster. This cluster-
ing of trades causes return variance to be highest during

3
periods of active trading. In an alternative approach to the
relation of information arrival, volume, return and var-
iances, Ross (1989) assumes that information arrives
according to a martingale process and, though no arbitrage
conditions, demonstrates that return variances are propor-
tional to the rate of information flow. In this case, price
change when there is new information is coincident with
trades.

Return volatility and trading volume will be related if
transaction arrivals are related to the flow of information
in the model. Hence, a growing body of empirical evidence
supports the joint determination of return variance and
trading volume.! However, while international research
focuses on short-term conditional heteroscedasticity in
bivariate asset trading frequency and return estimation
(see for example SNP6 estimation in Gallant, Rossi and
Tauchen, 1992), focus here is on systematic and consistent
differences in lag structures and coefficient changes in con-
ditional mean and volatility equations for thinly and fre-
quently traded assets employing univariate ARMA-
GARCH-in-mean lag specifications. Hence, in contrast to
Lamoureux and Lastrapes (1990), trading volume series are
not directly modelled in the conditional volatility process.
In this univariate investigation the aim is to find consistent
lag and coefficient differences in the conditional mean and
volatility processes for series showing an increasing trading
frequency.
The model specifications focus on changes in lag struc-

tures as well as changes in coefficients in the conditional
mean and volatility across varying trading frequency series
for the Norwegian market. The focus will be on differences
in nonsynchronous trading and non-trading effects as well
as conditional heteroscedasticity and volatility clustering.
Intuitive thinking suggest that an asset that reports non-
trading responds to new information with a time lag. These
lagged responses may induce biases in the moments and co-
moments of daily return series. The serial correlation may
influence tests of predictability and nonlinearity as well as
volatility risk and expected returns. The first to recognize
the importance of nonsynchronous trading was Fisher
(1966). Campbell et al. (1997) reviews and extends existing
theory. They show that large stocks tend to lead those of
smaller stocks, which suggest that nonsynchronous trading
may be a source of correlation. However, they also find
that the magnitudes for the autocorrelations imply an
implausible level of non-trading and therefore leads them
to the conclusion that non-trading is only responsible for
some of the autocorrelation. Moreover, applying estimated

3 Epps and Epps (1976), Morgan (1976), Westerfield (1976) and Tauehen and Pitts (1983).
4 Theoretically, these processes can be derived as discrete time approximations to the solution of the option valuation problem when the
volatility of the underlying asset price is stochastic. Research in this vein has been carried out by, for example, Scott (1987), Wiggins
11987), Chesney and Scott (1989) and Melina and Turnbull (1990). .
See Barclay el al. (1990), Gallant el al. (1992) and Andersen (1994).

6 A Semi-Nan-Parametric Score Generator (Gallant and Tauehen, 1989).
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non-trading probabilities from daily autocorrelations
(Campbell et al., 1997) they find little support for nonsyn-
chronous trading and non-trading effects as an important
source of serial correlation in the returns for common stock
over daily and longer frequencies,"

III. EMPIRICAL DATA AND
METHODOLOGIES

Empirical data

The study employ daily returns and trading volume for
individual Norwegian stocks spanning the period from
October 1983 to February 1994. Daily return series are
defined as In(pi,t/pi,t-d, where Pi,t is the daily closing
price for asset i at time t. Trading volume is defined as
the total transaction volume in NOK at day t for asset i
including external trading (trading outside the organized
market). The individual shares are grouped into portfolios
at period t based on trading volume series in the informa-
tion set at t - I, nt_I' The portfolios are rebalanced each
month and to avoid a too frequent shift of component
stocks among the asset portfolios the average daily trading
volume for the last two years is employed. Two years of
daily volume is chosen to obtain a time overlap of95% for
each portfolio restructuring." Hence, assets are arranged
into portfolios based on changes in trading volume over
a considerable time period. The result of this exercise are
four series; a thinly traded series that contains the most
thinly traded assets (Portfolio I), an intermediate thinly
traded series (Portfolio 2), an intermediate frequently
traded series (Portfolio 3), and finallya frequently traded
series that contains the most frequently traded assets
(Portfolio 4). In this exercise all assets in the Norwegian
thinly traded market have been employed and on average
all series therefore contain at least 25 assets. Moreover, the
time periods are divided into two subsamples; (I) a time
period before the crash in October 1987 (1019 daily obser-
vations), (2) a time period after the crash (1546 daily obser-
vations), and (3) a time period for the entire 10 years time
period 1983-1994 (2611 daily observations)," Note that to
keep the paper within reasonable limits, results for the
entire period only are reported. Relevant subperiod results
are described in footnotes. Note also that the crash is
included for the entire period 1983-1994, which induce

P. B. So/ibakke

that market dumps are considered normal in equity mar-
ket. Moreover, two market wide indices are included con-
sisting of all the stocks in the Norwegian market with (I)
equally weighted stocks and (2) market value weighted
stocks. These indices are included with the aim to recognize
patterns from trading volume portfolios on the index level.
Therefore, this high frequency time series database gives
potentially 2611 observations for each portfolio and
index and is the main vehicle to achieve the objectives for
the investigation of thinly traded markets.

For all time series the procedures described by Gallant et
al. (1992) are employed to adjust for systematic location
and scale effects in all six return series. lO The procedure
gives a series that becomes more homogenous allowing
focus on the day-to-day dynamic structure under an
assumption of stationary series without any disturbance
to mean and volatility characteristics. To show these prop-
erties from the procedures the value-weighted index and
the natural logarithm of the total trading volume are
reported in Figs I and 2, respectively. The index shows
an approximate yearly growth of 12%. In particular,
note the strong and erratic trend In trading volume for
the Norwegian Market. On average, the growth in the
trading volume in NOK is approximately 32.9% per year.

The characteristics of the adjusted portfolio and market
index series are reported in Table I.Table I shows that the
mean returns are highest for the thinnest traded series and
arc accompanied by the highest standard deviation. Hence,
both expected return and total risk are at its peak in these
series. The most frequently traded series show lower return
and standard deviation relative to the most thinly traded
series. The two intermediately traded series show charac-
teristics between the thinnest and the continuously traded
series. The most frequently traded series show lowest mini-
mum and highest maximum daily return, which also induce
high absolute skew" (negative tails) and high kurtosis.V
The ARCH test statistic is a test of changing volatility in
the return series. All series report highly significant chang-
ing volatility and suggests a need for ARCH/GARCH
specification of the second moments. The RESET
(Ramsey, 1969) test statistic suggests nonlinearity in the
mean for all series. The BDS (Brock and Deckert (1988),
Brock and Baek (1991) and Scheinkman (1990» test statis-
tic suggests general nonlinearity for all series at all dimen-
sions (m) and for e equal to oneY Finally, the K-S Z-test

7 See also Boudoukh el al. (1995), Mech (1993) and Sias and Starks (1994). All three papers conclude that non-trading cannot completely
account for the observed autocorrelations.
R Moreover, the first trading volume observation available for collection for all assets in the Norwegian equity market is registered
01.09.81.
9 The crash period in this study is defined as the two months October and November in 1987. The estimations and specifications results
for the two subperiods are not reported based on space considerations. However, all results are available from the author upon request.
10The scale and location results for all sill series are not reported but are available from the author upon request.
I1 Skew: A measure of the thickness of the tails of a distribution.
12 Kurtosis: A measure of the asymmetry of a distribution.
13 Calculated as (s standard deviation). e: equal to 0.5, 1.5 or 2 does not materially change the conclusions.
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suggests deviation form normally distributed adjusted
returns for all series. The thinnest traded series show lowest
deviation while the most frequently traded series show
highest non-normal returns. The skew and kurtosis num-
bers confirms all these K-S Z-test results.

The market index series show as expected from portfolio
literature, lower standard deviation. The numbers for the
mean, maximum and minimum returns show no extra-
ordinary pattern relative to the other portfolio series. As
for the other series, the indices report changing volatility
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(ARCH), nonlinearity in the mean (RESET) and general
non-linear dependence (BOS).14 The numbers for skew and
kurtosis suggest considerable deviation from normality and
are higher in absolute values than for the other trading
frequency series. In fact, from the kurtosis and skew num-
bers the strongest deviation from normally distributed
returns is found for the two index series, which is confirmed
by the K -S Z-test statistic.

The ARMA-GARCH-in-mean methodology

Table, I reports autocorrelation, changing volatility, non-
linearity and systematic leptokurtosis in the return distribu-
tions for all series. Hence, Table l suggests non-normal
returns, ARMA effects in mean, ARCH/GARCH effects
in volatility and a need to control for serial correlation
and data dependence in model residuals (misspecification).
Table 2 reports mean, standard deviation and autocorrela-
tion for daily returns and squared returns in order to accom-

P. B. Solibakke

plish model specification. The ARMA-GARCH lag
specification is strongly enhanced as the autocorrelation
for returns and squared returns show clear patterns. In
fact, the autocorrelation structure report the necessary
underlying material for the conditional mean and volatility
specification in the ARMA-GARCH methodology found in
Engle (1982), Bollerslev (1986, 1987) and Engle and
Bollerslev (1986). Moreover, Table 2 reports the mean and
standard deviation for all series, which enhance the setting
of starting values for serial correlation estimation in both
mean and volatility. The ARMA lag specification models
nonsynchronous trading and non-trading effects while the
GARCH lag specification models conditional heteroscedas-
ticity and volatility clustering. Internationalliterature apply-
ing ARMA-GARCH specifications have shown that these
models are able to account for many of the lag structures
found in observed mean and volatility processes.

To obtain the most efficient ARMA-GARCH lag
specification for the conditional mean and volatility, a

Table I. Portfolio characteristics for the Norwegian Equity Market

Trading volume series Market Index series

RI R2 R) R4 REM RVM
Daily mean 0.08514 0.02872 0.01351 0.02183 0.03046 0.05269
Yearly mean 21.4565 7.23848 3.40539 5.50204 7.67598 13.2784
Daily st. dev. 2.05062 1.36740 1.38880 1.58280 1.10930 1.29650
Yearly st. dev. 32.5525 21.7063 22.0466 25.1267 17.6101 20.5812
Max return 10.8004 10.3330 11.5550 13.3180 11.4230 10.4810
Min return -15.9060 -14.5250 -16.1890 -23.0630 -16.6640 -21.2190
Skewness -0.11584 -0.60257 -0,98671 -1.31470 -1.54580 -2.00398
Kurtosis 5.7203 11.1800 14.8691 26.1456 29.8444 36.1425
K-S Z-test 15.4010 13.8466 11.7075 14.2367 12.5083 10.5244
ARCH (6) 109.368 318.469 779.638 526.529 818.958 550.225
RESET (12;6) 25.7275 54.0216 80.0946 74.9514 76.9191 68.8097
BOS(m = 2;e: = I) 7.47176 8.37882 13.1261 16.1939 12.8661 12.6531
BOS(m = 3;E = I) 8.14346 10.5286 15.3908 19.1019 15.1892 14.9082

Note: RI is the portfolio containing the most thinly traded, R2 contains the intermediate thinly traded assets, R) contains the intermediate
frequently traded assets and R4 contains the most frequently traded assets. Yearly mean is daily mean multiplied by 252 trading days and
yearly standard deviation is daily standard deviation multiplied by the square root of 252 trading days. Skew is a measure of heavy tails
and asymmetry of a distribution (normal) and kurtosis is measure of too many observations around the mean for a distribution (normal)
K-S Z-test; Used to test the hypothesis that a sample comes from a normal distribution. The value of the Kolmogorov-Smirnov Z-test is
based on the largest absolute difference between the observed and the theoretical cumulative distributions. ARCH (6): ARCH (6) is a test
for conditional heteroscedasticity in returns. Low {.} indicates significant values. The OLS-regression i = ao+ al • i-I+
, ,.+ 0(, • )'7-6' T. R2 is used and is i distributed with 6 degrees of freedom. T is the number of observations, y is returns and R2 is
the explained over total variation. ao, al ... a6 are parameters.
RESET (12,6): A sensitivity test for mainly linearitr in the mean equation. 12 is number of lags and 6 is the number ofmoments that is
chosen in implementation of the test statistic. T· R is i distributed with 12 degrees offreedom. BOS (m = 2,e: = I): A test statistic for
general nonlinearity in a time series. The test statistic BOS = TI/2.[cm(0'. E) - Cl [O' • e)"], where C is based on the correlation-integral,
III is the dimension and e: is the number of standard deviations. Under the null hypothesis of identically and independently distributed
(i.i.d.) series, the BOS-test statistic is asymptotic normally distributed with a zero mean and with a known but complicated variance.

14 Subperiods report (I) a reduced mean return and (2) an increased volatility story after the crash in October 1987. The average
reduction in mean return for the four trading volume portfolios and the two market indices is approximately 107% and 82.8%.
respectively, and the average increases in volatility is 54.8% and 38.6%, respectively. The thinnest traded assets have the highest increase
in volatility, Moreover, the last subperiod (1987-1994) produces higher positive Kurtosis, show higher negative skew and the nonlinear
dependence seem to increase.

FIRST PROOFS le i:/Journals/Afe/Afe'()230.3d Applied Financial Economics (AFE) - Paper 100230 Page: 6 Keyword



ARMA-GARCH trading volume characteristics

specification procedure is performed that accommodates
the characteristics of the return series. The model's lag
specifications are approach for the conditional mean and
volatility for our return series below. Applying elaborate
specification test statistics to the resulting lag structure
residuals will determine whether the ARMA-GARCH
model is able to accommodate the observed market
characteristics.

The conditional mean specification. For the conditional
mean specification, Table 2 reports the autocorrelation
structure up to lag 6 for the adjusted daily return series.
Negative serial correlation at lag one is found for the
thinly traded series. In contrast, the frequently traded ser-
ies report significant positive serial correlation. The gen-
eral picture is therefore negative serial correlation for
thinly traded series and positive serial correlation for fre-
quently traded series. The correlation structure suggests
that thinly traded series show mean reversion and there-
fore negative time dependence (Poterba and Summers,
1988; Fama and French, 1988). However, thin trading
imply series of zero returns and may therefore induce
biases to the moments of the return series, which may
produce spurious autocorrelation. Table 2 reports that
the magnitudes of the serial correlation coefficients decay
very fast at higher orders. By applying the above reported
correlation structure and applying a procedure described
by Box and Jenkins (1976) a parsimonious representation
of the conditional mean structure may be established. As
it is required to establish the model specification of an
ARMA (p, q) process BIC (Schwarz, 1978) is employed
to determine p and q. The BIC criterion is computed as:

BIC(p,q) = ln(72+ (p + q)T-1 -In T

where (72is the estimated error variance and T is the num-
ber of time periods employed. Small values of the criterion

Table 2. Summary statistic for adjusted daily returns

7

are preferred. The criterion reward good fits as represented
by small In (72and uses the term (p + q)T-I • In T to penal-
ize good fits that is got by means of excessively rich para-
meterizations. The criterion is conservative in that it selects
sparser parameterizations than the Akaike information cri-
terion (Akaike, 1969) (AIC), which uses the penalty term
2· (p + q)rl instead of (p + q)rl -ln T. BIC is also
conservative in the sense that it is at the high end of the
permissible range of penalty terms in certain model selec-
tion settings (Potscher, 1989). Between these two extremes
is the Hannan and Quinn (Hannan, 1987) criterion. The
usual suggestion is to use BIC to move along an upward
expansion path until an adequate model is determined.
Hence, the procedure BIC(p" q.) = min BIC(p, q),p E P,
q E Q is employed.

Table 3 reports the computed BIC, AIC and HQ criteria
for three ARMA model specifications for all series. Table 3
shows that the three most frequently traded series and the
value-weighted market index all prefer an ARMA (0,1) lag
specification for the conditional mean. Hence, these four
series prefer an autocorrelation specification that employs a
one period lagged moving average specification (MA (I».
The thinnest traded portfolio BIC prefers an ARMA (0,2)
lag specification for the conditional mean. This lag specifi-
cation suggests severe non-trading effects modelled by a
two periods lagged moving average specification (MA(2».
Finally, the equal-weighted index prefers an ARMA (I,D)
lag specification for the conditional mean. This specifica-
tion suggests that combined series from thinly and continu-
ously traded series seem to prefer an autoregressive
specification (AR(I». Moreover, interestingly, thin trading
and non-trading effects seem to affect the mean specifica-
tion differently in combined series containing similar assets
versus all equity equal-weighted index series. The preferred
conditional mean specification for all series therefore
becomes

Series P,i(X) ai(x) pi(l) Pi(2) pi(3) pi(4) pi(5) pi(6) Qi(6)

RI 0.0851 2.0506 -0.185 -0.060 -0.029 0.030 0.006 0.012 103.752
Rz 0.0287 1.3674 -0.041 0.025 -0.051 0.024 -0.013 0.016 15.6070
RJ 0.0135 1.3888 0.178 -0.015 -0.064 -0.010 0.013 0.014 95.6570
R, 0.0218 1.5828 0.129 -0.066 -0.073 -0.011 0.013 0.019 70.6710
REM 0.0305 1.1093 0.096 0.013 -0.030 0.016 0.010 0.031 30.4060
RVM 0.0527 1.2965 0.140 -0.046 -0.053 -0.013 0.009 0.028 67.0390
Ri 4.2123 10.8679 0.142 0.094 0.056 0.098 0.018 0.044 115.374
R~ 1.8705 9.6138 0.460 0.074 0.026 0.039 0.042 0.069 589.449
Rj 1.9290 7.3750 0.485 0.188 0.083 0.062 0.106 0.110 796.782
R~ 2.5058 12.6401 0.375 0.074 0.044 0.047 0.033 0.056 403.173
R~M 1.2315 8.0628 0.460 0.079 0.030 0.042 0.033 0.056 587.832
RLt 1.6837 9.9076 0.320 0.048 0.032 0.053 0.023 0.056 292.262

Note: See Table I for a description of series and test statistics.
Returns (P,i), volatility (ai) are reported and autocorrelation (Pi) and Q(6) is the Ljung-Box (1978) joint test statistic for serial
correlation at the first moment up to lag 6.
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Table 3. Optimized Likelihood and Model section BIC Criteria.

p q s. BIC HQ AIC Likelihood

Thinly I O 10630.916 11083.495 11080.561 11077.627 -5537.814
traded O I 10558.596 11065.672 11062.739 11059.805 -5528.902
Portfolio I I 10519.141 11063.765 11057.898 11052.030 -5524.015
(Rt) O 2 10515.080 11062.757 11056.890 11051.022 -5523.511·

Intermediate
Thinly I O 4875.757 9048.244 9045.310 9042.376 -4520.188
traded O I 4876.109 9048.182 9042.315 9045.249 -4520.282·
Portfolio (R2) I I 4865.670 9050.705 9044.837 9038.970 -4517.485
Intermediate
Frequently I O 4876.061 9048.407 9045.473 9042.539 -4520.270
traded O I 4869.402 9044.838 9041.905 9038.971 -4518.486·
Portfolio (R3) I 1 4869.239 9052.619 9046.752 9040.884 -4518.442

di~i
Frequently I O 6433.942 9772.306 9769.372 9766.438 -4882.219~_...:--- traded O I 6417.588 9765.660 9762.727 9759.793 -4878.896·

",-,o Portfolio (R.) I I 6410.248 9770.541 2446.569 -4877.403 -4877.403

Equal Weighted I O 3185.294 7936.661 7933.727 7930.793 -3964.397·
Market O I 3185.995 7937.236 7934.302 7931.368 -3964.684
Index (REM) I I 3185.262 7944.503 7938.635 7932.768 -3964.384

Value Weighted I O 4307.636 8724.777 8721.843 8718.910 -4358.455
Market O I 4298.363 8719.151 8716.217 8713.283 -4355.642·
Index (Rv~t) I I 4295.928 8725.539 8719.672 8713.804 -4354.902

Note: • BIC preferred model.

Ri•1 = /-li + Øi,1 . Ri,I_1 + ei,1 - Oi,1 • ei,I-1 - Oi,2 • ei,I-2

i = 1,2,3,4,EM, VM

where Ri is return for portfolio series i, the Øi coefficient is
equal to zero for all i except i= EM, the 0i,1 is equal to
zero for i = EM and the Oi,2 is equal to zero for
i= 2,3,4, EM and VM. It is now possible to estimate the
mean structure employing standard ARMA (p,q) method-
ology, where p and q are BIC preferred.
The estimated coefficients of the ARMA (p, q) models of

the conditional mean are reported in Table 4. The autore-
gressive coefficient, Øi,1 and the moving average coefficients
0i,1 and Oi.2 captures the first and second order serial corre-
lation for all the return series. Table 4 reports strong auto-
correlation for the conditional mean in the Norwegian
equity market and suggest considerable predictability in
return series.
The reported autocorrelation and distribution character-

istics for the residuals (e) reported in Table 5, suggest that
the ARMA (p,q) specification appropriately specify the
conditional mean. Only the most frequently traded series
may suggest model misspecification by the Qi(6) statistic
(Box and Jenkins, 1976). None of the other series shows
significant autocorrelation for the residuals up to lag 6.
Hence, the BIC preferred ARMA (p, q) models seem to
provide a well-specified form for the conditional mean pro-
cess in the Norwegian market. Moreover, the numbers for
skew and kurtosis are reduced relative to the same numbers
for adjusted raw data series. However, the ARCH (6) test
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statistics rejects strongly conditional homoscedasticity, the
RESET test statistic rejects linearity in the mean and the
BOS test statistic rejects identically and independently
(LLd.) distributed residuals. In fact, the ARCH, the
RESET and the BOS test statistics are mostly maintained
from the adjusted raw series at all dimensions. Hence, the
data dependence reported in Table l and 5, may originate

Table 4. ARM A (p, q) coefficients for six return series

The model Ri,1 = o, + <PIRi,I-1 + 6;,lei.I_1 + 6;.2ei.I_2 + el,l' is esti-
mated where i is four asset series and two index series. Ril is the
return series. O; is a constant parameter, rPl is the autoregressive
parameter and 61 and 6i•2 is the moving average parameters. e, is
model residuals.

ARMA(p,q)

Series" Log-likelihood rP; 6i.1 6;.1

RI -5295.41 0.21640 0.05142
{I0.767} {2.625}

Rl -4004.53 0.13516
{5.723}

R3 -4000.65 -0.06211
-{2.250}

R. -4325.09 -0.25168
- {9.337}

REM -3347.27 0.17198
{8.340}

. RVM -3842.35 -0.24194
{11.459}

Note: See Table I for a definition of the series.
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Table 5. Summary characteristics/rom an ARMA (p,q) specification

QI(6)/ ~i(X)/ Kurtosis;! ARCH RESET
PI(I) PI(2) PI(3) PI(4) PI(5) PI(6) Q2(6) o;(x) Skew; (6) (12;6)

EI 0.001 -0.001 -0.022 0.032 0.020 0.031 7.5320 O 4.3688 57.7784 25.2299
{0.2740} 2.0034 -0.0629 {O.OOOO} {0.0138}

E2 -0.001 0.023 -0.049 0.022 -0.011 0.019 10.3030 O 24.942 549.255 54.2867
{0.1120} 1.3662 1.4041 {O.OOOO} {0.0000}

E) 0.001 -0.004 -0.063 -0.001 0.013 0.000 10.8510 O 13.798 846.041 81.7624
{0.0930} 1.3656 -1.1187 {O.OOOO} {0.0000}

E4 -0.007 -0.056 -0.065 -0.003 0.013 0.007 19.8410 O 24.449 696.325 77.6147
{0.0030} 1.5677 -0.7689 {O.OOOO) {O.OOOO)

EEM 0.000 0.007 -0.034 0.018 0.005 0.019 4.8890 O 42.073 882.221 77.7210
(0.s580) 1.1042 -1.3783 {O.OOOO} {O.OOOO)

EEM -0.005 -0.038 -0.046 -0.007 0.009 0.011 10.0350 O 32.205 588.766 71.6336
{0.1230} 1.2822 -1.3448 {O.OOOO} {O.OOOO}

d 0.101 0.088 0.058 0.072 0.022 0.043 75.5630 4.0136 167.788

~t;;J {0.000} 10.12 10.6462 0.432 0.067 0.024 0.040 0.040 0.072 521.993 1.8666 1136.38EZ
{O.OOOO} 9.6799 30.075

d 0.559 0.245 0.105 0.061 0.099 0.096 1061.53 1.8648 443.485
{0.0000} 7.4054 18.204

ei 0.486 0.106 0.048 0.043 0.034 0.063 670.326 2.4575 945.661
{0.0000) 12.627 27.522

E~M 0.529 0.104 0.034 0.037 0.032 0.053 775.287 1.2192 1129.37
{O.OOOO} 8.0863 31.071

e:i'M 0.447 0.082 0.037 0.049 0.027 0.066 561.843 1.6442 1295.89
{O.OOOO} 9.6070 32.682

Not;s: Means (~;). volatility (0;). auto-correlation (p;). and the distribution properties kurtosis and skew are reported. The Q is the
Ljung-Box (1978) statistics and their p-values are in brackets {}.
See Table I for definition of the ARCH (6) and RESET (12;6) test statistics and their p-values are given in brackets.

from the conditional volatility process. The conditional
volatility lag structure is modelled below.

The conditional volatility specification. Table 5 above
reports the serial-correlation structure in the residuals
and squared residuals from the ARMA (p, q) lag specifi-
cation of return series, where p and q are BIC preferred.
The standardised residuals in Table 5 show close to zero
autocorrelation and suggest an appropriate conditional
mean specification. However, Table 5 finds strong evi-
dence of autocorrelation among the squared residuals
(E2). This empirical finding lends strong support to an
ARCH/GARCH specification for the conditional volati-
lity process. To achieve a lag specification for the con-
ditional volatility process the applied test for ARCH
effects described in Table I are employed. Engle (1982)
shows that a test of the null hypothesis that Ei.1 has a
constant conditional variance against the alternative that
the ARMA theory follows through. This implies that by
employing the squared residual E7, u and n can be identi-
fied in an ARMA (Il, Il) specification for the conditional

variance by applying the same methodology as con-
ditional mean ARMA (p, q) modelling in the previous
section. Hence, Table 6 reports the BIC, HQ and AIC
for ARMA (u,n) models of the squared residuals from
BIC preferred ARMA (U,II) models of the conditional
mean process for all series. For all series the autocorrela-
tion lag structure in the squared ARMA (U,II) residuals
is consistent with an ARMA (I,l) model. Hence. the con-
ditional variance equation is used

hi,l = mi,O + ai,l • E7.,-1 + bi,l . hi,l_1 i = 1,2,3,4, EM, VM

(2)

which is known as the GARCH (1,1) specification'f for the
conditional volatility." In this model, the coefficient ai,l

measures the tendency of the conditional variance to clus-
ter, the bi I measures the autocorrelation in conditional
volatility, while the coefficients a;,1 and bi,l together meas-
ures the degree of persistence in the conditional variance
process. For a stable GARCH (1,1) process require that
ai, I + bi,l < I. Otherwise, the weight applied to the long-

IS For applications see Bollerslev et al. (1992).
16 The GARCH( 1,1) specification was introduced by Bollerslev (1986. 1987) and seems to be the major specification for GARCH(m, Il)
models in international finance.
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Table 6. Optimized likelilrood and model selection BIC criteria

Portfolio: " n s. BIC HQ AIC Likelihood

Thinly I I 258729 19434 19425 19416 -9704.99-
traded 2 I 258306 19437 19425 19414 -9702.86
Portfolio (R!) I 2 258333 19437 19426 19414 -9702.99

Intermediate
Thinly I I 194169 18684 18675 18666 -9330.24-
traded 2 I 194155 18692 18680 18668 -9330.15
Portfolio (R2) I 2 193832 18687 18676 18664 -9327.97

Intermediate
Frequently I I 97546 16887 16878 16869 -8431.52-
traded 2 I 97545 16895 16883 16871 -8431.52
Portfolio (R)) I 2 97545 16895 16883 16871 -8431.52

Frequently I I 306437 19875 19867 19858 -9925.92·
traded 2 I 306424 19883 19871 19860 -9925.87

@~[~~ Portfolio (R4) I 2 306398 19883 19871 19860 -9925.76

Equal Weighted I I 113346 17279 17270 17261 -8627.51-
Market 2 I 113 323 17286 17274 17263 -8627.25
Index (REM) I 2 113292 17285 18274 17262 -8626.89

Value Weighted I I 187988 18600 18591 18582 -9288.01-
Market 2 I 187983 18607 18596 18584 -9287.97
Index (R"M) I 2 188037 18608 18596 18585 -9288.35

Note: • BIC preferred models.

term variance is negative. The weight is 0;.0 = 1-
(a;.1 + b;.I) and the long-term variance is V;= m;.%;.o.

Ill-mean. cross portfolio effects and asymmetric volati-
lity. (,,;.,)1/2 is included in the mean equation in an
attempt to incorporate a measure of risk into the return
generating process. Therefore a measure of residual risk
is induced (Lehmann, 1990) into the model. "'fiAi :/=j) is
also included in the conditional mean to control for any
cross series effects of the type identified by Lo and
MacKinlay (1990). Finally, a coefficient for asymmetric
volatility is included in the conditional variance equation
(Nelson, 1991; Glosten et al., 1993). The methodology of
Glosten et al. (1993) is applied to model asymmetric
volatility'? in the conditional variance equation (A;).
Finally, an innovation E, is assumed that follows a con-
ditional student-r distribution 18 to accommodate lepto-
kurtosis, which is observed in Table I and 4 for all the
series' return distributions. The BHHHI9 algorithm is
employed for estimation in GAUSS20 for all series. The
final iteration employs the Newton-Raphsorr" algorithm
to extract all information from the Hessian matrix.

Hence, the t-ratios are based on the sum of the k x k
matrix of second differentials over n observations.

IV. EMPIRICAL RESULTS

Maximum likelihood estimates of the parameters for the
BIC preferred ARMA-GARCH lag specifications for the
conditional mean and volatility are reported in Table 6 for
all series. Among the four trading frequency series, only the
most frequently traded series report a significant and posi-
tive OIi coefficient in the mean equation. The index series
report significant and positive OIi coefficients.

Autocorrelation is statistical significant in all series. The
autocorrelation moves from significant positive coefficients
and therefore negative serial correlation for the thinly
traded series to significant negative coefficients and there-
fore positive serial correlation for the frequently traded
series. The result suggests that assets in thinly and fre-
quently traded portfolios exert different price adjustment
mechanisms. The thinly traded assets seem to overreact
from shocks at t - 1 and therefore next period at t reverse
this overreaction and move prices back to a new and now

17 For reference purposes this asymmetric model for GARCH-GJR will be denoted. Note also that the GJR specification is Lagrange
Ratio Test preferred for all series relative to an exponential GARCH lag specification(Nelson, 1991).
18The number of freedoms is estimated.
19TheBHHH algorithm is described in Berndt et al. (1974).
20Gauss is a programming and estimation tool from Aptech Systems
21The Newton-Raphson algorithm estimates the Hessian matrix directly.

FIRST PROOFS Le i:/Journals/Afe/Afe-0230.3d Applied Financial Economics (AFE) - Paper 100230 Page: 10 Keyword



ARMA-GARCH trading volume characteristics Il

Table 7. All ARMA-GARCH-ill-meall specification for portfolio returns

This table contans the estimated coefficients from the model mean
4

Ri"Oi + Øi,l • Ri,,_1 + L (Rj,t_1 • 'rij) - 8i.1 • Ei,'_1 - 8i,2' Ei,,_2 + Ei"
j_li'l-j

where i= 1,2,3,4, EM, VM and E(EI, ti n,_I) - D(O, hi." Vi), D is the student-s distribution with V degrees offreedom and for the model
volatility hi~ = ml + (a}.1 + ÅI.I,). E~:"'I + bi,l * hi.,_10 where Åi.I.' = Ei,,_1 iff EI,,_I < O. The 'ry control for any corss effects of the type
identified by Lo and MacKinaly (1990).

[3i 8i,I 'ril 'r,1 'ril Vi

-0.05059 0.21640 0.07240 0.05665 0.05541 6.08771
-{0.5830} {l0.7668} {1.8733} {1.2543} {1.9786} {8.9069}

0.06091 0.13516 0.02754 0.17437 0.08076 5.69920
{0.7107} {5.7235} {1.5661} {6.2192} {3.3065} {9.9107}
0.04864 -0.06211 0.00188 0.00496 0.21152 5.79819
{1.1800} - {2.2501} {0.1313} {0.1822} {9.5229} {9.5610}

-0.08558 -0.25168 0.01345 -0.02075 -0.00787 6.19008
- {1.3999} -{9.3367} {1.1840} -{0.7997} -{0.2422} {9.2445}
-0.09694 5.06988
-{1.6100} {10.8847}
-0.09792 -0.24194 6.45581
-{1.4167} - {11.4592} {8.9356}

Return Log
series likelihood ai

RI -5295.41 0.19092
{1.2311 }

R2 -4004.53 -0.02528
-{0.2694)

R3 -4000.65 -0.01620
~;.;:: " .. -{0.6682}~;øi:: R4 -4325.09 0.18529

{2.4649)
REM -3347.27 0.14601

{2.7663}
RVM -3842.35 0.18345

{2.5595)

0.05142
{2.6250}

0.17198
{8.3396)

Return
series mi ai bil ai +bjJ x, Skews Kurtosis Q(6) Q2(6)

RI 0.05267 0.03564 0.95055 0.98619 -0.09518 -0.06293 3.45442 2.2540 21.079
{2.6797} {4.6851 } {90.063I) -{0.6SSI} {0.895} {0.002)

R2 0.10462 0.10706 0.S1743 0.92449 -0.27330 -1.2698 13.9357 1.4960 7.7520
{3.1839} {4.9072} {20.8524} - {1.9887} {0.960} {0.257}

R3 0.10836 0.15788 0.77044 0.92832 -0.26668 -0.94408 10.6133 2.8310 6.6010
{3.7337) {6.1384} {21.2518} -{2.9592} {0.830} {0.359}

R4 0.19390 0.20347 0.69609 0.89956 -0.33569 -0.61607 5.76354 11.650 16.219
{3.3634) {4.9991} {11.6728} - {3.4819} {0.070} {0.0l3}

REM 0.06611 0.12991 0.79766 0.92758 -0.19598 -1.04078 13.1475 5.2770 13.631
{3.9107} {5.6598} {23.8332) -{2.5435} {0.509} {0.034}

RVM 0.12940 0.14878 0.74098 0.88976 -0.33196 -0.72032 7.00691 10.153 14.650
{3.5265} {5.2451} {14.8135} -{3.3607) 0.118 {0.023)

Noles: See Tables I and 2 for definitions of the return series and test statistics. r-values are given in brackets, below each parameter
coefficient. TIle Q is the Ljung-Box statistics. Their p-va lue is given in brackets, below each coefficient.

correct price (mean reversion). The positive autocorrela-
tion (Bd coefficients for the frequently traded assets suggest
an adjustment to new information at both t and t + I. In
both cases prices do not adjust immediately to new infor-
mation. However, depending on trading frequency, asset
prices either overreact and reverse or adjust slowly over
several days. However, be aware of the series of zero
returns in thinly traded assets, which may induce spurious
autocorrelation in theses series.

Cross-autocorrelation bij) (lo and MacKinlay, 1990) is
found for all series except for the most frequently traded
series. The pattern in the cross-autocorrelation implies
mainly influence from series that show more frequent trad-
ing. However, also here thinly traded series induce spurious
cross-autocorrelation. The estimated /3i coefficients on the
GARCH-in-mean terms show no significant 'mean' effects.

FIRST PROOFS Le i:/Journ.ls/Afe/Afe.0230.3d

This is also true for the market indices. The degree of free-
dom coefficients (Vi) suggest thick distribution tails. For all
series the coefficients are strongly significant and show
values ranging between 5 and 6.5.

Among the estimated conditional variance coefficients,
which are all strongly significant a clear pattern is found.
The past squared errors (al) have more influence over the
conditional variance of the frequently traded portfolios than
they do over the conditional variance of the thinly traded
portfolios. The two market indices seem to report shock
effects in line with the effects of the two frequently traded
portfolios. In contrast, the past conditional variance (ht)
exerts a greater influence over the current conditional vari-
ance in the case of the most thinly traded series. Also for the
conditional variance the two market indices seem to follow
the results from the two frequently traded portfolios for past
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conditional variance. Hence, the combination of these two
features of the conditional variance suggest that although
shocks to the volatility of thinly traded portfolios have less
impact than shocks to the volatility of frequently traded
portfolios. they are much more persistent. Finally, for all
portfolios and indices a negative asymmetric volatility coef-
ficient (A;) is found, which imply higher volatility from nega-
tive shocks in all series. The negative asymmetric volatility is
insignificant for the most thinly traded series but increases in
size and significance as trading frequency increases.

To test the validity of the results, several model specifi-
cation tests are performed for all six return series. As a first
specification test, the sixth order Ljung and Box (1978)
statistic is calculated for the standardized residuaJs22 (Q)
and squared standardized residuals (Q2) for all six series.
For all series Table 7 shows no significant evidence of serial
correlation in the standardized residuals (Q(6» at 1%.
However, for the squared residuals up to lag 6 (Q2(6)
the thinly traded series report significant autocorrelation,
while all other series report insignificant autocorrelation.
The numbers for kurtosis and skews for the standardised
residuals are lower in absolute values for all series. Hence,
the ARMA-GARCH filter suggests clearly more normal
residuals. This result is confirmed by the K-S Z-test statis-
tic (not reported).
Table 8 report extended model specification tests. Table 8

reports the ARCH, RESET and BDS test statistic for the
BIC preferred ARMA-GARCH standardized residuals (e)
and adjusted standardized residuals23 (In(e2)). The ARCH
test statistic reports conditional homoscedasticity for all ser-
ies except the most thinly traded series. The RESET test
statistic cannot reject linearity in the mean for any series.
The BDS test statistic rejects identically and independently
distributed residuals (i.i.d.) for the most thinly traded series
and the equal-weighted market index. Hence, the model spe-
cification test statistics suggest that the ARMA-GARCH
model seems to capture most of the market dynamics appro-
priately. However, for thinly traded series the ARCH and
BDS test statistics suggest a wrongly specified model. The
result induce that the ARMA-GARCH model does not
appropriately describe thinly traded series and long series
of zero returns. Furthermore, the inclusion of the nonlinear
dependent ARMA-GARCH residual and thinly traded ser-
ies into the index series seems to induce a wrongly specified
model also for the equal-weighted market index.

Finally, Table 9 reports three simple bias tests and one
joint test (Engle and Ng, 1993). Table 9 from column 2 to
6, report significant (et_I>St-I) biases. Hence, bad news is

P. B. Solibakke

not very well predicted by this model. Especially, the thin-
nest traded portfolio suggests that bad news is badly pre-
dicted. Moreover, the joint bias test statistic in column 7
and 8, reports significant prediction biases for the most
thinly traded series.

V. FINDINGS FROM THE NORWEGIAN
THINLY TRADED MARKET

The main focus of this investigation is characteristics in
thinly traded markets, especially nonsynchronous trading
and non-trading effects as well as conditional heteroscedas-
ticity and volatility clustering. The Norwegian market ex-
hibit characteristics in trading volume (NOK) that make it
possible to establish asset portfolio series that contains the
desired trading frequency characteristics. Hence, the inves-
tigation looks for trading volume characteristics in the
mean and volatility equations as well as in the overall
model specification and discuss implications for market
dynamics in thinly traded markets -,

Only the most frequently traded series and the two mar-
ket indices report significant positive drift, while the three
more thinly traded portfolios report nonsignificant drift.
These results together with the significant and positive 0:;

coefficients for the two market indices, suggest that a sig-
nificant and positive drift may solely originate from con-
tinuously traded series. Moreover, it seems to be the case
that series exhibiting nonsynchronous trading and non-
trading characteristics reject positive drift. For an investor
in the Norwegian market the results imply that in a long
hold strategy, thinly traded series should be avoided and
should only involve continuously traded assets.
Furthermore, as the most thinly traded assets also imply
the high nonsynchronous trading and non-trading effects.
the assets may induce high spurious autocorrelation and
cross-autocorrelation. These nonsynchronous trading and
non-trading effects may also influence the drift coefficients
for these assets. The direction of the influence may be dif-
ficult to classify, but as zero return will be registered in a
non-trading period, the drift will probably be influenced
towards a zero drift coefficient. 24

Autocorrelation is found in all series, which imply sub-
stantial predictability in asset returns for the thinly traded
Norwegian market. The thinly traded series report strong
negative autocorrelation while the frequently traded series
and the indices exhibit strong positive autocorrelation.P
However, returns for thinly traded series may contain

22 Standarized residuals are calculated as Ct/../(h;V;/(Vi - 2» where Vi is the degree of freedom in the student-s distribution.
23 See deLima and Pedro (1995a, 1995b).
24 Solibakke (2000c) shows that the drift becomes more positive by applying virtual returns and a continuous time GARCH specifica-
tions.
25 A negative dependence story can be found in Poberta and Summers (1988) and Fama and French (1988) and a positive dependence
story can be found in Taylor (1986/2000).
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Table 9. Simple andjoint bias test for model misspecificauon

P. B. Solibakke

Simple bias tests Joint bias test

Series S'_I E._IS,_I

RI 0.20398 {1.4887} -0.46684 -{5.1259}
R2 -0.05298 -{0.2066} -0.41698 -{2.7551}
R) -0.17886 -{0.7993} -0.17150 -{1.2725}
R4 -0.23602 -{0.4770} -0.21046 -{1.9979}
REM -0.17349 -{0.6472} -0.43625 - {2.8916}
R
"
'M -0.15252 -{0.8610} -0.29516 - {2.5924}

-0.08382
-0.17266
0.11198
0.13106

-0.09759
0.13589

-{0.8795}
-{0.9381}
{0.6969}
{1.0857}
{0.5199}
{1.0698}

25.026
9.137
5.254
11.323
9.608
9.752

{O.OOOO}
{0.0275}
{0.1541}
{O.OIOI}
{0.0222}
{0.0208}

Noles: See Table I for definition of return series.
5 = Dummy-variable equal to I when E,_I .;;;O, and s- = Dummy-variable equal to I when E'_I > O.
This simple bias test statistics are simple OLS parameters with associated I-statistics in brackets to the right.
The joint BIAS-test statistic tests the relation E~ = a + al . S'_I + a2.E~_I ·5'_1 + a3. E~_I . (I - 5,_.). The statistic
tests whether all the a-parameters are significantly different from zero. TR2 is X2 distributed with 3 degrees of freedom.

characteristics of nonsynchronous trading and non-trading
effects, which may cause spurious autocorrelation as dis-
cussed in Campbell el al. (1997). Hence, the results for
thinly traded series implying overreaction and reversion,
may originate from spurious autocorrelation, which stem
from many zero return observation. The validity of auto-
correlation results for thinly traded series may therefore be
disputed. For the frequently traded series the positive
serial-correlation coefficient suggests adjustment to new
information that may take several days. It is well known
from international literature that positive dependence
(Taylor, 1986/2000) in assets returns is more often found
than negative dependence. Hence, collectively, the serial-
correlation coefficients imply substantial predictability
among all the return series. This predictability results for
frequently traded series are not disputed while thinly
traded series may show spurious predictability.t''
Moreover and probably very important for investors in
the Norwegian market, by employing frequently traded
assets in portfolio construction and prediction, the results
seem to suggest a consistent short run predictability of
asset returns. Note that the reported negative autocorrela-
tion for thinly traded series may be spurious and may
distort the predictability in these series. Hence, also apply-
ing estimation results form 1987 to 1994, the overall pre-
dictability may therefore be illusionary for the Norwegian
market.

Significant cross-autocorrelation is found among trading
volume series. The cross portfolio results therefore strongly
indicate that the thinly traded Norwegian market show
return effects from more frequently traded series into
more thinly traded series. That is, the result suggests that
thinly traded series adjust to new information with a lag to
more frequently traded series {1'j}. Hence, new information
is incorporated into assets starting with the most frequently

traded assets and then with a lag, moved into more thinly
traded assets. Hence, investors may therefore follow the
following procedure to obtain a long run profit. Study care-
fully the most frequently traded asset within an industry.
When these assets move up or down take appropriate posi-
tions (long or short) in more thinly traded assets. The asset
position must be constantly monitored and may be expen-
sive owing to transaction costs. Moreover, an investor that
builds a portfolio based on trading volume and combine
highly and lowly traded assets within a industry into port-
folios, he or she can adjust positions based solelyon
movements in the most frequently traded assets. In
summary, the most frequently traded assets leads the
market while more thinly traded assets copy these movement
with a lag. However, thin trading implies spurious cross-
autocorrelation. Hence, the lead and lag results for thinly
traded assets may turn spurious. However, for more fre-
quent traded assets the lead and lag structure may still be
valid.

As the 'in-mean' coefficients are insignificant for all six
series and the residual risk hypothesis is rejected
(Lehmann, 1990) for the Norwegian market. The degree
of freedom coefficient (ui) is strongly significant and
induces deviation from normally distributed return series.
The results seem therefore to indicate leptokurtosis in all
six series independently of frequency of trading and non-
trading effects.
The conditional variance equation report several inter-

esting features from the thinly traded Norwegian market.
First, the ARCH-coefficient (shock) increases the higher
the trading frequency. Hence, past squared errors influence
strongest today's volatility for the most frequently traded
series. The two market indices show results close to the two
most frequently traded series. The past squared error for
thinly traded series show a low volatility influence rela-

2('The positive autocorrelation results seem to disappear in the 1987-1994 subperiod. Hence, no obvious autocorrelation results after the
crash in 1987 are found for the thinly Norwegian market.
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tively to more frequently traded series. However, also for
the conditional volatility spurious past squared error
results may be found. In case of non-trading the observed
return is zero and may produce artificial shocks for the
volatility process. For thinly traded series a spurious and
too low ARCH coefficients may therefore be observed.
Secondly, the past conditional volatility influences stron-
gest today's volatility for the thinnest traded series.
Autocorrelation in the conditional volatility process
seems therefore to be highest for the thinnest traded series.
However, note that the nonsynchronous trading and non-
trading effects may cause spurious autocorrelation into the
conditional volatility process. This may distort any volati-
lity patterns for non-trading series.
Thirdly, the persistence (a; + bi) is strongest for the thin-

nest traded series. A clear picture of the persistence in the
volatility process can be obtained by calculating the half-
life of a shock to the process, that is, the time that it takes
for half of the shock to have dissipated. Some algebra
shows that the half-life in trading days for portfolio i
may be calculated as27 Half-life; = In(0.5)/ In(a;.1+ b;.I)
and for calendar days as (252 . Half-lifei )/365 = In(0.5)/
In(a;.1+ b,..). Hence, Half-life; = (In(0.5)/ In(a;,1+ b;,.)).
(365/252). For the six return series the results for both
formulas in Table 10 are reported. Table 10 suggests a
significant difference in persistence length over the six ser-
ies. Highest persistence is found for the thinly traded series,
which report shock persistence for approximately 50 trad-
ing days. For the most frequently traded series the per-
sistence is only 6.5 trading days. The information in the
shock- and persistence-effects for series may be useful for
investors building volatility strategies in an option market.
One implication of an active option market that increases
trading activity and therefore volume in the underlying
asset may therefore be higher shock effects and lower per-
sistence, that is a more erratic volatility. However, non-

• synchronous trading and non-trading effects may distort
the result. Series strongly influenced by zero return obser-
vations may emphasize the autocorrelation in conditional
volatility too much, which may result in spurious per-
sistence coefficients. Applying results from the more fre-
quently traded series imply rather strong non-trading
effects. The three more frequently traded series plus the
indices show all quite similar results. Hence, nonsynchro-
nous trading and non-trading effects may be severe for the
conditional volatility in the thin Norwegian market.
Fourthly, the constant (m;,o) increases the higher the
frequency of trading. Hence, as m;,o = 0;,0 . V; and
0;.0 + ai,l + b;,1 = I, the weight to the long-term average
volatility seem to increase the higher the trading frequency.
This feature implies that weight to the unconditional vola-
tility is at its lowest for the most thinly traded series.

27 See Taylor (1986/2000) for details.
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Table 10. Number of days for "alf of a s"ock to "ave dissipated

Series Trading days Calendar days

RI 49.8516 72.2057
R2 8.8283 12.7870
RJ 9.3194 13.4984
R4 6.5484 9.4847
REM 9.2196 13.3538
RVM 5.9345 8.5956

Note: See Table I for definition of return series.

Fifthly, asymmetric volatility (.x) is present in all series
except for the most thinly traded series. The negative coef-
ficients imply that it is the most frequently traded series
that seem to show the highest asymmetry in the conditional
volatility. The lack of asymmetry for the thinly traded ser-
ies may also be attributed to the strong serial correlation.
As both the weight to the long run average volatility and
the shock effects is low in this series, the autocorrelation
structure seem to be the dominant factor for the con-
ditional volatility process. For all other series the asyrn-
metric coefficient is negative and significant.

Turning now to the specification tests, several interesting
features are found, which may originate from nonsynchro-
nous trading and non-trading effects, First, the Q2(6) sta-
tistic report autocorrelation for the thinnest traded series.
Neither market index nor more frequently traded asset
series report autocorrelation in first and second moment
residuals. Secondly, the ARCH test statistic reports con-
ditional heteroscedasticity for the most thinly traded asset
series. As for autocorrelation neither market index nor
more frequently traded asset series report conditional het-
eroscedasticity. The RESET test statistic reports linearity
in the conditional mean for all six series. Finally, the BOS
test statistic reports general nonlinearity for the thinnest
traded series and the equal-weighted market index at
some dimension (m). The three more frequently traded
series and the vale-weighted index series showa BOS test
statistic that fail to reject i.i.d, at any dimension (m). It
seems therefore to be the case that the inclusion of the
thinly traded series seems to introduce nonlinearity into
the equal-weighted market index. Hence, nonsynchronous
trading and non-trading effects cause nonlinear dependence
and model misspecification. Consequently, the ARMA-
GARCH model specification secms not appropriatc for
thinly traded asset series.
The simple bias tests for volatility prediction show that

especially bad news is not appropriately predicted in the
GARCH-GJR model. However, only the most thinly
traded series show biases when a joint bias test is per-
formed. Moreover, the prediction bias is not strongly
significant in the simple test statistic. When models are re-
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Table Il. (Un-)conditional volatility characteristics

Standard Std.dev./ Unconditional
Series Mean deviation mean volatility"

RI 3.9473 1.9880 0.5036 3.8145
R2 1.6677 2.6646 1.5978 1.3855
R) 1.8291 3.4213 1.8704 1.5118
R4 2.3895 5.3139 2.2239 1.9304
REM 1.1476 2.7199 2.3700 0.9129
RVM 1.5236 3.1349 2.0575 1.1739

NOles: See Table I for definition of return series.
•• Unconditional volatility is calculated as 111;/(1 - (aj + bj»
from the GARCH(I,I) process.

~::'"
~.:'1
.:".1

estimated for two subsamples; 1983-1987 and 1988-1994,
the second time period show a small change in autocorrela-
tion for the conditional mean. In particular, after the crash
in 1987 the slow adjustment process for the frequently
traded series has changed to immediate adjustment. That
is, no autocorrelation in the residuals for these series. The
general conditional variance results are maintained in the
subperiods. However, later years (1988-1994) indicate an
increased persistence in the variance process. For the thin-
nest traded series the conditional variance process show
almost integrated GARCH.

Finally, Table 11 reports the first and second moments
for the conditional volatility and the calculated uncondi-
tional volatility from the GARCH models.28 The con-
ditional volatility mean and the calculated unconditional
volatility both report an U-shaped pattern as also reported
for Rf in Table 2. The calculated unconditional volatility is
quite close to the conditional volatility mean. Moreover,
the higher the trading frequency a strong and consistent
increase in the standard deviation of the conditional vola-
tility series is found. Hence, the highest mean but lowest
standard deviation is found for the conditional volatility
process of the thinnest traded series and lower mean but

• highest standard deviation for the most frequently traded
series. The results are in accordance with the ARCH/
GARCH parameters for the conditional volatility estima-
tions. Now calculation of the index standard deviation
divided by the mean is an index that measures the relative
uncertainty/change in the volatility process. The result
shows clearly that it is the most frequently traded series
and the two market indices that show highest changing
volatility around a mean. Hence, non-trading effects
show high volatility but lower changes in volatility.
However, as the model specification is disputed for the
most thinly traded series this result may be spurious. For
option markets on individual and index series the estima-
tions may produce valuable information for strategists. As
the Norwegian market quote options for only continuously

P. B. Solibakke

traded series, investors should be aware of this changing
volatility result in applying the Black and Scholes option
pricing formula. Estimates of the underlying asset's volati-
lity may be very important for correct option pricing in
these assets. To forecast future volatility using GARCH
(1,l) model results is a well-known and easy exercise.

VI. SUMMARIES AND CONCLUSIONS

Several ARMA-GARCH-in-mean model specifications
have been modelled and estimated for the Norwegian
thinly traded equity market. Trading volume has been
applied as a proxy for trading frequency. As all the esti-
mated ARMA-GARCH lag specifications for the series are
BIC preferred, the model captures the autocorrelation and
cross-autocorrelation structure in the conditional mean
and the shocks, autocorrelation, persistence and asymme-
try in the conditional volatility across varying trading fre-
quencies. Moreover, the model measures the effect of 'thick
distribution tails' (leptokurtosis) through the degree of
freedom parameter in the student r-distribution and poten-
tial residual risk is measured applying the in-mean specifi-
cation. The thinnest traded series and the equal-weighted
index series report ARMA-GARCH lag structure misspe-
cification. The results for these series may be spurious and
must therefore be interpreted with great caution.

The study reports the following conclusions. ARMA-
GARCH models seem to fit the Norwegian thinly traded
market well, except for thinly traded series. The thinly
traded series exhibit severe nonsynchronous trading and
non-trading effects, which induce data dependence and
misspecification in the BIC efficient ARMA-GARCH
model. The equal-weighted index series seem to inherit
these data dependence and misspecification results in the
Norwegian market. For relatively frequently traded series a
consistent pattern in autocorrelation, cross-autocorrela-
tion, volatility clustering and asymmetric volatility are
found. For all these series insignificant specification test
statistics are found. Hence, the ARMA-GARCH model
and its parameter results for relatively frequently traded
series suggest that previous regression models in the
Norwegian market may have been wrongly specified
owing to four specification failures. First, a failure to effi-
ciently incorporate the serial correlation structure in the
conditional mean applying a BIC preferred lag specifica-
tion. Secondly, a failure to incorporate the appropriate
structure for measuring weight to long-run average volati-
lity, shocks, autocorrelation, persistence and asymmetric
volatility in the conditional variance equation applying
a BIC preferred lag specification. Thirdly, a failure to
specify thick-tailed distribution characteristics obtaining

18The unconditional variance in a GARCH(I,I) specification is the long-run average volatility.
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close to normally distributed residuals. Fourthly, a failure
to control for data dependence in the model residuals,
which implies spurious parameter results for thinly traded
asset series.

Consequently, nonsynchronous trading and non-trading
seem to imply an extra challenge for modelling the
dynamics in thinly traded markets. Classical regression
models assuming conditional homoscedasticity seem obso-
lete. Moreover, for the applied ARMA-GARCH method-
ology, which uses the residuals for volatility specification,
we find strongly significant misspecification is found for
thinly traded series. Hence, the ARMA-GARCH method-
ology seems also to be a wrongly specified model in thin
markets and thin series. As stochastic volatility models
generate volatility processes independently of the con-
ditional mean, the methodology may be an alternative
model specification.P Alternatively, virtual returns may
be applied (Campbell et al., 1997) and continuous time
GARCH models (Drost and Nieman, 1993) for thin series.
However, for relatively frequently traded series the
ARMA-GARCH model seems appropriate.
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Non-linear Dependence and Conditional Heteroscedasticity in Stock Returns

Evidence from the Norwegian Thinly Traded Equity Market

Abstract

We investigate the presence of non-linear dependencies in stock returns for the Norwegian

Equity Market as it is very difficult to interpret the unconditional distribution of stock returns

and its economic implications if the LLd. assumption is violated. Standard tests of non-linear

dependence give strong evidence for the presence of non-linearity in raw returns. Modelling

non-linear dependence must distinguish between models that are non-linear in mean and

hence depart from the Martingale hypothesis, and models that are non-linear in variance and

hence depart from independence but not from the Martingale hypothesis. Therefore, we

formulate three non-linear models of asset returns applying ARMA-GARCH specifications for

the conditional mean and variance equations. We go on to answer which model that seems to

have the necessary characteristics that are sufficient to account for most of the non-linear

dependence. In the Norwegian equity market most of the non-linear dependence seems to be

conditional heteroscedasticity. However, the most thinly traded assets still report significant

non-linear dependence for all non-linear specifications. These results imply that we can reject

the independence hypothesis for all assets, portfolios and indices. Moreover, for thinly traded

assets we can also reject the Martingale hypothesis. The economic implications from the

unconditional distributions of thinly traded assets are therefore very difficult to interpret and are

unfamiliar territory for those who are accustomed to thinking analytically, intuitivelyand

linearly.
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1 Introduction

Non-linear dependence in stock returns has recently attracted much attention. Examples are

Abhyankar et al. (1995) from the UK market and de lima (1995 a, b), Hsieh (1991) Brock et

al. (1991), and Lee et al. (1993) from the US market'. Non-linear structure in univariate time

series departs from the random walk model and will be unfamiliar territory to those who are

accustomed to thinking analytically, intuitively, and linearly. The Random Walk model

(Bachelier, 1964), which assumes that security prices from transaction to transaction are

independent, identically distributed (i.i.d) random variables, together with the central limit

theorem, suggests that price changes are normally distributed and that their variances will be

linearly related to the time interval. However, as noted by Hsieh (1991), it is difficult to interpret

the unconditional distribution of stock returns and its economic implications, if the i.i.d.

assumption is violated. If stock returns are i.i.d. and follow fat tails distributions such as

Cauchy (Mandelbrot, 1963) or the Student-t density (Blattberg and Gonedes, 1974) or Normal

Inverse Gaussian (Eberlein and Keller, 1994 and Barndorff-Nielsen, 1994), then the probability

of observing large absolute returns such as that on 19-22 October 1987 is small but non-zero.

In this case market crashes such as that of the 1987 could happen at any time but with very

low probability (Brown, Goetzman and Ross, 1995). The behavior of risk averse agents will

consequently take this into account (Bollerslev et aI., 1993). Our crucial point is that such an

interpretation is so dependent on the i.i.d. assumption since the unconditional distribution will

always have fatter tails than the conditional distribution if the data has some form of

conditional dependence",

One prominent explanation for the observed departure from Bachelier's (1964) model is the

mixture of distributions hypothesis (Epps and Epps, 1976 and Tauchen and Pitts, 1983). This

maintains that trade-to-trade asset returns exhibit leptokurtosis because they are reallya

combination of return distributions that are conditioned on information arrival. This means that

periods of little or no information arrival result in different observed return distributions than in

periods when information frequently arrive (Clark, 1973, Harris, 1989 and French and Roll,

1986). If thin or no trading volume is indicative of small or no arrival of information, than the

characteristics of thinly traded assets are not the same as that for actively traded assets

(Gallant, Rossi and Tauchen, 1992).

Therefore, this paper studies non-linear dependence in stock returns for a sample of

differently traded assets, trading volume portfolios and differently value-weighted market-index

series in the Norwegian thinly traded market", Earlier Norwegian results (Solibakke, 2000b,

2000c) suggest that a null hypothesis of i.i.d. for adjusted raw return series is strongly

rejected. The main objective for this study is therefore to find any systematic difference in non-

linear dependence over the whole trading volume range (including non-trading) as well as to

find the origin of non-linear dependence. The origin of non-linear dependence in univariate
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time series is (1) non-linear dependence in mean, (2) non-linear dependence in variance or (3)

non-linear dependence in both mean and variance. Therefore, this non-linear dependence

studyexamines three different non-linear conditional mean and volatility ARMA-GARCH

specifications in an attempt to find the nature of the observed non-linear dependence in

Norwegian return series. Modelling non-linear dependence must distinguish between models

that are non-linear in mean and hence depart from the Martingale hypothesis, and models that

are non-linear in variance and hence depart from the assumption of independence but not

from the Martingale hypothesis. We therefore employ an efficient auto-regressive moving

average (ARMA) specification for the conditional mean and an efficient auto-regressive

conditional heteroscedasticity (ARCH/GARCH) specification for the conditional variance.

ARMA-GARCH models are conditional homoscedastic. Observed characteristics as

leptokurtosis and asymmetric volatility are incorporated into the model specifications.

Therefore, using these specifications for the conditional mean and variance equations, we can

hypothesize non-linear dependence in the Norwegian equity market.

The study differs from other studies (Abhyankar et al., 1995) in several ways. Firstly, we apply

three different test statistics for non-linear dependence. Secondly, we use data for individual

frequently and thinly traded asset returns and four portfolios (we rebalance the portfolios each

month) of differently traded component assets, to examine whether individual and portfolio

asset returns behave similar to aggregate stock market series. Otherwise, any generalization

of the findings from aggregate to individual series would be inaccurate. Moreover, non-trading

effects on non-linear dependence can now explicitly be studied employing data series from the

Norwegian thinly traded market. Thirdly, we employ both a normal and a student-t density log-

likelihood function for individual, portfolio and index return-series. Student-t density functions

may account for observed leptokurtosis in stock market returns. Fourthly, we apply the recent

adjustment suggested by de lima (1995b) to the residuals from the GARCH model before

conducting the BOS test statistic (Brock and Dechert, 1988, Scheinkman, 1990). Fifthly, all

raw return series are adjusted for systematic size and location effects as suggested by

Gallant, Rossi and Tauchen (1992). Sixthly, and finally, the "leverage effect" are modelled in

the conditional volatility equations (Nelson, 1991)iV.

The rest of the paper is therefore organized as follows. Section 2 specifies three non-linear

ARMA-GARCH models and describes the BOS, ARCH (Engle, 1982 and Engle and Bollerslev,

1986) and RESET (Ramsey, 1969) test statistics for non-linear dependence. Section 3

describes the Norwegian data and the Gallant, Rossi and Tauchen (1992) adjustment

procedures. Section 4 reports the empirical findings and finally Section 5 summarizes and

concludes our findings.
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2 Specifications of non-linear relationships and test statistics

2.1 Non-linearARMA-GARCHspecifications

Many aspects of economic behaviour may not be linear. Most evidence and introspection

suggest that investor's attitude towards expected return and risks are non-linear. Moreover,

most derivative securities provide non-linear terms and the strategic interaction between

market participants, the process by which information is incorporated into security prices and

the dynamics of economy-wide fluctuations are all inherently non-linear. However, no

economic theory or behaviour has so far distinguished between non-linear dependence in

conditional mean and variance. Therefore, we have to distinguish between models that are

non-linear in mean and hence depart from the Martingale hypothesis and models that are non-

linear in variance and hence depart from the assumption of independence but not from the

Martingale hypothesis.

In non-linear time-series analysis the underlying shocks are typically assumed to be i.i.d.

However, we typically seek a possibly non-linear function relating the series x, to the history of

shocks. A general representation is XI = f (cpCl_Pcl_2 , •••••• ) where the shocks are

assumed to have mean zero and unit variance, and to is some unknown function. The

generality of the representation makes it very hard to work with-most models used in practice

fall into a somewhat more restricted class that can be written as

XI = g(Ct-], CH ,...... ) + clh(ct-] 'CI_2 , ...... ). Here the function gO represents the mean of x,

conditional on past information, since £I_I[X/] = g(cl_p CH ,... ) . The innovation in x, is

proportional to the shock Et, where the coefficients of proportionality is the function ht). The

square of this function is the variance of x, conditional on past information, since

£1_1 [(XI - £1_1 [XI ])2] = h(cl_l, CH'" .)2. Models with non-linear gO are said to be non-

linear in mean, whereas models with non-linear h(l are said to be non-linear in variance. The

second equation leads to a natural division in the non-linear time-series literature between

models of the conditional mean gO and models of the conditional variance hO· Most time-

series models concentrate on one form of the non-linearity or the other. However, the

(General) Auto-regressive Conditional Heteroscedasticity «G)ARCH) model of Engle (1982)

makes modelling of non-linear dependence in both mean and variance possible.

Three non-linear models will be analysed in this study. A linear ARMA model with a constant

(drift) takes the form
p q

XI = ao + LIP; ,xl_; +CI + LB; 'CI_i
}=I i=1

(1)
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where p and q are the BIC (Schwarz, 1978) preferred respective lag lengths; ø; is the auto-

regressive parameters and ei is the moving average parameters. The first non-linear model is

an extended ARMA model where non-linearity in the mean is introduced through the squared

residual (&t\ This simple non-linear ARMA model takes the form
p q

x, = ao + L(/Jj .x.; +G, + LB; .G,_; + y' G':'I ;
}=I ;=1

(2)

where p and q is based on the Schwarz Bayesian Criterion (BIC) (1978) from the original

adjusted return time-series and ao is an estimated constant". The third model analyses

changing volatility and model non-linear dependence in only the variance equation (the mean

is linear). The model takes the form
p q

x, = ao + L(/Jj' x.; +G, + LB; .GH
j=1 ;=1

A.jt = I(;j if e.; < O; else O

m n

h, =ao +L(aj +A.jt)·G,2_j +Lb; ·h,_;
j=1 ;=1

(3)

where p and q is based on the BIC Criterion (Schwarz, 1978) from the original data series. By

analogy with ARMA models, the third equation in (3) is called a GARCH (m,n) model. The

coefficient b, measures the extent to which volatility today feeds through into next period's

volatility, while (.Eaj + }):JJ measures the rate at which this effect dies out over time. The

GARCH (m,n) model is an ARMA (u,m) model for squared innovations, where u=max(m,n).

Hence, using the BIC criterion for the squared innovation from an ARMA (u,m) model

produces the necessary m and n lags. A.;t is the vector of parameters for the asymmetric

process (leveraqe)". Finally, the fourth model combines model (2) and model (3) and takes

the form
p q

x, = ao + L(/Jj -x.; +G, + LB;' GH + Yl' G':'I + Y2 -h, ;
j=1 ;=1

m n

A.iI = 1(;; if e.; < O; else O; h, = ao + L (aj + A.jt)' G,2_j + Lb; .h.; (4)
j=1 ,=1

where p, q is based on the BIC criterion (Schwarz, 1978) from the raw data series and m and

n is based on the BIC criterion from the squared residuals in a linear ARMAviimodel. Model (4)

is a specification for non-linearity in both conditional mean and conditional variance. All

models may be estimated under both a normal-?" and a student-t" density log-likelihood

function.
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2.2.1 The RESET test statistic (Ramsey, 1969)

The Regression Error Specification Test (RESET; Ramsey, 1969) is a test statistic of linearity

against an unspecified alternative. It is a test against general model mlsspeciflcanon" and has

certainly been one of the most popular tests against misspecification of functional form.

In this paper it is carried out in three stages as follows:

(1) We assume the linear part of the model is

Y, = P' .Z, + U, ' t = 1, .... ,T

where ZI = (1, YI-1,·· 'YI-p, XI1, ... ,XtlJ'· We estimate p by OLS and compute u, = Y, - Y, where

Y, = P"Z, ' and SSRo =Lu; .
h

(2) Then we estimate the parameters of u, = O"Z, +L (/lj :z;(1) + u,
j=2

bOLS d t C"C"'R - "~2 h -(1) - ( j j j j). -y an compu e oø, - L..Ju, ,were Z, - Y'-l',-"Y,_p,x'l'""x,k ,j - 2,...,h.

(SSRo - SSR) / (h -1)
(3) Finally, we compute the test statistic: F = --'-------

. SSR / (T -m-h)

where m = p+k. k is in our case zero. As ZI contains lags of Yl, then (h-1)F has an asymptotic

x2 distribution under the null of linearity. h was suggested by Thursby and Schmidt (1977) to

be given the value 4 for the best result. This test is an Lagrange Multiplier (LM) type test

against an Logistic Smooth Transition Regression (LSTR) model in which only one 'linear

parameter' changes but the investigator does not know which one. The RESET test is thus

rather narrow in that if more than one variable has a 'changing linear parameter' the

regression no longer covers that possibility. Note, however, that the constant in the first

regression should not be involved in defining the ZI and Z; in the auxiliary regression, since

the inclusion of such regressors would lead to perfect co linearity.

2.2.2 The ARCH test statistic for non-linear dependence (Engle, 1982)

The ARCH test statistic is a test for constant conditional variance against conditional

heteroscedasticity, based on the Lagrange Multiplier principle. The test procedure is to run a

regression of the squared residuals on a constant and p lagged squared residuals. Then test

the test statistic T Ff as a ;/(p) variate, where T is the sample size and Ff is the squared

multiple correlation coefficient and p is the degree of freedom. The ARCH test is a test for Ho:

constant conditional variance against the alternative Ha:a conditional variance that obey an

ARCH(p) specification. In fact, if ARCH is present in the residuals, non-linear dependence in

the time series cannot be rejected.
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2.2.3 The correlation integral

The correlation integral proposed by Grassberger and Procaccia (1983) is a measure of

spatial correlation in an m-dimensional space. Let {'ut} be a real-valued scalar time-series

def

process. Construct the m-history process 'utm = ('ut' 'ut+l"", 'ul+m-l) . For c> O, the

correlation integral at embedding dimension m is given by"i

Cm.E:= fJX8(Xm ,ym)dF(xm)dF(ym), where X· 8(',,) is the symmetric indicator kernel

with X· 8(X, y) = 1 if IIx -YII < c and Ootherwise (indicator function), 1111 represents the max-

norm, and F() is the distribution function of 'utm. Cm,&gives the mean volume of a cube with

diameter c. An estimator of the correlation integral for a sample size T for the process {J.lt} is

l
given by the following U-statistic-cf. BOS (1987), Cm,E:= (-) I I~·8('utm ,,u;),

T l';.«t,;r
2

where T = T - (m - l) .

2.2.4 The BOS test statistic

Brock et al. (1988,1990), henceforth BOS (Brock, Dechert and Scheinkman), developed a test

based on concepts that arise in the theory of chaotic processes. The BOS test (1988,1990) is

a test of the null hypothesis of LLd. for a univariate time series against an unspecified

alternative. That is, if {Ilt} is an LLd. process, then Cm.e - ctE: ' almost surely, for all c> 0, m =
1, 2, .... BOS (1988, 1990) present the following result

r;:;:. Cm,c -(Cl,J
m

d . .
V ="VI' ------+ N(O,I), \f c> 0, m=2,3, .... , where sm,& IS an estimator of
m,e s

m,e

the asymptotic standard deviation-CTm,&-of Jf. (Cm,e - (Cl,e)m) under the null of LLd.

Brock et al. (1991) used Monte Carlo methods to evaluate the choice of m and c on the

asymptotic normality of Vm.e- Their results suggest that asymptotic normality of Vm,e holds well

for sample sizes of at least 1000 observations, and for value of c between 0.5 and 2 standard

deviations of the data. They warned against relying on asymptotic normality for values of Tim
less than 200 observations.
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The BOS test has been shown to be robust to the non-existence of fourth moments, which

may characterize stock returns (Brock and de Lima, 1995 and Hsieh, 1991). Hsieh (1991)

points out that the robustness of the BOS test to the non-existence of fourth moments is one

of the advantages of the BOS test over other tests of non-linearity such as Tsay (1986) and

Hinich and Patterson (1985). Moreover, the BOS test statistic has power against models that

are non-linear in variance but not in mean, as well as models that are non-linear only in mean.

That is, a BOS rejection does not necessarily mean that a time-series has a time-varying

conditional mean; it could simply be evidence for a time-varying conditional variance (Hsieh,

1991).

3 Data Definitions and Data Adjustment Procedures

The study uses daily returns of individual Norwegian stocks spanning the period from October

1983 to February 1994. The assets examined are assets in the Norwegian equity market. The

assets are sorted from frequently traded (no. 1) to thinly traded assets (no. 15). Trading

volume is the amount traded of the asset in Norwegian Kroner (NOK); that is, the number of

stocks traded multiplied by settlement price at time of trading. Moreover, individual shares are

grouped into portfolios at period t based on trading volume at t-1. Portfolio 1 consists of the

thinnest traded assets; portfolio 2 and 3 consist of the intermediate traded assets and portfolio

4 consists of the most frequently traded assets. The portfolio rebalance is done each month

using information at t-t. Moreover, assets traded throughout a month, is assigned to one of

the four portfolios on basis of their average daily trading volumes in NOK for the last 2 years in

the market. The two-year average avoids a too frequent shift of portfolio-assets. Finally, we

employ four market wide indices consisting of all the stocks in the Norwegian market with 1)

equally weighted stocks (Oslo and NHHXii)and 2) market value weighted stocks (Oslo and

NHH). The crash in October 1987 is included. We therefore assume that a crash is normal in

the equity market.

We adjust for systematic location and scale effects (Gallant and Tauchen, 1992) in all time

series. The log first difference of the price index is adjusted. Let ti} denote the variable to be

adjusted. Initially, the regression to the mean equation fil = x- f3 + u is fitted, where x

consists of calendar variables that are most convenient for the time series and contains

parameters for trends, week dummies, calendar day separation variable, month and sub-

periods. To the residuals, r;, the variance equation model r;2 = x- r + c is estimated. Next
A2

.Ju . is formed, leaving a series with mean zero and (approximately) unit variance given x.
eXoy

A U
Lastly, the series fil = a + b . ( ~) is taken as the adjusted series, where a and bare-u:
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ITA IT I TA _ IT
chosen sa that -. L CiJ; = -. L CiJ; and --. L (CiJ; - CiJ)2 = --. L (u; - U)2 . The

T ;=1 T ;=1 T - I ;=1 T - I ;=1

purpose of the finallocation and scale transformation is to aid interpretation. In particular, the

unit of measurement of the adjusted series is the same as that of the original series. We do

not report the result of these raw data series adiustrnents'".

The two Norwegian value-weighted indices are depicted in Figure 1. Both the indices show an

approximate yearly growth of 12%. The naturallogarithm of total trading volume is depicted in

Figure 2. Note especially its strong but erratic trend in trading volume for the Norwegian thinly

traded market. On average, the yearly growth in the trading volume is approximately 32,9%.

The characteristics of the individual assets, the equal weighted trading volume portfolios and

the market indices are reported in Table 1. Following immediate observations can be

extracted. The standard deviation of returns seems to increase as trading volume decrease.

The daily maximum and minimum returns for individual assets and portfolios seem also to

suggest that highest absolute numbers are found for the thinnest traded assets. The mean

returns show no clear pattern over assets, portfolios and indices. However, the variation in

mean return among the thinly traded assets is high. We therefore find both highly positive and

highly negative mean returns among the thinnest traded assets. For the portfolio, we find

highest mean return accompanied by highest standard deviation, for the thinnest traded asset

portfolio. The portfolios and indices show a surprisingly equal maximum and minimum daily

return. The exception is possibly the frequently traded asset portfolio. A possible explanation

is that it was the most frequently traded assets that experienced the highest price drop at the

crash in October 1987. As should be expected from portfolio theory, all four indices show the

lowest standard deviations.

{Insert Figure 1 and 2 here}

{Insert Table 1 here}

The numbers for kurtosis and skew for the stock returns suggest a substantial deviation from

the normal distribution. The deviation is strongest for asset 10 and 12. Interestingly, the two

value-weighted market indices also report high kurtosis. Moreover, from Table 1 it seems as

especially the kurtosis increases as the number of combined assets in the portfolio

increases'". All portfolios and market indices report negative skew. Together, the kurtosis and

skews suggest too much probability mass around the mean, too little around 1-2 standard

deviation from the mean and some extreme values on especially the negative side of the

distribution. The results for both frequently and thinly traded individual assets report

approximately the same kurtosis and skew results. The kurtosis and skewness indication of

non-normality is strongly supported by the Kolmogorov-Smirnov Z-test statistic (K-S Z) for

normality for all assets and portfolios. The ARCH (Engle, 1982) and BOS (Brock and Deckert,
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1988 and Scheinkman, 1990) for m = 2 and 3 and c = 1 test statistics both report non-linear

dependence in all adjusted raw return data series. The ARCH test suggests changing

conditional volatility and the BOS test statistic report a clear pattern for the degree of non-

linear dependence. For individual assets the BOS test statistic for both m=2 and 3, increases

as trading volume decreases. Moreover, especially where we find non-trading periods, the

BOS statistic reports highly significant values. In contrast, the volume-portfolios report

increased non-linear dependence when trading volume increases. However, non-trading is

absent in these portfolios. Overall the BOS test statistic reports a surprisingly stable and

strongly significant non-linear dependence in assets, portfoliOSand indices. Finally, the

RESET (Ramsey, 1969) test statistic rejects the null of linearity in only a few assets, none of

the portfolios and in the equal weighted index from Norwegian School of Economics and

Business Administration (NHH). The difference in results between on the one side the BOS

and ARCH tests and on the other the RESET test may be caused by the relative strength of

the test statistics. While the BOS and ARCH test statistic focus on non-linearity in both the

conditional mean and variance, the RESET test statistic focus more on non-linearity in the

conditional mean and parameter changes therein.

Interestingly, and in contrast to the ARCH and BOS test statistics, it seems as the RESET test

reports higher values and therefore rejects linearity the more frequently an asset is traded.

Together the test statistics seem to report high ARCH (non-linearity in the conditional

variance) effects for thinly traded assets in contrast to low RESET (non-linearity in the

conditional mean) effects. The BOS test statistic reports results in line with the ARCH test

statistic, which suggests that non-linear dependence is mostly found in the conditional

variance equation. However, the results seem to suggest a need for a balancing of conditional

mean and variance non-linear dependence. Therefore, a closer look at the origin of non-linear

dependence is clearly warranted from the Norwegian raw data series. Moreover, the

inspection to follow must include other characteristics of the Norwegian thinly traded equity

market, which is clearly indicated from Table 1. Especially, non-normality and changing

volatility are therefore all ingredients of our empirical results.

4 EmpiricalResults

Since my interest is in non-linear dependence in an ARMA-GARCH specification, the study

first looks at filtering stock returns using a suitable ARMA (p,q) (auto-regressive and moving

average) process for the conditional mean with the lag truncation lengths chosen according to

the Schwarz BIC Criterion (Schwarz, 1978). For the BIC choice of p and q, the seven most

frequently traded assets (1-7), asset number 12, the four trading volume portfolios and the two

value weighted market indices, BIC prefer an ARMA (0,1)xv specification. The thinnest traded

individual assets (asset no. 8-15) BIC prefer an ARMA (0,2) specification. The two equal-

weighted market indices BIC prefer an ARMA (1,0) specification. The ARCH, RESET and
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BDS test statistics are all applied to the residuals from the ARMA processes with a constant

conditional variance. To stay inside the boundaries for asymptotic normality of the BDS test,

the statistic is computed for m in the range from 2 to 8XVi
, and G = 1. The results are presented

in Table 2 under the category-line v (linear; model (1» and ro(non-linear; model (2» for all

individual assets in panel A and for portfolios and indices in panel B. The ARCH and BDS test

statistics clearly suggest that the null hypothesis of LLd. asset returns is rejected at 1% for all

series examined at all dimensions (m) for both linear and non-linear specifications. In contrast

the RESET test showalmost no significant rejections of the null. Moreover, the BDS results

for m = 2 and 3 and G = 1 is almost identical to the numbers from Table 1. Therefore, the

ARCH and BDS test statistics strongly reject linearity for the residuals of both linear and non-

linear ARMA specifications, in the same manner and magnitude as it rejects linearity of the

adjusted raw return series for m equal to 2 and 3 in Table 1. These findings are consistent

with the results of de Lima (1995a) from US. One more important implication from our results

is worth mentioning. The extremely significant result for the thinly traded assets could be

caused by non-trading and therefore series of zeroes or missing observations. The ARCH and

BDS test statistics seem to report strong non-linear dependence in series that incorporate

periods of zeroes. This is not so for the RESET test. Therefore, the results so far seem to

suggest that the non-linear dependence in return series are strong but that non-linear

dependence in mean is small. Lee et al. (1993) raised the issue of whether the detection of

non-linear dependence in financial time series could be due to either neglected non-linear

structure in the mean or ARCH/GARCH effects (conditional heteroscedasticity). We have

above found small mean non-linear dependence. Therefore, the next step is to test for

conditional variance non-linear dependence. We proceed therefore to model (3) and (4)

defined in section 2. Note that these specifications are unfamiliar territory to those of us who

are accustomed to thinking analytically, intuitively, and linearly. The model we now first

approach is a specification that employs a linear conditional mean equation and a non-linear

conditional variance equation.

One way to test whether conditional heteroscedasticity is responsible for the rejection of LLd.

hypothesis is to apply the BDS test statistic to the residuals from a ARMA - GARCH model

(Brock et al 1991, and Abhyankar et al. 1995). The trouble is that we cannot depend on

asymptotic normality of the BDS statistic. Hsieh (1991) overcomes this problem by using

critical values of the BDS statistic for simulated EGARCH process?" . However, a recent paper

by de Lima (1995 b) shows that the asymptotic distribution of the BDS statistic remains valid if

the test is applied to the natural logarithm of the squared standardized residuals from a

GARCH model. This is because the BDS statistic is valid if it is applied to a data generating

process that is additive in the error term (de Lima, 1995b). The GARCH process models the

error term in a multiplicative form, Pt = a"iZ" where Pt is a random variable following the

GARCH process, z, is LLd. random variable, and O't is the conditional standard deviation.
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{Insert Table 2 Panel A about here}

{Insert Table 2 Panel B about here}

The standardized residuals from this model are z, = Pt / at in the normal case and

z, = 1', / Jer; -( q ~
2
) in the student-t?" density ease, where "is the degree of freedom

parameter. It follows that In(r J = In(/ J - In( a2J in the normal case and

In(rJ = In(/J -ln(a2i(TJ-2ITJ)) in the student-t density case. Therefore, the asymptotic

distribution of the BOS statistic remains valid if it is applied to In(z2J (adjusted residuals) in

both the normal and student-t density case.

Therefore, we examine whether conditional heteroscedasticity is responsible for rejection of

the i.i.d. hypothesis by applying the ARCH, BOS and RESET test statistics to the residuals

from an BIC efficient ARMA (p,q) - GARCH (m,n) model. Moreover, as discussed above, the

BOS test statistic is also applied for the adjusted standardized residuals from the same

specifications. The GARCH (m,n) model for the conditional variance equation, the m and n

lags are chosen based on the BIC criterion (Schwarz, 1978) of the squared residuals from an

ARMA (p,q) process in the conditional mean equation. Moreover, in most cases a GARCH

(1,1) is an appropriate and parsimonious representation of conditional variance equations

(Bollerlev, 1986; Akigary, 1989; and Bollerslev et al., 1992). By use of the BIC criterion the

highest lag representation is m = 1 and n = 2; that is, a GARCH (1,2) representation. All

portfolios and indices BIC prefer a GARCH (1,1) specification. The individual assets number

2, 6 and 12 to 15 BIC prefer a GARCH (1,1) specification, while the assets number 1, 3 to 5

and 7 to 11 BIC prefers a GARCH (1,2) specification for the conditional variance equation'",
The results are reported in Table 2 for normal residuals and in Table 3 for student-t density

log-likelihood function residuals for individual assets, portfolios, and indices under the

category-lines'; and In( () for model (3).

In the normal case reported in Table 2, the results of applying the ARCH test statistics to the

standardized residuals in line'; , suggest that the null of constant conditional variance is

rejected at 1% for all individual assets, portfolios and indices. Therefore, filtering series

through an ARMA-GARCH specification report non-significant ARCH effects for the

conditional variance equation. In contrast, for almost all the individual assets the RESET test

fails to reject linearity against an unspecified alternative. The RESET statistic rejects linearity

for only the most frequently traded portfolio. The result suggests a possible parameter shift in

the conditional mean equation for the most frequently traded portfolio. Finally, the BOS test

statistic for the standardized residuals fail to reject linearity for only assets that show

continuous trading frequency (asset 1 to 3). For all portfolios and indices the BOS test statistic

fail to reject linearity for the standardized residuals. For assets 4 to 15, all assets reject the null
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hypothesis of linearity at some dimension (m). As argued for above, applying the 80S test

statistic to the adjusted standardized residuals reported in line In( ~2 ), suggests that the null of

i.i.d. is rejected for (i) assets no. 8 to 15 and (ii) the equal- and value-weighted indices from

Oslo Stock Exchange at some dimension. The indices report significant test statistics only at

higher dimensions, while the individual assets from 8 to 15 all report consistent non-linear

dependence at all dimensions. All the assets no. 1 to 7, the four volume portfolios and the two

NHH indices all fail to reject linearity of the residuals. This result suggests that non-linear

dependence is fully accounted for by the conditional heteroscedasticity if the trading frequency

is higher than 75% of total trading time.

The student-t density case is reported in Table 3. Applying the ARCH test statistics to the

estimated degrees of freedom adjusted standardized residuals; fail to reject the null of

constant conditional variance for all assets, except the two thinnest traded assets (asset no.

14 and 15). However, only the two intermediately traded portfolios and the equal-weighted

Oslo Stock Exchange market index fail to reject constant conditional variance at 1%. The

RESET statistic fails to reject linearity for all assets, portfolios and indices except assets no.

10, 14 and 15 and the most frequently traded portfolio.

Finally, the 80S statistic for dimension m=2 to 8 is reported in Table 3. For almost all

individual assets and trading volume portfolio, Table 3 reports non-linear dependence in the

standardized residuals. Only the most frequently traded asset and the two value-weighted

indices fail to reject linearity. Therefore, using the standardized residuals from a student-t log-

likelihood function does reduce but does not remove the non-linear dependence in asset

returns. However as above applying the test to the adjusted residuals (In( ~2 » from the

student-t density estimation, the results suggest that the null of i.i.d. is rejected for (1) assets

no. 9 t015 at all dimensions and (2) the equal weighted index from Oslo Stock Exchange at

dimension 3 to 8. All other series fail to reject LLd for the residuals.

Our first point in summary is that conditional heteroscedasticity is the major cause of non-

linear dependence in our time-series. For all the reasonably frequent traded assets non-linear

dependence seems to be removed in the residuals. Among portfolios and indices, only one of

the equal-weighted indices, where non-trading contributes strongly from component stocks,

fails to reject linearity.

Secondly, the time-series that rejects the null of linearity in all cases are the thinly traded

individual assets from no. 9 to 15. Therefore, non-trading seems to be a major cause of high

non-linear dependence in especially the ARCH and 80S test statistics. Long periods of non-

trading and therefore long series of zero return are a major source for rejection of the null of

LLd. in stock return series. Moreover it seems as a trading proportion below 75% report

significant non-linear dependence. Finally, we introduce non-linear dependence in the mean to
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see if the remaining non-linearity can be removed from the data series. Note that this model

departs from the Martingale hypothesis and is described in detail in Section 2, model (4). The

results are reported in the lines f1J and In(f1J2) in Table 2 and 3. For both Table 2 and 3 and

therefore for both normal and student-t density estimations the non-linearity in mean seems to

introduce increased non-linear dependence in the data-series that has been earlier removed

using the non-linear conditional variance specification. Especially the thinnest traded assets

seem to report symptoms of increased non-linear dependence. Moreover, the equal-weighted

index includes these assets with an equal weight to more frequently traded assets.

{Insert Table 3 Panel A about here}

{Insert Table 3 Panel B about here}

This fact may explain the non-linear dependence in the Oslo index. Introduction of non-linear

mean in a normal GARCH (m,n) estimation seems therefore not to be recommended for

Norwegian data. Moreover and more importantly the result suggests that we do not have to

explain dynamics in asset retums that depart from the Martingale hypothesis.

The results suggest that series from thinly traded assets with several and/or long periods of

non-trading, must not be included in especially the BOS tests of i.i.d. Further, the results

suggest that zero return series for the BOS test statistic immediately reject the i.i.d.

proposition. Moreover, they suggest that the BOS test statistic can lead to different conclusion

depending on whether it is applied to the standardized residuals or the adjusted standardized

residuals.

If we ignore the results from the thinly traded asset series (no. 9 to 15) none of the BOS test

statistics is significant for the student-t density estimation. From these results it seems that the

conditional heteroscedasticity in fact, count for almost all non-linear dependence in the

Norwegian equity market. Even more encouraging, introduction of non-linearity in the

conditional mean equation does not materially change our test statistics and we do not have to

depart from the Martingale hypothesis. The main finding of this research suggests that

reasonable frequently traded assets (greater than 75%) in the Norwegian equity market

produce linear conditional mean equations but conditional heteroscedasticity must be

accounted for using simple GARCH(m,n) specification to secure conditional homoscedasticity.
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5 Summaries and Conclusions

We have found strong evidence to reject the null hypothesis of LLd. for Norwegian asset raw

returns. This finding supports the results of de lima (1995a) that non-linear dependence

cannot be ruled out as an explanation to the dynamics of the stock returns after the 1987

crash for US data. Moreover, the three test statistics suggest a need to control conditional

heteroscedasticity (BOS and ARCH) rather than changing parameter values (RESET). The

results suggest that the rejection of LLd. appears to be almost exclusively caused by

conditional heteroscedasticity, when frequent non-trading assets are excluded from the

sample. These thinly traded assets introduce non-linear dependence through non-trading.

Non-trading and conditional heteroscedasticity are therefore the carriers of non-linear

dependence. Moreover, my results highlight the importance of using the simple adjustment of

de lima (1995b) to the GARCH residuals before applying the BOS test since de lima show

that the asymptotic normality is valid only in this case. Finally, and an important findings of our

analysis, is that if we are interested in modelling non-linearity in stock return series, our

attention should be on conditional heteroscedasticity rather than conditional mean

dependence. In fact, almost all significant non-linear dependence are ruled out using a simple

BIC efficient GARCH (m,n) model for the conditional variance equation for frequently traded

assets. Therefore, we don't have to depart from the Martingale hypothesis in the Norwegian

thinly traded equity market.

Our findings also suggest a strong relationship between non-trading and non-linear

dependence. This research has not solved the non-trading issue, which must be left to future

research. However, one way to proceed is by applying temporal aggregation (Drost & Nijman,

1993) in ARMA-GARCH specifications. In the mean time, the non-trading phenomena in thinly

traded markets, make economic implications very difficult to interpret and make analytical,

intuitive and linear thinking almost impossible.
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i For an overview of Non-linear Dependence in Financial Data see Campbell, La and
MacKinlay, 1997.

ii Conditional dependence will through conditional mean and volatility models of raw returns
normally generate more normal residuals.

iii See Solibakke (2000a) for a definition of a thinly traded market.

iv The asymmetric GARCH specification (Glosten et. Al., 1993) is Lagrange Ratio preferred
using both normal and student-t density maximum log- likelihood functions in the Norwegian
thinly traded Market.

v ao is the estimated long run average volatility (constant). An alternative is to specify hr = 1.
However, the upcoming non-linear results in section 4 show very small changes, and do not
affect the conclusions of our work.

vi See Glosten et al. (1993).

vii Employing the non-linear ARMA residuals don't change the BIC preferred values for m and
n.

viii Normal log likelihood function: - O.S·10(2· Jr) + e / h)2 + 2 ·Io(h); where e is the residuals
and h is the conditional variance.

ix Student-t log likelihood function: C - O.S·Io(h) - «1] + I) / 2 ·Io(l + £2 /(1] - 2)· h)) ;
where C is a constant, e is the residuals, h is the conditional variance and 1] is the degree of
freedom parameter.

x See also Tsay (1986), Spanos (1986) and Lee et al. (1993).

xi If {Ilt} is a strictly stationary, absolutely stochastic process, the integral defined below exists.

xii NHH is the abbreviation for Norwegian School of Economics and Business Administration.

xiii The results are readily available from the author upon request.

xiv Often named the mixture of distributions hypothesis, which maintains that asset returns
exhibit leptokurtosis because they are reallya combination of returns distributions.

xv ARMA (0,1) is found to model non-synchronous trading (La and MacKinlay, 1990).
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xvi The maximum choice of m, 8, is chosen so that Tim is higher than 200 (Brock et al., 1991)

xvii The simulation is based on 2000 replications, each with 1000 observations

xviii We have chosen a Student-t distribution as it has been found to suit Norwegian equity data
well (Solibakke, 2000c).

xix The result implies 4 different ARMA-GARCH models to estimate for assets and portfolios.
The BHHH algorithm (Berndt et al., 1974) is employed for estimation.
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Table 1. Series characteristics for the Norwegian Thinly Traded Equity Market.

Individual Obsl Yearly Yearly Max. Kurtosis K-S ARCH RESET BOS (c: = 1)
Series Prop. Mean std.dev. Min. Skew Z-stat (6) (12;6) m=2 m=3 m=4

1. VP-1 2611 15.196 32.417 13.04 8.4051 3.062 288.41 43.4515 1.920 2.837 3.251
1.00 -20.27 -0.3109 {0.004} {O.OOO} {O.OOO} {0.063} {0.007} {0.002}

2. VP-2 2611 25.140 33.153 13.44 9.1629 3.148 70.922 42.199 2.531 2.000 1.598
1.00 -23.43 -0.3739 {0.003} {O.OOO} {O.OOO} {0.016} {0.054} {0.111}

3. VP-3 2611 8.598 46.407 26.76 30.219 3.456 254.31 37.37 3.479 3.337 2.900
0.97 -46.98 -1.3141 {0.001} {O.OOO} {O.OOO} {0.001} {0.002} {0.006}

4. VP-4 2369 -10.479 116.66 32.26 3.9290 3.483 246.17 35.22 7.048 5.563 4.477
0.90 -45.84 -0.1425 {0.001} {O.OOO} {O.OOO} {O.OOO} {O.OOO} {O.OOO}

5. VP-5 2577 12.645 57.56 24.41 11.8919 5.236 276.42 73.33 9.391 10.152 10.350
0.83 -33.69 -0.6232 {O.OOO} {O.OOO} {O.OOO} {O.OOO} {O.OOO} {O.OOO}

6.VP-6 2515 42.318 130.70 81.20 95.667 8.399 203.57 79.69 15.533 18.822 21.057
0.57 -167.9 -3.9843 {O.OOO} {O.OOO} {O.OOO} {O.ODD} {O.OOO} {O.OOO}

7.vP-7 2499 34.618 108.42 53.59 17.440 8.915 291.73 38.45 20.608 23.900 30.789
0.43 -56.57 -0.5615 {O.DOD} {O.OOO} {O.OOO} {O.OOO} {O.DOD} {O.OOO}

8.vP-TT 2611 21.456 32.553 10.80 5.7203 2.574 89.350 25.727 7.472 8.143 8.819
.~'-: ..
~~ 0.91 -15.91 -0.1158 {0.015} {O.DOD} {0.012} {O.OOO} {O.DDO} {O.DDO}

9.vP-FT 2611 5.502 25.127 13.32 26.146 3.809 390.988 74.951 16.194 19.102 21.166
1.00 -23.06 -1.3147 {O.DDO} {O.OOO} {O.OOO} {O.OOO} {O.OOO} {O.DOD}

10.VP-EW 2611 7.676 17.610 11.42 29.844 4.580 630.085 76.919 13.294 14.757 15.850
1.00 -16.66 -1.5458 {O.OOO} {O.DDO} {O.OOO} {O.OOO} {O.OOO} {O.OOO}

11.vP-VW 2611 13.278 20.581 10.48 36.143 3.800 288.878 68.810 12.653 14.908 15.746
1.00 -21.22 -2.0040 {O.DDO} {O.OOO} {O.DOD} {O.OOO} {O.OOO} {O.OOO}----------------------------------------------------------------------.-------------------------------.------------------

VP1. VP-2, ... ,VP-7 are individual assets sorted in ascending order of trading volume. VP-TT is the portfolio containing the most
thinly traded and VP-FT contains the most frequently traded assets. VP-EW and vp-vw are an equal-weighted and a va lue-
weighted index for the Norwegian market.
Yearly mean is daily mean multiplied by 252 trading days and yearly standard deviation is daily standard deviation multiplied by
the square root of 252 trading days. Skew is a measure of heavy tails and asymmetry of a distribution (normal) and kurtosis is
measure of too many observations around the mean for a distribution (normal). K-S Z-test: Used to test the hypothesis that a
sample comes from a normal distribution. The value of the Kolmogorov-Smirnov Z-test is based on the largest absolute
difference between the observed and the theoretical cumulative distributions. ARCH (6) : ARCH (~ is a test for conditional
heteroscedasticity in returns. Low {.} indicates significant values. We employ the OLS-regression =ao + a., 1,.,+ ... +a6.I,-<;.
TR2 is l distributed with 6 degrees of freedom. T is the number of observations, y is returns and R2 is the explained over total
variation. ao, a, ... a6 are parameters.
RESET (12,6) : A sensitivity test for mainly linearity in the mean equation. 12 is number of lags and 6 is the number of moments
that is chosen in our implementation of the test statistic.TR2 is l distributed with 12 degrees of freedom.
BOS (m=2,E=1): A test statistic for general non-linearity in a time series. The test statistic BOS =T"2.[Cm(crE)- C,(crEn, where C

i'-::~!·" is based on the correlation-integral, m is the dimension and Eis the number of standard deviations. Under the null hypothesis of\;~t~:·; identically and independently distributed (i.i.d.) series, the BOS-test statistic is asymptotic normally distributed with a zero mean
and with a known but complicated variance.



Table 2. Test statistic for ARMA and GARCH specifications with nonnal residuals.

Test statistics: BOS test statistic: (s = 1.0)
Series: Residual: ARCH x'(6) RESET X'(12) m=2 m=3 m=4 m=5 m=6 m=7 m=8
1. VP-1 II 369.21 {O.OOO} 42.971 {O.OOO} 8.5510 10.0162 11.2498 11.6067 12.6495 13.8086 14.9050

ro 202.67 {0.000} 40.991 {O.COO} 9.6084 10.8099 11.5134 11.7112 12.2171 12.7911 13.4521
Lo(!;') 6.7902 {0.341} 11.325 {0.501} -0.8803 -0.3265 0.1130 0.2632 0.4571 1.0048 1.9318
Lo(lII') 6.5125 {0.368} 11.506 {0.486} -0.6208 -0.2309 0.0852 0.3161 0.6184 1.3509 2.2648

2. VP-2 II 99.744 {O.OOO} 40.444 {O.OOO} 7.6281 8.9439 9.4337 9.4346 10.1117 10.8621 11.8171
ro 35.168 {0.000} 35.012 {O.OOO} 7.7176 9.0362 9.2817 9.5616 10.0224 10.4880 10.8626
Lo(!;') 2.7913 {0.835} 14.770 {0.254} -0.0463 -0.2422 -0.1760 0.1640 0.7018 0.3484 0.3665
Lo(lII') 3.1260 {0.793} 14.159 {0.291} 0.2564 0.2813 0.2522 0.3815 0.7625 0.3229 0.6639

3. VP-3 II 257.41 {O.OOO} 37.412 {O.OOO} 11.9842 13.2841 14.3353 16.9892 20.4752 25.2495 27.6834
ro 8.0755 {0.233} 20.372 {0.060} 11.5542 12.5671 12.5220 13.0422 13.7803 14.3479 14.7436
Lo(!;') 2.3429 {0.886} 15.586 {0.211} 0.5611 0.2160 0.2681 0.7090 0.4295 0.1837 -1.1281
Lo(lII') 2.3445 {0.885} 15.105 {0.236} 0.5535 0.1894 0.2004 0.5679 0.6592 0.7832 0.4842

4. VP-4 II 175.39 {O.OOO} 32.861 {0.001} 13.6738 17.4681 22.1961 25.2432 34.4052 18.1240 -5.3455
ro 154.54 {O.OOO} 30.727 {0.002} 15.1138 17.3960 18.8071 20.3668 22.4793 25.0904 28.0714
U1(I;-) 1.H!:IIJ {U.:.14ti} 1:.1.:.1J5 {U.417} 1.HH:.1:.1 1.411:.1 U.H5JH U.5!:1J1 U.4JHU -U.HUJ4 -1.:.1U4U
Ln(1II4) 9.2157 {0.162} 10.911 {0.537} 1.9673 1.5942 1.1864 1.2834 1.1320 0.9604 0.6299

~";;. 11.6209 22.2221 25.0255 31.9716:~,~) 5. VP-5 II 207.98 {O.OOO} 67.390 {O.OOO} 14.7820 17.8220 20.3445
ro 209.28 {O.OOO} 67.412 {O.OOO} 13.0195 15.2500 16.9169 18.3810 19.8070 21.4047 23.3438
Ln(!;') 2.4115 {Oc878} 10.001 {0.616} 4.5311 5.2427 4.8054 5.0089 4.7085 3.7040 4.7137
Ln(lII') 2.3139 {0.889} 10.204 {0.598} 4.7305 5.4736 5.0423 5.3908 4.5261 2.7400 3.9282

6.VP-6 II 95.119 {0.000} 86.328 {O.COO} 21.0558 27.9705 38.2024 59.7633 103.030 217.044 476.155
ro 93.586 {O.OOO} 85.963 {O.COO} 16.6573 18.0466 19.3285 20.0234 20.7093 21.4976 22.5865
Ln(!;') 4.4821 {0.612} 15.816 {0.200} 9.5848 8.3431 8.3270 8.2894 8.4489 6.9131 6.2213
Ln(lII') 5.5198 {0.479} 16.547 {0.167} 9.3262 8.3420 8.1306 8.2592 8.9126 7.3368 8.4389

7VP-7 II 176.33 {O.OOO} 53.371 {O.OOO} 36.0967 55.2813 87.9003 148.915 271.593 557.858 1194.73
ro 176.75 {O.OOO} 51.736 {O.OOO} 15.6134 15.9042 16.0970 16.9001 17.7405 18.6658 19.7833
Ln(I;') 7.7186 {0.259} 10.086 {0.608} 29.3216 27.2604 28.4112 31.2741 47.2066 79.3681 166.350
Ln(lII') 8.2269 {0.222} 9.8907 {0.626} 29.2591 27.6074 28.4628 32.6828 48.3300 81.0214 168.112

8VP-TT u 57.7683 {O.OOO} 25.231 {0.014} 6.1891 6.8691 7.2851 7.9796 8.3611 9.4105 10.3236
ro 58.057 {O.OOO} 24.544 {0.017} 6.3154 7.3980 8.1286 8.5379 8.6721 9.0331 9.3971
Ln(~') 13.230 {0.040} 11.598 {0.478} -2.0211 -2.3023 -2.2785 -2.C012 -1.1215 -0.7245 0.3702
Ln(lII') 13.606 {0.034} 10.408 {0.580} -2.3309 -2.6923 -2.4845 -2.1558 -1.3843 -1.3634 -1.1203

9VP-FT II 696.829 {O.OOO} 71.613 {O.OOO} 14.1415 16.8083 18.7161 20.6489 23.2936 26.1429 29.4136
ro 107.228 {O.OOO} 61.943 {O.OOO} 14.8847 17.0585 18.4922 19.7159 21.1360 22.7302 24.5316
Lo(~') 9.36171 {0.154} 8.9307 {0.709} 0.3242 0.3054 0.3079 0.3670 0.5047 0.4547 0.4390
Lo(lII') 10.657 {0.100} 7.14585 {0.848} -1.4945 -1.2455 -1.8494 -1.7013 -1.7168 -2.0197 -1.7640

ljr~::,\ 10VP-EW II 882.376 {0.000} 77.718 {O.DOD} 11.4712 13.1767 14.3758 15.5042 16.7248 17.9349 19.1912
~:.:~:..~;

ro 91.195 {O.OOO} 48.696 {O.OOO} 11.8183 13.2399 14.3738 15.3158 16.4717 17.6254 18.7489
Ln(~') 6.2967 {0.391} 9.6714 {0.645} 1.0641 1.1486 1.7411 1.9639 2.1802 2.2108 3.0017
Ln(lII') 5.93344 {0.431} 9.8308 {0.631} 1.7199 1.7958 1.9718 1.9218 1.9135 2.3255 3.2857

11VP-VW u 589.024 {O.DOD} 71.628 {O.DOD} 10.1122 12.4968 13.3401 13.9719 15.3633 16.6591 18.1129
ro 64.0411 {O.DOD} 51.184 {O.COO} 10.5922 13.1446 14.0522 14.7188 15.9064 16.9993 18.3095
Lo(~4) 8.73444 {0.189} 10.459 {0.576} 0.2326 0.1819 0.1300 0.0982 0.0710 0.1606 0.3480
Ln(lII') 14.8494 {0.021} 11.498 {0.487} -0.9033 -1.6247 -2.3502 -2.3511 -2.2995 -2.4163 -2.1255

........ ----------------------------_.-------------.--------------------------------------------------------------



Table 3. Test statistics for ARMA and GARCH specifications. Student-t density residuals.
(estimated degrees of freedom in parantheses in first column for GARCH models)

Iest statistics: tlU;;' test statistic: IE = 1.U}

Series: Residual: ARCH X'(6) RESET X'(12) m=2 m=3 m=4 m=5 m=6 m=7 m=8
1. VP-1 u 369.21 {O.DOD} 42.971 {O.DOD} 8.5510 10.0162 11.2498 11.6067 12.6495 13.8086 14.9050

ID 202.67 {O.OOO} 40.991 {O.DOD} 9.6084 10.8099 11.5134 11.7112 12.2171 12.7911 13.4521
('1 = 5.051181) Ln(~') 7.8557 {0.249} 11.653 {0.474} -0.8482 -0.2557 0.0178 0.4446 0.3850 0.9010 1.9451
('1 = 5.036366) Ln(m') 7.0335 {0.318} 12.180 {0.431} -0.4919 -0.1447 0.1211 0.5505 0.4599 0.8103 1.6872

2. VP-2 u 99.744 {O.DOD} 40.444 {O.DOD} 7.6281 8.9439 9.4337 9.4346 10.1117 10.8621 11.8171
ID 35.168 {O.OOO} 35.012 {O.DOD} 7.7n6 9.0362 9.2817 9.5616 10.0224 10.4880 10.8626

('1 = 4.533413) Ln(~') 3.3378 {0.765} 13.246 {0.351} 0.3143 -0.1800 -0.0981 0.2406 0.4830 0.0122 0.2088
('1 = 4.440638) Ln(m') 2.8655 {0.826} 12.374 {0.416} 0.5983 0.1708 0.2327 0.2951 0.6470 0.6555 -0.452~

3. VP-3 u 257.41 {O.DOD} 37.412 {O.DOD} 11.9842 13.2841 14.3353 16.9892 20.4752 25.2495 27.6834
ID 8.0755 {0.233} 20.372 {O.OSO} 11.5542 12.5671 12.5220 13.0422 13.7803 14.3479 14.7436

('1 = 4.382588) Ln(~') 3.5333 {0.740} 14.924 {0.246} 0.6305 0.2356 0.1635 0.5328 0.4559 0.0871 -0.3496
('1 = 4.362314) Ln(m") 3.6470 {0.724} 14.362 {0.278} 0.8214 0.5941 0.5372 0.7771 0.8743 0.3831 0.0398

4. VP-4 u 175.39 {O.DOD} 32.861 {0.001} 13.6738 17.4681 22.1961 25.2432 34.4052 18.1240 -5.3455
ro 154.54 {D.OOO} 30.727 {0.002} 15.1138 17.3960 18.8071 20.3668 22.4793 25.0904 28.0774

(T] = 4.20412) Ln(~') 7.0298 {0.318} 11.282 {D.SOS} 1.4770 1.1442 0.7963 0.7493 1.0373 0.5344 1.0387
('1 = 4.158861) Ln(m') 7.3253 {0.292} 10.043 {0.612} 1.4922 1.2922 1.0109 1.0110 1.2431 1.8013 3.4529

:::-;;..,
~..~~; 5. VP-5 u 207.98 {O.OOO} 67.390 {D.OOO} 11.6209 14.7820 17.8220 20.3445 22.2221 25.0255 31.9776

ro 209.28 {O.DOD} 67.412 {D.OOO} 13.0195 15.2500 16.9169 18.3810 19.8070 21.4047 23.3438
(T] = 3.29325) Ln(~') 2.2157 {0.899} 12.346 {0.418} 3.5223 4.1219 4.0231 3.4512 2.5847 1.4104 0.6104
('1 = 3.295526) Ln(m") 2.0568 {0.914} 12.365 {0.417} 3.4622 4.1440 4.0970 3.6637 2.9759 2.6206 2.2552

6.vP-6 u 95.119 {D.OOO} 86.328 {O.DOD} 21.0558 27.9705 38.2024 59.7633 103.030 217.044 476.155
ID 93.586 {O.DOD} 85.963 {O.DOD} 16.6573 18.0466 19.3285 20.0234 20.7093 21.4976 22.5865

(T] = 2.622771) Ln(~') 0.2495 {1.000} 6.7053 {0.876} 5.0168 5.5153 5.3258 7.0001 8.4744 8.5042 16.9384
(T] = 2.629503) Ln(m") 0.2509 {1.000} 6.5082 {0.888} 4.6847 5.3236 5.0033 6.3201 7.8735 8.4026 16.2952

7.VP-7 u 176.33 {O.DOD} 53.377 {O.DOD} 36.0967 55.2813 87.9003 148.915 277.593 557.858 1194.73
ID 176.75 {D.OOO} 51.736 {O.DOD} 15.6134 15.9042 16.0970 16.9001 17.7405 18.6658 19.7833

(T] = 2.364853) Ln(~') 14.657 {0.023} 14.943 {0.245} 9.4015 11.5595 17.2619 29.0393 55.2045 110.367 251.309
(T] = 2.362968) Ln(m') 13.712 {0.033} 14.515 {0.269} 11.0482 13.6064 19.2758 32.1468 61.5073 126.285 290.464

8.vP-TT u 61.229 {O.DOD} 25.000 {0.015} 6.1891 6.8691 7.2851 7.9796 8.3611 9.4105 10.3236
ID 61.159 {O.DOD} 24.649 {0.017} 6.3154 7.3980 8.1286 8.5379 8.6721 9.0331 9.3971

('1 = 6.21166) Ln(~") 15.113 {0.040} 11.858 {0.957} -1.8410 -2.2261 -2.0752 -2.0572 -1.6335 0.0708 0.4348
('1 = 6.256039) Ln(m') 15.367 {0.018} 10.841 {0.543} -2.1215 -2.4885 -2.2916 -1.9996 -1.9722 -0.3804 0.0747

9.VP-FT u 888.06 {O.OOO} 79.968 {O.DOD} 14.1415 16.8083 18.7161 20.6489 23.2936 26.1429 29.4136
ro 69.865 {O.OOO} 67.1n (O.DOD) 14.8847 17.0585 18.4922 19.7159 21.1360 22.7302 24.5316

(T] = 6.220762) Ln(~') 11.875 {0.065} 9.1982 (0.686) -1.6278 -1.4376 -1.8309 -1.9083 -1.6891 -1.7654 -1.8384
('1 = 6.268164) Ln(m") 18.120 (O.DOS) 9.0229 (0.701) -1.2198 -1.0094 -1.7295 -1.7802 -1.8112 -1.9254 -1.6756,~,,~:..

10.vP-EW 1090.7 (O.DOD) 81.075 (O.DOD) 11.4712 13.1767 14.3758 15.5042 16.7248 17.9349 19.1912t,,:;-· u
ID 838.42 {O.DOD} 97.718 (O.DOD) 11.8183 13.2399 14.3738 15.3158 16.4717 17.6254 18.7489

('1 = 5.020918) Ln(~") 12.151 (O.D59) 8.0514 (0.781) 1.7452 2.0208 2.5350 2.5926 2.6171 3.1507 3.5963
('1 = 5.110305) Ln(m') 11.517 (0.074) 10.847 (0.542) 1.7738 2.0061 2.2870 2.5049 2.7409 2.8546 3.6363

11.VP-VW u 751.92 (O.DOD) 74.180 {O.DOD} 10.1122 12.4968 13.3401 13.9719 15.3633 16.6591 18.1129
ID 50.531 {O.DOD} 51.687 (O.DOD) 10.5922 13.1446 14.0522 14.7188 15.9064 16.9993 18.3095

('1 = 6.512626) Ln(~') 14.127 {0.028} 10.459 (0.576) -0.5066 -1.4408 -1.8923 -1.8700 -1.9201 -1.7037 -1.6792
('1 = 6.542097) Ln(m") 30.107 (O.DDO) 12.038 (0.443) -0.4234 -1.4330 -1.8904 -1.4782 -1.2253 -1.0075 -0.6089
....-.--_._--------------_ ...--.---_ .._----_._-----------------------------------------------------------------------
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Testing the univariate conditional CAPM
in thinly traded markets

PER BJARTE SOLIBAKKE

Department of Business Administration and Economics. Molde College. P.O. Bo;" 308.
N-640~ Molde. Norway; E-mail: per.b.solibakke@ltimolde.no

Traditional tests of asset pricing undertaken within the CAPM framework have to
control for nonsynchronous trading and non-trading as well as volatility clustering
in especially thinly traded financial markets. This investigation therefore set out to
control for nonsynchronous trading and non-trading effects and volatility clustering
in the Norwegian equity market. The problem is approached by applying a linear
ARMA-GARCH-in-mean lag specification. The ARMA lag specification controls
for nonsynchronous trading and non-trading effects in the mean equation. The
GARCH lag specification controls for conditional heteroscedasticity and volatility
clustering in the latent conditional volatility equation. All lags are Schwarz efficient.
Theresults suggest that the conditional CAPM cannot be rejected but the in-mean
parameter in ARMA-GARCH-in-mean specifications show very low statistical sig-
nificance except for daily data. The result therefore suggests a compensation for risk
only for short time-horizons and the in-mean parameter in ARMA-GARCH-in-
mean lag specifications is a poor proxy for risk in the conditional CAPM sense.
Conditional heteroscedasticity and volatility clustering need to be controlled for in
daily and weekly time intervals while nonsynchronous trading needs to be controlled
for in daily, weekly and monthly time intervals.

I. INTRODUCTION AND LITERATURE
REVIEW

From a theoretical perspective, the Capital Asset Pricing
Model (CAPM) of Sharpe (1963), Lintner (1965), Mossin
(1966) and Black et al. (1972) is a one-period equilibrium
model and as such, it is not designed to account for
temporal dependence and nonsynchronous trading. From
a practical perspective, it is well known that the distribu-
tions of asset returns exhibit volatility clustering, which
manifest itself as temporal dependence in variances, and
nonsynchronous trading and non-trading effects, which
manifest itself as autocorrelation in mean. Turtle (1994)
has shown that serial correlation will be induced into
model disturbances, when conditional variances are time
varying. Campbell el al. (1997) has shown that spurious
serial correlation will be induced into model disturbances.
Consequently, tests of an unconditional CAPM in the
thinly traded Norwegian market may be wrongly specified.

Researchers have attempted to test the CAPM in a con-
ditional framework utilizing the generalized autoregressive
conditional heteroscedastcity in-mean (GARCH-in-mean)·
model (Engle, 1982; Engle and Bollerslev, 1986) in which
asset returns are modelled as a function of their conditional
variance. Examples include Baillie and DeGennaro (1990),
French el al. (1987) and Harris (1989). However, while
models that explicitly allow for ARCH effects have been
reasonably successful in modelling financial time series, the
GARCH-in-mean model has typically been used as a pure
statistical description of returns. Turtle (1994) has provided
a theoretical asset pricing application of the GARCH-in-
mean model. Turtle's results from the US market suggest
that while the GARCH-in-mean model cannot be rejected,
the conditional CAPM can be rejected. Moreover, the
Brailsford and Faff (1997) results from the Australian
market cannot reject the GARCH-in-mcan model in
daily and weekly series but can be rejected for monthly
series while the conditional CAPM cannot be rejected for
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weekly and monthly series but can be rejected for daily
series.

Hence, the purpose of this paper is to apply and extend
Turtle's (1994) US market results and Brailford and Faff
(1997) Australian analyses to the Norwegian thinly traded
market. It is of international interest to see how robust
these US and Australian equity market results are in the
context of thinly traded markets. Thinly traded markets
exhibit nonsynchronous trading and non-trading effects,
which may create negative serial correlation in asset returns
(Solibakke, 2000a, 2000b). To control for the serial corre-
lation lin ARMA lag specification is applied for the con-
ditional mean. Moreover, as the GARCH specifications
apply lagged residuals in the volatility specification, non-
synchronous trading and non-trading may create spurious
conditional volatility effects (Solibakke, 2000a, 2000b).
Equally important a second objective for this paper is the
effect of sampling interval on the empirical performance of
the conditional CAPM and the ARMA-GARCH-in-mean
specification. The objective is especially important for
thinly traded markets as market indices may contain assets
not traded for days and possibly weeks. It is therefore poss-
ible to see how important it is to control for nonsynchro-
nous trading over sampling intervals.
T-he Bayes Information Criterion (BIC) (Schwarz, 1978)

is applied to measure the optimal lag structure both in the
conditional mean and in the conditional variance equa-
tions. The optimal lag structure is able to be found for
all series at all sampling intervals. Both value-weighted
and equal-weighted market index series arc employed to
see whether the weighting of the market indices influences
the findings. The equal-weighted indices will most likely
show the highest influence from nonsynchronous trading
and non-trading effects.

The study differs therefore from other similar studies in
especially two ways. First, the use of several index series,
equal- and value-weighted contains thinly traded market
characteristics. Hence, nonsynchronous trading and non-
trading effects need to be controlled for and the BIC
criterion applied for serial correlation adjustment in the
conditional mean equation. Secondly, the BIC criterion is
applied to find the optimal GARCH specification for con-
ditional heteroscedasticity in the conditional variance
equation. Thirdly, specification tests are applied to find
appropriate specifications for the Norwegian thinly traded
market over daily, weekly and monthly sampling intervals.

The rest of the paper is organized as follows. Section II
describes the CAPM model, the conditional, and the
unconditional ARMA-GARCH-in-mean specifications.
Section III describes the data and adjustments procedures.

P. B. Solibakke

Section IV reports the empirical results. Section V reports
Norwegian findings and finally Section VI summarizes and
concludes.

Il. THE CAPM AND ARMA-GARCH-IN-
MEAN SPECIFICATIONS

The static CAPM

The Sharpe-Lintner-Mossin CAPM is a one-period model,
which describes how assets are priced in equilibrium in
terms of the relationship between relevant risk (beta) and
expected return. Specifically, the CAPM states that a posi-
tive linear relationship should hold between risk and
expected return, namely, E(Ri) = RF + /3i' [E(RM) - RF]'
where /3i = ai.M/ai" where ai.m denotes the covariance
between asset i and the market and aL denotes the market
variance. Note also that /3i = (ai' Pi,M/aM), can be written,
where Pi,,, denotes the correlation coefficient between asset
i and the market and a7 denotes asset i variance. In their
widely cited study, Fama and French (1992) empirically
examine the CAPM given above and find that the esti-
mated value of {3i is close to zero. They interpret the 'flat'
relation between average return and beta as strong evi-
dence against CAPM. The static CAPM is also tested in
the Norwegian thinly traded market. However, Carlsen
and Ruth (1991) fail to reject the null of /.lo significant
different from zero for both univariate and multivariate
tests. I The result may therefore give evidence both for
and against the static CAPM, but it is not necessarily evi-
dence for and against the conditional CAPM. The CAPM
was developed within the framework of a hypothetical sin-
gle-period model economy. The real world, however, is
dynamic and hence, expected returns and betas are likely
to vary over time. Even when expected returns are linear in
betas for every time period based on the information avail-
able at that time, the relation between the unconditional
expected returns and the unconditional beta could be close
to zero.2 In the next section it is assumed that CAPM holds
in a conditional sense, i.e., it holds at every point in time,
based on whatever information is available at that instant.

The conditional CAPM

Assuming hedging motives are not sufficiently important
following Merton (1980) and hence the CAPM will hold
in conditional sense and if it is assumed that expectations in
CAPM at time t are conditioned on the information set
available to agents at time t - I, ni-I, then the conditional
CAPM3 can be written as EI(Ri"ln,_d = RF,I_I +

I See also Carlsen and Ruth, 1990; Stange, 1989; Semmen, 1989 and Hatlen et al. 1988.
2 Becausean asset that is on the conditional mean-variance frontier need not be on the unconditional frontier (Dybvig and Ross, 1985
and Hansen and Richard, 1987).
) See Jagannathan and Wang, (1996).
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61,,_1,{3;,,-h where {3;,,-1is the conditional beta of asset i
defined as {3;,,-1= (Cov(R;", RM"IO,_I )/Var(RM"IO,_I),
RF,,_I is the risk free rate, and 61,,_1 is the conditional
market risk premium defined as E,(RM"IO,_I) - RF,,_I'

As the model is now stated, it is not operational because
of the lack of an observed series for the expected market
excess return, However, the conditional CA PM model
assumes neither the beta nor the risk premium is to be
constant over time, If the conditional CA PM is reformu-
lated and written

then the ratio between the conditional risk premium and
the conditional variance of the market portfolio has been
defined, This ratio, defined as the aggregate risk aversion
coefficient A, can be assumed constant over the sample time
periods. Therefore, a testable version of the conditional
CAPM is given by the specification

E,(Ri.tIO'_I) = RF,,_I +Cov(R;,,,RM,,IO,_1) 'A;,,_I (l)

Alternatively, model (l) can be expressed as E,(ri"IO,_I) =
,\"-1 . Cov,(ti." rM"IO,_I), where )\i,,-I = E,(rMIO,_I)/
Var,(rMIO,_I), and E,(r;) = E,(R;) - RF and E,(rM) =
E,(RM) - RF'

In a multivariate setting this model (Equation l) requires
the specification of the dynamics of cov(R;", RM.,IO,_I).
However, if the model is analysed for the special case
where i = M, then the model becomes E,(rM"I0r-i) =
Ai,t-I . Var,(rM"ln,_I), where Ai,'_1= E,(rMIO,_I)/
Var,(r,~rlO'_I) is assumed constant. This theoretical speci-
fication provides the central focus of the tests conducted in
this paper.

The conditional and unconditional ARMA-GARCH-in-
mean model

The empirical counterpart of the last equation in the pre-
vious section is given by

p

rM" = J1.M,,-1+ L ØM'; . rM,,_; + AM,,_I . C7it"
i=1

q

-L (JM,j . EM,'-j + EM"
j=1

where rM,' is excess return on the market and C7it"is vari-
ance of excess returns on the market both in period t.
/lM,,_1 and AM,,_I are constant coefficients for intercept
and slope, respectively. This ARMA (p, q) specification
and as suggested by Turtle (1994), the model in Equation
l and empirical counterpart in, Equation 2, can be esti-
mated as an univariate ARMA-GARCH-in-mean model
process or as a simple conditional mean model (ARMA).
Assuming now that an ARMA (p,q)-GARCH (m,n)-in-

FIRSTPROOFS i:IJournalslAfeIAfe·0231.3dLe

3
mean model is appropriate, Equation 2 is supplemented by
the conditional volatility equation given by

nr "ait" = lito + L a, .Eit,,_, + Lb, 'C7it,,_, (3)
,=1 .r=1

The null hypothesis that the conditional CAPM is 'true' in
the context of Equations l and 2 is given by Ho : Jl. = O.
Hence, if J1.= O in Equation 2 then the excess market return
is explained by only its conditional variance consistent with
the conditional CAPM, Alternatively, the model can be
estimated in its unconditional form:

rM" = E,(rM) + 1/, (4)

where E,(rM) is the conditional expectation of the excess
return of the market. A comparison of the conditional
model in Equations 2 and 3 with the unconditional
model in Equation 4, gives rise to a set of subsidiary
tests, Specifically, the null hypothesis is given by
Ho : A = Or = b, = O, Hence, if these restrictions are
imposed on Equations 2 and 3 the conditional model
collapses to its unconditional form given by Equation 4,

Finally, it is interesting to compare the estimates of
the unconditional mean and variance of excess market
returns implied by the GARCH-M model to their
counterparts from the unconditional model. A close
similarity between these estimates would suggest that the
conditional model is performing well empirically, For
example, the unconditional mean of excess market returns
implied by the (conditional) ARMA-GARCH-in-mean
model is given by p. +,\, C7it,,(Volatility), Moreover,
the unconditional volatility of market excess returns
implied by the ARMA-GARCH-in-mean model is given
by mo/fl - (2:°, + 2:6,)],

III, DATA AND DATA ADJUSTMENT
PROCEDURES

(2)

The study uses daily return series from the Norwegian
equity market spanning the period from October 1983 to
February 1994, We employ four market wide indices,
Pindx and Pequl are indices from Oslo Stock exchange,
value-weighted and equal-weighted, respectively. Nhhvw
and Nhhew are two indices from 'Børsdataprosjektet' at
the Norwegian School of Economics and Business
Administration (NHH), value-weighted and equal-
weighted respectively, For the two indices from Oslo
Stock Exchange, the entire 10 years' time period 1983-
1994 give 2611 daily observations, The two indices from
NHH support daily observations from l January 1984;
that is, 2525 daily observations. The crash is not excluded
from the sample. It is therefore assumed that crashes are
'normal' in equity markets. Moreover, as excess returns are
necessarya proxy for the risk free rate of return is needed.
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A 90-day bank accepted bill series is obtained from the
Central Bank of Norway. Finally, systematic location
and scale effects are adjusted for (Gallant et al., 1992) in
all series.

The log first difference of the price index is adjusted. Let
tV denote the variable to be adjusted. Initially, the regres-
sion to the mean equation tir = X . /3 + Il is fitted, where x
consists of calendar variables as are most convenient for
the time series and contains parameters for trends, week
dummies, calendar-day separation variable, month and
subperiods. To the residuals, ii, the variance equation
model i? = x- 'Y + e is estimated. Next Ii /.,;e;::f is formed,
leaving a series with mean zero and (approximately~unit
variance given x. Lastly, the series ID= a + b- (it/..;ex7) is
taken as the adjusted series, where a and b are chosen so
that

T
_1_. L(ID; _ ro)2
T-l ;=1

IT. _ 2=--.2:)11;-11)
T- I ;=1

The purpose of the final location and scale transformation
is to aid interpretation. In particular, the unit of measure-
ment of the adjusted series is the same as that of the orig-
inal series. The result of these raw data series adjustments
are not reported on.4 Characteristics for the excess return
of the four indices and three sampling intervals are
reported in Table I.

Following immediate observations can be extracted. The
mean and standard deviation shows no clear patterns over
sampling intervals and indices. The maximum and mini-
mum returns report remarkable similarities over sampling
intervals. The numbers for kurtosis and skew for daily
return series suggest a substantial deviation from the nor-
mal distribution, which is confirmed by the K-S Z-test. For

• weekly series, the K-S Z-test report close to normally dis-
tributed returns for the value-weighted indices, while the
equal-weighted indices show deviation from normality. For
monthly series, normality cannot be rejected. Moreover,
the skew is significantly negative for all indices and all
sampling intervals. The kurtosis and skews together,
suggest too much probability mass around the mean, too
little around 1-2 standard deviation from the mean and
extreme values on especially the negative side of the dis-
tributions. The results suggest a need for heavy tails
specification for especially daily but also weekly returns.
Therefore a student-t distribution is employed (Blattberg
and Gonedes, 1974) for daily and weekly returns while
monthly returns employ normal distributions.5

P. B. Solibakke

The Ljung and Box statistics Q(6) and Q2(6), reports
evidence of serial correlation up to lag 6 for return and
squared return series, respectively, for daily and weekly
sampling intervals. For monthly series, the value-weighted
indices report no serial correlation, while the equal-
weighted indices report serial correlation. These results
suggest nonsynehronous trading and non-trading effects
in almost all indices. Hence, the series need a linear
ARMA lag specifications for the conditional mean in
models (2) and (4). Gallant and Tauchen (1997),
Solibakke (2000a, 2000b) among others, employ the BIC
criterion for optimal lag structures in ARMA specifica-
tions. An ARMA (0,1) model is chosen for the two
value-weighted daily indices and an ARMA (1,0) for the
equal-weighted daily indices. For weekly {monthly}
returns, ARMA (1,0) {ARMA (O,l)} are obtained for the
value-weighted and ARMA (2,0) {ARMA (I,O)} for equal-
weighted indices.

The Q2(6) and the ARCH test (Engle, 1982) report serial
correlation and autoregressive and conditional heterosce-
dasticity (ARCH) in the squared return series for all series
and sampling intervals except monthly intervals. Hence,
volatility clustering and changing volatility is found in all
daily and weekly series. Applying the BIC criterion on the
squared residuals from the above-defined ARMA lag spe-
cifications, all indices, and sampling intervals prefers a
GARCH (1,1) specification." However, monthly series
may show insignificant GARCH parameters.

Finally, the RESET (Ramsey, 1969) and the BDS (Brock
and Deckert, 1988; Brock et al. 1991 and Scheinkman,
1990) for /11 = 2, 3 and 4 and e = I specification test statis-
tics both report data dependence in all adjusted raw data
series. The RESET test suggests data dependence in the
mean and the BDS test suggests general nonlinear depen-
dence in all series at some dimension (m). The BDS test
statistic reports a surprisingly stable and strongly signifi-
cant nonlinear dependence in all market indices for all
sampling intervals. Hence, these test statistics are employed
to measure data-dependence after applying ARMA-
GARCH filters for all series. Any significant test values
induce specification errors in the BIC preferred lag model
and will probably make economic implications difficult to
interpret.

IV. EMPIRICAL RESULTS

The results of estimating the ARMA-GARCH-in-mean
model for excess market return series are presented in
Table 2 for all four indices and all three sampling intervals.

4 The results arc readily available from the author upon request.
5 Sec Berndt el ai .• 1974. for a detailed description of the iterative optimization routines (BHHH).
6 This result conforms to other international findings and is documented for the Norwegian market for daily returns in Solibakke (2000a).
7The BHHH algorithm of Berndt el al. (1974) is employed.
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For each series and sampling intervals, the first two lines
report an unrestricted version of Equation 2 while line
three and four report a restricted version (p. = O), which
is consistent with the conditional CAPM.
The most notable result across all measurement intervals

and indices is the generallack of significance of the in-mean
parameter. This appears to indicate that the GARCH-in-
mean model is an inadequate mean of capturing asset-
pricing dynamics. However, this finding is somewhat offset
by the insignificant coefficient estimates on p. in the unrest-
ricted models for all return series. Hence, first, consider the
first and second row for all indices and sampling intervals
in Table 2. The first and second rows present the coefficient
estimates and the r-statistics (in brackets), respectively, for
the unrestricted model. All coefficient estimates for the in-

P. B. Solibakke

mean parameter (A) and the constant parameter (p.) are
insignificant. The insignificant coefficient estimate of p. is
indicative of acceptance of the conditional CAPM.

Secondly, consider the third and fourth row for all series
and sampling intervals. The third and fourth rows present
the coefficient estimates and the t-statistics (in brackets),
respectively, for the restricted model (J~ = O). Only for
daily series, the estimation produces a positive and signifi-
cant in-mean parameter (A). It is this restricted version of
the GARCH-in-mean model, which is implied by the con-
ditional CAPM. The implication ofthis result is that inves-
tors are compensated for risk only over very short time
horizons (i.e. daily).

Thirdly, for monthly return series the coefficient esti-
mates show overall low significance. This result is consis-

Table 3. Conditional and unconditional variance estimations
The table reports the conditional mean and the conditional mean and the conditional
variance implied by the GARCH-in-mean model in Equations 2 and 3 in contrast to the
conditional mean and unconditional variance in Equation 4 from Section II. The
differences are reported in column 4 (difference).

GARCH-M Unconditional model Difference

PINDX
Mean daily series 0.05075 0.04394 0.00681
Variance daily series 1.35676 1.48817 -0.13141
Mean weekly series -5.28179 0.07721 -5.35900
Variance weekly series 8.46532 8.57937 -0.11405
Mean monthly series -9.57155 0.08568 -9.65722
Variance monthly series 61.5660 49.7685 11.7975

NHHI'II'
Mean daily series 0.05432 0.05773 -0.00341
Variance daily series 1.47137 1.60493 -0.13356
Mean weekly series -5.33573 0.08440 -5.42012
Variance weekly series 8.41681 8.47967 -0.06287

,(Jt;;t. Mean monthly series -92.9448 0.14726 -93.0921
~~:;...~.:; Variance monthly series 48.2033 48.0679 0.13538

Pequl
Mean daily series 0.03217 0.02643 0.00574
Variance daily series 1.01034 1.06857 -0.05823
Mean weekly series -1.53598 0.00888 -1.54486
Variance weekly series 8.17405 7.21932 0.95473
Mean monthly series -16.1902 -0.24586 -15.9443
Variance monthly series 50.0488 41.4614 8.58734

NHHelI'
Mean daily series 0.07565 0.06390 0.01174
Variance daily series 1.40945 1.29761 0.11184
Mean weekly series -0.05716 0.10590 -0.16306
Variance weekly series 8.77279 7.62397 1.14882
Mean monthly series -37.4053 0.59653 -38.0018
Variance monthly series 50.7403 48.4568 2.28357

Note: See Table I for series description
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tent with international research (Bollerslev et al., 1992).
The monthly results suggest that the ARMA-GARCH-
in-mean specification for the conditional CAPM should
be interpreted with cautions. The ARMA-GARCH-in-
mean model specification performs best for shorter time
horizons, as suggested by several of the test statistics in
Table I.

Fourthly. the parameter v for the student-r distribution
(degrees of freedom) is for all estimations lower than 7.5,
suggesting a strongly significant parameter for daily and
weekly return series. Consequently, the deviation from
the normal distribution that was found in Table I seems
to be confirmed in Table 2.
Table 3 reports the unconditional mean and variance

implied by the ARMA-GARCH-in-mean model in
Equations 2 and 3, where A, al and bl is restricted to
zero, but /.I- and cp/O are free to vary, in contrast to the
mean and variance from the unconditional model of mar-
ket excess return in Equations 4 and 3. In general, from
these comparisons it appears that the conditional volatility
models provide reasonable estimates of the unconditional
variance for all sampling intervals. However, although
most likely not significant (suggested by the ARMA-
GARCH-in-mean estimation), the conditional mean show
considerably lower absolute values for weekly and monthly
estimations. For the daily series, the unconditional volati-
lity model seems to provide reasonable estimates of the
conditional mean. Consequently, the result suggests that
the ARMA-GARCH-in-mean model perform best for
the shortest time intervals.

Table 4, panel A reports the likelihood ratio test of the
unrestricted ARMA-GARCH-in-mean model given by
Equations 2 and 3 against the conditional CAPM which
is implied by the restriction of /.I- = O in Equation 2. The
conditional CAPM cannot be rejected for any return series
and all sampling intervals at I%. However, for the value-
weighted indiees and weekly return intervals the con-

• ditional CAPM can be rejected at 5%. Moreover, the
acceptance of the CAPM for especially the weekly and
monthly return series need to be qualified by the fact that
the in-mean parameter estimates (A) were found to be
insignificant in line 3 and 4 in Table 2.

Table 4, panel B reports the likelihood ratio tests of the
unrestricted ARMA-GARCH-in-mean model given by
Equations 2 and 3 against the unconditional model which
is implied by the restrictions of A = al = bl = O in
Equations 4 and 3. The ARMA-GARCH-in-mean specifi-
cation cannot be rejected for daily and weekly return series,
while monthly series reject the model specification.

Generally, the findings are consistent with the use of
ARMA-GARCH-in-mean lagged processes to capture
the dynamics of asset returns. The processes show
improved fits at especially high frequencies. However, the

9

Table 4. Likelihood ratio tests
Test of the conditional CAPM and the conditional GARCH·in-
mean lag specification for Norwegian excess market returns for
the period 1983-1994.

Panel A: Tests of the conditional CAPM

Daily Weekly Monthly
PINDX returns returns returns

i test statistic 0.70460 5.6306 2.1944
(prob. value) I df. {0.40124} {0.01765} {0.1385I}
NHHvII'
~) test statistic 1.48130 5.924 1.7778
(prob, value) I df. {0.22357} {0.01494} {0.18242}
Pequl
X2 test sta tistic 1.29040 1.8224 3.498
(prob. value) I df. {0.25597} {0.17703} {0.06144}
NHHew
i test statistic 0.53140 0.14890 1.7778
(prob. value) I df. {0.46602} {0.69959} {0.18242}

Panel B: Tests of the conditional GARCH-M model versus the
unconditional model of excess market return.

Daily Weekly Monthly
PINDX returns returns returns

i test statistic 241.2546 18.9570 3.2852
(prob. value) 3 df. {O.OOOOO} {0.00028} {0.34971 }

NHHvII'
~) test statistic 238.7190 19.4999 3.5680
(prob, value) 3 df. {O.OOOOO} {0.00022} {0.31205}

Pequl
~) test statistic 241.5034 20.1152 1.2035
(prob. value) 3 df. {O.OOOOO} {0.00016} {0.75216}

NHHew
X2 test statistic 253.7890 25.7793 0.2292
(prob. value) 3 df. {O.OOOOO} {O.OOOOI} {0.97274}

Note: See table I for series description.
Panel A: This panel reports the results of testing the null hypoth-
esis, Ho : f.J. = O, in the model described in Equations 2 and 3 in
Section Il. The numbers in brackets are probabilities.
Panel B: This panel reports the results of testing the null hypoth-
esis, Ho : >. = al = bl = O, in the model described in Equations 2
and 3 in Section Il. The numbers in brackets are probabilities.
Panel A and B: Estimation of the daily and weekly return series is
obtained assuming et has a student-r density distribution with u
degrees of freedom, while estimation of the monthly return series
are obtained assuming et has a normal distribution. The test sta-
tistic is distributed as a chi-square variable with degrees of free-
dom referenced in the table.

results suggest caution in using such processes as part of
formal asset pricing models.

Finally, the diagnostics tests are reported in Table 5 for
daily and weekly series." The kurtosis, skew, and K-S Z-
test statistic report closer to normal standardized residuals.
No serial correlation (Q(6» is found in all series for both

8 Monthly series report for all test statistics insignificant for all three models.
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the unrestricted and restricted GARCH-M model spec-
ifications. For the unconditional model, significant serial
correlation is found. The reported pattern for serial corre-
lation is also found for the Q2, the ARCH, the RESET and
the BOS test statistics. The test statistics report data depen-
dence for the two equal weighted indices for daily sampling
intervals. Hence, the ARMA-GARCH-in-mean specifica-
tion cannot be rejected for the value-weighted index series.
However, for the equal weighted index the model is rejected
for daily series.

V. FINDINGS FROM THE THINLY TRADED
NORWEGIAN MARKET

The main finding is that the conditional CAPM cannot be
rejected. As indicated by the restricted ARMA-GARCH-
in-mean specification, implied by the conditional CAPM,
investors are compensated for risk over the shortest time
interval. Such a conclusion is difficult to accept, as theory
would propose that compensation for risk should occur
irrespective of the return interval. A possible explanation
is that the conditional variance proxy for risk in a generic
sense such that it captures liquidity risk, data and meas-
urement error and bid-ask bounce, all of which are greater
at shorter return intervals. Hence, the rather crude measure
of risk in the model captures market imperfections, which
exert their greatest influence at the shortest return interval
(daily).

Overall, the results suggest that nonsynchronous trading
and non-trading effects as well as volatility clustering are
high at daily series. The effects are strong in both the equal-
weighted and the value-weighted indices. For weekly series,
strong volatility clustering is still found while nonsyn-
chronous trading and non-trading effects have decreased
strongly for especially the value-weighted indices. In fact,

• one of the value-weighted indices (Pindx) reports insig-
nificant serial correlation in the conditional mean. The
equal-weighted indices still report serial correlation.
Hence. an interpretation suggests that very thinly traded
assets influence the aggregated returns at the weekly sam-
pling interval. Moreover, for nonsynchronous trading and
non-trading effects monthly series exhibits the same pat-
terns as weekly series. For the value-weighted index series,
insignificant serial correlation is found while the equal-
weighted indices still report significant serial correlation.
Hence, nonsynchronous trading and non-trading effects
are present in the equal-weighted index series also for
monthly sampling intervals. However, volatility clustering
and changing volatility is not present in monthly series as
suggested in Table l.

P. B. Solibakke

Finally, the ARMA-GARCH-in-mean specification
seems to be the preferred model specification for shorter
time intervals. For monthly intervals, nonsynchronous
trading is low and volatility clustering is no longer present
in the series. Note however, that nonsynchronous trading
and non-trading effects seem to be present for all sampling
intervals for the equal-weighted indices while the value-
weighted indices only report daily and weekly effects.
Hence, The ARMA-GARCH-in-mean specification is
rejected for the equal weighted indices for daily sampling
intervals due to non-trading, while the unconditional
model is rejected due to volatility clustering in daily and
weekly series. The ARMA-GARCH-in-mean model for
the value-weighted index series rejects misspecification.
Nonsynchronous trading and non-trading as well as con-
ditional heteroscedasticity and volatility clustering is there-
fore satisfactory modelled for these index series. Models
that are more elaborate need to be developed to account
for nonsynchronous trading and volatility clustering in
high frequency (daily) equal-weighted indices." Finally, it
is not possible to reject specification errors for all the
unconditional volatility models fot monthly intervals.
Unconditional models are therefore preferred to con-
ditional models for these return intervals.

VI. SUMMARIES AND CONCLUSIONS

The ARMA-GARCH-in-mean lag specification has been
applied to control for nonsynchronous trading and
conditional heteroscedasticity in the Norwegian equity
market. Two factors are found, which oppose the
ARMA-GARCH specification differently. First, monthly
series reject conditional heteroscedasticity. An uncondi-
tional model is therefore just as valid as a conditional
model. Secondly, series strongly influenced from non-trad-
ing reject the ARMA-GARCH specification for daily ser-
ies. Consequently, only the value weighted index series
cannot reject the ARMA-GARCH-in-mean specifications
for daily and weekly series and the equal-weighted index
series cannot reject the specifications for weekly series. The
inability of the in-mean parameter to achieve statistical
significance is an empiricallimitation for especially weekly
and monthly data. Despite these results, the conditional
CAPM cannot be rejected for any return series intervals.
However, the result for the monthly series lacks power as
the ARMA-GARCH model is rejected for all monthly
series.

In summary, the ARMA-GARCH-in-mean model is a
useful empirical tool for modelling equity return series at
high frequencies such as daily and weekly return intervals

9 Solibakke (2000b) models nonsynchronous trading and conditional heteroscedasticity employing virtual returns and a continuous time
ARMA-GARCH lag specification.
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for thinly traded markets. However, severe nonsynchro-
nous trading and non-trading effects may cause ARMA-
GARCH misspecification for high frequency series.
Moreover, some care must be taken in placing economic
significance to the ARMA-GARCH specification in an
asset-pricing regime. As the return interval increases, the
superiority of the model decreases, consistent with prior
international empirical and theoretical work. The return
interval appears not to influence the insignificant rejection
result for the conditional CAPM. However, for weekly
intervals and the value-weighted indices the conditional
CAPM is rejected at 5% but not I%. Therefore it may
be induced that for thinly traded markets and for both
daily and weekly return interval the ARMA-GARCH-in-
mean specifications seem appropriate for asset-pricing
tests. The problems of modelling virtually nonexisting
time-varying dynamics for the monthly interval in these
markets make monthly return intervals probably not
appropriate for tests. Finally, thinly traded markets need
more elaborate asset models for high frequency (daily)
market dynamics, as indicated by specification test rejec-
tions of the ARMA-GARCH-in-mean lag specificiation.
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Testing the Bivariate Conditional CAPM in Thinly Traded Markets

Abstract

This paper tests the conditional Capital Asset Pricing Model (CAPM) in the Norwegian equity

market. By applying a bivariate ARMA-GARCH-in-Mean lag specification for the conditional

mean and volatility, the full covariance matrix is estimated. The model results suggest that the

in-Mean specifications are redundant, suggesting that we are unable to find any preference

among conditional asset pricing models. Non-synchronous trading is found in all the bivariate

estimations inducing index series with strong positive serial correlation and frequently (thinly)

traded asset series show positive (negative) serial correlation. Positive cross-autocorrelation

from index to return series is significant and seems to increase as thin trading increases.

Volatility clustering is strong in all bivariate estimation suggesting a rejection of the

independence hypothesis.

Classification: C14

Keywords: ARMA-GARCH-in-Mean, Risk Models, Non-synchronous trading, Changing

Mean and Volatility
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1 Introduction

This paper makes use of a bivariate ARMA-GARCH-in-Mean specification for the purpose of

studying thinly traded market characteristics on empirical applications of the Capital Asset

Pricing Model (CAPM). The ARMA-GARCH-in-Mean specification estimates the full

covariance matrix and makes it possible to carry through tests of among others the conditional

CAPM, the residual risk model and the one dynamic factor model. Earlier studies of market

volatility have shown that volatility moves together over time and across assets and markets.

Recognising this commonality through a multivariate framework leads to obvious gains of

efficiency. In this investigation we focus on trading frequency and therefore how asset mean

and volatility moves together across thinly and frequently traded assets and the market.

Trading volume in NOK is employed as a proxy for trading frequency. In fact, thin trading

characteristics (including non-trading") may induce non-synchronous trading effects as well as

conditional heteroscedasticity. Therefore, our model specifications employ a bivariate ARMA-

GARCH lag specification to account optimally of non-synchronous trading effects in the

conditional mean and conditional heteroscedasticity in the conditional volatility, byemploying

the efficient lag specification from the Bayes Information Criterion (BIC) (Schwarz, 1978) in

both the conditional mean and volatility. We therefore do not pursue a simultaneous return

and trading volume specification as pursued in Clark (1973), Tauchen and Pitts (1983),

Gallant et al. (1992) and Andersen, (1994), but rather employ individual return series to study

characteristics over a wide variety of trading frequencies optimal ARMA-GARCH-in-Mean

specifications. The advantage of such modelling is an explicit availability of the conditional

mean and volatility series for individual series and the market index. Hence, the bivariate

specification may give new insight to return and volatility characteristics of thinly traded

markets. As the Norwegian market is a professional dealer market, it is ideal for this kind of

market study as the market is a relatively thinly traded market and contains assets that exhibit

relative thin trading frequency.

We design a BIC preferred bivariate ARMA-GARCH-in-Mean specification where we pair each

individual return series with the index return series. The specification is a bivariate ARMA-

GARCH approach (MGARCH) and will be able to capture temporal dependencies in the

conditional mean, variances and covariance. The estimation is a one-stage procedure in

which betas and risk premium are estimated sunuftaneously'. The bivariate ARMA-GARCH-in-

Mean lag specification's error process will assume that the residuals of the regressions should

be serially uncorrelated, conditional homoscedastic and normally distributed. Hence, we

employ residual specification tests for the bivariate ARMA-GARCH-in-Mean model, to report

any model misspecifications.

1 Solibakke (2000) show liquidity characteristics in the Norwegian equity market.
2 Applying OLS estimation of CAPM in a time series context, the underlying theory requires a
number of assumptions to hold. Specifically, we assume that the risk premiums are stationary,
normally distributed and serially uncorrelated, which imply that the error process is i.i.d.
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Our results show some interesting features. Firstly, we find a significant positive "zero-beta"

coefficient for only the frequently traded series. This result suggests that it is the frequently

traded assets that show a significant positive drift. Secondly, all series report significant

autocorrelation and cross-autocorrelation. Thinly traded series report negative autocorrelation

and frequently traded series report positive autocorrelation. Non-synchronous trading may

induce the negative serial correlation in thinly traded series. All asset series report positive

cross-autocorrelation to the market indices. Frequently traded assets report therefore slow

adjustments at time t from its own and market past return (t-1). In contrast, thinly traded

assets report mean reversion from its own one period lagged returns and slow adjustment to

market lagged returns. The mean reversion seem to increase as non-synchronous trading

increases. These results induce return predictability for both frequently and thinly traded

assets. Thirdly, all alternative in-Mean specifications are rejected, which imply rejection of the

residual risk hypothesis, the one dynamic factor model and the conditional CAPM as well as

no preference among alternative risk measures. This result suggests that the in-Mean model

is not a very well specified volatility feedback methodology (risk). Fourthly, conditional

heteroscedasticity is present in all asset and market index series and the univariate modelling

approach of the conditional variances seem to be rejected due to significant bivariate GARCH

coefficients. The market dynamics may therefore not be adequately controlled for in a

univariate modelling approach. Fifthly, asymmetric volatility seems to be present in almost all

return series. Sixthly, specification test statistics report data-dependence for thinly traded

assets suggesting biases in the moments and co-moments. The autocorrelation and cross-

autocorrelation result for thinly traded assets may therefore be spurious and the predictability

may depend on non-synchronous trading effects rather than return predictability. Seventhly,

the data dependence result for the thinly traded assets suggests a rejection of the ARMA-

GARCH specification. Severe non-synchronous trading (non-trading) suggests therefore a

need for rather elaborate modelling procedures. Finally, as we estimate the full co-variance

matrix the conditional beta (/1) measure is readily available. The cumulative frequency

distribution of the estimated conditional CAPM's p series, classify series in nicely ascending

order of trading frequency. Hence, trading frequency seems to classify the CAPM's relevant

risk measure". However, as co-moments are biased, the result for thinly traded series must be

interpreted by extreme caution.

The article is organised as follows. Section 2 defines the methodology. Section 3 presents the

data and adjustment procedures for stationery data series. Section 4 reports the

results/findings of the analysis. Section 5 reports the conditional (co-) variance and beta

characteristics and Section 6 summarises and concludes.

3 Due to high trading frequency correlation with market value, the relevant risk measure may
also be classified also in accordance with size (Campbell et al., 1997, p 130).
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2 Methodology

2.1 The Static CAPM(the Sharpe-lintner-Black CAPM)

Let Ri denote the return on any asset i and RM be the return on the market index (M) return of

a value weighted asset index in the economy". The Black (1972) version of the CAPM is

E[RJ = f.lo + 81 . Pi, where Pi is defined as Pi = Cov(Ri, RM) / Var[RM},and Efl denotes the

expectation, Covt) denotes the covariance and Var{] denotes the variance. Fama and French

(1992) finds that the estimated value for 81 is close to zero and concludes therefore that the

results suggest strong evidence against the CAPM. The static CAPM is also tested in the

Norwegian market. However, Carlsen og Ruth (1991) fail to the reject the null of f.lo significant

different from zero for both univariate and multivariate tests". The empirical results seem

therefore to show no clear evidence for or against the static CAPM. However, this result does

not necessarily imply evidence for or against the conditional CAPM. The CAPM was

developed within the framework of a hypothetical single-period model economy. The real

world, however, is dynamic and hence, expected returns and betas are likely to vary over time.

Even when expected returns are linear in betas for every time period based on the information

available at that time, the relation between the unconditional expected returns and the

unconditional beta could be close to zero", In the next section we assume that CAPM holds in

a conditional sense, i.e., it holds at every point in time, based on whatever information is

available at that instant.

2.2 The Conditional CAPM

If we assume that expectations in CAPM at time t are conditioned on the information set

available to agents at time f-1, flt-l, then the conditional CAPM7 can be written as

E, (Ri,1 IQI-I) = 110,1-1 + 81,1-1- fJi,I-I' where Pi,t-1 is the conditional beta of asset i defined as

Cov(R11 ,RM ,IQI-I)
/3; I = " . Ilo I I is the conditional expected return on a "zero-beta"

1.1- Var(R IQ) ,-
M,I I-I

portfolio, and 81,1_1 is the conditional market risk premium. Both the expected returns and the

betas, will in general, be time varying in the conditional CAPM frameworks. The model is

stated in terms of conditional moments and assumes that investors use information at time

f-1 rationally and maximise their utility period by period.

4 We assume here that the market index is a good approximation for the market portfolio.
5 See also Carlsen and Ruth, 1990, Stange, 1989, Semmen, 1989 and Hatlen et al. 1988.
6 Because an asset that is on the conditional mean-variance frontier need not be on the
unconditional frontier (Dybvig and Ross, 1985 and Hansen and Richard, 1987)
7 See Jagannathan and Wang, 1996.
S See also Jaganathan and Wang, 1996.
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As the model is now stated it is not operational because of the lack of an observed series for

the expected market excess return. However the conditional CAPM model assumes neither

the beta nor the risk premium is to be constant over time. Hence, if we now reformulate the

conditional CAPM and write

E, (R; I I 01-1) = f.10 H +Covt R, I' RM I 101-1)' 81,1-1 , then we have defined the
, , " Var(RM" IOH)

ratio between the conditional risk premium and the conditional variance of the market portfolio,

This ratio, defined as the aggregate risk aversion coefficient A, can be assumed constant over

the sample time periods. Therefore, a testable version of the conditional CAPM is given by the

specification

(1 )

where f.1~ I-I is the conditional expected return for asset i and Å I-I = 81,,_1 ,
, I, Var(RM,1 101-1)

assumed constant. The model requires the specification of the dynamics of Cov(Ri,tRM,t lilt-I).

2.3 The ARMA-GARCH-in-Meanspecification and the Conditional CAPM

Model (1) is possible to write as R;,I = f.1;,0 + A; . Cov(R;,t' RM•I 1°,_1)+U;,I and

RM.I = u M .o + AM . Vare RM,I IOH) + UM ,I ' where }1;,o and J.lM,O is the drift in asset i and the

market index (M), respectively, the Ui,t = Ri,t - Et (Ri,M2t-l) and UM,t= RM,t - Et (RM,M2t-1) are the

residual terms for asset i and the market index (M), respectively. We thus see that Vart (Ri,!

lilt-I) = Et (tli,t lilt-I) = hi,1o and Vart (RM,t lilt-I) = Et (u2 M,tlilt-1) = hM,1o and

GOVt (Ri,t,RM,t lilt-I) = Et (Ui,t' UMtlilt-I) = hi,M,!..Furthermore, as the Norwegian market is a

thinly traded market showing non-synchronous trading and Campbell (1997) show that non-

synchronous trading potentially induces serious biases in the moments and co-moments of

return series, the non-synchronous trading is modelled using an ARMA mean specification

where the lag lengths are determined by the BIC. Moreover, as non-synchronous trading may

induce volatility clustering and changing volatility, the conditional heteroscedasticity is

modelled using a GARCH conditional volatility specification, where the lag lengths are

determined by the BIC. Thus, the time varying conditional CAPM can be put into a bivariate

ARMA-GARCH-in-Mean form" 10, which induces the following specifications for our Norwegian

CAPM tests.

~ ~
Ru = f.1i,O +L ¢i,j . Ri,l_j + A; . Cov(Ri.t' RM ,I I OH) + 8;,1 - L 8i,j . 8i,l_j (2)

j=1 j=1

9 See Hall et al., 1989, Bollerslev et al., 1988, Chan et al., 1992, Gonzales-Rivera, 1996.
10 For applications see Bollerslev et al., 1992,
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Yk· = 8k .,j,' .t if and only if Sk,l-j < O k=i, M (4)

~ ~
hk" = mk,o + ~)Qk,J + Yk,j,,)' U;"_j + Ibk,i . hk"_j k = i, M

j=1 j=1
(5)

E,(rMIOH) ,
where ~,'-1 = TT (I ) .The bivariate system of random vectors R, = (Ru, RM,J

rar, rM OH

followed by the conditional variance-covariance matrix hk,I. allows for a rich structure

permitting interaction effects between the market index and the individual assets. The ak are

the vectors of the weights for the lagged i terms; this is the ARCH process. The b, are the

weights for the lagged hk terms; this is the GARCH process. The m, is a constant term for

unexplained conditional variance. To determine the lag lengths in the conditional variance

equation rk and Sk, we apply the BIC on the squared residuals from the conditional mean

ARMA specification. Solibakke (2001b) shows one more important feature from the

Norwegian thinly traded market that needs to be incorporated into the bivariate ARMA-

GARCH-in-Mean specification. Asymmetric volatility or the "leverage" effect (Nelson, 1991) is

specified in the volatility equation (4) as suggested by the GJR model (Glosten et al., 1993).

The model therefore apply Yk,i,1 = Sk,l-i if and only if Sk,l-i < O; else O; in the conditional volatility

equations. We allow the Y parameter to be less than zero. This theoretical specification of the

conditional CAPM provides the central focus of the tests conducted in this paper.

3 Empirical data and adjustment procedures

The study applies daily returns of individual Norwegian stocks spanning the period from

October 1983 to February 1994. As some of these assets exhibit non-synchronous trading

characteristics, the assets are sorted from frequently traded assets (no. 1) to thinly traded

assets (no. 7), where trading volume is employed as a proxy for trading frequency. Trading

volume is the amount traded in the asset in NOK; that is. the number of stocks traded

multiplied by settlement prices at the time of trading. Moreover, individual assets are grouped

into portfolios at period t based on trading volume at t-t, Portfolio FT consists of the most

frequently traded assets and Portfolio TT consists of the most thinly traded assets. The

portfolio series are rebalanced each month using information at t-1. Moreover, assets traded

throughout a month, is assigned to one of the two portfolios on basis of their average daily

trading volumes in NOK for the last 2 years in the market. The two-year average avoids a too

frequent shift of portfolio-assets. To proxy for the market portfolio we employ the value

weighted market mdex" consisting of all stocks in the Norwegian market.
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The crash in October 1987 is not excluded from the sample series. We therefore assume that

a crash is normal in equity markets. Finally, we adjust for systematic location and scale effects

(Gallant et al., 1992) in all time series. The log first difference of the price index is adjusted.

Let tiJ denote the variable to be adjusted. Initially, the regression to the mean equation

tir = x . f3 + u is fitted, where x consists of calendar variables as are most convenient for the

time series and contains parameters for trends, week dummies, calendar day separation

variable, month and sub-periods. To the residuals, £I, the variance equation model

£12
£12 = x- r + c is estimated. Next ~ is formed, leaving a series with mean zero andvexor

A U
(approximately) unit variance given x. Lastly, the series ar = a + b- (--.) is taken as the

~

1 TAl T
adjusted series, where a and b are chosen so that -. I (iJi = -. I æ, and

T i=l T i=l

1 -f A -2 1 -fA 2--=-1 .Li (ø, _ ø) = -_-. Li (Ui _ il) . The purpose of the final location and scale
T i=l T 1 i=l

transformation is to aid interpretation. In particular, the unit of measurement of the adjusted

series is the same as that of the original series. We do not report the result of these raw data

series adjustments 12.

{Insert Table 1 about here}

The characteristics of the assets, the equal weighted trading frequency portfolios and the

value weighted market index are reported in Table 1. The following immediate observations

can be extracted. The standard deviation of returns seems to increase proportionally with the

level of thin trading. The daily maximum and minimum return series seem to suggest that

highest absolute numbers are found for the thinly traded series. This variation in mean return

among the thinly traded assets produces consequently the highest standard deviation. For the

portfolio series the highest absolute minimum is found for the frequently traded series. The

portfolio results suggest that thinly traded series containing zero asset returns outweighs high

individual absolute returns. Finally, as expected from the portfolio theory, the market index

produces the lowest standard deviation.

The calculated numbers for kurtosis and skew from stock returns, suggest a substantial

deviation from the normal distribution. The kurtosis and skew indication of non-normality is

strongly supported by the Kolmogorov-Smirnov Z-test statisttc" (K-S Z-test) for normality for

all series. The kurtosis and skew and the K-S Z-test suggest too much probability mass

around the mean, too little around 1-2 standard deviation from the mean and some extreme

11 Note that about 20% of the assets in the Norwegian market count for 60% of the market
value of the Oslo Stock Exchange.
12 The results are readily available from the author upon request.
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values on especially the negative side of the mean. The results induce that it is the thinly

traded series that show the highest deviation from the normal distribution. However, the value-

weighted market index reports high kurtosis and a high negative skew. From Table 1 it also

seems as especially the kurtosis increases as the number of combined assets increases 14.

The ARCH (Engle, 1982), the RESET (Ramsey, 1969) and the BOS (Brock and Deckert,

1988, 1991 and Scheinkman, 1990) test statistics, suggest data dependence in all adjusted

return series. The ARCH test suggests changing conditional volatility, which induce conditional

heteroscedasticity. The RESET test suggests non-linear dependence in the mean and the

BOS test statistic suggests strong general non-linear dependence. Especially where the non-

synchronous trading seem strong (non-trading periods), the BOS statistic reports highly

significant values. In contrast, the portfolio series report increased non-linear dependence

when trading frequency increases, which may stem from a more erratic conditional volatility.

Overall the ARCH, RESET and BOS test statistics report surprisingly stable and strongly

significant data dependence for all series. Note that a non-linear conditional volatility imply a

rejection of the independence hypothesis while a non-linear mean imply a rejection of the

Martingale hypothesis.

4 Empiricalresults

Maximum likelihood estimates 15 of the parameters for the bivariate ARMA-GARCH-in-Mean

specification 16 are given in Table 2 for all bivariate asset and market index daily return series.

The two intercepts (J1;,o, PM,O) in the mean equations of the bivariate system of equations are

positive for all series. The market index reports significant positive mean drift for all

estimations. It also seems that the positive drift is more significant for frequently traded assets.

The GARCH-in-Mean parameters (A) can as outlined above, be specified for several

alternative outlines of the conditional means. As we estimate the full variance-covariance

matrix in the conditional variance process, the conditional standard deviation, the conditional

covariance (with the market portfolio) and the conditional market standard deviation, we can

specify several alternative outlines of the conditional means. Firstly, we introduce the

conditional variance series (h; and hM) in the conditional means for asset and market series,

respectively. The conditional variance (hJ can then be interpreted as residual risk and the

13 The K-S Z test statistic is a procedure to test the null that a sample comes from a population
in which the variable is distributed according to a normal distribution.
14 Often named the mixture of distributions hypothesis, which maintains that asset returns
exhibit leptokurtosis because they are reallya combination of returns distributions.
15 We assume conditional bi-normality of the residuals. We also employ the BHHH (Berndt et
al., 1974) algorithm for maximum likelihood estimation of parameters.
16 The univariate ARMA lags, determined by the BIC criterion (Schwarz, 1978) are ARMA (0,2)
for the thinly traded portfolio and assets no. 4 to 7; ARMA (0,1) for the most frequently traded
portfotios and assets no. 1 to 3. All assets and portfolios employ a GARCH (1,1) lag
specification applying the BIC criterion on the squared residuals from the ARMA lag
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accompanying coefficient (A.i) measures residual risk sensitivity, which is the sensitivity to total

risks. The specification may be considered as a proxy for omitted risk factors (Lehmann,

1990). Secondly, we introduce the market variance (hM) in both conditional means. The

introduction of the market variance in the asset mean may be interpreted as a one dynamic-

factor model, which implies that the dynamics and variation in the overall market index, guide

all the return series. The A;.Mcoefficientmeasure the sensitivity to total market dynamics.

Thirdly and finally, we run the bivariate estimations with the specification in (2) to (4) in Section

2, which is the conditional CAPM specification.

The results in Table 2 suggest that none of the series report significant in-Mean coefficients

(A). The residual risks specification (A.i) is rejected. The one dynamic factor hypothesis (A.i,M) is

rejected. Finally, the conditional CAPM specification (A.i,i,M) is rejected. Moreover, the market

index produces insignificant mean coefficient (A.M) from its own conditional variance process.

Our results report a consistent positive coefficient (Oi) for thinly traded series and a consistent

negative coefficient (0,) for frequently traded series. We find significant positive cross-

autocorrelation from market index to asset returns (ØM)' The market index, which is employed

as a proxy for the market portfolio, reports strongly significant autocorrelation (OM) for all

bivariate estimations.

{Insert Table 2 about here}

Panel B of the Tables 2 report the conditional variance equations from the bivariate

estimations. The t-statistics indicate that the parameters mi,;' mi,M, mM,M, Bi,i, Bi.M, BM'; BM,M, bu,

bi,M, bM';, bM,M are almost all statistical significant at conventionallevels. Interestingly, the cross-

series GARCH parameters show strongly significant values. Asymmetric volatility or the

"leverage effect" (Yi and YM) seems to be present in almost all series.

As an overall specification test of the bivariate model, we calculate several elaborate test

statistics in Table 3. Firstly, we calculate the sixth order Ljung and Box (1978) statistic for the

standardised residuals (0(6» and squared residuals (02(6» from each bivariate estimation for

all series and the accompanying market index series. We find no evidence of serial correlation

in neither residuals nor squared residuals up to lag 6. Secondly, all the bivariate estimations

show no significant cross-correlation at any lags (not reported). Thirdly, the numbers for

kurtosis and skews for the standardised residuals report excess kurtosis, but importantly, the

numbers for kurtosis and skew are strongly reduced relative to the adjusted raw data series.

Our results therefore suggest that the bivariate ARMA-GARCH-in-Mean filter specification

produce more normal time series residuals. These results are confirmed by strongly reduced

specifications. Finally, the cross return series specifications for the conditional mean (Ø15) are
determined by a likelihood ratio test among competing specifications.
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K-S Z-test statistics from Table 1. However, the K-S Z-test statistic still disputes normality for
all series.

{Insert Table 3 about here}

Fourthly, the ARCH test statistic reports insignificant test statistics for conditional

heteroscedasticity for all series. The RESET test statistic report an insignificant test statistics

implying no data-dependence in the conditional mean. Finally the Brock and Deckert (1988,

1991) and Scheinkmann (1990) (BOS) test statistic report general non-linear dependence at

some dimension (m) 2 to 6, for e = 1, for all thinly traded series, while frequently traded series

report no general non-linear dependence.

5 Findings and Characteristics from the Norwegian thinly traded market

The findings from these bivariate ARMA-GARCH-in-Mean estimations may bring some new

insights to thinly traded market dynamics. Firstly, the estimations suggest a clear pattern in the

"zero-beta" return. The zero-beta return is clearly more significant for frequently traded assets.

This result suggests that the drift show a lower daily variance for frequently traded assets than

thinly traded assets. Hence, frequently traded assets seem to report a more regular daily

positive return.

Secondly, none of the series report significant in-Mean coefficients (A). Hence, the residual

risks specification is rejected, which also suggests rejection of conditional multifactor models.

The one dynamic factor hypothesis is rejected and the conditional CAPM specification is

rejected. Consequently, all alternative conditional mean series specifications in bivariate

ARMA-GARCH-in-Mean lag form do not add extra information to the conditional mean and our

specification is not able to distinguish between alternative asset pricing hypotheses. The result

suggests that the market show no short-term risk compensations. Moreover, the market index

produces insignificant mean coefficients from its own conditional variance process. As all the

coefficients are negative for the market, the result suggests lower returns during high volatility

regimes, which seem to fit well with observed facts and the volatility-feedback hypothesis

(Campbell and HentschelI, 1992).

The autocorrelation results in the conditional means suggest non-synchronous trading effects.

For frequently traded asset series and the market index our results imply a significant negative

MA(1) coefficient. The negative coefficient induces positive autocorrelation, which imply slow

adjustment to shocks. However, non-synchronous trading may produce spurious posnive

autocorrelation 17. For thinly traded assets our results suggest significant negative

autocorrelation. The thinly traded series therefore seem to report overreaction and mean

17 For the sub-period 1987-1994 the MA(1) coefficient turns insignificant.
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reversion. The results are clearly influenced by non-synchronous trading effects and therefore

long series of zero returns suggesting spurious serial correlation in the conditional mean.

Conditional heteroscedasticity is present in all series. Moreover, the market index influence in

the conditional variance of asset series induces that the variance process for assets may not

be modelled as an univariate processes. In our bivariate specifications the series own past

conditional variance, the past conditional market index variance and the past conditional

covariance significantly explain the volatility of the return series. Hence, the results strongly

induce a preference for a bivariate relative to univariate specifications. It is therefore naturally

to assume that an univariate representation does not adequately capture all temporal

dependencies in the Norwegian equity market. Moreover, the GARCH coefficients also seem

to induce that only past shocks and past conditional variance from frequently traded assets

significantly influence the conditional variance of the market.

Finally, applying the specification test results induce several interesting findings. Firstly, for all

bivariate series the ARCH test reports insignificant statistics. Hence, the result suggests that

all conditional heteroscedasticity is removed form the series. For frequently traded assets the

RESET and the BOS test statistics report insignificant statistics. Hence, for these bivariate

ARMA-GARCH filter residuals neither the independence nor the Martingale hypotheses can

be rejected. Hence, the filter implies that the lag specification adequately models the market

dynamics for frequently traded assets. In contrast, for thinly traded assets, the RESET test

statistics report insignificant values wile the BOS test statistics report significant statistics at

some dimension (m). Hence, these assets report no conditional heteroscedasticity, no data-

dependence in mean but general non-linear dependence. Hence, non-synchronous trading

suggest data-dependence not possible to model in classical bivariate ARMA-GARCH lag

specification models. More elaborate models need to be developed, which may apply virtual

returns and explicitly account for return intervals (Campbell et al., 1997, Drost and Niemann,

1993)1B. Hence, our results suggest that non-linearity in frequently stock returns originates

from conditional heteroscedasticity, while thinly traded stocks seem to exhibit non-

synchronous trading effects that a linear ARMA specification of the conditional mean cannot

adequately model. However, for assets not subject to strong non-synchronous trading the

bivariate ARMA-GARCH specification seems robust. Note that for thinly traded assets our

results suggest that intuitive, analytical and linear reasoning may turn extremely difficult.

Economic implications may be even more difficult to interpret.

5.1 Co-variance Characteristics

1B An univariate version of temporal aggregation and continous time ARMA-GARCH non-
synchronous trading model is work out in detail (Solibakke, 2001a)
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The ARMA-GARCH lag specification can be used to create and analyse the conditional

variance and covariance matrix. We report the volatility characteristics in Tables 4. The

conditional variance means and fluctuations are strongly higher for thinly traded series relative

to frequently traded series. The conditional covariance mean seems to be higher for frequently

traded series while the fluctuations in the covariance seems to be higher for thinly traded

series. These results suggest higher market sensitivity (fl) for highly traded series. The mean

of the conditional beta measure is highest for the frequently traded series while the standard

deviation of the beta is clearly higher for the thinly traded series. A closer examination of the

time varying covariance series also reveals negative covariance in the bivariate estimation for

the thinly traded series. Moreover, both the mean and the standard deviation for the

conditional covariance seem to increase in ascending order of trading volume portfolios.

Hence, the betas should increase as the trading volume increases.

{Insert Table 4 about here}

To see if we find any relation between trading frequency and beta, we study the cumulative

frequency distribution of the conditional time varying beta measure. We start by finding the

frequency of the {3i.1-1 observations in a interval between -1 and 3 (bin-interval). We move on

to accumulate the observations and define an empirical cumulative distribution function of the

{3;.f-l observations for each series. The cumulative distributions are plotted in Figure 1, with

dotted lines for individual assets and lines for portfolios. The ordering of both assets and

portfolios is of obvious interest. Figure 1 shows a cumulative distribution of the {3i.1-1

observations, that sorts the portfolios nicely in ascending order of trading frequency. Hence,

the result seems to imply that the highest relevant risk will be found for the frequently traded

series and lowest relevant risk will be found for the thinly traded series. Note especially that

applying portfolio theory, the close to zero and negative beta series for the thinly traded assets

may be of considerable interest for portfolio managers. Negative betas are usually very

desirable in building asset portfolios. However, the specifications tests above suggest that

these beta (fl) results may originate from serious biases in the co-moments of the return

series.

{Insert Figure 1 about here}

6 Summaries and Conclusions

This paper has estimated a bivariate ARMA-GARCH-in-Mean specification of the conditional

CAPM in the Norwegian thinly traded equity market, controlling for non-synchronous trading

and conditional heteroscedasticity. The bivariate conditional CAPM specification captures non-

synchronous trading and conditional heteroscedasticity in asset series. Moreover, our

specification captures the "leverage" effect (Nelson, 1991) in the bivariate conditional variance
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equations. The estimations focus on moment and co-moments characteristics in the

Norwegian thinly traded market.

The in-Mean specification is redundant as all series report insignificant variance and

covariance parameters in the conditional means. As a consequence, the dominance test of

the conditional CAPM model versus the residual risk and the one dynamic factor model is left

unsettled. Non-synchronous trading effects are present in the Norwegian thinly traded market.

The thinly traded series report strong mean reversion while frequently traded assets as well as

the market index report significant slow adjustment.

The ARCH- and GARCH-coefficients in the bivariate system of equations are for almost all

coefficients strongly significant. The results imply firstly, conditional heteroscedasticity and

secondly, a univariate specification may not capture enough market dynamics. Specification

tests report rejection of thinly traded asset specification while frequently traded assets show

adequate model specification. Hence, the data dependence in thinly traded assets induce a

wrongly specified model for these assets and suggest a need for more elaborate models for

daily return observations in thin markets. Finally, we find that the cumulative frequency

distributions of the risk measure p, can be sorted according to an ascending order of trading

frequency. The frequently traded assets and portfolio is the most risky measured by the

conditional p series. However, the specification tests failures for thinly traded assets induce

spurious moments and co-moments characteristics. The moment and co-moments results for

thinly traded assets must therefore be treated by considerable scepticism. Consequently,

analytical, intuitive and linear reasoning and economic implications become very difficult. The

non-synchronous trading issue in thinly traded markets must therefore be left to future

research.
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Table 1. Characteristics of Return series for the Norwegian Equity Market

Obs. Meanl Daily Kurtosis K-S ARCH RESET BOS test statistic
Series Prop Std.dev. Max. Skew Z-stat Q(6) Q2(6) (6) (12;6) m=2;&=1 m=3;E=1 m=4;E=1
VP-1 2611 15.196 13.041 8.405 3.150 50.241 347.021 303.73 43.452 1.920 2.837 3.251

1.00 32.417 -20.270 -0.311 {D.ODO} {O.DDO} {O.DOD} {O.DOD} {O.DOD} {0.063} {0.007} {0.002}
VP-2 2611 25.140 13.436 9.163 2.962 29.844 79.235 144.41 42.199 2.531 2.000 1.598

1.00 33.153 -23.435 -0.374 {O.DOD} {O.DDO} {O.DOD} {O.DOD} {O.DOD} {0.016} {O.D54} {0.111}
VP-3 2611 8.598 26.756 30.219 3.448 12.561 240.207 255.07 37.374 3.479 3.337 2.900

0.97 46.407 -46.978 -1.314 {O.DDO} {0.049} {O.DOD} {O.DOD} {O.DOD} {0.001} {0.002} {0.006}
VP-4 2577 12.645 24.413 11.892 5.352 54.31 449.57 292.88 73.327 9.391 10.152 10.350

0.83 57.556 -33.691 -0.623 {O.DOD} {Q.ODO} {O.DOD} {O.DOD} {O.DOD} {Q.OOO} {O.DDO} {O.DOD}
VP-5 2515 42.318 81.202 95.67 8.731 264.1 240.478 205.66 79.693 15.533 18.822 21.057

0.57 130.70 -167.94 -3.984 {O.DDO} {O.DOD} {O.DOD} {O.DOD} {O.DOD} {O.DDO} {O.DOD} {O.DOD}
VP-6 2499 34.618 53.591 17.440 10.813 233.91 374.174 350.16 38.454 20.608 23.900 30.789

0.43 108.42 -56.571 -0.562 {O.DDO} {O.DDO} {D.OOO} {O.DOD} {D.OOO} {O.DOD} {O.DOD} {O.DOD}
VP-FT 2611 5.502 13.318 26.146 3.809 70.671 403.173 406.65 74.951 16.194 19.102 21.166

1.00 25.127 -23.063 -1.315 {O.DOD} {O.DOD} {O.DOD} {O.DOD} {O.DOD} {O.DDO} {O.DDO} {O.DOD}
VP-TT 2611 21.456 10.800 5.7203 2.574 103.75 115.374 112.46 25.727 7.472 8.143 8.819

0.91 32.553 -15.906 -0.116 {O.DDO} {O.DDO} {O.DOD} {O.DOD} {0.012} {O.DOD} {O.DOD} {O.DOD}
VP-VW 2611 13.278 10.481 36.143 3.800 67.039 292.262 308.05 68.810 12.653 14.908 15.746

1.00 20.581 -21,2188 -2.004 {O.DDO} {D.ODO} {O.DOD} {D.OOO} {O.DOD} {O.DDO} {O.DOD} {O.DOD}
______________________________________________________ ------------------------------------------------------ ___ o

Series: VP-1 is the series containing the most frequently traded series (Prop.=100%) and VP-6 is the series containing the most
thinly traded assets (Prop.=43%). VP-FT (VP-TT) is a portfolio series containing only equally weighted frequently (thinly) traded
assets. VP-VW is the value-weighted all assets market index. Obs. is the number of observations for that series.

Mean is daily mean multiplied by 252 trading days and standard deviation is daily standard deviation multiplied by the square
root of 252 trading days. Skew is a measure of heavy tails and asymmetry of a distribution (normal) and kurtosis is measure of
too many observations around the mean for a distribution (normal). K-S Z-test: Used to test the hypothesis that a sample comes
from a normal distribution. The value of the Kolmogorov-Smirnov Z-test is based on the largest absolute difference between the
observed and the theoretical cumulative distributions. ARCH (6) : ARCH (6) is a test for conditional heteroscedasticily in returns.
Low {"} indicates significant values. We employ the OLS-regression y2 =ao + a,' y2,.,+ ... +as·y2,-I;.TR2 is ..; distributed with 6
degrees of freedom. T is the number of observations, y is returns and R2 is the explained over total variation. aD, a, ... as are
parameters. RESET (12,6): A sensitivity test for mainly linearity in the mean equation. 12 is the number of lags and 6 is the
number of moments that is chosen in our implementation ofthe test statlstic.T'Ri is -l distributed with 12 degrees offreedom.
BOS (m=2,E=1): A test statistic for general non-linearity in a time series. The test statistic BOS =T'I2·[Cm(cr&) - C,(cr&)j, where C
is based on the correlation-integral, m is the dimension and E is the number of standard deviations. Under the null hypothesis of
identically and independently distributed (i.i.d.) series, the BOS-test statistic is asymptotic normally distributed with a zero mean
and with a known but complicated variance.
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Table 4. Conditional Variance. Covariance and Beta Characteristics

VP-1 VP-2 VP-3 VP-4 VP-5 VP-6 VP-FT VP-TT

Variance Asset 1.2605 1.5829 8.4951 13.0723 65.8657 46.4205 2.4640 4.0125

Mean Market 1.4437 1.4359 1.6115 1.6004 1.5973 1.5625 1.6439 1.5994

Standard Asset 4.7952 5.4085 19.8076 17.9694 167.493 55.1550 5.8109 2.3111

deviation Market 4.0999 3.9084 3.9745 3.4825 3.7676 3.7159 3.9452 3.9084

Covariance Mean 1.5055 1.0581 1.7499 1.4938 0.7045 0.6928 1.8573 0.4159

St.dev. 4.0065 4.4745 6.7545 5.0872 1.5727 3.3183 4.7222 1.4056

Beta Mean 1.2003 1.0459 0.9596 0.8958 0.5985 0.3810 1.0929 0.2342

St.dev. 0.2409 0.1674 0.3546 0.6079 0.7067 1.1209 0.1304 0.1743
._----------------------------------.--------------------------------------------------------_---_ .

• See Table 1 for the definition of the series. St.dev.= Standard Deviation.
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Event-induced Volatility in Thinly Traded Markets

Abstract

This paper investigates non-synchronous trading effects as well as volatility clustering in asset

retums during event and non-event periods in the Norwegian equity market. The main

objective is to find any periodic differences from non-event to event periods in the conditional

mean and volatility characteristics. The empirical specifications show significant serial

correlation in the mean equation suggesting changing mean. The volatility specification shows

significant clustering suggesting changing volatility. The empirical results for univariate and

bivariate specifications suggest (1) that the conditional mean show changes and (2) that the

conditional volatility increases strongly. Our results suggest that non-synchronous trading

influences considerably mean and volatility parameters and in extreme cases, lag

specifications. Hence, inferences may change classical event studies findings. The paper

proposes an abnormal retum model controlling for non-synchronous trading and volatility

clustering.

Classification: C14

Keywords: Event studies, ARMA-GARCH specifications, Non-synchronous trading,

Volatility Clustering
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1 Introduction

The main purpose of the paper is to show the need to control for event-induced changes in

mean and volatility suggesting possible changes in inferences from classical event studies.

Non-synchronous trading changes due to a shift in trading frequency may suggest a changing

mean. Moreover, many authors have identified the hazards of ignoring event-induced volatility.

Employing ARMA - (G)ARCH methodology' for the conditional mean and volatility processes

we can control for both a changing mean equation and a'changing volatility equation. This

paper aims to show that firm samples, from non-event to event periods, reports changes in the

conditional mean and volatility characteristics and report strong overall increase in the

conditional volatility series. Boehmer et al. (1991) warn of event induced volatility in event

studies and suggests a simple adjustment to the OLS test statistics. For the ARMA-GARCH

maximum-likelihood estimation the model specification produces residuals that are

unconditional homoscedastic and therefore suggest unadjusted abnormal return test statistics.

Hence, finding mean and volatility changes or a strong increase in event volatility relative to

non-event periods, justify strongly the ARMA-GARCH methodology.

This paper does not investigate the cause of event-induced volatilitj but rather show the need

to control for changing volatility. We employ a sample of mergers and acquisitions in the

Norwegian thinly traded equity market. To determine the level of the volatility in event and non-

event periods we form return series employing the event and non-event period firm samples.

Event series are formed from event period firms in three different event windows. Non-event

series are formed from non-event period firms where the return series are all collected from

periods outside the largest event window. Our objective is to establish the mean and volatility

characteristics for all these event and non-event series. The time series models must contain

several elaborate features to avoid misspecification.

Firstly, in thinly traded markets non-synchronous trading may produce serious biases in the

moments and co-moments and therefore may produce spurious relationships (Campbell,

1997 and Solibakke, 2001a, 2001b). To control for non-synchronous trading we employ an

ARMA(p,q) lag specification in the conditional mean. The lag specifications for p and q are the

BIC preferred (Schwarz, 1978) model. Secondly, the volatility of all event and non-event

portfolios is specified employing (G)ARCH formulations, to control for volatility clustering and

changing volatility. The conditional volatility are modelled applying a BIC preferred

ARMA (m,n) lag specification for squared residuals from the conditional mean specification.

The volatility series are therefore readily available from the estimations. Thirdly, asymmetric

VOlatility is modelled as shown by Glosten et al. (1993) and Nelson (1991). Finally,

leptokurtosis is found in the Norwegian equity market as in all other international equity

1 An alternative methodology is Semi-Non-Parametric (Gallant & Tauchen, 1989, 1991).
2 Brown et al. (1988,1989)
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markets. Hence, we employ a univariate ARMA-GARCH lag specification with student t-

density distributions (Bollerslev 1986/87) and bivariate GARCH-in-Mean models (Engle &

Kroner, 1995) with multi-normal distributions.

Our specification tests show that both the univariate and bivariate ARMA-GARCH models

filters all non-synchronous trading and volatility clustering in event and non-event periods.

Hence, as our results suggest no data dependence in the retum series, we can report no

model misspecification. Moreover, if this result maintains its validity into the market model we

have obtained a sounder basis for abnormal return calculations in event-studies employing

unadjusted test statistics.

The investigation reports a strongly higher conditional volatility in event periods relative to non-

event periods for both selling and acquiring firms. Therefore the investigation proposes new

models for classical event studies in the future.

This paper extends previous works in several areas. Firstly, the increase in conditional

volatility from non-event to event periods is measured employing both univariate and bivariate

subordinated stochastic volatility specifications (Clark, 1973, Epps and Epps, 1976, Tauchen

and Pitts, 1983). The bivariate ARMA-GARCH model is employed to better specify market

dynamics and cross-autocorrelation in mean and volatility. Secondly, the leptokurtosis in

distributions often found in stock markets are considered using student-t density log-likelihood

functions. Thirdly, we employ asymmetric conditional volatility parameters for all estimations.

Fourthly, elaborate specification tests are employed for model misspecification. Finally, we

propose a new event-study methodology controlling for non-synchronous trading and volatility

clustering employing the market model in classical event studies.

The remainder of the article is organised as follows. Section 2 defines the event periods,

describes the equal-weighted series approach in event and non-event periods and defines the

conditional mean and volatility equations from the family of ARMA-GARCH lag specification

models. Section 3 describes the empirical data and the time series adjustment procedures.

Section 4 reports the univariate results from the analysis. Section 5 reports the bivariate

estimation results. Section 6 investigates the significance of the conditional volatility increase

applying likelihood ratio tests. As Section 6 report significant changes, Section 7 suggests two

time-series specifications for classical event studies. Finally Section 8 summarises our

findings.
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2. Definitions and Methodology

2.1 The Event Period

In event studies, the objective is to examine the market's response through the observation of

security prices around such events. For merger and acquisltlons'' it is related to the release of

information to market participants through the financial press. Normal or predicted returns for

an asset are those returns that are expected if no event occurs. The time line for a typical

event study for a mergers and acquisitions case may be represented as follows

lt,1 Estimation Period tp,e I
te,

Event Period

where tb is the first period used in the estimation of a normal security return; tpre is the first

period used in the calculation of abnormal returns; te is the event date; and tpost is the last

period used in the calculation of abnormal returns. In the literature we usually find a selection

of tpre equal to -40 days and tpost equal to + 40 days relative to te (day O). Hence, the event

period will in this case consist of 80 days. Our study applies also narrower event periods. We

define event periods of tpre equal to -20 (-10) days and tpost equal to + 5 (+ 1) days relative to te

(day O). Note that the length of the estimation period is not relevant for this portfolio study.

However, in a classical event study the length of the estimation period is an important decision

to make.

2.2 Event and Non-Event Return Series

To study any change in return and volatility characteristics from non-event to event series we

form equally weighted portfolios from firm return series classified in event periods and non-

event periods. The classification of an event period follows the definitions of tpre and tpost in

section 2.1. All firms that by definition are categorized into a specific event period are included

in the sample and the returns are averaged over the whole sample for each day relative to te.

I N"I

These calculations for portfolio returns becomes PRc,1 = --. I Rc.1,; where Rc,t,i is the
Nc,l ;=1

continuously compounded return for portfolio c, day t, asset i . PRc,t is portfolio c's return at

date t. Nc,t is the number of assets in portfolio c at date t.

Note that the number of firms Nc,t may change over time in especially the event series.

Therefore, a possible and permissible value for Nc,t is zero. The time series will set these

dates to missing observations.
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The definition of non-event series follows this procedure. Firstly, we find the average number

of firms over all event dates for the widest event window {-40,+40} days relative to te and
employ this number of assets for the non-event series. The returns are calculated as above

using a random sample of firms for the non-event sample. Return series characteristics are

reported in Section 4 below.

Finally, note that model specification assumes an ergodic and stationary return series. An

ergodic return series suggest that the sample moments for finite stretches of the realisation

approach their population counterparts as the length of the realisation becomes infinite. A

stationary time series mean that the process is in a particular state of "statistical equilibrium"

(Box and Jenkins, 1976). Strict stationary is obtained if its properties are unaffected by a

change in time origin. In Section 3 we will apply an adjustment procedures to secure ergodic

and stationary return series.

2.3 The Conditional Meanand Volatility Specifications

We will apply the ARMA-GARCH specification for estimation of the mean and volatility

equations. The methodology applies conditional models where non-synchronous trading may

be modelled in the conditional means and volatility clustering may be modelled in the

conditional volatility. The ARMA methodology may be studied in detail in Mills (1990), while

(G)ARCH specifications may be studied in Engle (1982) and Bollerslev (1986,1987). In the

international finance literature we find a high number of papers with origin from these pioneer

works. For a small sample we refer to Bollerslev et al. (1987,1992), Engle et al. (1986, 1995),

Nelson (1991) og deLima (1995a, 1995b). Moreover, Glosten et al. (1993) extended the

GARCH model to truncated GARCH to account for the leverage effects. The ARMA-GARCH

methodology may be univariate og multivariate. As event studies apply the market model to

specify normal returns the multivariate model may be more relevant than the univariate model.

2.3.1 The univariate and asymmetric ARMA-GARCH-in-Meanspecification

The general asymmetric ARMA(p,q) - GARCH(m,n) -in-Mean specification of the conditional

mean and volatility can be defined as follows:

p .!. q

Rj" =øj,o + LØ/" ·Rj,,_; +8/ ·hf" =, -LBj,; '8/.,_;
~l ~l

(1)

Å . = rJ.I,' J,I
if and only if £j,t.; < O (2)

m n

£(8:" I <l>",_;) = hj,' = m j,O + L (a j,; + Åj,;,,)' e;,/-i + Lb},; .hi,l-I
~ ;~

(3)

3 For an OLS study of abnormal returns in Norway see Eckbo and Solibakke, 1992. For an
international review Eckbo, 1987.
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where Rj,t is the portfolio j's return in period t; &j,t is a random variable (residual) distributed as

either normal N(O, (l) or student-t 0(0, (i,OJ) where OJ is the degree of freedom; O'Jis lag i for the

moving average or non-synchronous trading parameters of portfolio j in the conditional mean

equation (1);Aj,;,t measures the leverage effect, mj,O is the constant term for portfolio j in the

conditional volatility equation; Bj,i is lag i for auto-regressive parameters for shocks of portfolio

j; and bj,; is lag i for the conditional volatility parameters of portfolio l. The lag lengths p, q, m
and n are determined by the BIC criterion (Schwarz, 1978) for all series.

Linear models have constant conditional volatility whatever the information of observed

returns. In our approach the conditional volatility may vary but the unconditional volatility is

constant. Hence, the equations above lead naturally to the consideration of non-linear

stochastic processes and the (G)ARCH-in-Mean rnodel" (Engle, Lillien and Robbins (1987»

show a departure from white noise. Specifically, in our model we allow the serially correlated

errors to be modelled as a moving average (MA(q» process to capture the effect of non-

synchronous trading, while the innovations &j,t can be assumed to follow either a conditional

normal - or a conditional student-t distribution. The conditional volatility enters the mean

equation (in-Mean). Estimation normally applies the BHHH (1974) algorithm.

2.3.2 The bivariate and asymmetric ARMA-GARCH-in-Mean specification

As event studies apply the market model and therefore an overall market index to calculate

normal returns, the univariate ARMA-GARCH models may not count for total market

dynamics. Moreover, the index series may also contain non-synchronous trading and volatility

clustering. Hence, to control for these market structure effects we employ a bivariate

specification between return series and the overall index series. We employ a value-weighted

index as a proxy for the market portfolio.

To model this bivariate specification we apply the MGARCH model. The Multivariate GARCH-

in-Mean model (BEKK-formulation)5 is defined as (in vector format)

R, = Øo+ Ø1' R,.1 + Li . vech( H,) + &, - 01' &'.1

H, = m" m + A'1 &,.1' &".1' A1 + B'1 Ht•l· B1

(5)

(6)

where &t Int•1 - N (O,HJ and vech (HJ is the column stacking operator of the lower portion of a

(
Ril J (CII ) (011 OlM °13 ) .symmetric matrix, R, = ' .e, = ,~ = ,where piS 2 x 1 vector of
RM, CM' 021 O 0MM

4 For applications see Bollerslev, Chou, Kroner, 1992.
5Engle and Kroner (1995); BEKK is named after an earlier working paper of Bollerslev, Engle,
Kraft and Kroner). Moreover, a VEC or VECH formulation is also readily available.

GRevtTxt.doc Page:6



constants in the conditional mean. m, A
"
8,are 2 x 2 parameter matrices, and the elements

of the conditional volatility matrix H, are hi.t = vart (Ri,J, hi,M,t= COVt (Ri,t, RM,J, and

hM,t = vart (RM,J· The ()1 parameter specifies non-synchronous trading in the bivariate system

of mean equations. The 1511 is the ARCH-in-Mean parameter in the equation of Ri,! that

corresponds to hi,t, 151M is the ARCH-in-Mean parameter in the equation of Ri,! that

corresponds to hi,M,t and 1513 is the ARCH-in-Mean parameter in the equation of Ri,t that

corresponds to hM,t. 1521 is the ARCH-in-Mean parameter in the equation of RM,t that

corresponds to hi,t, and t5MMis the ARCH-in-Mean parameter in the equation of RM,t that

corresponds to hM,t. Note that the conditional volatility specification for H, in (6) guarantees the

positive definiteness of Ht and allows feedback between the volatility of the individual portfolio

and the market. m is a lower triangular matrix. Finally, we extend this model to measure

asymmetric volatility applying the GJR methodology (Glosten et al., 1993) in the bivariate

estimation. Hence, we extend the above model by the parameters Y1 for asymmetry in the

portfolio and Y2 for asymmetry in the market index. Note that this bivariate ARMA(1, 1)-

GARCH(1,1) can be extended to any lag lengths p, q, m and n as specified for univariate

specifications. The Bayes Information Criterion (BIC) is applied for both ARMA (mean) and

GARCH (volatility) lag specifications. As for univariate GARCH estimations, the BHHH (1974)

algorithm is applied for estimation.

3 Empirical Datasources and TimeSeriesAdjustments

p
The study uses daily continuously compounded returns ( In _1- ) of individual Norwegian

PH
stocks spanning the period from October 1983 to February 1994. The logarithmic returns are

scaled by one hundred to avoid any scaling problems during estimation. Data are obtained

from Oslo Stock Exchange Information AlS. The data includes the crash period of October

1987. There is no reason to exclude these outliers since they reflect the nature of the market.

The raw data series for individual assets are grouped into portfolios as described in section

2.2. The dataset is therefore composed of event portfolios, non-event portfolios and one

market index. The event and non-event portfolios are divided into seller (S), acquirer (A) and

both seller and acquirer (B) portfolios. We define three different event period windows; (1)

from 10 days before to 1 days after an announcement (PE{-10,+1}); (2) from 20 days before to

5 days after the announcement (PE{-20,+5}); and finally (3) from 40 days before to 40 days

after the announcement (PE{-40,+40}). The non-event portfolios are formed by a random

selection of event firms consisting of selling (PSNE), acquiring (PANE) and both selling and

acquiring firms (PBNE), respectively. All firms in the non-event portfolios exclude event

periods of -40 to +40 days relative to announcements. In case of several announcements for

an individual firm all periods -40 to +40 days relative to announcements are excluded.
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{Insert Table 1 about here}

Therefore, this daily time series database gives us potentially 2611 observations for each

portfolio and index. This number of observations provides enough degrees of freedom to

permit use of asymptotic tests. However, the event portfolios will most likely consist of a

varying number of assets over dates and especially the shortest event period window will

consist of a number of missing observations. Hence, all the sample sizes will be reported. The

characteristics of the raw data from event and non-event equally weighted asset portfolios and

the value weighted market index, are reported in Table 1.

The following immediate observations can be made. The mean returns are highest for the

seller firm event portfolios in the two narrowest announcement period windows. The longest

time period window for the selling companies show a considerably lower daily mean return.

Moreover, compared to all other portfolios, the daily return standard deviations for selling firm

portfolios are the highest for all three event period portfolios. For the shortest event period the

mean return is 5 times and the standard deviation 3 times as high as the market index values.

The same numbers for the acquiring portfolios are considerably smaller. That is, both

expected return and standard deviation are highest for the event portfolios formed from selling

firms. The non-event portfolios show results close to the market index. Hence, Table 1

suggests event-induced price and return turbulence. Figure 1, panel A, plots the raw value

weighted market index. From this time series it seems to exist several periods of high volatility

followed by periods of lower volatility. However, any pattern is not readily observable from the

plots.

{Insert Figure 1 Panel A and B about here}

Following Gallant et al. (1992) many authors have noted systematic calendar effects in both

mean and volatility of price movements. Hence, we adjust all portfolio and index time series by

regressing the scaled returns on the set of adjustments variables: (J) = x'P + u (mean

equation). The adjustment variables consist of dummy and time-trend variables. The least

square residuals are taken from the mean equation to construct a volatility equation: In(if) =
x'v+ E. Finally, a lineartransformation is performed to calculate adjusted return series (00): Wadj

= a + b*(u/exp(x'yl2)), where a and b are chosen so that the sample means and volatility of (J)

and Wadj are identical. This adjustment procedure for all portfolios and the value-weighted

index allow us to focus on the day-to-day dynamic structure under an assumption of stationary

series. We plot the adjusted value weighted index in Figure 1 Panel B. As for the index, all

event and non-event portfolios show an adjusted time series that become more homogenous

over time. Further discussion of the effects from the adjustment procedure is found in Gallant
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et al. (1992). Owing to space requirements we do not report details from the adjustment
results".

To get an idea of the retum distributions of the portfolio and index series, we have also

reported the kurtosis and skew in Table 1. The numbers report leptokurtosis in all series. We

find too much probability mass around the mean and too low probability mass around 1 and 2

standard deviation from the mean. The numbers for the skew is strongly negative for the

market index and strongly positive for the shortest event firm portfolios. Hence, the event

portfolios show more positive extreme return values than negatives in contrast to the market

index. The kurtosis and skew suggest that the returns are not normally distributed. Hence, to

accomplish this deviation from normality we employ a student t-density distribution in the log-

likelihood function for the GARCH estimation. For the bivariate GARCH estimation (MGARCH)

we assume a multi-normal distribution.

Finally, the portfolios and the index all report significant ARCH test statistics. The test statistic

suggest volatility clustering and make the (G)ARCH methodology employable for all our

sample series.

4 Empirical Results for Univariate Time Series

4.1 The univariate and asymmetric ARMA-GARCH-in-Mean7specification

Maximum likelihood estimates of the parameters in equation (1), (2) are given in Table 2 for a

student-t density log-likelihood function. The constant Øo in our model is expected to be

positive showing a positive drift. All the Øds are insignificant, which suggest that all the series

cannot report a non-zero drift.

Non-synchronous trading or serial correlation is negative and statistical significant for the

market index and all non-event portfolios except selling firms. This result suggests that the

selling firms are thinly traded assets. The event series show all negatives or close to zero

autocorrelation coefficients. However, for the shortest event period window, the series show

insignificant coefficients. Hence, the market is reasonable information efficient in expectation

of announcements (immediate adjustment). Our results therefore suggest that non-

synchronous trading may be important to control for in classical event studies.

{Insert Table 2 about here}

6 The results are readily available from the author upon request.
7 All series and the market index BIC prefers p=O and q=m=n=1.
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The parameter for residual risk and contemporaneous conditional volatility (fJ) is negative but

insignificant for all portfolios. The result suggests an insignificant negative relationship

between return and volatility, which suggest lower returns in high volatility regimes. The

insignificance may also suggest higher relevance for systematic risk (market risk) as

suggested by several asset-pricing models. The in-Mean formulation seems therefore to be

redundant in these ARMA-GARCH models.

Among the estimated conditional volatility ARCH/GARCH coefficients for the GARCH

specification reported in Table 2, which are all strongly significant, we find clear patterns.

Firstly, the constant coefficient mo in the conditional volatility process in the GARCH model is

small but significant for the index, non-event series and the longest event periods. The result

suggests a significant coefficient for unexplained conditional volatility. For the two narrowest

event windows we find a strong increase in the mo coefficient, which suggests a strong

increase in unexplained conditional volatility, which most likely is attributable to the events.

The increase is especially strong for series consisting of selling firm. Secondly, the past

squared errors have more influence over the conditional volatility of the two narrowest event

portfolios than they do over the conditional volatility of the non-event portfolios and the index.

The result suggests more sensitivity to past shocks for event portfolios relative to non-event

portfolios. Thirdly, in contrast to the squared past error, the past conditional volatility exerts a

greater influence over the current conditional volatility for non-event portfolios than event

portfolios. Hence, the autocorrelation in the conditional volatility process is lower for event

portfolios. For especially the event series most centred on the announcement day, we find low

coefficients for the past conditional volatility. The parameter for asymmetric volatility is

significant and negative for the index and all non-event portfolios. None of the event portfolios

report significant asymmetric volatility. Our results therefore suggest that asymmetry may be

redundant in event periods but is required in on-event periods.

{Insert Table 3 about here}

Summary values for the conditional volatility process (hi,l) are reported in Table 3. Table 3

clearly indicates event-induced volatility. Highest relative conditional volatility increase is found

for selling firm series. Our results indicate a 3 to 4 times mean increase in the conditional

volatility. Also the acquiring firm series report an increase in the conditional volatility, but

clearly smaller than selling firms. Hence, results suggest a need to control for the increased

volatility in the event periods, for especially selling firms.

{Insert Table 4 about here}

Finally, as a specification test of our ARMA-GARCH models, we calculate the sixth order

Ljung-Box (1978) statistic for the standardised residuals and squared residuals of each of the
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portfolios and the market index's expected returns in Table 4. In each portfolio there are no

significant evidence of serial correlation (1%) in the residuals and squared residuals up to lag

6. The kurtosis is strongly reduced and all portfolios show lower absolute skews for the

standardised residuals. In comparison to the adjusted raw returns the K-S Z-test confirms the

more normal distributed residuals. The two features, close to normal residuals and the highly

significant student-t density parameter Ut seem to emphasis the importance of thick tails

estimations. Our results therefore suggest that student-t densities in the log-likelihood function

are preferred in classical event studies. The ARCH tests report no conditional

heteroscedasticity in the standardised residuals. Hence, all conditional heteroscedasticity is

captured by the GARCH specification of the conditional volatility. The BDS (Brock et al., 1991,

1995) test statistic shows insignificant values at all dimensions (m) and E = 1 standard

deviations. Hence, no data dependence and non-linearity is found in the standardised

residuals. However, the joint bias tests (Engle and Ng, 1993) report some significant test

statistics. Hence, we will find some bias in the conditional volatility prediction. However, overall

our specification test results indicate that the current univariate and asymmetric ARMA-

GARCH models are appropriate models for stock returns in event studies. Moreover,

analytical, intuitive and linear reasoning may be conducted as we find insignificant test

statistics for data dependence in all series.

5 The Bivariate and Asymmetric ARMA(p,q)-GARCH(m,n)-in-Mean8 specification

Maximum likelihood estimates of the parameters for the bivariate GARCH-in-Mean model are

presented in Table 5A and 5B for all portfolios. The bivariate estimation controls for market

dynamics by incorporating a value-weighted market index into the estimation. The two

intercepts (Øo and ØM) in the mean equations from our bivariate system in Table 5A are

positive indicating a positive drift.

Autocorrelation is present in all bivariate estimations except for selling firms. The market index

shows negative and significant autocorrelation coefficients for all estimations. The event series

show all significant negative coefficients except for the two selling firm series most centered

on the announcement day. Our results therefore suggest that coefficients for non-synchronous

trading are needed in almost all the bivariate event estimations. Cross-autocorrelation from

index to event series is significant for all series.

The GARCH-in-Mean parameters can be reported for several alternative outlines of the mean

equation. However, we estimate and report only the diagonal volatility matrix in the mean

equation (only variances). The event series volatility may be interpreted as residual risk and

can be considered as a proxy for omitted risk factors (Lehmann, 1990). None of the portfolios

8 All portfolios and the market index BIC prefer q=m=n=1.
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and the market index report significant "in-Mean" coefficients. Hence, the "in-Mean"

specification seems therefore redundant.

{Insert Table 5A and 58 about here}

From Table 56 the t-statistics indicate that all the conditional volatility parameters are almost

all statistical significant. This result cast doubt on the validity of the univariate model

specification. The constant coefficients in the conditional volatility equations report the same

effects as for univariate estimations. The constant term m11show considerable increases in

especially the selling firm event portfolios compared to the non-event firm portfolios. This

result implies that there is an increase in conditional volatility that is not possible to explain by

the ARCH/GARCH coefficients alone (unexplained increase). The increase is also found for

the constant term m22.However, the increase is considerably smaller than for m11.Moreover,

the increase is higher the narrower the event period and therefore shows the highest non-

explainable conditional volatility. For the past squared errors we find that the event series most

centred on the announcement day are considerably more sensitive to past shocks than the

non-event portfolios. In contrast the past conditional volatility exerts a greater influence over

the current conditional volatility in the case of the non-event series. Moreover, as for the

univariate estimations, the past conditional volatility coefficients show a decrease the shorter

the event period for selling and acquiring firm series. We report values for the conditional

volatility process (hu) in Table 6. The results for the hu processes are very similar to that

obtained in the univariate estimations. Moreover, hi,! produces mainly the same time series

plots. Table 6, as Table 4 for the univariate case, clearly indicates event-induced volatility.

Highest relative conditional volatility is found for the selling firm series. Hence, also our

bivariate results indicate a 3 to 4 times mean increase in the conditional volatility for selling

firms. Moreover, we find that the acquiring firm portfolios show an increase in the conditional

volatility, but clearly smaller than selling firms. Therefore, as for the univariate case, our

bivariate results suggest a need to control for volatility clustering in event studies.

{Insert Table 6 about here}

As for univariate models, specification tests of the bivariate model are performed and reported

in Table 7. We find no significant serial correlation in the residuals and squared residuals up to

lag 6. Furthermore, the bivariate cross-correlation series for -10 and 10 lags are calculated

and checked (not reported). The result suggests very low to no significant cross-correlation in

any lag for all bivariate ARMA-GARCH-in-Mean estimations. All portfolios and the market

index show excess kurtosis for the standardised residuals. Almost all portfolio residuals show

negative skews, except for the narrowest event portfolios. Moreover, the bivariate estimations,

report lower kurtosis and skews than the univariate estimations. However, the K-S Z-test still

reports non-normal standardised residuals for almost all portfolios and the index. The ARCH
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test statistic reports no volatility clustering in the standardised residuals. The BOS test statistic

for i.i.d. reports that none of the portfolios show significant non-linear dependence at any

dimension. Finally, the joint bias test reports no prediction bias for the conditional volatility.

Hence, our bivariate model survives the specification tests and is at the same time a

parsimonious model, which is able to capture dynamic structure.

{Insert Table 7 about here}

Since the market seems to play an important role, a univariate representation of the

conditional volatility of stock returns will be disputed. Moreover, the specification tests

unambiguously prefer a bivariate estimation technique.

6 Changing conditional volatility

To test for the changing volatility hypothesis from non-event to event firm samples, we perform

a Likelihood Ratio Test (LRT). This test is a general test for testing the restrictions imposed on

a model. The model is first estimated without any restrictions. The model is then re-estimated

with the restrictions in place. Under the null hypothesis, LRT is distributed as x2 with number of

restrictions as degrees of freedom. For our analysis we restrict the event samples GARCH

parameters to be within the intervals obtained from non-event samples GARCH parameters.

As we employ a GARCH (1,1) lag specification we introduce 6 restrictions on the event-period

sample GARCH estimations. We report the LRT values with corresponding test statistics in

Table 8.

{Insert Table 8 about here}

Table 8 report a significant change in parameter values for both univariate and bivariate

estimations from non-event to event samples. The LRT test statistics rejects unchanged

parameter values for all event series. Hence, our results suggest a significant increase in

conditional volatility. The increase suggests a need for newevent methodologies controlling

for this increase as well as the significant non-synchronous trading effects in all our samples.

Therefore in Section 7, we suggest two alternative events study techniques, a univariate and a

bivariate specification that models non-synchronous trading and volatility clustering. Note that

we in the univariate specification do not control for non-synchronous trading and volatility

clustering in the market index.

7 ARMA-GARCHSpecifications for event study methodology

Our results suggest that we find different mean and volatility effects during event and non-

event periods. Our findings therefore suggest a need for more advanced techniques for
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calculation of abnormal returns in classical event studies. In this paper we have shown that

both univariate and bivariate GARCH-in-Mean models indicate higher conditional volatility for

event portfolios relative to non-event portfolios. Hence, our results suggest event study models

that put emphasis on non-synchronous trading and volatility clustering. ARMA mean equations

emphasis non-synchronous trading and GARCH volatility equations emphasis volatility

clustering.

Hence, our results suggest either a univariate or a bivariate ARMA-GARCH specification for

estimation of abnormal return during event periods. Below we define these models for use in

classical event studies employing the market model.

The first model is the univariate ARMA(p,q)-GARCH(m,n)-in-Mean model for individual assets.

Based on our results from Section 4, this model becomes

p q

Ri., =øj,o + Iøi ·Rj,,_i +{3j,1 ·RM" +~k .o; +Gj,1 - IBi 'Gj,1-i
i=1 i=1

where j = 1, ""N event firms, RM.t is the appropriate raw exogenous market index, Dj,i.t is a

dummy variable with value Ooutside the event period and 1 inside the event period. The

definition of Dj.i.t decides the length of the event period. E(ci.t lilt-1) - D(O,hi.t, uJ is the student t-

density distribution with u degrees of freedom. Finally we define the hi.t employing the

asymmetric GARCH(m,n) formulation for the conditional volatility process

A =y./,1,1 J,I if and only if cj,t..; < O

m n

E(Ej.tI ilt-1)= hj,1 = mj.o +I (aj,s +Åj,s.,)·G:,H + Ibj,1I ·hj,,_11 +cj,1 ·Dj,I,1
.,=1 11=1

where Ej,t is the return for firm j day t; Y;,t is leverage effects (asymmetry), mj,O > O, aj, 1,bj, 1;0: O,

aj,1 + bj,1 < 1, and ilt-1 is the set of all available information at time i-t, The model captures

non-synchronous trading and volatility clustering for every assetj. However, the RM,t is the

adjusted raw market returns.

The second proposed model is the bivariate ARMA(p,q)-GARCH(m,n)-in-Mean model. This

model becomes":

Pi s,
Rj.t = øj,o +I Øi . R, ,I-i + pj,1 . CM,t+ O;,k . Dj,k,t + Ej.t- LBi . G j .I-i

~1 I~

~I ~f

RM,t = ØM,O+ IøM,i . RM,I-i +GM,f - IBM,i . GM,f-i and
i=l i=l

Hs,t = ms,o" ms,o + IA~'I-u . GS,I_U. G~,I_U. AS,I_u
u=1

n

+ IB~,I-u . Hs,l_u • Bs,I.U
11=1

s=j,M,

9 You may incorporate cross-autocorrelation in the bivariate estimation.
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where Gt I.ot-l - N (O,HJ. Øois 2 x 1 vector of constants, ms,o, As, Bs are 2 x 2 parameter

matrices, and the elements of Hs.t are hj,t = vart (Ij.J, hj,M,t = COVt (fj,t, rM,J, and hM,t = vart (rM,J.

To allow for the leverage effect and asymmetric volatility we apply the GJR methodology

(Aj.l, AM,I) (Glosten et al., 1993) modeled as for univariate specifications. Note, that only the

asset series will employ an event period dummy (Dj,k,t) for the bivariate estimation.

Among the two model specifications above for the market model in event studies we prefer

the bivariate GARCH specification. The main reason for this choice is that we are able to

control for non-synchronous trading (autocorrelation and cross-autocorrelation) in the

conditional mean and volatility clustering and asymmetric volatility in the conditional volatility

for both the asset series and the market index series. As we have shown above and in

Solibakke (2001a, 2001b) these effects are important to control in especially thinly traded

markets. Moreover, the index and asset series need to be flexibly modelled to allow for market

dynamics. The bivariate model controls the co-moments of asset and index series. Hence,

unadjusted statistics for the significance of abnormal return may appropriately be applied.

8 Summaries

This paper has estimated a univariate and a bivariate ARMA-GARCH-in-Mean specification

for the conditional mean and volatility equations for event and non-event series in the

Norwegian thinly traded equity market. The univariate model assumes a student-t density log

likelihood function. Both models report strongly higher conditional volatility in event periods.

Specification tests suggest that both models capture both non-synchronous trading and

volatility clustering in return series. Moreover, specification tests suggest that both univariate

and bivariate specifications reject data dependence but some bias in conditional volatility

predictions exists. Formally we test for changing volatility in event periods applying a

likelihood ratio test statistic for parameter restrictions obtained from non-event periods. All

LRT test rejects unchanged parameter estimates.

Finally, the observed coefficient significances of the conditional mean and volatility equations,

the strong increase in volatility for observed event series, suggest that event studies should be

conducted within bivariate ARMA-GARCH lag specifications. Moreover, owing to removed

biases in the moments and co-moments, abnormal returns calculations can apply unadjusted

test statistics.
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Table 1. Portfolio Characteristics for event and non-event series

Sample Yearly Yearly Max. Min.
Size Mean st.deviation Return Return Kurtosis Skew ARCH(6) RESET(12;6)

Value-weighted
market index 2611 13.2784 20.5812 10.4810 -21.2188 34.6329 -1.9681 286.737 68.791
Event portfolios:
PSE(-10,+01) 1018 61.5848 61.3107 37.4693 -19.0620 4.9965 0.3385 38.813 25.343
PSE(-20,+05) 1483 52.6168 59.6772 37.4693 -36.7730 11.0238 -0.2823 62.460 32.974
PSE(-40,+40) 2289 8.5938 56.2096 26.0378 -69.5375 10.3822 -0.4455 171.043 74.091
PAE(-10,+01) 1506 32.9816 37.4190 18.2322 -14.3100 4.3302 0.2320 58.679 31.492
PAE(-20,+05) 1924 20.1455 37.5664 18.2322 -19.4160 6.6359 -0.3664 181.377 84.392
PAE(-40,+40) 2406 14.6016 31.4098 14.6603 -16.0062 15.3247 -0.3628 275.035 118.120
PBE(-10,+01) 1769 52.4124 46.0854 37.4693 -15.4150 6.7529 0.5695 69.063 29.875
PBE(-20,+05) 2153 41.2075 44.6394 37.4693 -19.4160 11.5863 -0.0267 209.777 85.252
PBE(-40,+40) 2491 12.7470 41.0366 17.1478 -69.5375 18.3244 -0.9328 252.394 104.325

Non-event Portf
PNERSI 2611 19.7281 30.8518 21.9211 -19.8416 19.9246 -0.4441 239.190 68.219
PNERS2 2611 4.7328 35.8128 43.4944 -16.5540 30.6905 -0.7461 123.704 54.121
PNERAI 2611 10.9136 25.5279 15.3072 -20.3526 13.3871 -0.7792 320.751 85.342
PNERA2 2611 -1.3003 27.1862 11.5826 -19.2288 18.0938 -1.1904 305.247 74.697
PNERBI 2611 6.0372 26.6409 9.3207 -14.9983 6.96239 -0.6732 300.484 63.918
PNERB2 2611 14.8498 31.1914 16.5265 -15.1988 6.34623 -0.0713 165.803 52.461._-------------------------------------------------------------------.---------------------_-----------------------
PSE(-10,+01) = Portfolio for selling firms in event period from -10 to +1 days relative to announcement.
PSE(-20,+05) = Portfolio for selling firms in event period from -20 to +5 days relative to announcement.
PSE(-40,+40) = Portfolio for selling firms in event period from -20 to +5 days relative to announcement.
PAE = PSE for acquiring firm portfolio and PBE = PSE for both selling and acquiring firm portfolio.
PSNER1 = Portfolio for selling firms in non-event periods; randomly selected sample no. 1.
PANER1 = Portfolio for acquiring firms in non-event periods; randomly selected sample no. 1.
PBNER1 = Portfolio for both acquiring and selling firms in non-event periods; randomly selected.
Daily mean is the average daily retum over the period. Yearly mean is the average daily retum multiplied by 252 trading days.
Daily standard deviation is the square root of the daily return variance. Yearly standard deviation is the daily standard deviation
multiplied by the square root of 252 days. Maximum return is the maximum retum in the sample period. Minimum return is the
minimum return in the sample period. ARCH (6) is a test for conditional heteroscedasticity in retums. Low {.} indicates significant
values. We employ the OLS-regression i =ao + a., i,.,+ ...+a6.y'\-6.TR2 is -/ distributed with 6 degrees of freedom. T is the
number of observations, y is returns and R2 is the explained over total variation. ao, a, ... a6 are parameters. All ARCH tests are
significant at the 1% level. RESET (12,6) : A sensitivity test for mainly linearity in the mean equation. 12 is number of lags and 6
is the number of moments that is chosen in our implementation of the test statistic.TR2 is -/ distributed with 12 degrees of
freedom. All RESET tests are significant at the 1% level.



Table 2. An ARMA(O,1)-GARCH(1,1)-M process model for portfolio returns
This table contains the estimated coefficients from the model

Rj,l =øj,o + føj,i ·Rj,l_i +8j .h]" +&j,1 - IBj,i '&j,l-i where E(Ei.tlOt.l)-D(O,hj.t.uj) and Aj,i" = r; if
i=1 ;=1

m n

and only if l1.t./ < O, hj" = m j,O + L (aj,i +Aj,i,I)' &;,'-i + Lbj,i . hj,l_i ' where Rj,tare the daily returns on asset
i=1 i=1

portfolio series and the market index. The model assumes a student t-density (D(OAt 4) log-likelihood function for parameter

estimation, where the number of freedom's parameter u is estimated. All parameters are estimated and the numbers in

brackets below the estimated coefficients are t-statistics.

Port- Log like-
folioO): lihood u «1>0 ~ 91 mo a1 b1 11
Market -3833.31 6.35849 0.15634 -0.07595 -0.25094 0.14560 0.07115 0.74287 0.15103

Index {8.5805} {1.4487} -{O.720} -{12.509} {3.930} {3.067} {15.367} {3.682}
PES{-10,+01} -2665.33 3.15269 0.15551 0.01727 -0.03532 6.45523 0.35107 0.32589 0.12657

{9.5002} {0.3736} {0.1559} -{1.0602} {4.9215} {2.7342} {3.5956} {O.7966}
PES{-20,+05} -3726.27 2.78265 0.12195 0.01702 -0.02938 2.43567 0.34912 0.65088 -0.09344

{11.5924} {0.5035} {0.2515} -{1.1574} {2.4356} {3.1730} {7.3979} -{0.9175}

PES{-40, +40} -5558.29 3.25724 0.16303 -0.04185 -0.07392 1.06182 0.21178 0.73027 0.02676
{12.8283} {0.9122} -{0.6882} -{3.4821} {3.8738} {4.2491} {16.754} {0.4900}

-p-EAF1b~+61T----325K6-å--3.59845'--:0~26356---å~12735--:6~ci7i5i--0':92958--0':16263--'O.7rf93---cr:f66s4--
{9.8003} -{O.717 4} {1.0254} -{2.7555} {2.4683} {2.1448} {7.8634} {1.6598}

PEA{-20,+05} -4120.08 4.25198 0.28121 -0.08139 -0.07509 0.37062 0.06846 0.83961 0.05247
{9.9854} {1.2217} -{0.7508} -{3.2379} {3.4184} {2.8118} {25.023} {1.5497}

PEA{-40, +40} -4607.73 4.78380 0.08046 -0.00115 -0.15775 0.29718 0.07966 0.78474 0.10377
{10.8758} {0.5152} -{0.0121} -{7.1755} {1.8792} {2.4250} {8.8623} {1.9425}

-p-EBF1b~+61T--413r5-9--3.57772---:0~'02652"-'O~6f3342--:6~06956--2.44664--'O.232i9---0:47486--cr:f5b-6r-
{10.6247} -{0.1006} {0.6489} -{2.7594} {3.1541} {2.9793} {4.0710} {1.6037}

PEB{-20,+05} -4803.24 3.50152 0.11059 0.02540 -0.06770 0.63284 0.15447 0.76963 0.02615
{12.2185} {0.6299} {0.3450} -{3.2112} {3.9035} {3.9293} {19.502} {0.5894}

PEB{-40, +40} -5335.53 5.51141 0.28191 -0.09064 -0.13862 0.15549 0.07186 0.87631 0.04852
{8.9224} {1.9302} -{1.2240} -{6.7538} {3.4628} {3.8853} {38.866} {1.9585}

-p-NERSr-------:5023Tå--4.85994--:0~'03186--'O~6å488--0'~62764--0'.-22360'--0'.'04365'--'O.840'04---0:1"6'1-so--
{10.480} -{0.241} {1.069} {1.305} {3.984} {2.290} {30.084} {3.401}

PNERS2 -5368.52 4.45475 0.16758 -0.05500 0.01770 0.19732 0.03725 0.88204 0.07237
{11.991} {1.162} -{0.733} {0.885} {3.199} {2.265} {33.360} {3.143}

PNERA1 -4470.93 6.03981 0.19235 -0.06800 -0.18264 0.09999 0.06282 0.84104 0.10168
{9.118} {1.899} -{0.857} -{8.866} {3.642} {2.954} {28.563} {3.452}

PNERA2 -4657.61 5.78547 0.05879 -0.01247 -0.11299 0.17725 0.07053 0.79228 0.13977
{10.380} {0.541} -{0.160} -{5.315} {3.942} {2.972} {21.769} {4.010}

PNERB1 -4697.04 5.03013 0.15849 -0.11923 -0.00108 0.06870 0.06564 0.89082 0.05242
{10.192} {1.911} -{1.784} -{0.053} {2.981} {3.656} {40.409} {1.973}

PNERB2 -5178.98 5.10484 0.24179 -0.08229 0.05650 0.05952 0.02913 0.93985 0.02922
{11.008} {1.752} -{1.049} {2.765} {2.274} {3.286} {62.805} {1.980}

* See Table 1 for a desciption of the asset series



Table 3. Conditional Variance for ARMA-GARCH Specification
Student-t density log-likelihood function.

Panel A. Conditional variance for Seiling Firm Portfolios
PES{-1O,+01} PES{-20,+05} PES{-40,+40} PNERS1 PNERS2

Mean 18.70195 19.19703 14.44024 3.73851 4.82450
St.deviation 17.51336 23.25715 19.69196 5.28487 4.34063
Maximum 211.51874 431.78156 294.55571 108.70855 59.06402
Minimum 9.63035 7.13991 4.21650 1.56747 1.96091

Panel B. Conditional variance for Acquiring Firm Portfolios
PEA{-10,+01} PEA{-20, +05} PEA{-40,+40} PNERA1 PNERA2

Mean 6.21994 5.66700 3.72974 2.55937 2.92827
St.deviation 3.70463 4.53759 4.25134 3.83901 4.64144
Maximum 43.66252 58.84618 63.42697 81.48028 110.68654
Minimum 3.55286 2.61130 1.39184 0.71902 0.91348

Panel C. Conditional variance for Selling and Acquiring Firm Portfolios
PEB{-10,+01} PEB{-20, +05} PEB{-40, +40} PNERB1 PNERB2

Mean 9.50555 8.46261 6.52168 2.91710 3.83812
St.deviation 9.67752 10.71240 9.46285 2.68531 2.29449
Maximum 171.62060 133.99998 115.02129 38.09907 21.52474
Minimum -5.84126 2.93724 1.50400 0.80627 1.27446

• See Table 1 for description of the series.



Table 4. Specification tests for An ARMA (p,q)-GARCH(m,n)-M process model
This table contains the specification tests for the portfolios and the market index.

Port Kurtosis I K-S ARCH RESET BDS BDS
folio 0): Q (6) Ql(6) Skew Z-test (12) (12;6) m=2;E=1. m=3;E=1. Bias

Market 10.5030 11.1220 7.7681 2.0411 14.7699 6.4350 -0.1127 -0.8809 8.9373
Index {0.105} {0.085} -0.77292 {0.001} {O.254} {O.376} {O.396} {0.271} {0.030}

PES{-10,+01} 1.4750 16.6000 5.3392 2.32489 24.0767 9.0870 -0.54479 -0.30297 1.01484
{0.961} {0.011} 0.39462 {O.OOO} {0.020} {0.169} {0.344} {0.381} {0.798}

PES{-20, +05} 2.1460 2.3990 7.5580 3.2737 12.6512 5.2359 1.1746 0.9327 2.1594.
{0.906} {0.880} 0.77751 {O.OOO} {0.395} {0.514} {0.200} {0.258} {O.540}

PES{-40,+40} 6.358 2.852 6.78896 3.25625 8.4179 4.1325 1.95748 2.01692 0.45789
{0.499} {0.827} -0.29074 {O.OOO} {0.027} {0.659} {0.059} {0.052} {0.928}

-p-EJ\{:1å~~61-}----1å~Ei7-----2~~~----~~6(j47'----2~:35----~.i3å1-27'--2~~35i3---6~61-5~1---6~31-9Ei2--1-~651-3er·
{0.099} {0.870} 0.24976 {O.OOO} {0.959} {O.876} {0.330} {0.379} {0.789}

PEA{-20, +05} 13.151 5.054 6.78025 2.30391 9.63868 5.5324 -1.05318 -1.05163 3.69917
{0.041} {0.537} -0.51205 {O.OOO} {0.648} {0.478} {O.229} {O.229} {0.296}

PEA{-40, +40} 6.099 7.417 8.88042 2.38431 10.3041 6.2123 -1.13472 -0.51932 6.81339
{0.412} {0.284} -0.06102 {O.OOO} {0.589} {0.400} {0.21O} {O.349} {0.078}

-P~Ei{:1Ci,~61-}----4~2~å-----5~~58----~j)71-2~--2~Ef4å-i3--Er.155Ef37---3~1-34-5---1~4~9(j8---1~7:22er7---1~å~6-5-·
{0.646} {0.511} 0.37666 {O.OOO} {0.937} {0.792} {O.134} {0.090} {0.605}

PEB{-20, +05} 6.856 9.545 4.63928 2.83914 9.85222 7.2543 -0.93036 0.02778 5.91768
{0.334} {0.145} -0.00765 {O.OOO} {0.629} {0.298} {0.259} {0.399} {0.116}

PEB{-40, +40} 4.897 16.687 3.68873 1.95091 15.5967 10.2354 1.25869 1.18877 27.7879
{0.557} {0.011} -0.35706 {0.001} {0.021} {0.115} {0.181} {0.197} {O.OOO}

-P~~FiS-1----------å~9er7----1-6~1er7---~Ei61-69---2~Ef33i€i9--1-9~4~27--1-i~3~4Er-:å~~6Ef81--:(j.153Er53--~5~61-å~·
{0.174} {0.012} -0.40244 {O.OOO} {0.079} {0.055} {0.391} {O.346} {O.OOO}

PNERS2 4.242 15.763 8.63806 2.55031 10.6054 7.1395 1.14193 0.88291 6.3593
{0.644} {0.015} -0.24548 {O.OOO} {0.563} {0.308} {0.208} {0.270} {0.095}

PNERA1 14.015 15.196 7.19188 2.13189 10.2771 6.8756 0.29656 -0.0075 5.64074
{0.029} {0.019} -0.88133 {O.OOO} {0.592} {0.333} {0.382} {O.399} {0.130}

PNERA2 8.775 13.364 3.95680 2.06189 19.6756 11.5534 -0.78678 -1.13493 13.8863
{0.187} {0.038} -0.57688 {O.OOO} {0.073} {0.073} {0.293} {0.210} {0.003}

PNERB1 6.573 14.074 2.27322 2.55567 20.5588 11.9567 0.32506 -0.10349 26.5459
{0.362} {0.029} -0.31989 {O.OOO} {0.057} {0.063} {O.378} {O.397} {O.OOO}

PNERB2 2.075 11.164 5.24054 2.18029 18.0673 10.8723 -0.40875 -0.4257 15.5956
{0.913} {0.083} -0.23405 {O.OOO} {0.114} {0.092} {0.367} {O.364} {0.001}

0(6) and 02(6) is the Ljung and Box (1976) test of serial correlation up to 6lags. K-S Z-test: Used to test the hypothesis that a
sample comes from a normal distribution. The value of the Kolmogorov-Smimov Z-test is based on the largest absolute
difference between the observed and the theoretical cumulative distributions. ARCH and RESET: see Table 1. BOS (m=2.c=1):
A test statistic for general non-linearity in a time series. The test statistic BOS =T1I2.rCm(cu)- C1(cJ'&rl. where C is based on the
correlation-integral. m is the dimension and e is the number of standard deviations. Under the null hypothesis of identically and
independently distributed (LLd.) series. the BOS-test statistic is asymptotic normally distributed with a zero mean and with a
known but complicated variance.



Table SA. A bivariate ARMA(O,1)-GARCH(1,1)-M model
This table contains the estimated coefficients from the model

Rt = Øo + f (Xb P) + 8· vech( Ht) + Bt - O· Bt-1

Ht =mo'· mo + A'1· Bt-1 . B't-1 . A1 + B'1 . Ht-1 . B1

where st 1£4.1 - N (D,Ht).

Port- Log-like
folio O> lihood ~ ~M 011 OMM 91 9M

PES{-1D,+01} -4250.7 0.16178 0.02765 -0.10016 -0.09744 -0.01611 -0.27032
{1.493} {0.702} -{0.636} -{O.569} -{0.454} -{7.187}

PES{-20,+05} -6018.2 0.20385 0.06213 -0.08404 -0.12865 -0.03518 -0.21495
{0.088} {1.206} -{0.917} -{O.895} -{0.712} -{6.264}

PES{-40, +40} -9023.1 0.07929 0.06801 0.14167 -0.12777 -0.08795 -0.23081
{1.270} {2.748} {1.949} -{1.436} -{3.754} -{10.408}

-PEAFio~+61T-:-543rå---å~r1279----å~04679----o.29356----oT;6ff3---:6~å630·r-:o.21924--
{1.890} {1.511} {1.543} {1.098} -{2.253} -{8.162}

PEA{-20, +05} -6855.9 0.08253 0.07279 -0.05987 -0.03542 -0.08770 -0.20124
{1.623} {2.711} -{O.592} -{O.355} -{3.780} -{8.366}

PEA{-40, +40} -7837.0 0.14128 0.09153 -0.01716 -0.09825 -0.14082 -0.16911
{3.806} {3.931} -{0.218} -{1.338} -{7.096} -{8.420}

-PEBFiO,+61Y---6766~4---6~14å64----0~Oj249----0~214j=t----6~6502-o---:6~å6632--:o.22959--
{2.294} {2.428} {1.774} {0.345} -{2.350} -{9.682}

PEB{-20,+05} -7984.8 0.15355 0.08836 0.05682 -0.09235 -0.07143 -0.21784
{3.031} {3.251} {0.749} -{O.765} -{3.200} -{10.094}

PEB{-40, +40} -8612.1 0.13273 0.08641 -0.06884 -0.08657 -0.15357 -0.18341
{2.839} {3.671} -{0.998} -{1.291} -{7.818} -{9.135}

-PNERSr-------:87or5---å~å-813r---O~()å2-2å----o-.o64j6----:0~02364---0.02412--:o.T5069--
{2.5597} {3.3730} {0.0527} -{0.2384} {1.2166} -{7.4599}

PNERS2 -9247.4 0.06001 0.09389 0.04982 -0.02558 0.00159 -0.15764
{1.6394} {3.9290} {0.7207} -{0.2561} {0.0749} -{7.4040}

PNERA1 -7193.8 0.12788 0.13422 -0.13819 -0.24987 -0.10414 -0.13395
{4.4322} {5.6642} -{1.5715} -{2.9939} -{6.5911} -{8.2239}

PNERA2 -7997.9 0.06227 0.11369 -0.04192 -0.03439 -0.06920 -0.11689
{1.3048} {3.0086} -{0.6694} -{0.4501} -{3.3764} -{4.3093}

PNERB1 -8289.9 0.09333 0.09512 -0.12848 -0.09727 -0.00661 -0.15740
{3.5085} {4.0283} -{1.9348} -{1.0480} -{0.3658} -{7.6919}

PNERB2 -8893.5 0.12070 0.11083 -0.00965 0.00350 -0.04042 -0.16814
{3.7197} {3.9930} -{0.1230} {0.0417} -{2.1387} -{6.9874}

* See Table 1 for a description of the asset series and all parameters and variables are defined in Section 2.3.3.



Table 58. A bivariate ARMA(O,1)-GARCH(1,1)-M model (continued)

Port-
folio 0): mo mO,M mM all alM aMl aMM bll Yl Y2
PES{-10,+01} 2.142 0.294 0.526 0.459 0.056 0.309 0.422 0.692

{5.517} {2.677}{7.271}{5.263} {3.647} {1.585} {6.977} {5.663}
-0.194 0.668 0.067 0.279
-{0.73} {O.OOO}{1.029} {O.OOO}

PES{-20,+05} 0.718 0.355 0.149 0.358 0.008 0.364 0.311 0.937 -0.271 0.877 0.000 0.064
{1.853}{1.385}{0.702}{1.032} {0.206} {0.317} {0.537} {3.315} -{0.33} {61.68} {O.OO}{0.11}

PES{-40,+40} 0.747 0.204 0.361 0.332 0.005 0.073 0.000 0.924 -0.093 0.809 0.015 0.093
{12.10} {3.61} {11.22}{12.44} {0.66} {0.99} {10.31} {87.55} -{1.78} {26.95} {0.75} {2.53}

-P-~{:1(i,~61-}--1-~4å:2--:b~(i36---6:3-53---:å~3(i5--:6~(i35---Ci.~1Er--:(i.:22~---O:5i36----0~~55----6:å~3----6~2(iå---b~1~5Er-
{6.99} -{0.60} {6.95} -{5.68} -{1.79} {4.51} -{3.63} {1.14} {3.34} {23.15} {3.53} {3.15}

PEA{-20,+05} 0.582 0.101 0.309 0.289 0.035 0.053 0.315 0.915 0.001 0.875 0.033 0.066
{8.34} {1.65} {8.94} {8.46} {1.66} {0.59} {7.17} {0.22} {0.02} {35.63} {1.42} {2.04}

PEA{-40,+40} 0.488 0.331 -0.196 0.324 0.038 0.195 0.437 0.940 -0.150 0.832 0.000 0.022
{9.49} {8.24} -{11.4} {11.11} {2.03} {3.93} {12.68} -{0.35} -{5.25} {39.44} {0.01} {1.88}

-P-EEi{:1b~~61-}--1-~4i-3--:b~(i4~--6:~6---b~~~--:6~å-11---:å~9~2---6:1153----6~6i59----b~2-å3----6:7~å----6~1:26---b~:226i-
{12.70} -{0.72} {6.58} {10.00} -{0.56} -{11.7} {3.63} {3.36} {1.42} {13.70} {3.24} {4.67}

PEB{-20,+05} 0.766 0.221 0.260 0.462 0.017 -0.161 0.206 0.862 0.021 0.913 0.000 0.090
{11.24} {5.28} {10.28}{16.99} {1.56} -{2.18} {6.41} -{1.74} {0.54} {65.13} {O.OO}{4.75}

PEB{-40,+40} 0.522 0.317 0.221 0.381 0.034 0.231 0.459 0.917 -0.127 0.823 0.000 0.068
{10.72} {8.33} {12.0} {16.74} {2.87} {4.00} {13.66} -{1.75} -{3.44} {38.60} {0.01} {2.79}

-p-~~~sr1--------å~5Eråå--O:2-å9i5-å~~åEr3--:å~6er2--6~b-5~-i5~44-11--å~~71-å--(i.1i~5--:i5~åå~--b~~åSi6--o~1-25-5-i5~åå-51-
{9.785} {4.250}{13.11} -{2.00} {2.885} {7.860} {8.026} {54.118} -{1.13} {21.23} {6.399} {2.577}

PNERB1

0.5522 0.3756 0.3776 0.269 -0.028 0.2145 0.4555 0.9374 -0.183 0.7524 0.0460 0.0458
{9.879}{4.793} {8.60} {9.49} -{1.78} {3.698} {9.732} {67.762} -{3.03} {17.31} {2.592} {2.017}
0.5341 0.5144 0.1383 0.007 0.2209 0.5050 0.2527 0.9976 -0.249 0.7082 0.0099 0.0001
{9.710} {9.918} {7.38} {0.17} {6.348} {9.967} {5.159} {53.875} -{5.05} {15.03} {2.686} {0.021}
0.4111 0.3458 0.2816 0.263 0.0900 0.2085 0.3715 0.9166 -0.068 0.8387 0.0601 0.0001
{12.65} {9.125} {6.57} {9.22} {3.238} {4.478} {9.377} {53.966} -{1.68} {36.16} {2.082} {0.002}
0.3516 0.3619 0.3380 0.315 0.1465 0.0739 0.3354 0.9395 -0.084 0.7849 0.0308 0.0047
{8.273} {5.304} {8.73} {11.36} {6.448} {1.841} {9.438} {64.019} -{1.88} {22.23} {2.893} {0.248}
0.4154 0.3530 0.2530 0.207 0.0268 0.1545 0.4147 0.9638 -0.092 0.8333 0.0138 0.0001
{7.666} {5.029} {6.97} {7.38} {0.965} {1.544} {5.430} {117.86} -{1.48} {23.51} {1.100} {0.002}

PNERS2

PNERA1

PNERA2

PNERB2

! See Table 1 for a desciption of the asset series

*b1M is not significant in any bivariate estimation and are therefore excluded from the table above due to space requirements



Table 6. Conditional Variance Series for Multivariate Time Series
Multi-Normal density GARCH specification.

Panel A. Conditional variance for Seiling Firm Portfolios
PES{-10,+01} PES{-20, +05} PES{-40, +40} PNERS1 PNERS2

Mean Portfolio 15.94530 18.14798 12.89608 3.66679 5.28875
Mean Market 1.48276 1.37276 1.47878 1.60550 1.59491
St.dev. Portfolio 12.41234 19.76305 15.30360 5.59073 7.15208
St.dev. Market 2.00412 1.03545 2.24548 3.96847 3.41900
Maximum P. 142.72486 271.69155 172.98752 145.49595 134.18385
Maximum M. 38.39453 15.38199 39.81361 119.52256 108.28927
Minimum P. 5.23529 3.54822 0.57991 0.50203 0.69420
Minimum M. 0.37311 0.15723 0.28372 0.48178 0.32480

Panel B. Conditional variance for Acquiring Firm Portfolios
PEA{-10,+01} PEA{-20,+05} PEA{-4O,+40} PNERA1 PNERA2

Mean Portfolio 5.61138 6.54770 3.97344 2.52930 3.01299
Mean Market 1.27385 1.36917 1.70819 1.60098 1.62191
St.dev. Portfolio 2.71816 7.50203 5.73072 3.62445 5.55674
St.dev. Market 0.98278 1.49781 4.50530 3.44173 3.47951
Maximum P. 45.62943 154.09945 143.29059 102.89281 162.48308
Maximum M. 12.49216 20.69934 119.72834 102.75415 116.08961
Minimum P. 3.16866 0.61568 0.34418 0.32414 0.34677
Minimum M. 0.10916 0.15425 0.17270 0.29587 0.24315

Panel C. Conditional variance for Selling and Acquiring Firm Portfolios
PEB{-10,+01} PEB{-20,+05} PEB{-40, +40} PNERB1 PNERB2

Mean Portfolio 8.63431 8.31635 7.08226 2.81985 5.28168
Mean Market 1.33609 1.33883 1.77241 1.57153 1.56266
St.dev. Portfolio 7.89637 11.72502 12.03868 2.67364 6.99355
St.dev. Market 0.62796 0.86673 4.77122 3.36400 3.36986
Maximum P. 96.84432 154.09945 207.93048 58.30610 132.87462
Maximum M. 6.11594 10.98339 116.75448 103.11406 104.83034
Minimum P. 2.52265 0.68603 0.22566 0.13821 1.11655
Minimum M. 0.15523 0.10681 0.10742 0.27968 0.50186

• See Table 1 for a description of the asset series



Table 7. Specification tests for MGARCH (1,1 )-M process model
This table contains the specification tests for the portfolios and the market index.

Port Kurtosis I K-S ARCH RESET BOS BOS
folio 0): Q (6) Q2(6) Skew Z-test (12) (12;6) m=2;E=1. m-3;E-1. Bias
PES{-10,+01} 1.9600 19.2340 4.9976 2.3089 20.5199 11.3321 -0.2743 0.1235 2.0635

{0.923} {0.004} 0.3403 {O.DOD} {O.D58} {0.079} {0.384} {0.396} {0.559}
5.5270 2.0730 7.1715 1.7041 4.2089 1.6854 1.4654 0.0943 0.5852
{0.478} {0.956} -0.2393 {0.006} {0.979} {0.946} {0.136} {0.397} {0.900}
2.0050 2.3440 10.8111 3.0907 9.1256 3.4325 1.86905 1.216585 5.2886
{0.919} {0.885} -0.2634 {O.DOD} {0.692} {0.753} {0.070} {0.190} {0.152}
2.5680 0.7460 6.3717 2.0236 1.3117 1.4512 0.56266 -0.56375 1.3327

Index {0.861} {0.993} -0.3641 {0.001} {1.000} {0.963} {0.341} {0.340} {0.721}
PES{-40,+40} 7.3410 2.8720 10.58408 3.2399 8.4408 4.3786 4.19067 4.100778 2.3795

{0.290} {0.825} -0.40131 {O.DOD} {0.750} {0.626} {O.DOD} {O.DOD} {0.497}
Market 15.3100 1.2560 11.84835 2.1817 1.7175 1.1816 1.49073 0.826279 0.8134
- J_Il~~_~ _lQ~Ql_~L_lqJ!?~ :.Q.~~~_~?~tQ~Q.9_QL__J1J>_QQL {q_.~~~} __._1(L!~_1l _{Q~?_~1L__.{Q·_1!1'?l_.
PEA{-10,+01} 11.672 1.631 3.731813 2.2856 4.7003 1.7654 0.7978 0.6518 0.9945

{0.070} {0.950} 0.176449 {O.DOD} {0.967} {0.940} {0.290} {0.323} {0.803}
9.135 7.277 4.580735 1.5743 11.9616 1.0817 1.2245 0.0226 3.8035
{0.166} {0.296} -0.18505 {0.014} {0.449} {0.982} {0.189} {0.399} {0.283}
12.2 5.256 6.44867 2.2075 9.3264 4.6759 -1.1265 -1.1293 3.7643

{O.D58} {0.511} -0.47747 {O.DOD} {0.675} {0.586} {0.212} {0.211} {0.288}
16.118 1.249 6.976373 1.9303 2.4476 1.5534 1.7236 1.1055 2.5158
{0.013} {0.974} -0.73394 {0.001} {0.998} {0.956} {0.090} {0.217} {0.472}
8.116 9.325 7.087791 2.2417 11.8563 6.1829 -0.9790 -0.6323 6.5191
{0.230} {0.156}· -0.05905 {O.DOD} {0.457} {0.403} {0.247} {0.327} {0.089}

Market 15.242 7.169 11.41769 2.2727 7.6763 2.1823 0.7047 0.3293 5.9318
- I~~~_~ _lQ~Ql_~L_.{Q·_~Q.?l :_LQ~_~1.? _tQ~Q.9_QL__JQJl_!9L {q_._~q?}__._1(L~1_1l {Q~E~} .{Q·_1_!'?l_.
PEB{-10,+01} 3.752 6.232 2.618439 2.3836 8.0282 5.2169 1.7754 2.1156 3.1410

{0.710} {0.398} 0.144248 {O.DOD} {0.783} {0.516} {0.082} {0.043} {0.370}
11.265 5.431 2.982591 1.5392 12.7950 3.4512 1.1727 0.2322 2.5742
{0.081} {0.490} -0.15756 {0.018} {0.384} {0.750} {0.201} {0.388} {0.462}
6.878 7.481 4.33677 2.7998 8.2039 5.5218 -1.0881 -0.0726 1.1817
{0.332} {0.279} 0.036636 {O.DOD} {0.769} {0.479} {0.221} {0.398} {0.757}

Market 12.149 6.877 3.235842 1.5132 7.5304 2.4528 1.4024 0.7946 4.6260
Index {O.D59} {0.332} -0.34495 {0.021} {0.821} {0.874} {0.149} {0.291} {0.201}

PEB{-40,+40} 6.388 13.592 2.981925 1.9258 17.0922 10.8691 1.1043 1.0970 7.4926
{0.381} {0.035} -0.33714 {0.001} {0.146} {0.093} {0.217} {0.219} {O.D58}

Market 16.63 4.685 11.29445 2.2121 5.2376 2.0815 0.9439 0.6377 2.7107
_____J_Il~~~ _l(LQ1_1l .{Q·_~~_51 :_1_~Q~_1_§.?._tQ~Q.9_QL__J9~.9_Q9L {q_.~~?}__._lQ~~?_~L __{Q~~_~§} _lO_.':!?§l_.
PNERS1 8.987 15.187 4.25152 2.6389 20.614907 12.3425 -0.6292 -0.55719 11.1453

{0.174} {0.019} -0.30475 {O.DOD} {O.D56} {O.D55} {0.327} {0.342} {0.011}
15.896 12.459 6.56274 2.0415 12.916444 4.3428 0.27454 -0.34576 7.3957
{0.014} {0.086} -0.67875 {O.DOD} {0.375} {0.630} {0.384} {0.376} {0.060}
4.242 14.763 7.881765 2.6097 8.405008 4.2319 0.77751 0.374474 1.3818
{0.644} {0.022} -0.04503 {O.DOD} {0.753} {0.645} {0.295} {0.372} {0.710}
2.067 17.135 5.94216 1.9944 18.184139 6.8321 0.15298 -0.33397 11.3614
{0.913} {0.017} -0.62726 {0.001} {0.110} {0.337} {0.394} {0.377} {0.010}
15.015 15.196 5.035987 2.3060 11.457897 7.8123 0.0825 -0.14219 9.1288
{0.020} {0.019} -0.74307 {O.DOD} {0.490} {0.252} {0.398} {0.395} {0.028}
16.464 9.662 6.62387 2.0988 17.20038 7.5218 0.10906 -0.3976 9.7842
{0.011} {0.209} -0.65099 {O.DOD} {0.142} {0.275} {0.397} {0.369} {0.020}
8.775 18.364 3.684811 1.8763 16.197043 10.8451 -0.8163 -0.82145 11.7975
{0.187} {O.DOD} -0.52111 {0.002} {0.182} {0.093} {0.286} {0.285} {0.010}
14.893 19.403 6.61759 2.0585 20.066719 8.9218 0.44082 -0.11149 11.7205
{0.021} {0.012} -0.67863 {O.DOD} {0.066} {0.178} {0.362} {0.396} {0.010}
6.573 17.074 2.199467 2.4500 20.5108 11.8923 0.39813 0.011667 11.0150
{0.362} {0.017} -0.3051 {O.OOO} {0.058} {0.064} {0.369} {0.399} {0.010}
14.959 14.621 5.25272 1.8902 14.956496 6.4512 0.42287 -0.0902 8.6598
{0.021} {0.041} -0.52124 {0.002} {0.244} {0.375} {0.365} {0.397} {0.034}
2.075 16.164 4.672887 2.2313 9.155559 4.5129 -0.5923 -0.4118 6.2822
{0.913} {0.020} -0.13246 {O.DOD} {0.690} {0.608} {0.335} {0.367} {0.099}
6.276 17.555 6.83036 2.0281 21.029395 9.8562 0.07892 -0.31816 11.3494
{0.393} {0.014} -0.71207 {0.001} {O.D50} {0.131} {0.398} {0.379} {0.010}

Market
Index

PES{-20,+05}

Market

Market
Index

PEA{-20,+05}

Market
Index

PEA{-40, +40}

Market
Index

PEB{-20, +05}

Market
Index

PNERS2

Market
Index

PNERA1

Market
Index

PNERA2

Market
Index

PNERB1

Market
Index

PNERB2

Market
Index



Table 8. Likelihood Ratio Test for model restrictions.
Panel A. Univariate Specifications.

Sellers Acquirers Both
LRT-Value x2(6) LRT-Value l(6) LRT-Value l(6)

PE{-1D,+D1} 30.5902 {O.DODD} 23.241 {D.DDD7} 26.451 {D.DDD2}
PE{-2D,+05} 28.2318 {0.OD01} 22.852 {0.0008} 25.983 {0.0002}
PE{-40, +40} 27.6051 {0.OD01} 21.438 {0.0015} 25.481 {D.OD03}
_ ....--------_ ........... _-.---_ ......-_ ........----.------------_ .._------------------------_.
Panel B. Bivariate Specifications.

Sellers Acquirers Both
LRT-Value l(6) LRT-Value x2(6) LRT-Value l(6)

PE{-1D,+01} 54.1216 {O.OOOO} 36.4518 {O.DDOD} 41.2431 {O.DODO}
PE{-20, +05} 52.3451 {D.OOOD} 34.5673 {D.DDDO} 40.1219 {O.OOOO}
PE{-40,+40} 49.8781 {D.OOOO} 32.1879 {O.OOOO} 38.5791 {O.ODDO}------------------------------------------.--------------------------------------------------_ .
• See Table 1 for a description of the asset series. LRT - Likelihood Ratio Test statistic.
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Essay no. 7*

Calculating Abnormal Returns in Event Studies:

Controlling for Non-synchronous Trading and Volatility Clustering in

Thinly Traded Markets

Abstract

This paper performs a classical market-model event study controlling for non-synchronous trading and

volatility clustering. In contrast to many international event studies, this paper focuses on differences

created by non-synchronous trading and conditional heteroscedasticity applying OLS and ARMA-

GARCH market model specifications. The results suggest that non-synchronous trading and volatility

clustering induce new market insight. We find no significant prior announcement effects, sustained

higher post announcement abnormal returns for selling firms and no overall significant abnormal returns

for acquiring firms. These results induce changes in event study inferences suggesting a need for a

rework of many classical event studies.

Classification: c32, c52

Keywords: Event-studies, Mergers and Acquisitions, Non-synchronous trading, Volatility Clustering.

* Accepted for publication in Managerial Finance. Offprint version will be submitted as soon as

available.



1 Introduction and literature review

In economics and finance an important measurement is the effects of an economic event on the value of

a firm. Such a measure can be constructed using an event study. Using financial market data, an event

study measures the impact of a specific event on the value of the firm. The usefulness of such a study

comes from the fact that, given rationality in the marketplace, the effects of an event will be reflected

immediately in the security prices. Thus a measure of the event's economic impact can be constructed

using security prices over a relatively short time period. In contrast, direct productivity related measures

might require many months or even years of observations. The event study has many applications and

especially in economics and financial research, event studies have been applied to a variety of firm

specific and economic wide events. In this paper we intend to apply the event study methodology for a

sample of mergers and acquisitions in the thinly traded Norwegian equity market'.

Event study methodology has a long history, which perhaps started by James Dolley's (1933) stock split

study. The level of sophistication of event studies increased from the early 1930s until the late 1960s.

Examples are John H. Myers and Archie Bakay (1948), C. Austin Barker (1956, 1957, 1958), and John

Ashley (1962). The improvements included removing general stock market price movements and

separating out confounding events. Ray Ball and Phillip Brown (1968) and Eugene Fama et al. (1969)

conducted seminal studies in the late 1960s. These introduced the methodology that is essentially the

same as that in use today. Ball and Brown (1968) considered information content in earnings and Fama

et al. (1969) studied the effects of stock splits after removing the effects of simultaneous dividend

increases. In the years since the pioneering studies, the work by Stephen Brown and Jerold Warner

(1980, 1985) summarizes further modifications. Furthermore, the work of R. Thompson in Jarrow et al.

(1995) presented the most recent empirical methods in event studies. However, most studies assume

ideal experiments. Hence, econometric problems are assumed to cancel out. Moreover, as Thompson

points out; "to incorporate increased variance during event periods into the inference problem is an

interesting issue that is not completely resolved in the literature" (Thompson 1995, p. 979).
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This paper will review the event study methodologies under the hypothesis of non-synchronous trading

and volatility clustering in individual asset returns. The economic implication is that events may

influence the return generating process other than through a shift in the level of security prices.

Firstly, event periods may change trading frequency due to a higher information flow to the market and

consequently generally higher financial press coverage. The change in trading frequency may change

non-synchronous trading effects. Non-synchronous trading suggest that individual asset prices are taken

to be recorded at time intervals of one length when in fact, they are recorded at time intervals of other,

possibly irregular, lengths. Generally, especially in thinly traded markets, reported closing prices for

individual assets do not occur at the same time each day because of non-trading. This non-trading effect

induces potentially serious biases in the moments and co-moments of asset returns as shown in

Campbell et al. (1997) and Solibakke (2001a, 2001b).

Secondly, theory might also imply an increase ofresidual risk during an event period'.

Homoscedasticity of the residuals, i.e. their distribution show constant variance, may therefore be

strongly disputed. Giaccoto and Ali (1982) and Boehmer et al. (1991) have shown that if

homoscedasticity is not the case then standard methodology for measuring the effect of a specific event

on security prices, have to be adjusted to take into account the presence ofheteroscedasticity. More

recently, a number of studies, for example Akgiray (1989) and especially Corhay and Tourani Rad

(1994), show that the presence of time dependence in stock return series which, ifnot explicitly treated,

williead to inefficient parameter estimates and inconsistent test statistics. Solibakke (200 l a, 200 lb)

show these effects in thinly traded markets. Applying discrete time ARMA-GARCH lag specifications

for a variety oftrading frequencies, Solibakke finds that thinly traded assets, which show high non-

synchronous trading, report model misspecification. Moreover, Bera, Bubnys and Park (1988) show

that market model estimates under ARCH processes are more efficient. Furthermore, Diebold, lm and

Lee (1988) observed that residuals obtained using the standard market model exhibit strong ARCH

properties.

Thirdly, asymmetric volatility controls for the 'leverage effect' (Nelson, 1991, Glosten et al., 1993).

The asymmetry may change in periods where the information flow is high relative to more normal
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periods. The effect may be more severe in event periods due to higher sensitivity to negative news as

for example announcement from the authorities that they will oppose the merger or acquisition.

Consequently, we examine the impact of correcting the market model applying ARMA-GARCH lag

specifications for bivariate time series estimations. While Boehmer et al. (1991) employ OLS and

adjust test statistic, we enforce synchronous trading, conditional homoscedasticity and symmetric

volatility in our model specification and therefore apply unadjusted test statistics.

We believe this study extends previous works' in several ways. Firstly, we employ a simultaneous

dummy variable specification. Hence, the estimation and event period is studied simultaneously and the

investigation controls for non-synchronous trading, volatility clustering and asymmetric volatility over

both the estimation and the event period. Secondly, we employ a bivariate model. Hence, cross-

correlation effects in conditional mean and volatility can be controlled for in the estimation. The

parameters for the conditional means and the conditional variances are estimated simultaneously for

firm and the market index series. We obtain synchronous trading, homoscedastic and symmetric

volatility for both asset and market index. Moreover, we obtain contemporaneous market dynamics in

both conditional mean and variance equations. Thirdly, using maximum likelihood, the bivariate

ARMA-GARCH model, in contrast to OLS, has shown lower leptokurtosis in return distributions,

making the residuals more normally distributed. Importantly, close to normal residuals indicate

applying unadjusted test statistics. To our knowledge, this event study is so far the most comprehensive

study ofmergers and acquisitions in thinly traded markets. Moreover, our bivariate ARMA-GARCH

lag specification approach applied to classical event studies and the market model is again to our

knowledge not previously found in the international event literature.

The paper is organised as follows. Section 2 gives the details of the empirical model for classical event

studies. Section 3 discusses the market model properties, criticizes the classical assumptions and shows

the necessary adjustments to control for non-synchronous trading and changing and asymmetric

volatility. Section 4 discusses some issues in event-study methodology and relates a two-step and a

simultaneous event study. Section 5 describes the data, adjustment procedures and empirical test

statistics. Section 6 presents the empirical results for the samples and model specifications. Section 7

summarizes and concludes our findings.
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2 The empirical model, residual risk and a measure ofvariability

We focus on common stock returns. We structure the hypothesis in terms of the event's impact on the

rate ofreturn process for the corporation's securities. This hypothesis translates into the hypothesis that

the rate of return earned on that security over an interval spanning the first public announcement of the

event is more positive than normal. The classical event study methodology sets out to measure this

abnormal return. For each security i, let returns follow a stationary stochastic process in the absence of

the event of interest. When the event occurs, the market participants revise their value of the security,

causing a shift in the return generating process. The conditional return generating process then becomes

(I)

for non-event periods and

(2)

in an event period, where RI is the return to a security in period t; XI is a vector of independent variables

not related to the event of interest; B is a vector of parameters; F is a row vector of asset characteristics

or market conditions hypothesised to influence the impact of the event on the return; G is a vector of

parameters measuring the influence of F on the impact of the event; and finally Cl is a mean zero

disturbance with no serial correlation and conditional heteroscedasticity. Hypotheses usually centre on

G (Thompson, 1995).

Most event studies use a non-event period to estimate a forecast model and estimate the event's impact

from forecast errors in the event period. An alternative characterization of the conditional return

generating process under the same assumptions combines the event and non-event periods into a single

model for security i. This model becomes

R =x ·B+D®F·G+cI I} I
(3)

where now the vectors R, C and X contain both event and non-event data while D, represents} columns

of dummies having zeros for non-event periods and ones in the event periods. This characterization of

an event study is in a convenient econometric format. Moreover, the characterization makes it possible

to perform event studies for simultaneous event and non-event periods. Note that the hypothesised
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event-induced variance obstructs conditional homoscedasticity in classical OLS studies. Hence,

applying ARMA-GARCH specifications make changing conditional volatility a part of the model

specification, while constant unconditional volatility is not violated.

Thompson points out: "In an ideal experiment, created in the laboratory, it would be naturalfor firms

to have constant residual variance across event and non-event periods" (Thompson 1995, p. 979).

Most researchers seem to accept this ideal experiment approach. However, as shown by Solibakke

(2000) and noted by Christie (1993), forecast errors seem to have higher variance in event periods than

in non-event periods. Solibakke (2000) shows that changing residual risk, measured by volatility, is

especially strong for seIling firm portfolios around the announcement date. Moreover, Beaver (1968)

shows that a change in variance between event and non-event periods is a test whether or not an event

reports new information to the market. Hence, volatility estimation procedures may affect inferences.

Hence, our paper proposes a market model event study applying a bilateral ARMA-GARCH

methodology controIling for non-synchronous trading, changing and asymmetric volatility for asset and

market series. Hence, we obtain constant unconditional variance and changing conditional volatility

across event and non-event periods. Finally, following Thompson; "if we assume that omitted variables

are drawn independentlyacross the sample from a common population, then the increased variance in

the event periods captures the noise added by the sampling variability of the omitted variables"

(Thompson 1995, p. 980).

The same story can be obtained from time series analysis. The time-series analysis hypothesises

increased volatility in event periods caused by increased information flow. Hence, the volatility process

distribution changes from non-event to event periods. From economic intuition the increased

information flow makes sense. Market microstructure phenomena as rumours, insiders and coincident

observers may obtain information details that make information asymmetric in the market. Trading on

for example asymmetric information may produce price changes and will probably increase the

volatility of the asset. Therefore, Collins & Dent (1984) suggested scaling the covariance matrix

estimated in non-event periods by a factor strongly influenced by the estimated residuals from the event

period.
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By employing ARMA-GARCH methodology we are able to study changes in mean parameter estimates

from the classical market model OLS estimates, by modelling the latent volatility process. Any change

in inferences and different interpretation of the economic significance of events together with changes

in mean parameter suggest a need for a rework of many previously performed classical event studies.

3 The Market model

3.1 The OLS market model specification with assumptions

Empirical researchers in financial economics widely use the market model for measuring the impact of

an event on the shareholders wealth or testing market efficiency. This model relates the returns of an

asset, R"I> to the returns of a market portfolio, RM.I> through a slope coefficient, fl" which is the asset's

market and relevant risk

for i = 1, 2, .... , N (4)

where a, is the intercept, N is the number of assets in the sample and t represents time. Hence, event

studies include the contemporaneous rate of return on the market index as x in (1). In the ordinary least

square (OLS) model, returns on a given asset i, are regressed against concurrent returns of the market.

The announcement effect, F· G , is estimated by the market model forecast error cumulated over the

event periodes). Fama, Fisher, Jensen, and Roll (1969) suggested this OLS returns model in their study

of stock splits. However, x may include the return on a similar firm or portfolio of similar firms that do

not have the event of interest".

Certain assumptions have, however, to be satisfied to have efficient parameter estimates and consistent

test statistics based on them. The first assumption is constant coefficients for the market modelover

time. Iq bal and Dheeriya (1991) resist this assumption and employ a random coefficient regression

model allowing betas (fl) to vary over time. They argued that the differences in abnormal returns

obtained using the market model and their model can be attributed to the randomness in the beta

coefficients. Secondly, Scholes and Williams, 1977, have recognized the potential for bias in the OLS fl

estimates due to non-synchronous trading. For securities traded with trading delays different than those

of the market, OLS fl estimates are biased. Likewise, for assets with trading frequencies different than
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those of the market index, OLS p estimates are biased. For actively traded stocks, the adjustments are

generally small and unimportant. However, for thinly traded assets, trading frequency in isolation and in

contrast to the market index is a real threat to the abnormal return results. Thirdly, classical studies

assume homoscedasticity of the OLS residuals (constant variance). Giaccoto and Ali (1982) and

Boehmer et al. (1991) have shown that ifthis is not the case, the standard tests to measure the effect of

a specific event on security prices have to be adjusted to take into account the presence of

heteroscedasticity.

All three cases suggest a rejection of the simple OLS market model. Below we propose an alternative

model specification adjusting for non-synchronous trading and changing and asymmetric volatility.

3.2 The Bivariate ARMA-ARCH/GARCH specification5 of the market model

Non-synchronous trading and temporal time dependence in stock return series can be handled by an

ARMA -ARCHIGARCH methodology employing a market model event study. The ARMA model is

applied for the conditional mean (Mills, 1990) and the GARCH model is applied for the conditional

volatility (Bollerslev, 1986). ARCH/GARCH methodology was first introduced by Engle in 1982 and

refined and extended by Bollerslev in 1986 and 1987. Engle and Kroner extended the models to the

multivariate case in 19956•

The diagonal bivariate ARMA (p,q}-GARCH (rn,n) market model, adjusting for non-synchronous

trading (Bi, BAJ), asymmetric volatility (y;, rAJ) and conditional heteroscedasticity are defined as

~ ~
Ri,1 =a; + LØi,j ·Ri,l_j +{3i,1 'SM,I +ri~j ·D~j,t +Sj,t - L Bj,j 'Si,I_; (5)

,=1 ;=1

m n

E(Si~1 1<1>,,1-1) = h., = mi + Lai,l-j . Si~/_j+ Lbi,I-J . hi,l_j + ri:1 .Di:1 . Si~/-1 (6)
j=1 j=1

~I qu

RM,I =ou + LØM,J ·RM,I_j +SM,I - LBM,j 'SM,I_j (7)
;=1 j=1
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V DV 2 .
rM,)' M,' 'GM,,_)

for i= l, ....N, where Ri" is the asset and RM" the index return in period t; Ci,'and CM" are the error terms

for the two mean equations (5) and (7) in period t, Ø;,i' ØM,;, 8;.} and ~.} are the non-synchronous trading

parameters at lag} and rt, is the event window}'s abnormal return for firm i. For asset (i) and index

(M), respectively, the conditional variances hi" and hM" (conditional on the information set at time t-1, .

(/),-1) depend themselves upon the following parameters: mi and mu are the constant terms; ai.; and aM"

are the parameters for the lagged squared error at lag}; bi,; and bM,i are the parameters for the lagged

conditional variance at lag}; r.. and YUI are the parameters for asymmetric volatility where tr; (DvM,,)

is a dummy variable taking the value one when C"t_1 (CUt-I) is less or equal to zero", The ARMA (p,q)

specification in (5) and (7) for the bivariate conditional mean is a serial correlation specification that is

able to model non-synchronous trading. The GARCH (m,n) specification in (6) and (8) for the bivariate

conditional volatility specifies time-varying and symmetric conditional volatility (h,). Note, as shown in

Solibakke (2000) the in-Mean specification is redundant for bivariate specifications. The bivariate

ARMA-GARCH model allow for non-linear intertemporai dependence in the residual series (Solibakke,

2001b). Bera, Bubnys and Park (1988) showed market model estimates under ARCH processes are

more efficient. Moreover, Diebold, 1mand Lee (1988) observed that residuals obtained using the

standard market model exhibit strong ARCH properties. Solibakke (2000 and 2001a) shows that

employing ARCH (5) or GARCH (1,1) specification removes all ARCH-effects in residuals applying

Norwegian individual asset, portfolio and index series.

Many authors before us have identified the hazards ignoring non-synchronous trading and event-

induced variance in event studies". As we already noted in Section 2, non-synchronous trading and

changing and asymmetric volatility may lead to inefficient parameter estimates and inconsistent test

statistics. As we here employ ARMA-GARCH methodology we may obtain synchronous trading,

conditional homoscedasticity and symmetric volatility. Hence, as our specification removes several

OLS assumptions, we may obtain a sounder basis for event-studies.
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4 Event Study Methodology

4.1 Event and Non-Event periods; issues in methodology

In event studies, the objective is to examine the market's response through the observation of security

prices around such events. For merger and acquisitions it is related to the release of information to

market participants through the financial press (e.g., Børskurslisten, Aftenposten, Dagens Næringsliv).

Normal or predicted returns for an asset are those returns expected ifno event occurs. For mergers and

acquisitions most event studies measure normal returns byestimating normal market model parameters

over a time period prior to the period immediately surrounding the event date. The time line for a

typical event study for merger and acquisitions may therefore be represented as follows

~ ~ ~I ~-1~-------4I----~'----~1
Estimation Period Event Period

where fh is the first period used in the estimation of a normal security return; fpr• is the first period used

in the calculation of abnormal returns; t, is the event date; and fpost is the last period used in the

calculation of abnormal returns. Post event-period data will not be employed for obvious reasons.

In the literature we usually find a selection of fpre equal to -40 days to t, and I'Hlst equal to + 40 days of fe'

The length of the estimation period is a weight of benefits of a longer period and the cost of a longer

period. Usually, we find a choice from 12 to 14months prior to the event announcement (t.). Hence,

there are from 230 to 270 daily return observations. This event study like most events studies, uses the

non-event period to estimate a forecast model and estimates the event's impact from forecast errors in

the event period. In addition, we employ the alternative characterization of the conditional return

generating process under the same assumptions. Hence, we combine the event and non-event periods

into a single model for security i. The two models are referenced as (2) and (3), respectively, in section

2 above. This approach maintains an algebraic equality between forecast errors from a two-step

approach and the individual event period multiple regression event parameters. Finally, if an asset is

involved in merger and acquisitions in the estimation period, we exclude a 10-day price period for this

asset around the earlier event day.
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4.2 Abnormal returns and statistical significance

4.2.1 Estimation in an Estimation Period and Forecasting Abnormal Returns

The abnormal returns (also referred to as the excess stock return or the prediction error) for an

individual security for a given period is the difference between the observed return for that period and

the expected or predicted return for that period: ARi,t = Ri,t - Ri:t, where ARi.t is the abnormal

security return for security i in period t; Ri,t is the return on security i in period t; and Ri~t is the

expected return on security i in period f. The market model suggested by Fama, Fisher, Jensen, and Roll

(1969) is employed forRi't • Aggregation of the individual security abnormal returns requires examining

the cross section of abnormal returns for each period, where each period is relative to fe, and fe may be a

different calendar time period for each security; thus, abnormal returns are aligned in event time. The

mean abnormal return on a given day t for a portfolio of securities, ARN.t, is the arithmetic mean of ARi,t

1 N
for the particular day t: ARN,t = - .L ARi,t . Now to calculate the cumulative effect, the individual

N i=1

ARN.t are accumulated over a number ofperiods to produce a cumulative abnormal return (CAR):

T

eARN t =!ARN,t ' where CARN.t is the cumulative abnormal return for N securities for a period of
t=T,

length n; Tl and T2 is the first and last period in which the ARN.t are accumulated. The statistical tests

related to abnormal stock returns require the use ofthe standard error of the forecast. For the market

model, the standard error of the forecast for period fis:

1
1+-+

T

I
2

(RMt -RM)2

7'

L(RMj-RM)2

}=1

, where Si,f.tis the standard error of the forecast for

security i in period t in the event period; T is the number of periods employed in the regression equation

for parameter estimation; RM,i is the market return for periodj within the estimation period; RM.t is the

market return for period t within the estimation period; RM is the mean return on the market over the

estimation period; and Si,e is the standard error of the estimate for security iover Tperiods in the

estimation period. Dividing the abnormal return by its estimated standard error yields a standardized
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b
A~,

a normal return for a particular security on a given day: SARi,1 = __ ' ,where SARi I is the
Si.!,1 '

standardized abnormal return for security i in period t. The portfolio or sample standardized abnormal

returns for a given day t are summed and divided by the square root of the number of securities in the

I N
portfolio: SARN,I = JN' ~ SARi,1 ' where SARN,I is the standardized abnormal return for a group

of N securities on day t. If SARi,1 are independent and identically distributed with a finite variance, the

SARN,I are distributed unit normal for large ]'f. Finally the standardized cumulative abnormal return for

a group of N securities, SCARN,,,, can be calculated as: SCARN = JNI . ~ SARN ,where
,n N LJ ,I

1=1

SCARN,II is the standardized cumulative abnormal return for a group of N securities over n periods.

SCARN,II is assumed to be distributed unit normal in the absence of abnormal security performance.

However, this specification of the abnormal return is a two-step analysis where the event induced

variance is measured through the Sij.1 term. As shown by Solibakke (2000) the Si,eterm is significantly

lower during non-event periods than in event periods. Adjusting by employing the Sij.1 term will only

measure volatility changes from the total market level. This methodology seems not adequate relative to

a simultaneous analysis",

4.2.2 Simultaneous Estimation and Abnormal Return Calculation

As shown in Section 2, a convenient alternative characterization of the conditional return generating

process under the same assumptions, we combine the event and non-event periods into a single model

for security i applying the form

(9)

where the vectors Ri, c" RM and CM contain both the event and non-event data while Di can be viewed as

a matrix of zero-one variables, letting each column indicate a single event period. J'; can be interpreted

as the sum of the individual event period effects, Time series estimates of variability can be combined

with estimates of individual asset effects in a number ofways. However, as we wish an unbiased
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estimate of the mean effect and a test of significance, this study tests the significance of the average

event effect by using the time series estimates ofvariability to construct an estimate ofvariability for

the arithmetic mean. To test for significance of the mean event effect, we compute the statistic

i=1 , where ]'i is the event effect for asset i and o, is the estimate of the standard error of]'i1

(±CT/)2
/=1

around the true event effect for asset i. This statistic is equivalent to an OLS regression offorecast

errors on a column of ones giving us a classical t-statistic. Here, the numerator and denominator both

apply reference to asset i. However, note that the standard errors from OLS cross-sectional regressions

are often ignored because they fail to account for neither non-synchronous trading nor conditional

heteroscedasticity.

5 Data

The study uses daily continuously compounded returns ( In[( ~ )] ) of individual Norwegian stocks
St-)

and indices spanning the period from April l st 1983 to April l st 1994. These daily returns are scaled to

avoid possible scaling problems in estimation. Let w denote the variable to be adjusted. Initially, the

regression to the mean equation W = X • f3 + U is fitted, where x consists of calendar variables, which

are most convenient for the time series and contains parameters for trends, week dummies, calendar day

separation variable, month and sub-periods. To the residuals, fl, the variance equation model

-2
U

fl2 = x- r + E is estimated. Next ~ is formed, leaving a series with mean zero andvex.y

U
(approximately) unit variance given x. Lastly, the series W = a + b- ( ~) is taken as the adjusted

vexy

1 TIT

series, where a and b are chosen so that T' L/'=I Wi = - .LWi and
= T /=1

T T
_1_.L (w/ - W)2 = _1_.L (fli - ul. The unit ofmeasurement of the adjusted series is the
T - 1 i=1 T - 1 i=1

same as that of the original series. The data set is obtained from Oslo Stock Exchange Information AfS.
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To proxy for the market we employ the value weighted market index from Oslo Stock Exchange

(TOTX) that is also scaled according to the above described procedures.

The sample period includes the crash ofOctober 19, 1987. There is no reason to exclude these outliers

since they reflect the nature of the market. This high frequency time-series database gives us potentially

2725 observations for each firm and index. The merger and acquisition selling firm sample consists of

126 Norwegian and foreign (listed on Oslo Stock Exchange) firms. The acquiring firm sample consists

of282 Norwegian and foreign (listed on Oslo Stock Exchange) firms. For the selling firms the sample is

approximately 50% of the population in the period. For the acquiring firms the sample is approximately

65% of the population. The information is retrieved manually from the "Børskurslisten" l l published by

the Oslo Stock Exchange. All forms ofmergers and acquisitions are included in the sample". Finally, to

secure ergodic and stationary time series we adjust all time series for systematic location and scale

effects (Gallant, Rossi and Tauchen, 1992).

Moreover, we apply the BIC (Schwarz, 1978) forPi, qi, mi and ni and i = i,M, lag sizes in ARMA (p.q)-

GARCH(m,n) specification. For the value weighted Norwegian market index, the ARMA (0,1) model is

preferred (Solibakke, 2001a). Moreover, using the BIC criterion (Schwarz, 1978) on the squared

residuals, produce an ARMA (I, I) specification for the index. This result implies a GARCH (1,1)

specification for the conditional variance process. Individual assets in the sample prefer almost

exclusively an ARMA (0,1)-GARCH (l, I) specification. However, some assets prefer P 2:: O and q = O,

p=Il and q 2:: J. None of the assets prefer higher p=q=nel. All assets prefer m=J. Hence, the most

elaborate specification for individual assets are ARMA (2,2)-GARCH (1,2)13.

6 Empirical Results from a bivariate ARMA-GARCH specification

The OLS market model is denoted LSOLS and the multivariate GARCH model, is denoted MLMGRcH'In

the LSOLS market model the residuals are assumed to have a mean of zero and a constant variance

(homoscedastic residuals), while in the alternative MLMGRcHmodel, residuals can be controlled for non-

synchronous trading and conditionally heteroscedasticity. Asymmetric volatility is adjusted for

throughout the terms y; and YM for asset i and the market index (M), respectively, in the conditional
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volatility equation. We therefore apply the simultaneous estimation methodology from Section 4.2.2, to

fully exploit all the advantages ofthe ARMA-GARCH lag specifications and to be able to apply

unadjusted test statistics.

The average mean event effects for several event periods are reported in line lofTabIe l for the OLS

regressions and in Table 2 for the bivariate GARCH regressions. Percent negative observations are

reported in line 2 and statistical significant average event effects using the defined test statistic in

section 4.2.2 are reported in line 3. Standard t-tests are employed using classical significance levels. A

Z ... d i I· 4 d i d fi d G - M .p .-statisnc IS reporte m me an IS e me as ~ , where G IS the number of negative
M·p·(1-p)

parameter estimates, M is the total number of parameter estimates, and p is the probability of a negative

parameter estimate. A null hypothesis of zero event effects set the probability p equal to 0.5. Table l

and 2 report the main results.

{Insert Table l and 2 about here}

We approach the selling firm's sample in Panel A ofTable l and 2. Firstly, we find no significant prior

anticipation in MLMGRCHin contrast to LSoLs. For the event period -10 days to +1 day (E-10+ 1)

relative to announcement day (te) shows a t-value of 2.00 for the OLS estimation and 1.02 for the

bivariate ARMA-GARCH estimation. Even though the average parameter effect has increased in the

MLMGRCHspecification relative to LSoLs, the standard error of the parameter has increased relatively

higher so that the t-ratio becomes insignificant for the MGARCH specification. Our results suggest no

abnormal return for selling firms prior to announcement in MGARCH in contrast to OLS. Secondly, the

MGARCH model suggests higher significance of abnormal returns in the post announcement day (te)

period. For post period -l to +20 relative to announcement day (E-I +20) and -l to +40 relative to

announcement day (E-I +40), the results suggest that the abnormal returns accrue to the shareholders of

selling firms the first 20 days of the post event period. The significance of the {E-I+20} calculations is

4.36 in contrast to 4.30, even though the coefficient is lower in the MGARCH estimation; that is 0.3 to

0.26. However, both techniques suggest a substantial abnormal return to shareholders of selling firms.

Moreover, we find no reversal effect from day +20 to +40 relative to announcement day in MLMGRCHin

contrast to LSoLs.
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For the acquiring firm's sample in Panel B ofTable l and 2, our main finding is that we find no

significant abnormal return for any of our pre-defined event periods in MLMGRCH.In the LSOLS

specification our results suggest significant abnormal return close to announcement day (E-I +2).

Hence, for the MLMLGRCHestimation we find an overall insignificant event effect for acquiring firms.

The MLMGRCHresults seem to suggest higher information flow and consequently higher volatility

(higher standard errors) and hence, insignificant abnormal returns. The observation is interesting and is

probably a result of an increase in volatility as documented in Solibakke (2000) for event periods.

Specification tests are summarized in Table 3. The null hypothesis (Ho), the proportion of OLS

misspecifications is the same or less than the proportion of ARMA-GARCH misspecifications are

strongly rejected. Hence, overall the ARMA-GARCH model specifies lower degree of

misspecifications than the OLS model, which suggests fewer violations ofmodel assumptions. Our

results therefore seem to emphasize the finding that our ARMA-GARCH specification results may

calculate abnormal return more adequately than OLS.

{Insert Table 3 about here}

The differences observed between these two models are due to the magnitude and dispersion of the a

and p estimates over the samples. The properties of a, p and yl4 from our specifications are reported in

Figure 5, 6, and 7, respectively. The distributions of coefficients for LSOLSand MLMGARCHare slightly

different over the samples for the three coefficients. The intercept coefficient, a, has a higher positive

mean for the LSOLSthan the MLMGARCHmarket model and the standard error is lower for both selling

and acquiring firms. The slope coefficient, p, has a slightly lower mean and a slightly higher standard

error for the LSOLSthan the MLMGARCHspecification for acquiring firms. For selling firms the LSOLS

mean and standard error for beta (P) are strongly higher than for MLMGARCH.Hence, we find that the

sellers are more responsive to market movements, due to non-synchronous trading and conditional

heteroscedasticity. The event coefficient, y, is reported for {E-l+20} for selling firms and {E-l+2} for

acquiring firms. For the selling firms we find lower coefficient (0.04) and higher standard deviation

(0.09) for MLMGRCHthan for LSOLS.Hence, the growth in standard deviation out weighs the reduction in

the coefficient. For the acquiring firms and event period minus one day to plus two days relative to

announcement, we find both a higher coefficient and higher standard deviation. Also here we find a
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stronger increase in the standard deviation relative to the increase in the coefficient. Hence, for

acquirers event coefficients show lower significance in MLMGRCHrelative to LSoLs.In contrast sellers

show lower significance in MLMGRCHfor pre-announcement periods and close to higher significance in

post-announcement event periods.

{Insert Figure 1,2 and 3 about here}

Our results suggest that the MLMGRCHapproach for event period estimation seems to be worth the extra

effort for the calculation of abnormal returns. The relative large change in variance relative to mean

seems indeed to change inferences in event studies. Moreover, for both assets and index series, the

specification Z-tests suggest a strong preference for ARMA-GARCH lag specifications relative to OLS.

The event-study results are therefore more adequately modelled in the ARMA-GARCH specification

accounting for non-synchronous trading and changing volatility.

7 Summaries and Conclusions

The main purpose for this paper is to estimate market model parameters in classical market model event

studies adjusted for non-synchronous trading and changing and asymmetric volatility. Even though

there is no intrinsic interest in estimating the conditional variance, the market model should be

estimated by maximum likelihood in order to obtain more efficient estimators of the regression

parameters. The lack of efficiency of the least square estimator may result in such a poor estimate that

the wrong conclusion may be drawn. Applying ARMA-GARCH methodology and a simultaneous

estimation and event period specification, incorporates synchronous trading, constant and symmetric

volatility in event studies. The results suggest that the calculated effects may lead to different

interpretation of the economic significance from event announcements controlling for non-synchronous

trading and volatility clustering in thinly traded markets. The presence ofGARCH does not violate the

assumptions of the second order properties of the least square estimator. However, the differences in

abnormal returns obtained in our study are due to the fact that the coefficient estimates of a and p using

the OLS market model are inefficient since they are not adjusted for GARCH (conditional

heteroscedasticity). When the OLS market model residuals are tested for the presence of GARCH using

the Lagrange Multiplier approach of Engle (1982), a strong evidence of ARCH properties is revealed.

The GARCH models resolve this problem, and the estimators are more efficient. The economic
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significant changes in results from the OLS to the ARMA-GARCH specifications are summarised

below.

The main results from the multivariate ARMA-GARCH specification suggest that there is no prior

anticipation in MLMGRCHfor either selling or acquiring firm samples. The "close to the announcement

day" effect for the acquiring firm's sample in OLS estimation is rejected in the MLMGRCHspecification.

In fact, for acquiring firms we find no significant event effects at all in the MLMGRCHspecification. For

selling firms the abnormal return in the post announcement period show increase in both level and

significance relative to LSOLS• We find no reversal to zero of abnormal return from day +20 to +40 in

MLMGRCHrelative to LSOLS• We find no prior anticipation for selling firms in MLMGRCHin contrast to

LSOLS• Moreover, specification tests report significantly lower model misspecifications for the ARMA-

GARCH than for the OLS specification. Hence, our findings suggest that MLMGRCHestimation for event

studies do indeed change inferences applying a simultaneous estimation and event period investigation.

Therefore, applying the simultaneous MLMGRCHmethodology, our results suggest that classical studies

should be replicated to control for non-synchronous trading and changing and asymmetric volatility

often found in classical LSOLS studies. In fact, our results suggest that the ARMA-GARCH methodology

claims a more efficient market with no anticipation and reversal.
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l We employ a sample of mergers and acquisitions in Norway from April 1st 1983 to April l" 1994, a

total sample of 512 firms.

2 We do not assume a change in systematic risk (beta). The firm specific (unsystematic) risk may

change due to higher information flow and higher financial press coverage.

3 See for example the mergers and acquisition study in Eckbo and Solibakke, 1992.

4 See Solibakke, 2000 for portfolios in event and non-event periods.

5 For application, see Bollerslev et al. 1992.

6 Two formulations are available: BEKK formulation (Bollerlev, Engle, Kraft and Kroner) and VEC(H)

formulation. VEC(H) formulation allows non-positive conditional variance (HI).

7 The asymmetric specification is the well-known GJR-specification (Glosten et al., 1993). An

alternative asymmetric specification is Exponential GARCH (EGARCH). However, the GJR

specification is Lagrange Ratio preferred to EGARCH in over 96% of the bivariate estimations.

8 See Boehmer et al, 1991, Brown, 1988, 1989.

9 Applying the central limit theorem.

10 Two-step ARMA-GARCH lag specifications are available from author upon request. The results

seem to confirm that a two-step procedure does not adequately control for non-synchronous trading and

volatility clustering relative to a simultaneous procedure.

Il Also "Dagens Næringsliv" and "Aftenposten" are used for collection of information.

12 The whole list of acquiring and selling firms in the two samples are available from the author upon

request.

13 The BIC preferred lag structure for individual asset must be considered in each estimation while the

marked index always prefer the same specification, defined above.

14 Minus l day to plus 20 days relative to announcement day for seiling firms and minus 1 day to plus 2

days relative to announcement days for acquiring firms.
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Table 1. OLS market model; LSoLs

Average and standard deviation; % negatives; t-ratios and a Z-statistic

PANEL A: Selling firm sample

LSOLS

Alfa Beta E-10+10 E-1+20 E-10+1 E-1+2 E-40+0 E-1+40 E-40+40
Average 0.0051 0.7161 0.1921 0.3024 0.1819 0.0856 -0.0007 0.0725 0.0341
Std. error 0.0157 0.0210 0.0663 0.0703 0.0911 0.1164 0.0537 0.0492 0.0399
Negatives 49.59 % 9.51 % 33.70 % 30.43 % 41.30 % 45.65 % 46.74 % 48.91 % 47.83 %
T-ratio 0.3264 34.1584 2.8992 4.3047 1.9959 0.7358 -0.0122 1.4735 0.8560
Z-statistic -0.0782 -7.7672 -3.1277 -3.7533 -2.0851 -0.8341 -0.6255 -0.2085 -0.4170

PANEL B: Acquiring firm sample

LSOLS

Alfa Beta E-10+10 E-1+20 E-10+1 E-1+2 E-40+0 E-1+40 E-40+40
Average 0.0345 0.8803 0.0617 0.0297 0.0454 0.1644 -0.0178 0.0005 -0.0146
Std. error 0.1822 0.3881 0.4747 0.4494 0.7958 1.3515 0.3780 0.3627 0.3009
Negatives 40.8% 1.77 % 47.5% 50.7% 50.7% 45.0% 53.9% 50.0% 51.4%
T-ratio 2.5335 82.1495 1.4916 0.6978 0.7954 1.9868 -0.6326 0.0160 -0.6221
Z-statistic -3.0966 -16.197 -0.8337 0.2382 0.2382 -1.9674 1.3101 0.0000 0.4764

E-10+10 =
E-1+20
E-10+1
E-1+2
E-40+0 =
E-1+40
E-40+40 =

Event period dummy from day -10 to day +10 relative to announcement date
Event period dummy from day -1 to day +20 relative to announcement date
Event period dummy from day -10 to day +1 relative to announcement date
Event period dummy for day -1 to day +2 relative to announcement date
Event period dummy for day -40 to day +0 relative to announcement date
Event period dummy for day -1 to day +40 relative to announcement date
Event period dummy for day -40 to day +40 relative to announcement date



Table 2. Bivariate ARMA (p,q) - GARCH (m,n) model**; MLMGRCH
Average and standard deviation; % negatives; t-ratios and a Z-statistic

PANEL A: Selling firm sample*

MLMGRCH
Alfa Beta E-10+10 E-1+20 E-10+1 E-1+2 E-40+0 E-1+40 E-40+40

Average -0.06940 0.96153 0.17451 0.26276 0.22254 0.12254 0.02254 0.22420 0.02542
Std. error 0.01992 0.04324 0.09045 0.06033 0.21833 0.13046 0.03049 0.05416 0.01062
Negatives 65.94 % 9.42 % 46.74 % 34.78 % 50.00 % 51.50 % 51.00 % 37.50 % 43.50 %
T-ratio -3.48342 22.2373 1.92935 4.35576 1.01928 0.93928 0.73928 4.13928 2.39277
Z-statistic 3.05821 -7.78454 -0.62554 -2.91920 0.00000 -0.42515 -0.25150 -2.51500 -1.95234

PANEL B: Acquiring firm sample*

MLMGRCH
Alfa Beta E-10+10 E-1+20 E-10+1 E-1+2 E-40+0 E-1+40 E-40+40

Average -0.0032 0.8368 0.0614 0.0750 0.0794 0.2088 -0.0164 -0.0036 0.0025
Std. error 0.1880 0.4180 0.6350 0.5965 0.7303 1.8050 0.4353 0.5277 0.4066
Negatives 50.00 % 1.77 % 45.04 % 46.81 % 47.52 % 46.10 % 52.84 % 49.29 % 53.90 %
T-ratio -0.2082 80.7296 1.6193 1.5504 1.4382 1.5850 -0.5341 -0.1096 0.0736
Z-statistic 0.0000 -16.1974 -1.6674 -1.0719 -0.8337 -1.3101 0.9528 -0.2382 1.3101

• See Table 1 for event period specification .
•• The ARMA(p,q) and GARCH(m,n) are based on the BIC (Schwarz et at., 1978) for the raw returns and the
squared residuals, of individual assets and index, respectively.



Table 3. Propotion misspecification

Selling Firms
Acquiring Firms

Panel A. ARMA-GARCH proportion model misspecifications
0(6) 02(6) ARCH(6) RESET(12;6)

0.075269 0.075269 0.075269 0.0752688
0.032051 0.044872 0.044872 0.025641

BOS m=2 BOS m=3

0.075269 0.075269
0.076923 0.089744

Selling Firms
Acquiring Firms

Panel B. OLS proportion model misspecifications
0(6) 02(6) ARCH(6) RESET(12;6)

0.763441 0.817204 0.817204 0.5376344
0.717949 0.801282 0.801282 0.5128205

BOS m=2 BOS m=3

0.913978 0.924731
0.865385 0.884615

Panel C. Z-test (5%) for Proportion misspecification in OLS <= ARMA-GARCH
Z-test Selling Firms 9.509929 10.17766 10.17766 6.8390006 11.43914 11.58512
Z-test Acquiring Firms 12.51269 13.52185 13.52185 9.70027 13.95024 14.04485

(
difference in ) (difference between proportions)
observed proportions under the null hypothesis

Z5% =~----------------~--~--------------------------~
Estimated stan dard error of the difforences

0(6) : Ljung and Box (1976) statistic for serial correlation up to lag 6; 02(6) : serial correlation for squared series up
to lag 6. ARCH (6): a test for conditional heteroscedasticity in returns. Low {.} indicates significant values. RESET
(12,6) : A sensitivity test for mainly linearity in the mean equation. 12 is number of lags and 6 is the number of
moments that is chosen in ,our implementation ~f the .te~t sta!istiC.T~2 is l distribute~ ~ith 12 d~rees of freedom.
BOS (rn=z.s=t): A test statistic for general non-hneanty In a time senes. The test statistic BOS =T 12.[Cm(at)-
C1(a't)"'], where C is based on the correlation-integral, m is the dimension and t is the number of standard
deviations. Under the null hypothesis of identically and independently distributed (LLd.) series, the BOS-test statistic
is asymptotic normally distributed with a zero mean and with a known but complicated variance.
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