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Chapter 1

Introduction

In this dissertation we combine finance/real option theory with principal-agent
theory and auction theory, using stochastic calculus. The topic is asymmetric
information, valuation of uncertain and irreuersible investments, and optimal
strategies. A decision maker has a real option consisting of a right to implement
some project by paying some investment cost. One or more agents have private
information about some state variable affecting the investment profitability. The
project owning principal and the privately informed agent enter into a mutually
beneficial contractual relationship. We show that asymmetric information causes
an additional wedge affecting the critical price of project implementation, with the
inverse hazard rate being a key component. The owner of the project constructs an
optimal contract where the compensation to the agent depends on only observable
variables at the time the investment decision is made. The decision to be made
is formulated as an optimal stopping problem.

In this introductory chapter the topic of the thesis is motivated, an outline of the
thesis is given, the theoretical background is briefly presented, and some related
literature is discussed.

1.1 Motivation

The uncertainty considered in the real option literature is usually uncertainty that
is common knowledge. However, in many investment projects some uncertainty
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is privately revealed, and this may result in incentive problems. This aspect is
studied in this dissertation. By introducing asymmetric information we extend
previous results on valuation and strategies of uncertain investments, using a
principal-agent framework and an auction setting, respectively.

The benchmark model is a classic real option problem. An investor owns a right
to invest in a project, and his optimization problem is to find the optimal time
to invest in the project. The incentive problem arises because an agent has pri-
vate information: the owner of the investment needs an expert to manage the
investment project, as the owner does not possess the technical knowledge of the
investment. In chapters 2-4 we assume that the expert privately observes the
investment cost, whereas in the last chapter the expert privately receives signals
about the output value of the project. The investor and the expert enter into a
contractual relationship. We find optimal compensation functions, that induces
the expert to make the decisions preferred by the investor. Due to the incentive
problem, the optimal investment strategies found are inefficient compared to the
benchmark case of no private information. In our framework incentive problems
lead to under-investment when the private information is constant, whereas the
effect on the optimal investment strategy is ambiguous when the private infor-
mation is driven by a stochastic variable.

Note that the investor cannot do better than to enter into a contractual rela-
tionship as specified in the principal-agent models (chapters 2, 3 and 5) and the
auction model (chapter 4)l. This means that the investor is better off byentering
into a contractual relationship, than to sell the option to invest. The reason is
market failure because of asymmetric information. If the investor ex ante wants
to sell the investment project at a price based on his expectation of the invest-
ment cost, the investor knows that if the agent accepts the price, the investor
can do better byentering into a contract with the agent. If the investor's price
is too high, then the agent will not buy the investment project. This market
failure only occurs when the information is asymmetric at the time the parties
contract. If the information is symmetric at the time of contracting, and becomes
asymmetric afterwards, the investor is indifferent between selling the option to

lThis effect was shown in a classic paper by Akerlof (1970). The paper describes a model
where the informed party has no way to signal the quality of the good it is selling, which may
hinder the functioning of the market.
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invest ex ante, or entering into a contractual relationship.

The problem applies to all types of real options where there is private informa-
tion. Applications can be found both within corporate valuation and government
regulation.

One situation where there may be conflicts between option valuation and in-
centives is the case where a government owns natural resources. Production of
natural resources involves large and (partly) irreversible investments, and uncer-
tainty due to future output prices. A feature of production of natural resources
is that uncertainty in output prices usually is common knowledge, whereas in-
vestment and production costs may be private information for those investing in
and operating such projects. To exploit the resources, the government delegates
the production of the resources to companies. The privately informed companies
may have incentives to signal a higher cost than the true cost in order to obtain
a larger profit. Or they may have incentives to increase slack in the organiza-
tion, or to increase the organization, thereby realizing larger and more expensive
projects than necessary.

In a different setting, a company owning the real option delegates some of the
investment decisions to suppliers. The same conflicts as described in the situation
above, may arise if the suppliers have private information about the costs of the
supplies.

Moreover, within corporate valuation, incentive problems resulting from private
information may occur between management at different levels in the organi-
zation, and between shareholders and managers. Managers will typically know
more about their projects than the shareholders do".

Contractual relationships as found in the models presented in this dissertation can
be applied on such investment problems as described above. Using the models
we will study how the private information affect the values and strategies of
investment projects managed by privately informed agents.

2The contingent claims theory has more recently been applied to evaluation of R&D projects,
for example developing new drugs (Schwartz and Moon (2000)), and to projects within infor-
mation technology (Schwartz and Zozaya-Gorostiza (2000)). In such projects the incentive
problems may be large due to the high uncertainty and the specialized learning that occurs.
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1.2 Outline of the thesis

In chapters 2 and 3 the optimal stopping models are analyzed within a principal-
agent framework. We assume that an agent has private information about the
cost of investing in some project. Optimal contracts are found where the invest-
ment decisions are delegated to the agent, and where the agent is induced to
make the investment decisions preferred by the principal. We find optimal com-
pensation functions that are concavely increasing in the observable, stochastic
output value. The optimal compensations are not dependent on the unobserv-
able investment cost, and the compensations are paid at the time the options to
invest are exercised. As will be shown from the numerical examples in chapters
2 and 3, the value of private information may be considerable.

In the model of chapter 2 we assume that the agent 's private information is con-
stant. This assumption results in a (second-best) optimal investment. strategy
where the critical price of investment is higher under asymmetric information
than under full information. The reason is that the principal's cost of exercis-
ing the option is higher under asymmetric information than in a situation of
full information. Hence, the contract results in under-investment as long as the
stochastic output value is lower than the entry threshold under asymmetric infor-
mation. When the output value is higher than the critical price under asymmetric
information, the optimal investment strategy leads to the same decision whether
the information is symmetric or asymmetric. Thus, in this interval the optimal
contract just implements a rule of sharing the project value between the principal
and the agent, without having any inefficiency effects. Numerical examples in the
case where the output value is driven by a geometric Brownian motion show that
the agent's value of the contract decreases in volatility, whereas the the effect of
volatility on the principal's value is ambiguous. These results are in contrast to
the value of the contract under full information, corresponding to the value of all
American call option, where the value increases in volatility.

The model formulated in chapter 3 is richer, as the agent's private information is
allowed to change stochastically, and new information is continuously obtained.
In this case we do not find closed form solutions. Thus, values and strategies are
found by a numerical approximations. When the output value and the privately
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observed investment cost are driven by geometric Brownian motions, we find that
both over- and under-investments may occur, depending on the parameter values.
The reason is that two effects pull in opposite directions. As in chapter 2 the
principal's exercise cost of the contract is higher under under asymmetric infor-
mation than under full information, tending to an increase in the critical price of
investment. However, the higher exercise cost decreases the option value of the
project, which tends to reduce the entry threshold. As the volatility increases,
the over-investment effect increases in our numerical examples. Moreover, in the
examples the agent 's value of the contract decreases in volatility, whereas the
principal's value increases in this parameter.

In chapter 4 the optimal stopping problems of chapters 2 and 3 are extended to
incorporate competition. We assume that n agents compete about winning the
contract of managing the investment project. The problem is analyzed within
an auction model. We assume that each agent participating in the auction has
(perfect) private information about his own costs, but that he does not observe
the competitors' cost levels. We find that the optimal (second-best) investment
strategies are identical under the cases of competition and no competition. TIH'
optimal compensation, however, is lower for the winning agent under competition.
than in the case of only one agent.

In the case where the private information is constant, the contract is assigned to

the agent who (truthfully) reports the lowest investment cost. The invest mont
decision is delegated to the winner of the auction. On the other hand. wlH'1I

the private information changes stochastically, the investment decision ('alll)( IT

be delegated to an agent. The reason is that under this assumption the winner
of the auction is not chosen prior to the time when the investment is exercised
The agent having the lowest cost level at the time the auction starts, does nor

necessarily have the lowest cost at the time of the investment. Therefore all
the agents participate in the auction until the option to invest is exercised. or
the investment option expires. Thus, the winner of the auction in the case of Cl

stochastically changing private information is the agent reporting the lowest cos!
at the time of investment.

In chapter 5 we formulate an investment project where investment decisions an'
made sequentially, This implies that there is a possibility to temporarily stop
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the project if the value of the completed project falls", Incentive problems are
formulated within a principal-agent framework, where the agent of the project
obtains private information about the value of the completed project as new
investment phases are completed. The source of private information is different
in this model, compared to the models in earlier chapters: the private information
is related to the gross project value from exercising the investment option rather
than being related to the cost variables. Under this assumption also, we find a
delegation based contract.

In chapter 5 we assume that the agent obtains private information only when
new investment phases are finished: each time an investment phase is finished
the agent obtains a signal about the output value of the completed investment
project. We find that the optimal contract only depends on the most current
private information, not on earlier reported signals. The reason is that the signals
follow a Markov process.

Chapter 6 gives a short summaryand points out some simplifying assumptions
we have made in the models of the dissertation.

1.3 Related literature

How private information affects the decision strategies and values of real options
is a subject that is not treated in many papers. Related literature includes
Bjerksund and Stensland (2000), Moel and Tufano (2000), Antle, Bogetoft, and
Stark (1998) and MacKie-Mason (1985).

MacKie-Mason (1985) motivates the problems of option values combined with
asymmetric information by stating that "making decisions incrementally allows
parties to use newly-arriving information, but interested parties are likely to
have differential access to new information. Thus, spreading decisions over time
creates opportunities to exploit informational asymmetries. Dynamic information
generates costs." He models a sequential investment problem, where an agent
privately obtains a signal about the value of the project when an investment
phase is realized. If the signal is favorable, the next investment phase is started.

3Le., the investment project is analogous to compound options.
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An unfavorable signalleads to abandonment of the investment project, and the
privately informed agent is given an "abandonment compensation" in order to
induce him to abandon the project. MacKie-Mason finds a contract consisting of
constant payments, dependent on the agent's private information when it comes
to decision making, whereas the contracted payments are independent of the
private information. The model formulated in chapter 5 is closely related to
MacKie-Mason (1985).

The interaction between options and diverging incentives between a principal
and an agent is also analyzed in Antle et al. (1998). They assume that an agent
privately observes an investment cost that changes stochastically from one period
to the next in a discrete two-period model. The principal makes an investment
in one of the two periods, or no investment at all. The only uncertainty in the
model is the cost of the investment project, which changes stochastically from
one period to another. Thus, the problem can be interpreted as compound op-
tions of the European type. The agent observes the current cost at each period
in time, but the knowledge about future costs is the same for the principal and
the agent. The respective investment triggers at each of the two periods are
given by two constants. Antle et al. find that the incentive effects from private
information tend to defer investment because the investment is done at a higher
cost under asymmetric information than under full information. On the other
hand, increased volatility by postponing investment tend to reduce the value of
waiting, thereby leading to earlier investment. The reason is an inefficient invest-
ment trigger in the last period, reduces the principal's advantage of delaying the
investment to the last period. The results Antle et al. (1998) with respect to the
investment triggers are consistent to the results in chapter 3. This is no surprise
as in both models the privately observed investment cost change stochastically
over time. The main difference is that Antle et al. (1998) is a discrete two-period
model, whereas the model in chapter 3 is formulated in continuous time.

The model formulation in chapter 2 is inspired by Bjerksund and Stensland
(2000). In their article i~ is assumed that an owner of some resource may exploit
the resource in two ways: (i) Sell the resource in a competitive spot market at
a constant price, or (ii) ship the resource to an agent for processing and sell the
processed resource in a competitive market where the price of the processed re-
source is stochastic. Bjerksund and Stensland assume that the processing may be
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switched on and off at no cost". In alternative (ii), the owner of the resource ("the
regulator") must compensate the agent for the cost of processing the resource.
The cost of processing is perfect, private information to the agent, whereas the
regulator knows the probability distribution of the costs. The stochastic variable
used in Bjerksund and Stensland (2000) is more general than the diffusion pro-
cess presented in the model in chapter 2. However, the results are consistent: In
both models it is found that the agent's private information yields higher costs
for the principal, thus creating a wider interval of inaction.

Moel and Tufano (2000) analyze the effects of an actual contract offered by a
government, where a copper mine were offered for sale. Moel and Tufano point
out that the government did not achieve its stated objectives of the sale, because
it failed to recognize the combined effects of options and incentives. Each bid in
the auction were required to specify the price of the copper mine, in addition to
the amount the winner would spend on investments. The last requirement may
induce the winner to make uneconomical investments. Moel and Tufano (2000)
discuss the value of the winner's default option, the possibility of renegotiating
the contract, and the type of company which is most likely to bid aggressively.

1.4 Theoretical background

Valuation of projects using realoption theory has been a field of much research
during the last two decades. Real apt ion analysis originates from the insight that
uncertain and partly controllable project cash-flows can be reduced to contingent
claims on traded assets. Hence, the term "realoption valuation" is commonly
used when the contingent-claims framework is applied to project evaluation.

The theory of contingent claims (or risk-neutral pricing) comes from the liter-
ature of financial options. The foundation of contingent claims analysis is the
work of Black and Scholes (1973) and Merton (1973), and later extended and
formalized by Cox and Ross (1976), Harrison and Kreps (1979) and Harrison
and Pliska (1981). Among the first to employ the contingent claims theory on
real investments were Brennan and Schwartz (1985) and McDonald and Siegel

4Thus, Bjerksund and Stensland (2000) formulate a "switching option" , similar to Brennan
and Schwartz (1985).
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In some real investment contexts it may be difficult to reduce the controllable
cash-flows to claims 0:0 traded assets. The reason is that real assets, much more
often than is the case for financial assets, are sold in imperfect markets (if there
exists a market at all), see Williams (1995). In the problems we study in this
thesis, this problem is avoided: for simplification we assume that uncertain values
either can be spanned (in complete markets), or that the risk from the uncertain
variables consists of unsystematic risk, only. These assumptions are unrealistic
in many cases, but makes it possible to study the problems with respect to asym-
metric information within the simple framework of contingent claims analysis in
complete markets. Thus, we can analyze the models using the technique of risk-
neutral (equivalent martingale) pricing, as described in the books by Huang and
Litzenberger (1988) and Duffie (1996), among others.

The incentive problems are modelled based on adverse selection models. Much
of the adverse selection literature is adapted from the pioneering work of Akerlof
(1970). Salanie (1997) defines on page 4 adverse selection models as models
where "the uninformedparty is imperfectly informed of the characteristics of the
informed party; the uninformed party moves first." The adverse selection model
is a Stackelberg game in which the principal (the uninformed party) is the leader.
and the agent (the informed party) is the follower. The term" adverse selection"
comes from insurance: if an insurance company offers insurance based on average
risk only, then only the "higher risk" part of the population is attracted. TI\(,
term is now also used more generallyabout incentive problems caused by private
information. Baron and Myerson (1982) wrote a seminal paper in the context of
regulating a firm, and since then much work is done on the case where the firm is

better informed of its costs than the regulator. Much of the work is collected ill

the book by Laffont and Tirole (1993). The principal-agent models of chapters

50ther early, and often cited, contributions to the real option theory are (among others)
given by Brennan and Schwartz (1985), Majd and Pindyck (1987), Majd and Pindyck (198i).
Paddock, Siegel, and Smith CI988), Ekern (1988), Dixit (1989) and Gibson and Schwartz (1990).
Some later applications of real option theory are given in Pindyck (1993), Leahy (1993), Quigg
(1993), Ekern (1993), Smit and Ankum (1993), Lambrecht and Perraudin (1996), Schwartz
(1997), Antle et al. (1998) and Grenadier (1999). Collections on real options have been edited by
Lund and Øksendal (1991), Trigeorgis (1995) and Brennan and Trigeorgis (2000), with Schwartz
and Trigeorgis (2001) containing early classical readings as well as more recent contributions.
Textbooks on real options are Dixit and Pindyck (1994) and Trigeorgis (1996).
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2 and 3 are modelled with basis in this tradition.

An important concept for solving adverse selection models is the revelation prin-
ciple. For definition and explanation of the concept, see for example Salanie
(1997), Mas-Colell, Whinston, and Green (1995) or Laffont and Tirole (1993).
Our definition is based on Salanie (1997), page 16-18: The revelation principle is
based on the observation: for each set of implementable incentive mechanisms, a
contract with the same outcome can also be implemented through a direct truth-
ful mechanism where the agent reveals his private information. By an incentive
mechanism, we mean the tools the principal employ in order to induce the agent
to behave in a certain way. A direct mechanism is a mechanism where the agent
reports to the principal, and in a truthful mechanism the agent finds it optimal
to announce the true value of his private information.

Thus, under a revelation mechanism the agent truthfully reports his private in-
formation to the principal, and the decision in question is then made according
to a decision rule to which the principal has committed himself. The revelation
principle simplifies the principal's optimization problem as it reduces the problem
to optimizing over the set of truthful mechanisms.

In the principal-agent models of this thesis, we aim at finding compensation
functions based on observable variables only, i.e., where there is no need for the
agent to report his private information to the principal, and where the decision to
be made is delegated to the agent. Hence, the revelation principle is just a device
to find such compensation functions. We show that under our assumptions we
indeed find optimal contracts where the investment decisions are delegated to
the privately informed agent, and where there is no communication between the
parties. Moreover, the outcomes of the" delegation contracts" are identical to the
contracts where the agent reports his private information. This is consistent with
the results of Melumad and Reichelstein (1987) and Melumad and Reichelstein
(1989), who find that communication between the principal and the agent is of
no value when the private information is perfect or can be spanned.

We often say that a contract is incentive compatible when the contract for each
privately observed value level gives incentive to implement the decisions preferred
by the principal.
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In chapter 4 we assume that more than one agent has private information, and we
formulate the valuation and strategy problems as auctions. We apply a second-
price sealed-bid private-values auction, also called a Vickrey auction. In such an
auction, each bidder simultaneously submits a bid, without seeing others' bids,
and the contract is given to the bidder who makes the best bid. However, the
contract is priced according to the second-best bidder.

In a Vickrey auction it is a dominant strategy for the bidder to bid according
to his true value. Hence, we see a correspondence to the situation of no com-
petition: truth telling is an optimal strategy for the agents participating in a
Vickrey auction, as well as in a principal-agent relationship. This resemblance is
emphasized in Laffont and Tirole (1987).

Although we will follow the approach of Laffont and Tirole (1987) in chapter
4, it can be shown by the revenue equivalence theorem that the results do not
depend on the organization of the auction. The revenue equivalence theorem was
developed by Vickrey (1961) for some special cases. Myerson (1981) and Riley
and Samuelson (1981) were the first to show that Vickrey's results about the
equivalence in expected revenue of different auctions apply very generally. One
source where the revenue equivalence theorem is presented is Klemperer (1999),
and the same version of the theorem is reproduced here: The revenue equivalence
theorem says that by any auction mechanism in which (i) the contract always
goes to the buyer with the best bid, and (ii) any bidder with the worst bid
expects zero surplus, yields the same expected revenue, and results in each bidder
being given the same compensation as a function of his report. Thus, when the
revenue equivalence theorem is satisfied, the expected outcome from the auction
is the same no matter how the auction is organized. The main assumptions
for the revenue equivalence theorem to hold, are that each player has private
information about signals, or know their own private value parameters, and that
their respective information is independent of others' private information. These
assumptions are satisfied in the auction models of chapter 4.
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Chapter 2

Asymmetric Information about a
Constant Investment Cost

This chapter introduces a base case for examination of dynamic investment de-
cisions when there is an agency problem. A principal delegates to an agent the
decision of when to make an investment, given uncertainty about future values.
The agent has private information about a deterministic investment cost, whereas
the principal only knows the probability distribution of the cost. The principal's
problem is how to compensate the agent in order to optimize the value of the
principal 's investment opportunity.

An optimal compensation function dependent on the observable output from the
investment is found. We show that the incentive problem results in under-investment.
Furthermore, we find that the agent's option value decreases in volatility, whereas
there are two opposing effects on the principal's option value as a function of
volatility. These results form a contrast to the full information case, where the
increased volatility increases the option value.

2.1 Introduction

We assume that an investor owns an opportunity to invest· in a project. The
value of the investment project can be formulated as an American call option.
At any time the investor has an opportunity to make an irreversible investment
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at a deterministic cost. Upon the investment, the investor obtains a stochastic
output value. We introduce an incentive problem by assuming that the investor
delegates the investment strategy of the project to an agent, and the agent has
private information about the exact investment cost. The investor (also called
the principal) only knows the probability distribution of the cost. A reason for
an owner of an investment possibility to delegate the management of a project
to an agent, may be that the management requires expertise that the principal
does not possess, or that is too costly for him to obtain.

The principal's problem is to find a compensation function that optimizes his
value of the contract, given delegation of the investment strategy, and given the
agent's preferences. The problem is solved using the revelation principle, which
is a direct, truthful mechanism that exploits the fact that to each contract that
leads to misreporting of the private information, there exists a contract with the
same outcome and with no incentive to misreport.

Under the model assumptions made in this chapter, we show that the principal's
and the agent's respective values of the contract are the same whether the in-
vestment decision is delegated or not. The reasons are that there are no costs of
reporting private information, and the investment trigger is a one-to-one function
of the privately observed investment cost.

We find an optimal (second-best) contract that depends on the observable stochas-
tic output value (the value of the" asset in place"), and not on the unobservable
cost. However, the agent's compensation depends on the value of the agent's
private information.

The optimal contract results in under-investment for some output values as com-
pared to the full information case. If the optimal investment decision under
asymmetric information differs from the optimal decision under full information,
the total value of the investment is lower than the project value under full infor-
mation. When the optimal investment decision is the same under asymmetric and
full information, the contract only results in a rule of sharing the value between
the principal and the agent, without having inefficiency effects.

Furthermore, in numerical examples we find that the agent's option value de-
creases in the volatility, whereas there are two opposing effects on the principal's
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option value as a function of volatility. These results contradict the full informa-
tion case, where the increased volatility increases the option value.

The model in this chapter applies to situations where the production from a
project is sold at the market price, and where there are asymmetric information
with respect to the investment costs of the project. More generally, the model
applies to all types of realoptions where an agent has private information about
the (constant) costs of exercising the option.

In the problem presented here we assume that the agent has private information
prior to the date when the parties enter into a contract. Then the principal
cannot do better than to enter into a contractual relationship. The reason is that
the asymmetric information leads to market failure.

Bjerksund and Stensland (2000) have formulated a somewhat similar model to
the one in this chapter. In both models an agent has private information about
a constant cost, and the project to be evaluated is affected by a stochastic mar-
ket value. Furthermore, the projects in both models are evaluated as contingent
claims. Whereas our model focuses on an option to invest, the problem in Bjerk-
sund and Stensland (2000) models a production process that can be switched
between two modes (on and off), and the processed output is sold at stochastic
market prices. The processing cost is private information to an agent. Analo-
gously to the model presented in this chapter, Bjerksund and Stensland (2000)
find that private information results in an increase in the principal's cost. The
optimal (second-best) compensation function found in Bjerksund and Stensland
(2000) is linear in the market price. This result differs from ours as we find that
the compensation function is concavely increasing in the market price. The expla-
nation of the difference is that in Bjerksund and Stensland (2000) a compensation
stream is found, payable whenever processing occurs, whereas the compensation
in our model is based on a stochastic market value. Thus, in our model, the
optimal compensation paid today takes account of future market values, leading
to a concavely increasing compensation as a function of the output value.

This chapter is organized as follows: Section 2.2 formulates the problem, and
states the model assumptions. Market uncertainty is evaluated assuming dy-
namically complete markets in section 2.3. In section 2.4 we find the value of
the realoption, and the corresponding optimal investment strategy under full
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information. The full information case is our benchmark when analyzing the
efficiency of the asymmetric information case. The agent 's optimization problem
and his value of private information is presented in section 2.5. The optimal
investment strategy under asymmetric information is derived in section 2.6, and
the optimal compensation function is found in section 2.7. In section 2.8 the
results are examined for the special case of a uniformly distributed investment
cost, and an output value driven by a geometric Brownian motion. This special
case is illustrated numerically in 2.9. Section 2.10 concludes the chapter.

2.2 Model assumptions

A principal owns an option to invest in a project. The investment decision of
the project is undertaken by an agent, and the principal compensates the agent
based on the output from the project. The output is observable by both parties.
whereas the agent has private information about the investment cost. In order to
keep a larger part of the profit from the project, the agent may have incent ives
to report a higher investment cost than the true cost. Thus, the problem for t ho
principal is how to compensate the agent to maximize the value of the principal's
investment opportunity, given the agent's incentives.

The agent has perfect knowledge of the true investment cost K of the project.
whereas the principal knows only the probability density, f (.),of the invest Ilu-nt
cost. The cumulative distribution is denoted by F(·), and upper and lower h,\"t'l:-
of the investment cost are denoted by Kand K, respectively. The distribur j011

function F(·) is assumed to be absolutely continuous.

We assume that the option to invest is perpetual, and that the value of the output
follows a stochastic process where the uncertainty is common knowledge. l'pon
investment the owner of the project obtains the stochastic value St, which is il

function of future cash-flow streams. For short, we refer to St as the "output
value" , or the value of the" asset in place" 1. The stochastic process is defined 011

lAn example of an interpretation of St is given in Bjerksund and Ekern (1990). In their
model the value of the" asset in place", St, is defined by St = 7rtqt, where 7rt is the spot prico of
oil, following the risk-adjusted price process, d7rt = r7rtdt + CJ7rtdBf, and qt is a time-adjusted
quantity of oil, found by discounting the output a(t) by the convenience yield rate 6. i.t· ..
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a complete probability space (O,:F, P), and the state space (0,00). Furthermore,
the stochastic process is adapted to a filtration {:FtS}09::::r, satisfying the usual
conditions". The parameter T is the time horizon. The output value is, under
the equivalent martingale measure (also called the Q-measure, or the risk-neutral
measure)" driven by a linear diffusion process"

d.S, = ir S, - J(St))dt + (J(St)dBf, s = So, (2.1)

where r is a constant risk free rate, J(St) > Oreduces the drift in the stochastic
process because of the convenience yield, and Bf is a standard Brownian motion
with respect to the equivalent martingale measure. It is assumed that J(St) > O
and (J(St) > Oare bounded, continuous functions.

As the agent privately observes K, in addition to the stochastic process St, we
denote his information at time t by :Ft,K, whereas the principal's information at
time t is given by :Fts.

It is assumed that the principal's evaluation of the uncertainty in the investment
cost is identical under the P and the Q measures. The stopping time with respect
to :FtS,K is denoted by TK, where the footnote indicates that the stopping time is
a function of the privately observed K. The agent's compensation is denoted by
X, and is payable at the investment time.

Below the principal's optimization problem is formulated, with the expectations

qt = Jt-t e-6ea(Od~. Their model's investment cost K is defined by K = i:' e-rek(~)d~,
where k(~) is the combined investment and production cost rate at time ~ ~ t.

2We may interpret O as the set of all given states, F is a collection of subsets of O, where
the elements of F may be interpreted as events, and P is a probability measure assigning to
any event in F. References on this subject are Øksendal (1998), Borodin and Salminen (1996),
or Duffie (1996), among many others. By the term "usual conditions" we mean that FP is
right continuous and complete.

3The probability measure P is the measure an investor uses to model his beliefs about future
values, and is referred to as the subjective probability measure (also called the true measure).
The measure Q is equivalent to P, but under the Q-measure, the stochastic processes are
adjusted so that future values can be evaluated by a risk-free discounting rate. By equivalent
probability measures we mean that they assign positive probabilities to the same domains,
such that with appropriate transformations it is always possible to recover one measure from
the other. Useful references to valuation using the equivalent martingale measure are, among
others, Duffie (1996), eh. 6.H), Huang and Litzenberger (1988), and Neftci (1996).

4A linear diffusion is a one-dimensional, strong Markov process with continuous values paths
taking values on an interval. Furthermore, a linear diffusion is a Feller process. See Borodin
and Salminen (1996), ch. II, for definition of a linear diffusion.

20



given under the Q-measure:

The principal optimizes his value function with respect to the compensation
function X (.) ,

VP(s; X(·)) = supE [e-rTK (STK - X(STK))+I F~]
xc->

(2.2)

subject to the agent's optimization problem,

VA(s,K) = supE [e-rTK (X(STK) - K)+I Fg,K] .
TK

(2.3)

The agent will never reject the contract, as the formulation of the optimization
problems implies that the agent's value of participating is always positive. Later
we shall see that it is never optimal for the principal to reject the contract for
any cost levels K E [K, KJ.

In the formulation of equations (2.2)-(2.3) the principal's problem is to find a
compensation function X (.) such that the agent is induced to follow the invest-
ment strategy preferred by the principal. In order to ensure that the agent is
willing to enter into a contractual agreement with the principal, the value of the
contract must be positive.

We want to find a compensation function that is based on observable variables
only. In the model, it is assumed that the value of the output upon investment,
St, is common knowledge. To avoid the agent from behaving opportunistically,
the value of the compensation is not paid before the time of investment.

We may note that we assume that the option to invest is perpetual, whereas the
equivalent martingale measure is well defined when T < 00. Thus, by the term
"perpetual option" we here mean that the expiring date of the option approaches
infinity", Formally, if the date the option expires is represented by T, then TK E

[O,T], where T = T E [0,00), and T -> 00.

5See Aase (2000) for some further remarks on this.
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2.3 Valuation of future cash flows

With a perpetual option to invest, and a stationary stochastic process, the opti-
mal investment strategy is time homogeneous. Thus, the "trigger value" of the
output is independent of time. This means that the optimal stopping time TK is
given by

Ti< = inf{t E [0,TjlSt 2:: S*(K)},
where S* (K) is the optimal critical price.

Denote the" unoptimized" value functions of the principal and the agent as vP (.)

and vA(.), respectively. The initial condition on the stochastic process is given
by s = S(O). Because of the time homogeneity we rewrite the principal's and the
agent's value functions as,

and,
vA(s, K) = E[e-rTKIFg,KjE [(X(STK) - Kt IFg,K] ,

respectively. Note that the expected value of the discounting factor is written
independently of the output value and the compensation function. This indepen-
dence simplifies the problem of finding the optimal investment strategy, since WI'

will be able to optimize the option to invest with respect to a "determinist ir"
trigger level S (K), instead of the stochastic trigger STK'

Using results from the theory of linear diffusions", the expected value of till'

discounting factor is formulated as a function of the (arbitrary) trigger 11'\"1' I
S(K), and the time ° value of the output, s,

{

¢(s) if s < S(K)
E[e-rTKIFg,Kj = ¢(S(K» l - A

1 if s > S(K).
(2..1 )

Define u(s) = E[e-rTKIFg,Kj. The function </>(.) is the strictly positive and ill-
creasing, unique solution" to the ordinary differential equation,

(2.:) )

6Confer Ito and McKean (1965), sect. 4.6. and Borodin and Salminen (1996), eh. 11.10.
7Civen some boundary conditions, the differential equation in (2.5) has two linearly indo-

pendent and' unique solutions, one increasing and the other one decreasing.
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with boundaries limsiS(K) u(s) = l and limslo u(s) = o. The proof of (2.4)-(2.5)
is given in Ito and McKean (1965), section 4.6.

The fraction 4>(~i%))is interpreted as the present value of a claim that pays the

value l when the investment trigger is represented by S(K).8

Byequation (2.4) the principal's and the agent's value functions can be reformu-
lated. The principal's value function is written as,

vP(s;X(·)) = E [4>(~i%)) (S(K) - X(S(K))) l{s~S(K)}

+(s - X(s))I{s>S(K)}! Fcf] ,
where I{A} is the indicator function of the event A. Equivalently, the principal's
value function is formulated as

vP(s;X(·)) = J: {4>(~i%)) (S(K) - X(S(K))) l{s~s(K)}

.+(s - X(s))I{s>S(K)}} f(K)dK

(2.6)

The agent's value function is given by

{
4>(s) (A ) A

vA(s, K) = 4>(S(K)) X(S(K)) - K if s ::; S(K)
X(s) - K if s > S(K).

(2.7)

Note that the value functions are no longer stochastic, but are functions of the
"deterministic" trigger level S(K) and the value of the output s = S(O). III
equations (2.6) and (2.7) the term ¢(s)j¢(S(K)) could have been replaced bv
the simpler notation u(s), where u(s) == ¢(s)j¢(S(K)), as ¢(S(K)) is a constant.
However, the term ¢(s)j¢(S(K)) is applied as this is the form on which the value
of the discounting function is given in the references Borodin and Salminen (1996)
and Ito and McKean (1965). In Alvarez and Stenbacka (2001) a similar approach
is used.

8Similar interpretations are made in Goldstein, Ju, and Leland (2001).
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2.4 Benchmark: The principal observes the de-
terministic costs

As a benchmark, we first study the case where the principal observes the agent 's
deterministic investment cost K. When the agent has no private information,
there is no need for the principal to compensate the agent with more than his true
cost, as the principal observes the agent 's investment strategy, and can punish
the agent if he does not act according to the principal's preferences. Thus, the
agent is compensated for his capital cost only, i.e., X(·) = K at the time of
investment, and X (.) = O as long as it is optimal to postpone the investment.
Inserting a compensation equal to the true investment cost into the agent 's value
function in equation (2.7), we find that the agent's optimal value is given by

Vs~m(S, K) = O, (2.8)

where the subscript sym indicates that this is the value under symmetric infor-
mation".

This means that the principal's optimization problem is formulated identical to
the perpetual American call option,

Vs~m(s, K) = s~p E [e-rT (ST - K)+ IFg,K] , (2.9)

with the sup being taken over all stopping times 7. The optimal stopping time is
given by 7* = inf {t 2:: O; St 2:: S;ym(K)}, and S;ym(K) is the optimal investment
trigger when the principal has full information. Equation (2.9) is identical to the
formulation of an American call option, with 7 representing the optimal time of
exercising the option, St denoting the underlying asset value, and K being the
exercise price.

Similarly to the result in equation (2.4), we know that we can express

{

<t>(st~~K)) if s :s; S;ym(K)
E [e-rT*IFg,K] = y ,

1 if s > S;ym(K)
(2.10)

9By "symmetric information" we here mean that both parties observe the investment cost
parameter. Another interpretation could be that none of the parties have full information, but
the probability density of K is common knowledge. In this case the agent will still have a value
of zero, as he will have no private information.
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where the trigger function now is the optimal investment trigger under full in-
formation. Deterministic K and substitution of X(·) for K into the principal's
value function in equation (2.6), observing that the upper and lower limits of the
integration coincide, leads to

vP (s K) = { ¢>(st~{K» (S;ym(K) - K) if s ~ S;ym(K)
sym , S - K if s > S;ym(K),

(2.11)

where the optimal entry threshold S;ym(K) satisfies the first-order condition,

For the trigger value in equation (2.12) to be optimal, the second-order condi-
. h b iti a2v.~m(s,K;S;ym(K» < O ( di A 1 ction as to e non-post rve, i.e., as' (K)2 _, see appen IX . lor.ym
derivation of the second-order condition), yielding the restriction

(2.13)

Note that ¢(s) = Vs~m(s, K) when s ~ S;ym(K). Thus, the restriction in (2.13)
means that the value of a perpetual American call option always increases con-
vexly in the stochastic price, when the stochastic price is driven by a linear
diffusion as given in (2.1).

The first-order condition (2.12) can be formulated as

S* (K) K ¢(S;ym(K))
sym - = ¢'(S;ym(K))' (2.14)

where S;ym (K) is the optimal critical value for investment. The term on the right-
hand side can be interpreted as the opportunity cost of exercising the option with
immediate payoff S;ym(K) - K. The fraction captures the wedge between the
critical value S;ym (K) and the investment cost K.

2.4.1 A special case: Geometric Brownian motion

The special case where the stochastic process is given by a geometric Brownian
motion gives a well-known closed form solution, as introduced in the economics
literature by McKean (1965).
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The geometric Brownian motion process of the value of "the asset in place" is
given by

(2.15)

under the equivalent martingale measure Q. The parameter 6s represents the
proportional convenience yield rate, whereas as is the volatility parameter. The
function ¢(s) is the strictly positive and increasing solution to the ordinary dif-
ferential equation (compare equations (2.4) and (2.5)),

1 2 2'2ass uss(s) + (r - 6s)sus(s) - ru(s) = O (2.16)

is then found to equal ¢( s) = As,B, for some constant A, where

f3 = :~ [~<7~- (r - ds) + ((r - ds) - ~<7~)'+ - > 1. (2.17)

Hence, the solution to the expected value of the discounting factor is (using
equation (2.4)),

. E[e-rTIFt,K] = { l(s;Y~(K)),B if s ::;S;ym(K)
if s > S;ym(K).

(2.18)

Note that, because f3 > 1, the expected value of the discounting factor is a strict lv
positive, strictly increasing, and strictly convex function of the current price s as

long as it is below the trigger price S;ym (K). Moreover, the term (s/ S;ym (K) ri
is always lower than, or equal to, 1 in the interval s ::;S;ym (K).

For the benchmark symmetric information case, the right-hand side of equation
(2.14) becomes S;ym(K)/f3, and hence the optimal critical value for investment
is

S;ym(K) = K-f3
f3

> K,
-1

(2.19)

as f3 > 1. From equation (2.11), the corresponding value of the investment
opportunity is

V~(s,K) = {
( s ),B K_l_ if s ::; S;ym(K)
S;ym(K) ,B-1

(2.20)
s-K
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In appendix A.2 it is shown that the optimality conditions, leading to the values
in equations (2.19) and (2.20), are satisfied.

The value in equation (2.19) equals the value of a real option when the asset price
follows a geometric Brownian motion, as analyzed in the papers by McDonald
and Siegel (1986), Dixit (1989) and Bjerksund and Ekern (1990), among others.
The traditional method of finding the optimal value in (2.11) is to exploit the
value matching and high contact conditions!".

The full information case in equation (2.19) represents the benchmark for the
illustrations in sections 2.8-2.9.

2.5 The agent's value of private information

In this section we find an expression of the agent's value of private information.
This quantity mirrors how much the principal has to compensate the agent in
order to induce the agent to follow the investment strategy preferred by the
principal.

The agent 's optimal investment strategy under asymmetric information, given a
pre-specified compensation X (.), has to satisfy the first-order condition of equa-

lOFor instance, this method is used in Dixit and Pindyck (1994). Applied on the problem in
equation (2.9) the value-matching/high-contact approach works as follows: When immediate
investment is optimal, the value of the option is given by the payoff s - K. In the interval
postponing the investment is optimal, the option value v;'ym needs to satisfy the ordinary
differential equation

8 P 82 pvsym 1 2 2 vsym P
(r - 6s)a;- + 20"ss ~ - rVsym = 0,

which has a positive and increasing solution equal to Ast3, where A is a constant, and /3 is
given in (2.17). Denote B as an arbitrary investment trigger. The value matching condition
says that the option value Ast3 must be equal to the payoff from immediate investment, s - K,
at the trigger price, i.e.,

Furthermore, by the high contact condition (also called the smooth pasting condition) the
first-order derivative of the two functions is equal at the trigger,

A/3Bt3-1 = 1.

Solving the two equations with respect to the unknown constants, A and B, lead to v;'ym(s, K) =
Vs~m(s, K) and B = S;ym(K) as given byequations (2.19) and (2.20).

27



tion (2.7) with respect to the investment strategy,

avA(s,~;S(K)) = ¢~(s) [X1(S(K)) _ ¢I(~(K)) (X(S(K)) - K)] = O.
aS(K) ¢(S(K) ¢(S(K))

(2.21)

For the investment strategy S(K) to be optimal, the second-order condition must
2 A .-

be non-positive, i.e., å v j~'/i~(K» ~ O. In appendix A.3 it is shown that this

requirement yields the sufficient conditions, X"(S(K)) ~ O and ¢"(S(K)) 2:: O.

Equation (2.21) leads to the agent's optimal investment strategy, given a compen-
sation X (.). However, we do not yet know the optimal compensation function.

It may seem to be a difficult task to optimize the principal's problem with respect
to a compensation function. However, the revelation principle helps us at the
task of capturing the set of possible compensation functions!'. By the revelation
principle, the agent's value of private information can be found.

As described in chapter 1, the revelation principle is a direct mechanism, which
means that the principal makes the decision, and compensates the agent, based
on the agent's report of his private information. Therefore we temporarily refor-
mulate the model to the situation where the agent reports his private information,
and the principal makes the investment decision based on the report. The report
is denoted K. When the agent is to report K to the principal, his value function
is given by

{

",(s) ( ~ ~ ~ ) ~ ~
~ "'(S(K» X(S(K), K) - K if s ~ S(K)

vA(s,K;K) =

X(s,K) - K if s > S(K)

(2.22)

Note that the investment trigger S(K) now is a function of the report K. The
reason is that the report must be consistent with the investment strategy SO,
otherwise the principal will detect that the agent lies, and can punish him ac-
cordingly. Furthermore, under a direct mechanism the compensation X (.) may
depend on the report K. However, when we have found an optimal investment

llSee definition in chapter 1, section 1.4. References are the classical articles of Baron and
Myerson (1982) and Laffont and Tirole (1993), or the textbooks Laffont and Tirole (1993),
Mas-Colell et al. (1995), and Salanie (1997), among others.
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strategy using a direct truthful mechanism, we find a delegation based contract
that implements this investment strategy+'.

Applied to our model, we show in the appendix, section AA, that the revelation
principle does indeed lead to an optimal contract.

The agent 's first-order condition with respect to the report is

A A

av (s,~;K)=o.
aK (2.23)

The agent is induced to report truthfully if his first-order condition is satisfied in
the point where k = K. By the envelope theorem, we find that the first-order
condition for optimization with respect to the reported cost parameter':' is,

{

_ <I>(s)

dvA(s, K) = <I>(S(K))

dK
-1

if s ::;S(K)
(2.24)

if s > S(K).

In the appendix, section A.5, we find the second-order condition for incentive
compatibility. For a contract to satisfy the incentive compatibility constraint we

12Melumad and Reichelstein (1987) have shown that in the case where the agent has perfect
information about the privately observed quantity, delegation of the decision gives an outcome
identical to the situation where the principal makes the decision himself. Denote the optimal
entry threshold by S*(K). Applying the result in Melumad and Reichelstein (1987) we know
that a compensation function X(S*(K), K) under a communication-based centralized contract,
by the revelation principle is compatible with the compensation function X(S*(K)) under a
direct delegation contract, if for all K E [K, K], X(S*(K), K) = X(S*(K)). This restriction
is satisfied when the function S*(K) is one-to-one. The investment trigger S*(K) is a one-
to-one function as long as it is continuous and strictly increasing in the interval S*(K) E
[S*(K),S*(K)]. Later (by equation (2.32)) we will see that the optimal investment trigger
actually is strictly increasing in K.

Note that in our model delegation of the investment decision never gives a better outcome
than the setting where the principal makes the investment decision himself based on the agent 's
report. The reason is that in our model communication between the parties is costless,

13The report k is dependent upon the true investment cost K, i.e., k = k(K). The first-
order condition is

dvA(s,K;k(K)) åvA(s, K; k(K)) dk(K) åvA(s,K;k(K))
dK = åk(K) dK + åK .

When the first-order condition in (2.23) is satisfied, the first term on the right-hand side is
zero. Incentive compatibility implies vA(s, K; k) = vA(s, K; K). Thus, the notation can be
simplified such that vA(s,K) = vA(s,K;K).

29



here mean that for any privately observed cost level, the agent has incentives
to report truthfully. For a delegation based contract we say that the contract
is incentive compatible when the agent for any cost level is induced to choose
the investment strategy preferred by the principal. In appendix A.5 it is shown
that the second-order condition requires that the critical price S(K) must be
increasing in K for incentive compatibility to be satisfied.

Denote the "inverse trigger function't'" by '!9(s), interpreted as follows: If K ;::::
'!9(s), the option to invest is postponed, whereas it is optimal to invest immediately
when K < '!9(s). Integrating the condition in (2.24) on both sides of the equality,
results in an equivalent condition on the agent's value function (the computations
are shown in appendix A.6):

{
J: <I>(~~~»du+vA(s,K) if s:::; S(K)

vA(s, K) =

'!9(s) - K + JiJ~8) <I>(~~~»du + vA(s, K) if s > S(K).

(2.25)

Equation (2.25) represents the agent's value of accepting the contract, or in other
words, his value of private information.

The term vA(s, K), is the agent's value when his true cost equals K. Since the
principal knows that the agent does not have higher cost than K, the principal
does not compensate the agent with more than K, i.e., vA(s,K) = O (i.e., we
assume that the agent's reservation utility equals zero). However, so far we have
not explicitly expressed the investment strategy function S(K), which means
that we do not yet know what the agent's value of private information amounts
to. The optimal investment strategy is found below.

2.6 Asymmetric information: The optimal ex-
ercise strategy

In this section we solve the problem of finding the optimal investment strategy,
given the agent's private information.

14The trigger function S(K) has an inverse as long as S(K) is strictly increasing for all
KE[K,K].

30



In order to simplify the problem of finding an optimal strategy, we substitute
the unknown function X(·) in the principal's value function in equation (2.6),
with an expression of the agent's private information. Using equations (2.7) and
(2.25), remembering that vA(s, K) = 0, the compensation function is written as
the sum of the value of the true investment cost and the value of the agent's
private information,

~(s) X(S(K) K) = ~(s) K +lK ¢~(s) du (2.26)
¢(S(K)) , ¢(S(K)) K ¢(S(u)) ,

when s :::;S(K).

Substituting the expression for ¢(~i%llX(S(K)) in equation (2.26) into the prin-
cipal's optimization problem in equation (2.6) leads to

(2.27)

+(s - X(s,K))I{s>S(Kl}} j(K)dK.

Note that the principal's value function in equation (2.27) no longer consists of
the unknown function X (.). The only unknown function is the entry threshold
S(K). Thus, the optimal threshold is found by finding the first-order condition
with respect to the trigger S(K). In order to simplify this optimization, we
partially integrate the term J: J: [¢(s)/¢(S(u))] duj(K)dK, leading to (see
the appendix, section A.7),

vP(s; S(K)) = J: {[¢(~i%ll (S(K) - K - ~i:?)]I{s :::;S(K)}

+(s - X(s))I{s>S(Kl}} j(K)dK.
(2.28)

Equation (2.28) shows that the principal's optimization problem is now identical
to the problem of optimally exercising an American call option, with optimal
exercise price K + F(K)/ j(K). Thus, the principal's value of the contract is
positive for any report of K E [K, KJ, and the principal therefore do not reject
the contract for any admissible reports.
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The term F(K)j f(K) is called the inverse hazard raie'", The ratio represents
the probability that the investment cost is lower than or equal to K, divided by
the probability density of K. In our problem F(K)j f(K) can be interpreted as
an "inefficiency cost" due to the agent's private information.

In order to ensure a separating optimum, we assume that the fraction F(K)j f(K)
is increasing in K.16 Hence, if we increase K by one unit, the "exercise price"
of the option, K + F(K)j f(K), is increased by more than one unit. The reason
is that the incentive problem implies that an increase in the compensation for a
certain level of K, means that the compensation must be increased for all values
of K, as well17.

The inverse hazard rate often turns up in adverse selection problems: in the clas-
sical papers of Baron and Myerson (1982) and Laffont and Tirole (1986) the ratio
contributes to "overstate" the costs because of an agent's private information.
Such a result is found in our model as well: the principal's" exercise price" of the
option to invest increases from K to K + ~i~?-
Optimization of equation (2.28), i.e.,

VP(s) = sup vP(s; S(K)),
SeK)

(2.29)

results in the following optimal investment strategy (see appendix, section A.~)

S*{K) _ K _ F(K) = ¢(S*(K))
f{K) ¢'(S*(K)) > O. (2.:W)

Given the compensation function (to be evaluated in the next section). the trig-
ger value in equation (2.30) is also the optimal exercise strategy for the agvnt .

Equation (2.30) shows that the trigger value is based on the principal's total

15The term hazard rate (also called the failure rate), defined as l!fpla)' comes Ironi t lu-
statistical literature: if the distribution F(a) is the probability of dying before age a. t lu-n
1!r;(~) represents the instantaneous probability of dying at age a provided one has survived
until then. The term is used in reliability theory and life insurance.

16This condition is often called the monotone likelihood ratio property in the principal-agent
literature. The condition is satisfied by usual distributions such as the uniform, normal and
exponential ones, among others. See Laffont and Tirole (1993), pp 66-67.

17Similar interpretations are made in the textbook by Laffont and Tirole (1993), p. 65. and
in a paper 'by Antle et al. (1998).
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cost of exercising the investment option, i.e., it is based on K + F(K)j f(K).
The fraction F(K)j f(K) is positive, and increasing in K. Thus, it tends to in-
crease the investment trigger S* (K). As ¢(.) is strictly increasing and positive,

S*(K) > K + ~(:?
As in equation (2.14), the right-hand side of equation (2.30) represents the op-
portunity cost of exercising the option. Ifwe rearrange the respective investment
triggers of the full information and the asymmetric information cases, we find
that

S* (K) K ¢(S;ym(K))
sym = + ¢'(S;ym(K))

and
S*(K) = K F(K) ¢(S*(K))

+ f(K) + ¢'(S*(K))

The incentive problem may imply under-investment if S;ym(K) < S*(K): In the
interval where S* (K) < s :::;S;ym(K) it is optimal to invest immediately if the
principal has full information, whereas it is not optimal to invest in the case
where we assume that the agent has private information. We cannot from the
difference

* * F(K) ¢(S*(K)) ¢(S;ym(K))
S (K) - Ssym(K) = f(K) + ¢'(S*(K)) - c/>'(S;ym(K))'

say whether asymmetric information leads to under- or over-investment, as we
cannot determine the sign of the difference. However, the difference above show
that for K = K we obtain S*(K) = S;ym(K). In section 2.7 we show that
because the agent's value of private information is always positive, we need to
have S;ym(K) :::;S*(K).

Implicit differentiation of the entry thresholds tells us that they always are in-
creasing in the investment cost (derived in the appendix, section A.9):

(2.31)

and
(S*)'(K) = [1 + å(F(K)j f(K))] c/>'(S*(K))2 . (2.32)

åK ¢(S*(K))¢"(S*(K))
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By assumption we know that 8CFCK]J!CK)) > O and ¢"(.) > O. In addition, we
have ¢(.) > O, ¢'(.) > O. This means that the right-hand sides of (2.31) and
(2.32) are positive. Thus, by (2.32) the requirement for incentive compatibility,
given by the second-order condition in appendix A.5, is satisfied.

2.7 Implementation of the optimal compensa-
tion function

We are now left with the problem of finding an implementable compensation
function that leads to the optimal investment strategy. Byequations (2.4), (2.7),
(2.25), (2.26) and (2.30), the time zero value of the optimal compensation function
is given by

E [e-rTKX(STK' K)IFt,K]

{

4>(8) K rK 4>(8) d
= 4>CS"CK)) _ + JK q,CS"Cu)) U

19(8) + J1?~8) 4>C~~(~))du

if 8 ~ S*(K) (2.33)

if 8> S*(K).

By observing that 19 E [K, K], equation (2.33) shows that the value of the com-
pensation cannot be higher than K. This result is in accordance with intuition:
as the principal knows that the agent does not have a cost higher than K, the
principal will not compensate the agent by more than this quantity. Hence, we
obtain the following optimal compensation function at the time the investment
is made, i.e., when 8 > S*(K), or equivalently, when 19(8) > K,

if 8 ~ S*(K)
(2.34)

if 8 > S*(K).

Observe that at the time the investment is made, the optimal compensation X (.)
does not depend on the unobservable investment cost K. Thus, we have found a
compensation that gives the same outcome whether the agent's privately observed
investment cost parameter is reported or not, Le., X(8) = X(8, K). This means
that if the investor offers the agent a contract where the agent is paid according
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to the compensation in equation (2.34), and the compensation is paid at the
time the investment is made, the agent will accept the contract, and it is optimal
for him to follow the investment strategy given by equation (2.30). Hence, this
contract results in an optimal investment strategy, and optimal values to both
parties.

We have found a result that is consistent to the findings in Melumad and Re-
ichelstein (1987). Recall that Melumad and Reichelstein find that a compensa-
tion function under a communication-based centralized contract (by the rev-
elation principle) is compatible with the compensation function under a di-
rect delegation contract if the decision to be made is a one-to-one function of
the unobservable variable. In our model this implies that ¢(t!(~))X(S*(K)) =
¢(t~(~))X(S*(K), K) when s ~ S*(K), whereas X(s) = X(s, K) when s >
S*(K). In appendix A.lO we show how to derive ¢(t5(~))X(S*(K)) = ¢(t5(~))X(S*(K), K).

The optimal contract in equation (2.34) represents an implementable compen-
sation function dependent upon the observable quantity s, only. Recall that
although the investment cost K is unobservable to the principal, he observes the
date the investment is made, implying that he observes at which level of the
output value, s, the investment is made. Thus, he may be able to derive the
true investment cost ex post. However, since the principal is committed to the
contracted compensation he cannot exploit this ex post information.

The compensation in equation (2.34) satisfies the incentive compatibility con-
straint, and it is therefore optimal for the agent to follow the investment strategy
found by (2.30). When s ~ S*(K), the agent postpones the option to invest until
the point in time where the value of the output, s, reaches S*(K). It is optimal
for him for invest at once if s > S* (K).

Byequations (2.25) and (2.30) we find that the agent's optimized value is repre-
sented by

rK ¢(s)
JK ¢(s·(u))du

(2.35)

if sS; S*(K)

K-K if s > S*(K).
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In section 2.4 it was shown that the agent's value from the investment is zero
under symmetric information about the investment cost. Equation (2.35) states
that the agent's value from the investment when he has private information about
the cost, is strictly positive as long as his investment cost is below K. If the
agent's cost parameter equals K, we find by inserting K = K into the agent's
value in (2.35) that VA(s, K) = O. The agent's value from the project will never
exceed K - K.

The principal's optimized value is, using equations (2.6), (2.27), (2.30) and (2.34),

VP(s) = J: {[4>(t.t(~)) (S*(K) - K) - J: 4>(~~(~))du] I{s:ss·(K)}

(2.36)

In order to study the loss in value due to asymmetric information, we want to
examine the principal's value for each cost level K E [K, KJ. For this reason we
find the principal's value for a given cost level, and denote the value VP(s, K),

_ { 4>(t.t(~))(S*(K) - K) - J: 4>(~~(~))du if s ~ S*(K)
VP(s,K) ==

s -19(s) - J19~S) 4>(~~(~))du if s > S*(K).

(2.37)

We can interpret the value in equation (2.37) as the principal's value just af-
ter the contract is entered into: The principal is committed to the contracted
compensation in equation (2.34), and is informed about the investment cost.

Equation (2.37) shows that the principal's value for a given cost level is reduced
by the agent's value of private information, where the value of private information
is represented by the term J: 4>(~~(~))du when s ~ S*(K). Note that even when
K = K, implying that the value of information equals zero, is the principal's
value in (2.37) lower than the principal's value under full information. The
reason is that the optimal investment strategy under asymmetric information is
a second-best strategy.

In order to examine the efficiency of the optimal contract, we define deadweight-
losses as follows. The value of the loss given that the principal does not know
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the value of the investment cost K, is defined as

L(s) == LK
[V,~m(s,K) + V,~m(s,K) - (VP(S,K) + VA(s,K))] f(K)dK,

where V,~(s,K) is given by equation (2.11), V,~m(s,K) = O byequation (2.8),
VP(s, K) is formulated in equation (2.37) and VA(s, K) is found in equation
(2.35). For a given cost level, the loss is defined as

- _ P A (-p A )L(s,K) = V,ym(s,K) + V,ym(s,K) - V (s) + V (s,K) .

Observe that the loss £(s, K) must be positive as the value of the project is
at least as high under full information as the sum of the principal's and the
agent's respective project values under asymmetric information. We can show
that u», K) ~ O implies that the critical price under asymmetric information is
larger than, or equal to, the critical price under full information, Le., S*(K) 2:
S;ym(K). This is found by the following arguments. As a contradiction, suppose
that S*(K) < S;ym(K). Then, if S*(K) < s ::; S;ym(K), we find

£(s, K)I{ S.(K)<s~S;ym(K)}

- (v,~m(s, K) + Vs~m(s, K) - VP(s, K) - VA(s, K)) I{S.(K)<s~S;ym(l.n}

- Ø(S~~)(K» (S;ym(K) - K) - (s - K).

From equation (2.11) we know that Ø(S~~{K» (S;ym(K) - K) - (s-K) ::;Owhen
S ::; S;ym (K), with strict inequality for s < S;ym (K). Thus, when s < S;ym (1\' ).
we obtain u», K) < O, which contradicts the requirement u», K) 2: O. TIIi~
implies that we will always have S*(K) ~ S;ym(K).

Below it is shown that the dead-weight loss is found as (in appendix A.Il t IH'
component value functions are presented),

Ø(S~~~K» (S;ym(K) - K)
- Ø(:~(~» (S*(K) - K)

u», K) =
if s ::; S;ym (K)

s - K - ø(;~(k» (S*(K) - K) if S;ym(K) < s ::;S*(K)
(2.3~)

O if s > S*(K).
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The total dead-weight loss is positive when 8 :::;S*(K) and equal to zero when
8 > S*(K). The explanation is that when 8 :::;S*(K), the contract may lead to
an inefficient investment strategy, whereas we have identical, optimal investment
strategies under the full and asymmetric information cases when 8 > S*(K).
Thus, when 8 > S*(K) the contracted compensation function only gives a sharing
rule between the principal and the agent, i.e., the agent's gain exactly equals the
principal's loss because of the asymmetric information.

The principal's expected loss, L(8) = Jf: L(8, K)f(K)dK, is represented by,

L(8) = Jf: {[Ø(Sr:~(K) (S;ym(K) - K) - Ø(~~(~) (S*(K) - K)] I{8~s;ym(K)}

+ [8 - K - Ø(~~(~) (S*(K) - K)] I{S;ym(K)<s~s'(K)}} f(K)dK.
(2.39)

2.8 A special case: Geometric Brownian pro-
cess and uniform distribution

The preceding sections used a time-homogeneous Ito diffusion (equation (2.1))
for the output process St, and an unspecified probability density fU for the
assessed investment cost K. In order to illustrate our results, we will now examine
the special case where the value of the" asset in place", St, follows a geometric
Brownian motion, and the investment cost, K, is uniformly distributed. By these
assumptions we obtain closed form solutions. We compare the optimal contract
under asymmetric information to the case of full information in section 2.4.1.

A uniform distribution over the interval [K, K] implies that f(K) = K~K and
F(K) = ~=~,and thus the inverse hazard rate F(K)j f(K) = K - K. -From
the assumption of geometric Brownian motion, we find that Ø(8) = A8i3, which
yields :~~:~IJ)/)= S·~K). By plugging this expression into the right-hand side of

(2.30), we find that S*(K) = (K + ;r:j) i3~1· Hence, the optimal trigger value
is solved to yield

S*(K) = (2K - K) {3 ~ 1· (2.40)

We find that, when K > K, the entry threshold in (2.40) is higher than the
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trigger under symmetric information in (2.19), S;ym(K) = K/3/(/3 - 1). The
fraction /3/(/3 - 1) > 1 causes a wedge between the critical value for exercising
the investment opportunity and the principal's cost of the investment, even in
the case of symmetric information. The positive difference S*(K) - S;ym(K) =
(K - K)/3/(/3 -1) is the increase in the investment trigger caused by asymmetric
information in the special case.

Note that even though the principal knows that the agent does not have a higher
investment cost than K, the investment strategies in equation (2.40) and (2.19)

I

are not equal when K = K. The reason is that the investment trigger needs to
be increasing in the report k in order to ensure incentive compatibility for all
types of K, as shown by the second-order condition for incentive compatibility in
equation (A. 7) in the appendix. If the investment trigger were lower for a report
of K than for a cost level lower than K, then the agent always would report K.

The inverse investment trigger fJ(S*(K)) == K, equals byequation (2.40),

fJ(S*(K)) = ~ (S*(K)/3; 1+ K) .

Thus, the inverse investment strategy is to invest when fJ(s) > K, where fJ(s) =
~ (st1ø1 + K) .
In order to find the compensation function X (s ), we insert the above expression
of the inverse entry threshold into the compensation function in (2.34). By some
calculation we find the following expression for the optimal compensation function
when s > S*(K),

X(s) = {

K

l [ ( s ) ø 2K -K]"2. s +K - 8*(K) ø-l if s :::;S*(K)
(2.41)

if s > S*(K).

When s :::;S*(K), X(s) = o.
The value functions of the agent and the principal (equations (2.35) and (2.37)),
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are then found to be equal to

and

respectively.

( s )f3 l [2K-K (~)f3 iK-K]SO(K» "2 --:s=r- - SOCR) --:s=r- if s :::;S*(K)

if S*(K) < 8 :::; S*(K)

K-K if s > S*(K),
(2.42)

if S*(K) < s :::;S*(K)

s-K if s > S*(K),
(2.43)

Observe that the total combined value for the principal and the agent is

VP(s,K) + VA(s,K) = { (soCK»)f3 (S*(K) _OK) if s:::; S*(K) (2.44)
8 - K if s > S* (K)

in the case of asymmetric information.

Consistent with (2.38), the deadweight loss L(s, K) is, in the case the assumptions
of a geometric Brownian motion and a uniform density, equal to

L(8, K) =

(S;y~(K»)f3 (S;ym(K) - K)

- (soCK»)f3 (S*(K) - K)) if s < S;ym(K)

8 - K - (soCK»)f3 (S*(K) - K) if S;ym(K) < 8 :::;S*(K)

o if 8 > S*(K).
(2.45)

Below the results are illustrated numerically.
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Figure 2.1: The compensation X as a function of the output value s.

2.9 Illustration of special case results

The results for the special case discussed in the previous section will now br-

illustrated numerically.

The parameter values are given in the table:

Base case: The investment cost: K = 100
The lower limit of the investment cost: K = 50
The upper limit of the investment cost: K = 200
The risk-free rate: r = 0.05
The proportional convenience yield: 6 = 0.03
Volatility of asset in place: as = 0.10
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These parameter values lead to the following pre-computed constants in the base
case:

The probability density, K :::;K :::;K:
The distribution:
The inverse hazard rate:
The positive root satisfying the ODE:

f(K) = 1~0

F(K) = 1
5
5
0
0

F(K) = 50
!(K)

{J=2
The entry threshold, full information, eq. (2.19): S;ym(K) = 200
The entry threshold, asymmetric information, eq. (2.40): S*(K) = 300
The entry threshold, asymmetric info., K = K, eq. (2.40): S*(K) = 700

In Figure 2.1 the compensation, specified in equation (2.41), is plotted as a
function of the output value s. The compensation is zero when s is lower than
or equal to the critical value of investment, S*(K) = 300, as the compensation
is not paid prior to the investment time. The compensation is increasing in the
interval where S*(K) < s :::;S*(K). For s > 700 the compensation is constant at
its maximum level K = 200. In the case where the value of the output is driven
by a geometric Brownian motion the compensation increases concavely (shown
in appendix A.13).

Because of the agent's private information, the principal can never do better than
to enter into a contractual relationship. However, in the appendix, section A.12,
it is shown that when s > S*(K), the principal can do just as well by selling the
project ex ante.

In the numerical example the compensation function is concave. The reason is
that the upper level for the cost has a significant effect. If the upper level cost
had been very high, the compensation would have approached a linear function of
s. This can be seen by examination of equation (2.41): If K gets very large, then
the trigger S*(K) becomes very large too, making the value of the discounting
factor (s/S* (K))(3 close to zero. Thus, the term that makes the compensation
function X (s) concave goes to zero, and we are left with a compensation function
that is linear in the stochastic output value s.

In Figure 2.2 the principal's and the agent's value functions (given byequations
(2.20), (2.42) and (2.43)) are shown as functions of s. In addition, the sum of the
principal's and the agent's value functions are drawn. The sum of vP and VA is
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Figure 2.2: The values ~~m' vP + VA, vP and VA, as functions of s.

identical to the principal's value under full information in the interval s > S*(K),
and is otherwise lower than the principal's value under full information. Thus,
here we illustrate that only when s > S*(K) does the the contract between the
principal and the agent result in a sharing rule without having a dead-weight loss.
In the interval (0, S(K)), VP(s, K) + V(s, K) is lower than ~~m(s, K) because
of a second-best investment strategy.

The principal's value under full information increases convexly when s :::;S;ym(K) =
200, and is linearly increasing in the interval where the optimal decision is to in-
vest immediately. This corresponds to the value of a "standard" real option as
a function of the output price. Under asymmetric information, it is also the
case that the principal's and the agent's respective values increases convexly in
the interval where it is ex ante profitable to postpone the investment, i.e., when
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s ~ S*(K). This is for the same reason as under symmetric information: a
volatility higher than zero implies a possibility of higher profitability in the fu-
ture.

In the interval S*(K) < s ~ S*(K) the agent's value is concavely increasing for
the same reason as for the concavity in the compensation function: the upside
potential for future profit is limited. For s > S*(K) the principal alone benefits
from higher s, and the agent's value of the contract is constant at K - K = 100.

Since the agent 's value of information leaves less profit to the principal, and the
agent's value function increases concavely in the interval (S*(K), S*(K)], the
principal's value increases convexly in the same interval. When s > S*(K), the
principal's value under asymmetric information increases linearly, as the agent 's
value of information is zero in this interval.

By taking the first- and second-order conditions of the value functions ~~m (s, K),
VA(s, K) and VP(s, K) (given by equations (2.20), (2.42) and (2.43), respec-
tively) with respect to s, we find that the concavity and convexity properties
hold for all admissible parameter values. This is shown in appendix A.13.

In Figure 2.3 the relative dead-weight loss is plotted as a function of s in the lower
curve. The relative dead-weight loss is defined as (~~m +~~m - vP - VA)/~~m)·
The figure shows that the relative dead-weight loss is positive when s ~ S*(K) =
300.

Furthermore, in Figure 2.3 the principal's relative loss, (Vs~m - VP)/~~m, is
plotted in the upper curve. Both the principal's relative loss, and the relative
dead-weight loss are constant as long as the best decision under both asym-
metric and symmetric information is to postpone the investment, i.e., when

* - P l P - P P 19
S ~ Ssym(K) = 200. When s ~ 200, L/~ym(K) = "9 and (~ym - V )/~ym = 63

in our example.

The losses are decreasing in the interval (S;ym(K), S*(K)], since the inefficiency
in the second-best investment strategy is decreasing as s approaches S*(K) =

300. For all s higher than this point the investment decision is the same for the
symmetric and the asymmetric information case, i.e., there is no dead-weight
loss.
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Figure 2.3: The principal's relative loss and the relative dead-weight loss as
functions of the output value s.
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In the interval (S*(K),S*(K)], the principal's relative loss first increases and
then decreases. The reason is that two effects pull in opposite directions: higher
s leads to higher difference between the principal's values under symmetric and
asymmetric information, which increases the relative loss, whereas an upper limit
for the investment cost tends to decrease the agent's value of information as s
gets closer to S*(K).

Figure 2.4 illustrates how the principal's value function VP(s, K) changes for
different values of the asset in place s and the investment cost K, whereas Fig-
ure 2.5 shows the principal's value function VP(s) under the assumption that
the principal does not observe K. As is to be expected, the value VP(s, K) is
increasing in s and decreasing in K. With respect to s, the principal's value in-
creases convexly in the area where it is optimal to postpone the investment, and
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Figure 2.4: The principal's value function, vP as functions of sand K.
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is linear when immediate investment is optimal. The value VP(s, K) is convexly
decreasing in K as long as it is not optimal to invest. When the investment
is made immediately, the value is constant with respect to K. The reason is
that the compensation, which is the principal's" exercise price" of exercising the
option, is independent of K. When we take the expectation of VP (s, K) with
respect to K, we obtain the curve in Figure 2.5. The curve increases convexly
as long as s ~ S* (K), and is linear for s > S* (K). Only when s > S* (K) does
the principal know that the investment will be made immediately, resulting in a
linear curve in this interval.

s

Figure 2.6 plots the parties' contract values as functions of the volatility param-
eter Us when the output value s equals 300, which in the base case equals the
optimal critical price S*(K). In the "standard" real option problem, correspond-
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Figure 2.5: The principal's value, vP as a function of the output value .'-;.

ing to the value of ~~m(s,K), the value is increasing with respect to as ill til!'
interval where the best decision is to postpone the investment. The reason is that
as long as the option is not exercised, higher volatility increases the possibilit v
of a higher future profit.

The principal's value function under asymmetric information depends all t lu-
volatility as also in the interval where the optimal decision is to invest immr-

diately, i.e., the interval s > S*(K), in the figure corresponding to as < O.l.
The reason is connected to the agent 's value of information: as ds increases. IIif'
agent's value of information decreases, and therefore the share of the profit lr-fr
to the principal is increasing. The agent's value is decreasing in as because of
the upper limit on the agent's compensation.

For s ~ S*(K), corresponding to as ~ 0.1, there is an additional effect Oil
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Figure 2.6: The values ~~m' VP, and VA as.functions of the volatility as, S = 300.
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the principal's value under asymmetric information, which tends to depress the
principal's value: the loss in value because of an inefficient investment strategy.
We see that his effect is dominating when as is between 0.1 and 0.15, where the
output value s is close to the critical price S*(K). As the volatility parameter
gets larger, the effect from the option value, which is increasing in volatility,
dominates.
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The same effects are reflected in the loss curves of figure 2.7. At as = 0.1, cor-
responding to S*(K) = 300, the relative dead-weight loss gets positive, because
then it reaches the interval s < S*(K), in which we know that the loss is positive.
Both the relative dead-weight loss and the principal's relative loss increase in this
interval as long as the effect of a second-best investment strategy dominates the
effects from the agent's value of information being decreasing in volatility, and

0.4
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Figure 2.7: The principal's relative loss and the relative dead-weight loss as
functions of the volatility parameter as, the output value s = 300.
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the option value being increasing in the same parameter. The two last-mentioned
effects dominate when s > S*(K).

0.3
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Figure 2.8 plots the principal's and the agent's values as functions of the in-
vestment cost, K. Both the principal's and the agent's value functions are non-
increasing with respect to K, as a higher cost lowers the value of the investment
for both. For K < 100, corresponding to s > S*(K), the principal's value un-
der asymmetric information is independent of the agent's investment cost. The
reason is that the compensation paid to the agent is not a function of the unob-
servable variable K.

L
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Figure 2.9 shows that the relative dead-weight loss is increasing in K. The
explanation is that higher costs lead to higher critical values for exercising the
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Figure 2.8: The values Vs~m'VP, and VA as functions of the cost K, s = :300.
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option, and thereby larger inefficiency in the investment decision.

The principal's relative loss is decreasing in K for K lower than or equal til

100, corresponding to s > S*(K). The reason is connected to the fart t Itat

when s > S*(K), the principal's value vP is independent of K, and therefore all

increase in K results in a corresponding decrease in the principal's relative 10:--:-.

For K corresponding to s :::;S*(K), the dominating effect is the same as ill t Iif'
dead-weight loss as long as K is lower than 130. For Ks higher than 100. till'
dominating effect is the agent's value of information getting lower the closer to
the upper level cost the true investment cost is. This tends to decrease the los-,

At K = K the principal's loss and the dead-weight loss coincide, as the valur- of
the agent's information is zero at this point.
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Figure 2.9: The principal's relative loss and relative dead-weight loss as functions
of the investment cost K, the output value s = 300.

2.10 Conclusion

In this chapter, we study effects of asymmetric information on an optimal stop-
ping problem. A principal owns an investment opportunity and delegates t I}(>
investment strategy of the project to an agent. The agent has private informa-
tion about the investment cost, whereas the stochastic output value is common
knowledge.

This setting may apply to a number of "real option" situations, both within
regulation and corporate finance.

The agent's private information about the cost implies that it is optimal for the
principal to compensate the agent according to his value of private information.
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Thus, the compensation will be higher than the true investment cost in most
cases, thereby increasing the principal's cost of his investment opportunity. A
higher cost leads to a higher critical value for investment. Hence, it is found that
the agent's private information about the investment cost may lead to under-
investment.

The agent's value of private information will, however, not always lead to an
inefficient investment strategy. Inefficient decisions will occur only in the interval
where the critical value of investment, given asymmetric information, is higher
than the value of the output from the investment. If the value of the asset in place
is higher than the critical value of investment, the compensation function just
gives a rule for sharing the profit between the principal and the agent, without
having any inefficiency effects.

In the numerical examples we find that the agent 's value of the project decreases
in volatility because of the upper limit on the agent's compensation. When
the effect of an inefficient investment strategy dominates, the principal's value
decreases in the volatility parameter, whereas his value increases when the effect
of the possibility of a higher future profit dominates.
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Chapter 3

Asymmetric Information about a
Stochastic Investment Cost

As in chapter 2 we assume that an investor delegates the investment decision of
a project to an agent. Now, however, we extend the model in chapter 2 to the
case where the agent's private information is driven by a stochastic process. This
means that the full information case of the optimal stopping problem takes the
form of an exchange option of American type.

Analogously to the case of constant private information of chapter 2, we find
a second-best optimal compensation function that is concavely increasing in the
output value. Numerical examples show that, depending on the parameter values,
the factors leading to inefficiency can result in over-investment as well as under-
investment. The last result is in contrast to the result in chapter 2, where the
inefficiency always leads to under-investment.

3.1 Introduction

This chapter studies how the value of the contract changes when the private
information is stochastic. The starting point of the analyzes is a standard real
option problem: an investor owns a right to invest in a project that generates
positive net cash flows when the investment is undertaken. Both the net present
value of the future cash flows and the investment cost follow stochastic processes.
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To maximize the value of the investment project, the investor aims to find the
optimal time to exercise the option to invest.

The problem presented here is an extension of the problem in chapter 2. The
main difference in assumptions between the two models, is that the agent's private
information is constant in chapter 2, whereas it is driven by a stochastic process in
the model presented here. A conclusion when the privately observed investment
cost is constant, is that the optimal investment trigger is higher in the case of
asymmetric information than under full information, and therefore may lead to
under-investment. Furthermore, in chapter 2 we find an optimal (second-best)
compensation function that is increasing and concave in the stochastic value
of the future cash flows. In the numerical examples of the model in chapter
3, presented in section 3.7, we arrive at the same result with respect to the
optimal compensation function, whereas we find that the optimal investment
strategy, depending on the parameter values, may lead to over-investment, as
well as under-investment.

An example of an application of the model in chapter 2 and of the model to
be presented here, is the case where a principal owns natural resources (say.
a petroleum resource), and needs an agent to manage the investment strategy
of the project. The assumption of a constant investment cost is realistic in
cases where the investment consists of standard technology. In other cases the
investment project has the character of being more like a development project.
with new technical solutions, or frequent changes in the design of these. For
such investment projects it is more realistic to assume that the agent's private
information changes as time passes, as is assumed in the model to be present pc!
below. Moreover, the extension to stochastically changing private inforrnat ion
gives us the opportunity to analyze the problem more extensively.

The optimization problem is solved by finding an optimal compensation function.
In order to optimize the compensation function for all possible functions, we apply
the revelation principle. For a definition of this concept, see for example Salanio
(1997), or chapter 1 of this thesis. Other references are given in footnote 11.

The papers by Antle et al. (1998) and MacKie-Mason (1985) are related to the
model below as they treat the problem of uncertain, irreversible investments in
combination with changing private information. In their models new private in-

54



formation is obtained by an agent at certain points in time. Antle et al. (1998)
find that the incentive effects from private information tend to defer investment
because the investment is made at a higher cost under asymmetric information
than under full information. On the other hand, increased volatility by post-
poning the investment tend to reduce the value of waiting, thereby leading to
earlier investment. The reason is that an inefficient investment trigger in the last
period, reduces the principal's advantage of delaying the investment to the last
period. The result is ambiguous: the dominating effect depends on the param-
eters. In the numerical illustration of the results in this chapter, we arrive at
similar results.

MacKie-Mason (1985) models a sequential decision problem in presence of private
information and hence incentive problems. He finds that incentive problems lead
to under-investment. However, in MacKie-Mason (1985) the private information
concerns the output value, instead of the investment cost, and the problem is
formulated as a sequential model. The article is therefore more closely related to
the model to be presented in chapter 5.

This chapter is outlined as follows. In section 3.2 the problem is formulated
and the assumptions are stated. The benchmark case of full information is pre-
sented in section 3.3. The agent 's optimization problem is examined in section
3.4, whereas section 3.5 solves the principal's optimization problem. The imple-
mentable and optimal compensation function is presented in section in section
3.6. Numerical illustrations of the contract value, and of the corresponding opti-
mal investment strategies, are given in section 3.7.

3.2 Problem formulation

We assume that an investor owns a possibility to invest in a project (for example
production of petroleum), and that he needs an agent to manage the investment
of the project. We can split the risk of the project into two main parts. The
first one is market uncertainty, which is uncertainty related to the activity in
the economy. The second is technical uncertainty. An example of technical
uncertainty is uncertainty due to new technical solutions of the investment of the
project. We assume that the agent has private information about the technical
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uncertainty.

The investment cost Kt of the project is a function of an observable variable C,
and an unobservable variable Bt. The variable C; represents the part of the cost
that is due to market uncertainty, and Ot is the part of the cost due to technical
uncertainty. This approach is similar to the cost assumptions in Pindyck (1993),
where the cost uncertainty consists of technical uncertainty defined as uncertainty
of the physical difficulty of completing a project, and input cost uncertainty,
which covers the uncertainty that is external to the agent.

In Pindyck (1993) it is assumed that the technical uncertainty changes only when
investment occurs. Our model is, however, not directly comparable to Pindyck
(1993), as we have not taken into consideration that investment takes time. Thus,
in our model, the technical uncertainty changes even if no investment occurs. We
assume that the agent obtains private information about the investment cost from
other sources than the investment project in the model. For example, the agent
may manage other, similar investment projects as well, continuously receiving
private information from these. Another example is that the agent obtains private
information about technical innovations.

Formally, the part of the investment cost that is private information to the agent
is given by the geometric Brownian motion,

(3.1)

where et is the drift parameter of the cost due to technical uncertainty, ao is
the volatility parameter, and Bf is a standard Brownian motion. As Ot is a
measure of technical uncertainty only, we assume that Ot is independent of market
uncertainty.

The observable part of the investment cost may be correlated with capital mar-
kets. The risk adjusted process is given by,

(3.2)

The parameter r denotes the risk-free rate, the volatility parameter is given by
ae, and Bf is a standard Brownian motion, under the Q measure, and may be
correlated with capital markets. We assume that Bf and Bf are independent
Brownian motions.
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The cost variables Ot and C; are both log-normal processes, and the product of
the variables leads to a new log-normal process. We assume that the true cost,
Kt, is given by the function Kt = CtOt. To justify this function we think of Ot and
C, as suitably normalized "indexes" representing the market uncertainty and the
technical uncertainty, respectively, and where the product of the indexes leads to
the true investment cost.

By Ito's Lemma we find that the stochastic process of the true investment cost
is given by

(3.3)

The stochastic variable St represents a present value of a completed project,
commonly referred to as the" value of the asset in place" l. For short, we also refer
to St as the output value. Information about St is common knowledge. Thus,
when the option to invest is exercised, the agent has no more private information.
The principal obtains all the cash flows when the investment is exercised, and
the contracted compensation is transferred to the agent. The stochastic process
of St is given by

(3.4)

where 8s is the proportional convenience yield parameter of St, as is its volatility
parameter, and Bf is a standard Brownian motion that may be correlated with
Bf.

It is assumed that the parties are well diversified. As the variables St and Ct

are assumed to be spanned by capital markets, all risk can be hedged against.
The variable Ot consists only of technical uncertainty privately known to the
agent, and is uncorrelated to capital markets. Thus, the uncertainty in Ot is fully
diversifiable.

The probability space corresponding to the Brownian motions Bf, Bf and Br,
is defined by a complete probability space (0., F, Q). The agent's information at
time t is given by ~S,K, generated by {S~,K~,~ ~ t}, i.e., the stochastic processes
Sand K are adapted to the filtration {FtS,K }O::;t:::;T.The" twin assets" St and C,
are priced in complete markets, and hence the respective stochastic processes are

lMcDonald and Siegel (1986) interpret this value as representing "the market value of a
claim on the stream of net cash flows that arise from installing the investment project" .
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measured by the risk adjusted measure Q. Recall that the cost component et is
uncorrelated with capital markets. As long as the parties are well diversified, as
assumed above, the stochastic process of et is the same under the (true) P and
the (risk adjusted) Q measures.

The principal's information at time t is formalized by the FtS,c, which is generated
by {S~,e~,~:s; t}. Thus, in this case the processes Sand e are adapted to the
filtration {J=ts,C}O"5_t"5_T'The principal knows the distribution of et at any time t,
but does not observe the variable et.
Although we restrict our analysis to the case of geometric Brownian motions, we
do not need to make this restriction. In equation (3.20) below we present the
principal's optimization problem where the agent's value of private information
is incorporated. The result presented in equation (3.20) is reached also when we
assume that the stochastic processes are given by time-homogeneous Ito diffu-
sions, and the true investment cost Kt is represented by a function Kt =.h( et, et)·
However, in order to find separating optima, we need to assume that the fraction
F(Kt)/ J(Kt) is increasing in Kt, where F(·) is the cumulative distribution func-
tion of Kt, and JO is the corresponding density function. These assumptions are
made when we, in section 4.3, extend the principal-agent model in this chapter
to a situation where more than one agent has private information. The reason we
assume that the stochastic processes are geometric Brownian motions in the com-
putations below, is that the assumption makes it easier, and more informative,
to compare our results to the well-known case of no private information. When
the agent does not have private information, the option problem is identical to
an exchange option of American type, presented in section 3.3.

We assume that the optimal stopping problem is delegated to the agent. For
example, applied within the framework of corporate finance, this means that the
owners delegate a certain investment decision to the privately informed manage-
ment. In the case of regulation theory, delegation may have the interpretation
that a government has given a firm the right to make an investment decision on
the government's behalf. Note that, although we assume that the investment
decision is delegated, the same outcome occurs if the principal makes the invest-
ment decision himself, and the agent only reports the costs. The reason is that we
apply a truth telling mechanism in solving for the optimal investment strategy.
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We want to find a compensation function that induces the agent to behave in the
way preferred by the principal, and at the least cost to the him.

As in chapter 2, the compensation X (.) is transferred at the time when the
investment is made. It depends on the observable variables St and Gt as well as
a time variable. It may also be based on the agent's report at the investment
time. The agent's cost report is denoted k, where k E [O,(0).

Assume that the option to invest, and thereby the contract, expires at time
i, where f :::;T, and T is a given time horizon. Furthermore, let (s, c, k) =
(St, Gt, Kt).2 Starting at time t, with initial conditions (s, c, k), the principal's
optimization problem is given by

VP(s, c, t) =~~~E [e-rTk (STk - X (STk' GTk, T; k)) +1 Ft'C] , (3.5)

subject to the agent 's optimization function

VA(s, c, k, t) = ~u~ E [e-rTk (X (STk' GTk, Tk; k) - KTk) + 1 FtS'KJ. (3.6)
K,TK

The principal's problem in equation (3.5) is to find an optimal compensation
function, subject to the agent's optimization problem in equation (3.6). The
compensation function X (.) must be specified at the time the parties enter into
a contract. The agent's optimization problem is dynamic: At any time during
the contract period the agent must decide on whether to invest or not, and what
report he is to give to the principal at the investment time. The stopping times
Tk is based on the report given at the stopping time, k: Thus, the optimal
stopping time is defined by

Tk = inf {t E [O,T]IVA(St, Gt, Kt, t) = X(St, Gt, t; k) - Kt}.

The optimal stopping time may now be time dependent. The reasons are that we
take into consideration that the compensation function X (.) may be dependent
on time, and that the option to invest is not necessarily perpetual.

2Note that we now refer to s as the output value at time t, whereas we in chapter 2 defined
s as the output value at time o. In the time-inhomogeneous optimization problems in chapter 3
and section 4.3, we need a time variable and assume that the initial time is given by t, whereas
in the time-homogeneous problems in chapter 2 and section 4.2 we assume that the initial time
is zero.
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As the agent continuously obtains new information, the agent correspondingly
reports continuously to the principal. However, in the formulation of the problem
the compensation function is not based on earlier reports. As long as the agent
reports costs higher than the costs at which the parties find it optimal to exercise
the option to invest, the value of the agent's compensation will not be dependent
on the reports.

In solving the model we assume that the agent decides on the optimal investment
strategy, and nevertheless reports the investment cost to the principal. However,
the reports from the agent to the principal is just a device for finding the optimal
investment strategy, and hence finding the optimal contract. Moreover, given
truthful reports, it does not matter which party decides on the investment strat-
egy, as the same outcome will occur. Our aim is to find a compensation function
where communication between the principal and the agent is not necessary, and
that is as good as any contract in which the agent communicates the private
information to the principal.

The optimization problem (3.5)-(3.6) is similar to the problem in (2.2)-(2.3). The
main difference is that in this chapter we assume that the private information
changes stochastically, instead of being a constant as in the problem formulated
in (2.2)-(2.3) of chapter 2. This means that in the model in chapter 2 the agent
is committed to an earlier given report, whereas in the model presented ill thi-
chapter he is only committed to the report at the investment time. However. ill
spite of this difference, we shall see that the results in both chapters are similar

In the next section we present the optimization problem in equations (3.5)-(3.{j) ill
the case where the agent has no private information. This case of full inforrnat ion
is used as a benchmark when we analyze the effects of private information.

3.3 Full information

If the principal observes the stochastic process Kt, the agent's value of the con-
tract is zero, as the agent has no private information. Thus, the principal call
design the contract in such a way as to punish the agent if he does not act ill
the way preferred by the principal. Hence the optimal transfer function under
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full information is given by X(St, Kt, t) = Kt if the investment is made at time
t, and zero otherwise.

The principal's optimization problem is given by

Vs~m(S, k) = sup E [e-rr (Sr - Kr)+IFtS,K] ,
rEft,Tl

(3.7)

where T denotes a stopping time. The subscript sym indicates that this is the
principal's value of the contract when information is symmetric. The optimiza-
tion problem has the form of an exchange option",

The optimization problem in (3.7) is analogous to the full information problem in
the case where we assume that the private information is constant, represented
by equation (2.9). There are two differences between the benchmarks: In this
chapter the investment cost given by a stochastic variable, and the option to
invest is not necessarily perpetual.

In the case where both St and Kt are geometric Brownian options, the optimiza-
tion problem in equation (3.7) is discussed in Broadie and Detemple (1997). It is
shown that the optimal exercise strategy is given by a linear relationship between
St and Kt.

When the option has an infinite horizon, we are able to find a closed form solution,
solved by, among others, McDonald and Siegel (1986), Gerber and Shiu (1996)
and Øksendal and Hu (1998). Below the closed-form solution is presented.

Similarly to the optimal trigger under full information in chapter 2, equation
(2.10), the trigger price S;ym(t) is proportional to the investment cost Kt, S;ym(t) =
IIKt, where {3is a constant larger than 1. The solution to (3.7) is given by

when s:::; lIk
(3.8)

when s > /3~I k,

where
A = ]:_(_{3 ) 1-/3

{3 {3-1

3An option to exchange one asset for another is sometimes called a Margrabe option, as
Margrabe (1978) analyzed European options to exchange one asset for another.
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Furthermore, we have

if a> O

if a = O,

where a = a~ - 2pscasac + (ab + a~), and ose is the correlation coefficient
between Bf and Bf. The parameter values must satisfy f3 > 1.

In addition to the conditions stated by McDonald and Siegel (1986), Øksendal
and Hu (1998) find that the following restrictions are necessary in order to ensure
that T < 00,

{

r - Q + ~(ab + a~) ~ 6s + ~a~ if a> O

r - Q > 68 if a = o.

The value function in (3.8) equals the principal's value of the contract when he
observes the investment cost Kt, and when the option to invest is perpetual.

3.4 The agent's optimization problem

In this section we analyze the agent's optimization problem given by equation
(3.6), and characterize his value of private information.

Following Salanie (1994), section 2.1.2, the revelation principle implies that we
can "confine attention to mechanisms that are both direct (where the agent re-
ports his information) and truthful (so that the agent finds it optimal to announce
the true value of his information)". The principal's set of tools to induce the agent
to behave in a certain way is given by the incentive mechanisms (X(K), Tk). If
this set of mechanisms can be implemented, then we can also implement these in-
centive mechanisms through a direct truthful mechanism, (X(K), re- K), where
the agent reveals his private information. Thus, we can find a direct truthful
mechanism (X(K), Tk' K) with the same outcome as for any incentive mecha-
nisms (X(K), Tk).

Define a trigger function 'I/J(c, t; K) such that the option to invest is exercised
immediately when s > 'I/J(c, t; K), whereas it the option is postponed when s ~
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7jJ(c,t; K). Note that the investment strategy is based on the agent's report K.
The investment trigger 7jJ corresponds to the critical price S(K) in chapter 2.

Analogously to the approach in chapter 2 we now proceed by finding the agent's
value of private information, also called the information rent. Our aim is to find
an expression of the value of private information, and incorporate this value in
the principal's optimization problem. We express the agent's value function as

{

wA(s,c,k,t;K) if s::; 7jJ(c,t;K)
A ~v (s, C, k, t; K) =

e-rt (X(s, c, t; K) - k) if s > 7jJ(c,t; K),
(3.9)

where vA represents an arbitrary value function of the agent, and wA denotes the
agent's value function when the investment decision is postponed.

At any time t the agent's truth telling condition is given by the first-order con-
dition

A Aåv (s, C, k, t; K)
åK =0. (3.10)

K=k

We now emphasize that the report K is dependent on the true investment cost
k, i.e., K = K(k). By the envelope theorem we find that?

dvA(s,c,k,t;K(k)) = {W:(S'C'k,t;K(k)) if s::; 7jJ(c,t;K(k))
dk A

_e-rt if s > 7jJ(c,t; K(k)),
(3.11)

where w:(s, c, k, t; K) is defined as the derivative of wA(s, c, k, t; K) with respect
to k.

From (3.11), we know that no contract that depends on the report K dominates
a contract that is independent of the report. Thus, we find that X(s, c, t; K) =

X(s, c, t).

Although the compensation is not dependent on the report K, the agent's pri-
vate information still is of value. To induce the agent to choose the principal's

4 dvA(s,c,k,t;K(k)) _ 8vA(s,k,c,t;K(k)) dK(k) + 8vA(s,c,k,t;K(k)) Th fir t t the ri ht h d
dk - 8K(k) dk 8k . e s erm on e rIg - an

side is zero when K(k) is optimal.
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preferred investment strategy, the agent must be compensated according to the
value of his private information.

Let 'ljJ(e, k, t) be the entry threshold when truth telling is optimal. Define wACs, c, k, t)
as the agent's value function when s ::; 'ljJ(e, k, t) and when truth telling is the
optimal strategy. Then the agent's value function, given truth telling, can be
written in the form

{

WACs, c, k, t)
vA(s, c, k, t) =

e-rt (X(s, c, t) - k)

if s ::; 'ljJ(e, k, t)
(3.12)

if s > 'ljJ(e,k,t).

Let 'I9(s, c, t) be the inverse trigger function, i.e., it is optimal to invest when
k < 'I9(s, c, t), and optimal to wait when k ~ 'I9(s, c, t). This function corresponds
to the inverse entry threshold '19(.) in chapter 2. We find the agent's value of
private information by integrating both sides of the first-order condition in (3.11)
with respect to the privately observed investment cost k, The following expression
of the agent's value function is derived in appendix B.1,

{
-It w~(s, c, u, t)du

vA(s, c, k, t) =
. crt ('I9(s,e,t) - k) - IiJ7s,c,t) w~(s,e,u,t)du

if s ::; 'ljJ(c, k, t)

if s > 'ljJ(e, k, t).
(3.13)

The reason we express the value in (3.13) as unevaluated integrals, is that this
is a convenient form when we are to incorporate the agent's value of private
information into the principal's optimization problem. In the special case where
the option to invest is perpetual, and the investment cost Kt is constant, equation
(3.13) corresponds to the agent's value of private information in equation (2.25)
in chapter 2.

For s > 'ljJ(e, k, t), put the right-hand sides of equations (3.12) and (3.13) equal to

each other. Multiplying through by ert gives an expression for the compensation
function,

Xes, c, t) = 'I9(s, c, t) - ert 100 w~(s, c, U, t)du.
19(s,c,t)

(3.14)

Equation (3.14) shows that the compensation function is dependent on the trigger
function 'I9(s, c, t), and thus only on observable variables, as the investment cost k
has been cancelled out. However, so far we do not know the optimal investment
strategy. This problem is analyzed in the section below.
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3.5 The principal's optimization problem

The principal's optimization problem is given in (3.5), and rewritten here as,

VP(s, c, t) = sup E [gP(Sn Gr, 7)+1 Fts,e] , (3.15)
x(·)

where
gP(s, c, t) = e-rt (s - X(s, c, t)). (3.16)

The only difference in equations (3.15)-(3.16) compared to equation (3.5) is that
the compensation X now is not dependent on the report k. For simplicity we
now have suppressed the subscript k in the notation of the stopping times. As
long as the agent's truth telling constraint is satisfied, the stopping times depend
on the true investment cost.

The principal's problem is to implement an optimal compensation function. In
order to optimize the principal's value with respect to an optimal stopping time.
we need to replace the unknown compensation function with known functions.
Thus, we replace the unknown function X(·) by the expression in (3.14). Fur-
thermore, in order to find a convenient expression of gP (s, c, t) we note that t he
function in (3.16) is equivalent to

gP (s, c, t) = 100 e-rt (s - X(s, c, t)) f(kle, t)dk, (3.17)

where the function f(klc, t) is the probability density of k given the principal's

information about c and t. Now, suppose that the option to invest is exercised at
time t, and that k = 'IjJ(s,c, t) at time t. Then replace X(s, c, t) in the principal's

value of the payoff, by the right-hand side of (3.14), which by some calcular iUII:.

lead to (derived in the appendix, section B.2)

P( ) (OO{ -rt( ) A( )F(k1c,t)} (I )9 s, c, t = Jo e s - k + wk S, c, k, t f(kle, t) f kc, t dk. (3.1~)

The function F(klc, t) is defined as the distribution function of the investment
cost k, conditional on the observed cost component c and the time t.

A condition in the agent's optimal stopping problem is that the first-order deriva-
tive of vA(.) must be continuous for all the variables included in the problem". III

SThis condition for optimum is called smooth pasting or high contact, and is, for instance.
stated in M~Donald and Siegel (1986) and Øksendal (1998), Theorem 1004.1.
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particular, we need to check that the value function is continuous at the trigger
where the investment is exercised. The first-order derivative of the value function
in (3.12) at the trigger where k = 79(s,c, t) leads to the following condition

w~(s,c,79(s,c,t),t) = _e-rt.

Under the assumption that the investment is made at time t, we use the smooth
pasting condition to replace wt(s, c, k, t) in equation (3.18) by -«:", leading to

P( ) 100 -rt ( F(kic,t)) I )9 s, c, t = o e s - k - f(klc, t) f(k c, t dk.

Thus, we have reformulated the principal's payoff value to an expression con-
sisting of known functions only, and where the agent 's truth telling condition is
incorporated.

We can rewrite the principal's value at the investment time as

gP(s, c, t) = E [e-rt (s - k - ~fZi~::?)IFtS,c]
(3.19)

_ E [E [e-rt (s _ k _ F(kle,t)) I:;=:S,K] I:;=:S'C]!(kle,t) t t·

If we compare the result in (3.19) to the case where the principal has full infor-
mation, given by (3.7), we see that the principal's payoff value is reduced by the
f ti F(kle,t)rae Ion !(kle,t)'

The principal finds the optimal investment strategy by solving the following op-
timal stopping problem,

VP(s c t) = sup E [E [e-rT (s - K _ F(KTICn T)) I :;=:S,K] I :;=:s,c] (320), 'T T T f(KTICT, T) tt, .

as if he knows the unobservable variable k.

Recall that in the case of full information, presented in section 3.3, the optimal
investment strategy involves a linear relationship between output value s and the
investment cost k. However, the two variables are not linearly related in the case
of asymmetric information because of the fraction ~U.
The principal's unconstrained optimization problem in (3.20) has the same form
as the principal's optimization problem when the private information is constant
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(compare to equation (2.28) in chapter 2): the principal's expected payoff consists
in both cases of the value of the asset in place minus the true investment cost
and the fraction ~r-? The only difference is that in the case of a constant private

information, the fraction ~r-?is a constant, too.

It may be surprising that the principal's expected value of the payoff is of the same
type, because there seems to be an important difference between the case where
the agent's private information is stochastic, and the case where it is constant. As
the private information does not change in the first case, the agent is committed
to the same report during the contracting time. However, when the private
information changes stochastically, the agent continuously submits new reports
without committing to earlier reports (given that the contract does not depend
on reports earlier than the one at the investment time). Intuitively, one may
therefore be led to believe that this gives the agent a higher value of his private
information compared to the case where the private information is constant. The
principal's optimization problem above (equation (3.20)) shows that this is not
the case, as in both cases the principal's" exercise cost" is increased by ~f."].
The explanation of the agent's value of private information being of the same
form whether it is constant or stochastically changing, is that in both cases we
find a contract where the investment strategy is delegated to the agent. Thus,
communication has no value. For a discussion of the value of communication
versus delegation, see Melumad and Reiehelstein (1987) and (1989).

Let i;P(s, c, k, t) be the principal's value function when he is informed about the
agent's true investment cost, but is committed to the contract, i.e., when the
principal's information is given by FtS,K,

fJP(s c t) = E [e-rT (8 - K _ F(KTICT,T)) J-rS,KJ
' , T T !(KTICT,T) .rt . (3.21)

We find the optimal investment strategy by optimizing equation (3.21) with re-
spect to the optimal stopping time. Moreover, define

-p( k) -rt ( F(klc, t))
9 s, c, ,t = e s - k - f(klc, t) . (3.22)

The function gP(s, c, k, t) can be understood as the principal's value at the time
the investment is made, given that he is committed to the second-best contract,
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and given that he is informed about the investment cost k. The optimal value
function vP(s, c, k, t) must satisfy the variational inequalities

vP(s, c, k, t) 2: [/(s, c, k, t) (3.23)

LvP(s,e,k,t) -rvP(s,e,k,t) ~ O (3.24)

max {LvP(s, c, k, t) - rvp(s, c, k, t),[/(s, c, k, t) - vP(s, c, k, t)} = O. (3.25)

The partial differential operator L that coincides with the generator A of the
system {St, Ct, Kt, t},6 is given by

(3.26)
where Ps,c is the correlation coefficient between the standard Brownian motions
Bf and Bf· The expression LvP - rvP = Ocorresponds to the partial differen-
tial equation for arbitrage-free contingent claims", as described in, for example,
Duffie (1996), eh. 5.G, or Merton (1992), eh. 13.2. The value function vP in
(3.23) is always larger than, or equal to, the "payoff" gP as it consists of the
decision flexibility (Le., the option to wait) in addition to the value at the time
the investment is made. As long as vP(s, c, k, t) is strictly larger than gP(s, c, k, t)

6Denote Yi = {St,Ct,Kt,t}, y = Yi. Following Øksendal (1998), Definition 7.3.1, we define
the generator A of the process Yi by

A-P() li E[vP(YiH)IFtS,Kj - vP(y)
v y = 1m .

elD ~

Thus, the generator A denotes the expected rate of change of vP(y). By Øksendal (1998),
Theorem 7.3.3 we know that A and L coincide when the function vP has continuous derivatives
up to the second order.

7The expression LvP - rvP is lower or equal to zero for the following reason: The definition
of vP implies that

By Dynkin's formula we know that

Hence we need AvP ~ O for the inequality in (*) to be satisfied. A reference for Dynkin 's
formula is Theorem 7.4.1 in Øksendal (1998).
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we are in the continuation region, defined by

D= {(s,c,k,t) :vP(s,c,k,t) >gP(s,c,k,t)}.

Moreover, in the continuation region we need LvP -rvP = 0, as required in equa-
tion (3.25). When vP(s, c, k, t) > gP(s, c, k, t) the investment option is exercised.

There is no analytical solution to the problem in (3.21), and the optimal invest-
ment strategy must be solved numerically. However, as we know that å(F(klc,~t(klc,t)) >
0, we guess that the optimal investment trigger 'ljJ* (c, k, t) is strictly increasing

!ti!:.. å21/J*and convex in k, i.e., åk > O and åk2 > O.

Observe that in the case where the stochastic processes are given by geometric
Brownian motions, we can reformulate the principal's value function to

P() [ -TT (8 (F(On7) ))1 se]V s,c,t =s~pE e T-CT f(On
7
) +OT Ft' .

This result is derived in appendix B.3.

(3.27)

Thus, we see that there is a linear relationship between sand c. This result
is consistent with the linear symmetric information case in subsection 3.3. The
reason is that both s and c are observable to the principal. However, the part
of the investment cost that is not observable to the principal, is not linearly
dependent on sand c.

3.6 Implementation of the optimal investment
strategy

Let 'ljJ*(c, k, t) represent the optimal investment strategy found from equation
(3.20). The optimal investment strategy is to invest immediately if s > 'ljJ*(c. k. f)
and postpone the investment if s :S 'ljJ*(c, k, t). This investment strategy must he
implemented into the compensation function given by (3.14). Let 73*(s, c, t) bp
the optimal inverse trigger function. From (3.14) we find by partial integration
that the optimal compensation function is given by

X*(s, c, t) = 73*(s, c, t) + eTtwA(s, c, 73*(s, c, t), t) (3.28)
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if the investment is made at time i, and X*(s, c, i) = Ootherwise. Hence, if the
principal compensates the agent according to the function in (3.28) at the time
the investment is made, the agent is induced to follow the optimal investment
strategy.

Above we have guessed that the critical price ¢* is increasing in the investment
cost k, since ~iZ? is increasing in k. As the critical cost, 'I9*(s, c, i), is the inverse
function of the critical price, ¢*(c, k, i), (keeping c and i fixed), we guess that
the critical cost 'I9*(so) is concavely increasing in s, i.e., &:s· > O and &;~.< O.
Hence, we guess that the first term of the optimal compensation function in
equation (3.28) is increasing and concave in the output value s. With respect
to the second term in (3.28) we do not in general know whether the increase is
concave or convex. However, in the numerical examples below, we will study
these properties for some special cases.

3.7 Numerical illustration

The implementable compensation function in equation (3.28), the corresponding
optimal investment strategies, and the resulting values of the principal and the
agent, are in this section illustrated numerically.

For simplicity, we assume that C, = 1 for all i. However, this simplification does
not alter the results qualitatively, as we, corresponding to (3.27), can formulate
the payoff as follows, c [~ - (~~;::?+ O) ]. Hence, we may think of the option as
consisting of c options on an asset with price sic and investment cost equal to
~(;::?+ O. A similar interpretation of American exchange options is pointed out
by Broadie and Detemple (1997).

In order to solve the optimization problem in equation (3.27) numerically, we use
an implicit finite difference method for the two state variables, St and Kt. In the
appendix, section B.4, our approach is described in more details.

In the example we assume that the option has a finite horizon and that t = o.
The parameter values for the base case are tabulated below.
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Base case: Expiration date of the contract: f = 5
Investment cost, market uncertainty: C, = 1 for all t 2: O
Risk-free rate: r = 0.05
Convenience yield: 6s = 0.03
Drift, investment cost:
Volatility, output value:

a = 0.04
as = 0.1

Volatility, cost, technical uncertainty: a(} = 0.2
Volatility, cost, market uncertainty: ac = O
Initial investment cost: k = 100
Initial expectation of investment cost: E[k] = 100
Initial variance of investment cost: Var[k] = 0.16

In Figures 3.1 and 3.2, the investor's values of the investment project are illus-
trated under full information and asymmetric information, respectively.

Figure 3.1 shows the investor's value of the project in the case of no private
information, corresponding to the value of an exchange option of American type.
As is typical for an American exchange option, the option value is convexly
increasing in s, and convexly decreasing in k. When the combination of sand k
leads to immediate investment, the option value is linear in both sand k.

In Figure 3.2 the investor's value function is illustrated in the case of asymmetric
information, VP(s, k). Note that the value function illustrated here is the value
for given levels of the partially observed k, such that V p (s) = JoooVp (s, k) f (k )dk.
Thus, the value function VP(s, k) is interpreted as the principal's value after he
is committed to the contract, and after he is informed about the investment cost,
k, The reason we present VP(s, k) instead of VP(s) is that by doing so we are
able to study efficiency losses for different values of the investment cost k, as was
done in chapter 2.

Figure 3.2 shows that the principal's value function under asymmetric informa-
tion is convexly increasing in s, and convexly decreasing in k, in the area where
postponing the option to invest is the optimal decision. When immediate invest-
ment is the optimal decision, the investor's value increases convexly in the output
value s, and is independent of changes in k. The reason for the independence
is explained by the optimal compensation function as shown in equation (3.28):
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Figure 3.1: The investor's value under full information, corresponding to the
value of an exchange option of American type, ~~m(s, k).

The compensation function is independent of k, and as the investor's payoff from
immediate investment equals s - X*(s), the investor's value does not change
with respect to changes k. These effects are consistent with the results for the
principal's value in chapter 2, Figures 2.2, 2.4 and 2.8.

As the compensation is not dependent upon the investment cost, the agent alone
profits on decreases in the investment cost (and analogously bears the whole cost
if the investment cost increases) in the region where immediate investment is the
optimal decision. This effect is seen from Figure 3.3, where. the agent's value of
the contract is drawn. We find the same effect in the agent's value function in
chapter 2, confer Figure 2.8. Furthermore, Figure 3.3 shows that in the area where
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400

Figure 3.2: The investor's value under asymmetric information, VP(s, k).

it is optimal to postpone the investment decision, the value increases convexly
in s, and decreases convexly in k, as is the case in the numerical example of the
model in chapter 2, see Figures 2.2 and 2.8.

As long as the state variables lead to the same investment strategy whether
the information is complete or asymmetric, the investor's value under full infor-
mation in Figure 3.1 equals the sum of both parties' values under asymmetric
information, shown in Figures 3.2 and 3.3. When the state variables result in
second-best investment strategies, we have a positive dead-weight loss, equal to
~~m(s, k) + ~~m(s, k) - (VP(s, k) + VA(s, k)).8

8This definition of the dead-weight loss corresponds to the evaluated dead-weight loss in
equation (2.38).
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Figure 3.3: The agent's value of private information, VA(s,k).

The optimal investment trigger is in Figures 3.2 and 3.3 shown as the line that
forms the regime switches for the different combinations of sand k. In Figure
3.4 the same investment trigger function f)* (s) is plotted, having a concave and
increasing fonn. The linear curve in Figure 3.4 represents the optimal investment
trigger in the full information case, corresponding to the investor's value function
in Figure 3.1. The two curves in Figure 3.4 are to be interpreted as follows. If s
is equal to 200 in the full information case, it is optimal to invest when k is lower
than 126. Analogously, when s = 200 and we have asymmetric information, it is
optimal to invest when k is lower than 96.

When the asset value s is higher the 100, the curve representing the investment
strategy under asymmetric information is below the investment trigger function
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Figure 3.4: Optimal investment strategies fJ* (s) under full information and asvrn-
metric information, respectively. Base case.

under full information. Thus, in this interval asymmetric information !f>ad:--,( t

under-investment. In the interval where s is lower than 100, over-investment i~IIif'
result, whereas the optimal investment strategy under asymmetric informal i()11

is neutral when s = 100.

The concave form of the" inverse" investment strategy fJ* (s), and therefore till'
convexly increasing 1j;(k), is consistent with our earlier guess. The" technical"
reason for the concavely increasing investment strategy, is that the total ('oSI

k +~i;jin the optimization function (equation (3.27)) increases in k, thus lead-
ing to an investment strategy 1j;*(k) that increases convexly in k, and thereby il

concavely increasing inverse entry threshold, fJ*(s), as shown in Figure 3.4. TIH'
economic interpretation for the convex form of 1j;*(k) is explained in the follow-
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ing". In order to find a contract that induces the agent to follow the investment
strategy preferred by the principal, an increase in the agent's investment cost
k must be followed by an increase in the payment to the agent. Thus, if the
principal increases the payment for a certain level of k, to ensure incentive com-
patibility, the principal needs to increase the payment for all lower levels of k, as
well. The result is that an increase in the investment cost of one unit, implicitly
increases the payment from the principal to the agent by more than one unit.
Hence, as the principal's payment increases convexly in the cost k, the trigger
function 'IjJ* (k) increases convexly in the investment cost k as well.

Compared to the investment strategy under full information, represented by
the linear curve in Figure 3.4, the concavely increasing f}* (s) tends to under-
investment as the asset value s increases. Figure 3.4 shows that when the asset
value s is higher than 100, the incentive problem leads to under-investment.

A perhaps more surprising result is that private information for some parameter
values leads to over-investment, as is the case in Figure 3.4 when s has a lower
value than 100. The explanation is that the incentive problem, tending to under-
investment, decreases the value of waiting. When the effect that reduces the value
of waiting (the option value) is higher than the effect caused by the incentive
problem, over-investment is the consequence. This result is in contrast to the
second-best investment strategy in chapter 2: when the private information about
the investment cost is constant, the optimal investment strategy may lead to
under-investment only. The reason for the different results is that the principal's
expenses at the investment time is a constant, equal to K + F(K)j f(K), for
all states in chapter 2, whereas in the model in chapter 3 the expenses k +
F(k)j f(k) may increase very much for increases in the investment cost k. Thus,
the prospects of a high expenses lead to early investments.

In Figure 3.5 the optimal investment strategies are drawn for different values of
the volatility due to technical uncertainty, (jo. The linear curves are the optimal
investment strategies given full information, and the concave curves represent
the asymmetric information case. In the case of an American exchange option
(corresponding to the full information case), the trigger function decreases in
the volatility parameter (jo. The same effect applies for the case of asymmetric

9Confer Laffont and Tirole (1993), page 65, for a similar explanation.
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Figure 3.5: Optimal investment strategies '13* (B) for different parameter values of
volatility (jø, and varying asset value B.

information. However, the increase is larger for the full information case than
the asymmetric case. This implies that as (jø increases, the over-investment
effect gets larger. The neutral asset values B, at which neither over-investment
nor under-investment take place, increase in the volatility parameter.

An explanation for the relatively small effects on the investment strategies when
we change the volatility parameter value, is that the fraction 7H increases rapidly
in the investment cost k for all values of the volatility parameter. This tends to
reduce the exercise regions.

In Figure 3.6 the optimal compensation function X is drawn as a function of the
asset value B, and for different values of the volatility parameter (jø. The concave
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Figure 3.6: The optimal compensation function for different parameter values of
volatility ao, and for varying asset value s.

form on the compensation function is a result of the concavely increasing t rig,).!,f·r
function t9*(s), confer equation (3.28). A corresponding interpretation is that ,L'"

s increases, the probability that s is higher than k increases as well. Thus. till'

compensation function has a decreasing slope as the asset value increases: for
high values of s the principal can pay the agent a lower share of the total value.
as the agent will be induced to invest even though the share left to him is smaller
for a high value of s than for a low value of s.

Figure 3.6 also shows that the compensation is decreasing in the volatility ao. All
explanation is the following. As ao increases, the fraction F(k)/f(k) increases ill
the relevant interval, thus increasing the principal's expenses at the investment
time. To induce the agent not to invest at "too" high levels of k + F(k)/I(I.-).
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Figure 3.7: The principal's and the agent's respective value functions, ~~m' vP
and VA for varying asset value B. Base case.

the compensation is lower the higher the value of aB.

The concave form on the compensation function in Figure 3.6 is similar to t ho
compensation function when the private information is constant, as shown ill
Figure 2.1, although for different reasons. Recall that in the numerical example
of chapter 2 the compensation is concave because of the agent's decreasing value
of private information as the uniformly distributed investment cost approaches
the upper level cost.

If we compare the compensation function to the linear curve in Figure 3.6, rep-
resenting the asset value B, we see that the compensation consists of a large part
of the total value.
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Figure 3.8: The principal's value functions ~~m and vP for different values of
volatility (jo and varying asset value s.

Figure 3.7 plots the parties' values as functions of the asset value s. The values
corresponds to the parties' values shown in Figures 3.1-3.3 for the case where the
investment cost k = 100. The upper curve is the principal's value when the agent
has no private information, whereas the middle curve represents the principal's
value when private information exists. The lower curve represents the agent's
value of the contract. Figure 3.7 corresponds to the principal's value functions
in Figure 2.2 in chapter 2. By comparison of the two figures, we find that the
value functions have similar forms.

Figure 3.7 shows that in the base case example, where k = 100, the incentive
problems lead to under-investment: The optimal investment trigger under full
information 'Ø;ym equals 158, whereas the optimal entry threshold under asym-
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Figure 3.9: The agent's value function VA for different values of volatility a(} and
varying asset value s.

metric information 'IjJ* is equal to 218. The investor's loss because of asymmetric
information amounts to the difference between the two upper curves. The fig-
ure shows that the investor's value is substantially reduced due to the incentive
problems.

Under asymmetric information both parties' values increases convexly in s when
s ~ 'IjJ* = 218. In the interval where s > 'IjJ* = 218 the principal's value increases
convexly, whereas the agent's value increases concavely, as is shown in Figure
3.9. The concave increase in the agent's value is due to a fact earlier mentioned:
because of the incentive compatibility constraint the principal's payments are
convexly increasing in the investment cost k, which means that the compensation
increases concavely with respect to the output value s. The reason for the convex

81



increase in the principal's value function when s > 'IjJ* is as follows. If s >
'IjJ;ym = 158 the investment strategy is efficient under asymmetric information
as the investment decision is the same whether there exists private information
or not. Thus, the principal's value under full information equals the sum of the
parties' values under asymmetric information. As the principal's value under full
information is linear in s, the difference between this full information value and
the agent's value yields a convexly increasing value function vP when s > 'IjJ*.

Figure 3.8 illustrates the investor's value of the investment option under full infor-
mation and asymrnetric information, respectively, for different values of volatility
(jo. The two upper curves plot the investor's values in the case of full informa-
tion. The value functions meet at s = 282. The two lower curves represent the
investor value under asymmetric information. Both under asymmetric and full
information the principal's value functions increase in the volatility parameter
(jo. When the volatility parameter (jo equals 0.2, it is optimal to invest when
s > 218, whereas the optimal entry threshold is 278 when (jO= 0.4. Note that.
in contrast to the full information case, the investor's value under asymrnetric
information is dependent on the volatility in the interval where immediate in-
vestment is optimal. The reason is that the optimal compensation function X is
dependent on the volatility parameter.

In Figure 3.9 the agent's value of the contract is drawn for different values of
the volatility parameter (jo. As opposed to the effect for the principal, the incen-
tive problems tend to a decrease in the agent's value function as the volat ilitv
increases, as shown in the figure for s higher than approximately 150. The ill-

tuition for the decrease in the agent 's value for an increase in the volatilitv (To

corresponds to the similar effect of the compensation function, shown in Figure
3.6: to induce the agent to follow the optimal investment strategies given in Fig-
ure 3.5, the compensation must be reduced for increasing parameter values of
the volatility o». This means that increases in the volatility decreases the agent's
value of private information for s > 150.

In Figures 3.5-3.6 and 3.8-3.9 we have presented how the value and the corre-
sponding optimal investment strategies are affected by changes in the volatility
parameter of the privately observed cost, (jo. It can, by numerical examples, be
shown that the effects of changing the volatility parameter (js are qualitatively
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similar to the results of changing the parameter values of aø.

3.8 Conclusion

In this chapter we study effects of stochastically changing private information on
an optimal stopping problem. We formulate a principal-agent model where an
agent has private information about a stochastic investment cost.

Under the assumption of a binding contract between a principal and an agent,
we find an optimal compensation function that induces the agent to follow the
dynamic investment strategy preferred by the principal. The compensation is
dependent on the observable variables included in the model, and is indepen-
dent of the agent's private information. Note that, because of the agent's private
information, the principal cannot do better than to enter into a contractual re-
lationship as described by the optimal compensation function we have found.

From the numerical illustrations in section 3.7, we derive several results, most
of which are consistent with the results from the model in chapter 2, where the
private information is constant.

One result that contrasts the model in chapter 2 is that the stochastically chang-
ing private information yields two opposite effects on the optimal investment
strategy: The incentive problem increases the investor's cost of exercising the
option to invest, thereby leading to under-investment. On the other side, the in-
centive problem implies that the value of postponing the investment is reduced,
which tends to over-investment. As the volatility increases, the over-investment
effect gets larger in our numerical example. In the model of chapter 2, where the
private information is a constant, we find that asymmetric information leads to
under- investment only.

As in chapter 2 we find that the compensation function increases concavely in
the observable asset value. An effect is that the agent 's value is decreasing in
the volatility for some parameter values. However, the principal's value under
asymmetric information increases in volatility, similarly to the effect of an in-
vestor's option value as a function of volatility when we have full information.
In the numerical example we find that the investor's value of the investment is
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substantially reduced because of private information.

The private information discussed in this chapter concerns only the investment
cost of the project. An interesting extension is to examine how the contract
is changed when we assume that the output value is privately observed by the
agent. For a special case, this extension is addressed in chapter 5.
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Chapter 4

Asymmetric Information about
an Investment Cost: Competing
Agents

For the investment projects modelled in the previous chapters, we assumed that
only one agent has private information. However, for many types of real options,
there will typically be more than one agent having private information. Thus,
in this chapter we study the value of the investment project, and the correspond-
ing optimal investment strategies, when two or more agents compete about the
contract.

The chapter is split into two parts. In the first part we assume that the agents have
private information about constant investment cost levels, extending the model in
chapter 2. The second part studies the contract under the assumption that the
investment costs are given by stochastic variables, as is the assumption in chapter
3. In both cases we find that the optimal investment strategies are identical to
the respective optimal entry thresholds under the assumption of no competition.
However, we find that the agent's value of private information is lower under
competition than in the principal-agent models.
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4.1 Introduction

In chapters 2 and 3 we assume that only one agent has private information
concerning an investment project. However, in most cases there will be more than
one agent having private information. For example, in the case of an investor
owning petroleum resources, typically there exists more than one supplier having
private information about technical solutions for producing the resources. Below
we analyze how the investor's value of the contract is changed when two or more
agents compete about a contract that gives the winner the right to manage an
investment project.

We extend the principal-agent models of chapters 2 and 3 by assuming that
there are n agents competing about the management of the investment project.
Furthermore, we assume that the investment cost of each agent may be different,
reflecting that the agents' qualifications may not be identical. In section 4.2 we
extend the principal-agent model in chapter 2 to the case where n agents have
private information about their respective, different constant investment costs. In
section 4.3 we assume that n agents' private cost information is stochastic, i.e., we
extend the model in chapter 3 to the case where n agents compete about the task
of managing the investment project. We will analyze how the optimal contracts
in the principal-agent models are changed when competition is introduced, and
also find each agent's value of private information.

The incorporation of competition follows an approach similar to Laffont and Ti-
role (1987). Laffont and Tirole (1987) assume that the respective agents' private
information is constant and formulate their model as a second-price sealed-bid
private-values auction, also called a Vickrey auction. In such an auction, each
bidder simultaneously submits a bid, without seeing others' bids, and the contract
is given to the bidder who makes the best bid. However, the contract is priced
according to the second-best bidder. Although we apply a Vickrey auction in
the presentation below, it can be shown by the revenue equivalence theorem that
under the assumptions we use the results does not depend on the organization
of the auction l .

lFor a discussion of the auction model and the revenue equivalence theorem, see chapter 1,
page 17, or the survey article in Klemperer (1999).
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In the first model the private information is constant, and each agent reports
onlyonce. Thus, in this case the approach by Laffont and Tirole (1987) can be
used almost directly: The winner of the contract is the agent with the lowest
cost, and the parties know who is the winner immediately after the reports are
given.

In the second model, the agents' private information changes continuously, and
their private information is likewise continuously reported. Hence, the auction
must be adapted to the changes in private information. We organize the model
as an auction of Vickrey type, where new reports are continuously given, until
one or more agents report a cost low enough to trigger investment. At this point
in time the agent with the lowest cost report wins the contract.

Note that when the private information changes stochastically, it is not optimal to
assign the contract to any of the agents before the time of investment. The reason
is that the investment cost is given by a stochastic process with independent
increments over time. This means that the agent reporting the lowest cost at one
point in time, does not necessarily have the lowest cost at a later point in time.
Therefore, we assume that all the agents participate in the auction, until a cost
is reported that is low enough to immediately trigger investment. As the winner
of the contract is not chosen prior to the time when the investment decision is
made, in the case of changing private information, competition implies that the
investment decision cannot be delegated to the winning agent.

4.2 Competition when each agent's private in-
formation is constant

Assumptions. We assume that n agents compete about a contract that gives the
winner the right to manage the investment strategy (or more specifically, gives the
winner the right to decide on an optimal stopping strategy), and to receive a pre-
determined compensation. Note that most of the assumptions below are similar
to the ones in chapter 2. However, many terms associated with a particular agent
carry an i-superscript, compared with chapter 2.

Each agent i has private information about his own cost of the investment, «',
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but has no private information about the competitors' costs. We define the com-
petitors' costs by the vector K-i = (Kl, ... , Ki-l, Ki+l, ... , Kn). The investor is
now called the auctioneer (and he is identical to the principal in the principal-
agent models). The auctioneer does not observe any of the n agents' investment
cost parameter values, but it is common knowledge that the values are drawn
independently from the same distribution, having a cumulative distribution func-
tion F(·) on the interval [K,K].2 We assume that F(·) is absolutely continuous.
As F(·) is common knowledge, agent i's knowledge about the competitors' true
investment cost is identical to the auctioneer's knowledge. As in chapter 2 we
assume that the fraction F (.)/ f (.)is non-decreasing.

The assumptions with respect to the investment option and the value of the asset
in place are identical to the model in chapter 2. For convenience we repeat the
main assumptions below.

The option to invest in the project is perpetual. As in chapter 2, the output
value (the value of the "asset in place") from the investment project is denoted
St, and is known by all the participants in the auction, including the auctioneer.
The output value St is a stochastic process, defined by a complete probabilitv
space (0, F, P) and state space (0,00). Under the equivalent martingale measure
Q the stochastic process is given by

d.S, = (rSt - 8(St))dt + a(St)dBf, s = So. (-LI )

The parameter r denotes the risk free rate, 8(·) denotes the convenience yield
function, a(·) is the volatility function, and Bf is a standard Brownian mot ion

2The assumptions that the cost parameters are different for the agents, and that IIlt' pa-
rameter values are independently drawn from the same distribution, are important for IIif'
results. An alternative assumption we could make about the agents' information, is that IIif'
true value is the same for everyone, but that the agents' have different information about IIlt'
true value. In this case one agent learns about the true value if he observes another agPIlI· ~

signal. If these assumptions are made, the game is analyzed in a pure common-value model,
whereas our assumptions about the agents' information above yield a private-value model. St",

an overview of auction theory by Klemperer (1999). We can also assume models where hot Il
kinds of information is present, i.e., where the value of an object differs from agent to agPll1

(for example because of subjective valuation), and where at the same time each agent learn-
more about the value from others' signals. Klemperer (1999) refers to any model in which lIlt'
value depends on some extent on others' bids, as common-value models.
The revenue equivalence theorem applies only in the case of a private-value model. or if I lIP

bidders' signals are independent.
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with respect to the equivalent martingale measure. We make the same assump-
tions about the output value St as in chapter 2: The functions <5(.) > O and
a(·) > O are Lipschitz continuous. Moreover, the stochastic process in (4.1) is a
linear diffusion.

It is assumed that the investor's information at time t is given by :F;;s, generated
by {S~,~ ::; t}. Each agent i's information at time t is given by:F;;s,Ki generated
by {S~,Ki,~::; t}.

Define the vector of reports by k = (kl, ...,kn). Each agent i's expected com-
pensation xus; k) is received at the time the investment is exercised. Observe
that the compensation function may be dependent on the vector of all reports
k = (kl, ...,kn), in addition to all the observable quantities.

The investment strategy, if agent i wins the contract, is given by the optimal
stopping time T~, and based on the reports given by the agents, as well as the
value of St. Moreover, the investment strategy is time independent, as the option
to invest is perpetual and St is driven by a time-homogeneous stochastic process.
We denote the critical price by Si (k). When St > Si (k) the strategy prescribes
immediate investment, whereas the investment is postponed if St ::;Si(K). Note
that as the investment strategy Si(k) may be dependent on all the cost reports,
the investment strategy is stochastic to each agent i.

The auction is organized such that the agents simultaneously report their invest-
ment cost k = (kl, ...,kn) to the auctioneer. The agents do not know the other
agents' reports.

We introduce a control variable yi(.) that depends on the vector of the agents'
reports k. By yi(.) the auctioneer decides on the winner of the contract. Thus,
the variable can be interpreted as a probability, where yi(k) is the probability
that agent i wins the contract. We make the following restrictions:

(4.2)

i.e., the sum of each agent's probability of winning the contract cannot exceed
one. In addition, as probabilities are always negative, we assume that

yi(k) 2:: O for any k. (4.3)
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Incentive mechanisms. We shall see that the results of the auction lead to the
same outcome whether it is the auctioneer or the winning agent who decides on
the investment strategy. However, in order to solve the problem, we now assume
that the auctioneer decides on the investment strategy (i.e., on the optimal stop-
ping time) based on the winning agent's cost report. Thus, the incentive scheme
is given by (Xi(K), Ti, yi(K)). As we look for truth telling equilibria, we ap-
proach the problem in the same way as for an analogous principal-agent problem.
More specifically, we look for mechanisms (Xi(K), Ti, yi(K)) that induce truth
telling Bayesian Nash equilibria".

As in chapter 2, section 2.2, we assume that the investment cost is not correlated
to capital markets.

Agent i 's value function Vi (.) is given by the value of the compensation function
reduced by the expected investment cost, where the expected investment cost is
adjusted for the probability of winning the contract, i.e.,

where Ti is a stopping time for agent i. By comparing equation (4.4) to the
agent's value function when there is no competition, equation (2.3), we see that
the two functions are similar. However, there are some differences. First, the
investment cost is now corrected for the probability that the agent obtains the
contract. This implies that the expected cost is lower than under no competition.
Next, we have included in (4.4) that the compensation may depend on the agents'
reports. Note that the compensation Xi(.) and the investment strategy Ti may
now be dependent on the competitors' reports as well as the report of each agent
i. Hence, the investment strategy and the value of the compensation may be
stochastic to the winning agent.

3In a Bayesian Nash equilibrium each agent's reporting strategy is a function of his own
information, and each agent maximizes his value function given the other agents' strategies,
and given his beliefs about the other agents' information. In our model the agents' beliefs
about the others' private information is given by the probability density JO together with the
limits g_ and o. A Bayesian Nash equilibrium is the appropriate equilibrium concept in auctions
because of the presence of asymmetric information.
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The auctioneer's value function is given by

The auctioneer's value of the investment depends on the net present value of
future cash flows, reduced by the sum of the transfer functions x: (.). The value
corresponds to the principal's value of the contract in equation (2.2). The term
y(k)Sri. is the output value the auctioneer obtains at the investment time, ad-

K
justed for the probability that agent iwins the contract. To find the auctioneer's
expected value of the output from the project, we need to sum up over all the
agents participating in the contract, as done in (4.5). The compensation Xi is
the amount paid to each agent i.

The optimization problem. We are now ready to state the auctioneer's optimiza-
tion problem:

VP(s; k) = sup vP(s; k),
Xi(. ),ri ,yi (.)

subject to each agent i's optimization problem

(4.6)

Vi(s, to, ki) = sup vi(s, te, ki).
ki

(4.7)

The optimization problem corresponds to the principal's optimization problem
in (2.2)-(2.3) in the principal-agent model in chapter 2, with the exception that
in (2.2)-(2.3) we have not incorporated the direct mechanism k. Apart from this
exception, the two optimization problems are identical in the case where n = 1.

Valuation of the expected, future cash flows. In a similar way to the uncertainty
evaluation in section 2.3 of chapter 2, we now evaluate the stochastic, future cash
flows. Define FtS,K as the information set at time t under full information, gener-
ated by {S~,K, ~ ~ t}. Similarly to equation (2.4), the value of the "discounting
factor" of agent i is expressed as"

(4.8)

4See footnote 6 in chapter 2.
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where r/>(.) is a strictly positive and increasing function. Defining u( s) = E [e-rT1IFg,K] ,
the value of the discounting factor satisfies the ordinary differential equation

1 å2u åu
"2(u(s)f ås2 + (rs - 6(s)) ås - ru(s) = O,

similarly to equation (2.5), and with boundaries lims1Si(K) u(s) = Oand limsiSi(K) u(s) =
1. We interpret equation (4.8) as the value of the discounting factor given that
the vector of investment cost reports is known.

Using the result in equation (4.8), agent i's value function may be formulated as
(computed in appendix C.l),

vi(s, Ki; Ki) = E [ø(;i(~1» (Xi(Si(K), K) - yi(K)Ki) I{s:ssi(K)}
(4.9)

+ (Xi(s, K) - yi(K)Ki) I{s>Si(K)} IFg,Ki] .

Each agent i's value as formulated in equation (4.9) corresponds to the agent 's
value functions (2.7) and (2.22). A difference between the agent's value in the
principal-agent model and agent i's value in the auction model, is that the direct
mechanism now may be stochastic as agent i only observes his own report, and
not the others. This means that agent i's value function in the auction model
does not consist only of "deterministic" functions, as the agent 's value function
in the principal-agent model in (2.22) does.

If the auctioneer does not observe the agents' cost parameter, his value function
is given by,

vP(s;K) = E[L~=l {ø(;i(~1» (yi(K)Si(K)-Xi(Si(K),K))I{s:SSi(K)}

+ (yi(K)s - Xi(s, K)) I{s>Si(K)}} IFg] ,
(4.10)

derived in appendix 0.2. The auctioneer's value in (4.10) corresponds to the
principal's value function (2.6) in the principal-agent model of chapter 2.

The reformulations of the auctioneer's and the agents' respective value functions
simplify the optimization problem given by (4.6) to (4.7), as the value functions
no longer are stochastic with respect to the value of the variable St. However.
the value functions are still uncertain with respect to the auctioneer's and the
agents' respective vectors of unobservable investment cost parameters.
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4.2.1 The agents' reporting behavior

Similarly to the approach in the principal-agent models we find a truth telling
equilibrium, implying that the first-order condition for the report k must be
satisfied for each agent i at the point where ki = x-, i.e.,

åvi(s, Ki; ki)
åki = O. (4.11 )

Hence, for the truth telling condition to hold, reporting the true cost is optimal
for each agent i when the condition in (4.11) is satisfied.

Let now vi(s, Ki) be each agent i's value function given truth telling. The value
function of agent i under truth telling is written as

vi(s, Ki) = E [¢>(ti(l» (Xi(Si(K), K) - yi(K)Ki) I{s~si(K)}

+ (Xi(s, K) - yi(K)Ki) I{s>si(K)} IF%,K
i
] ,

(4.12)

which is equal to equation (4.9) with the exception that the vector k is replaced
by the vector K.

By the envelope theorem, the first-order condition in (4.11) is found, similarly to
(2.24) and (3.11), as

dvi(s, Ki) [ ¢(s) i i I S'K'J .dKi = E - ¢(Si(K)) Y (K)I{s~Si(K)} - Y (K)I{s>si(K)} Fo . (..l.l.~)

The second-order condition mimics to the second-order condition for truth tr-llinu
in the model of chapter 2, cf. appendix A.5.

Integration of both sides of the first-order condition in (4.13) leads to an exprc-- ..
sion of agent i's value of private information,

vi(s, Ki)

E [IK ¢>(s) i(K-i)d I + (fi)(S,K-i) '(K:' )d- Ki ¢>(Si(K i,u»y .u U {s~Si(K)} Ki Y ,u li

(4.1-1)

93



In equation (4.14) we have formulated agent i's value of private information
without including the unknown compensation function Xi(.). Agent i's value of
private information differs from the agent's value in the principal-agent models,
formulated in (2.25) and (3.13), because the auction model adjusts each agent's
value of private information for the probability of winning the contract. Also,
the value of private information is stochastic as each agent does not observe the
other agents' private information.

4.2.2 The auctioneer's optimization problem

In this section we solve the auctioneer's optimization problem, i.e., we choose
the winner of the auction and find the optimal investment strategy. In order
to do so, we approach the problem in the same way as earlier: we substitute
the compensation function, Xi(.), by agent i's value function in equation (4.12).
Then the auctioneer's optimization problem in (4.10) is reformulated as

VP(s, K)

[
,",n { ¢(s) i i i)

- SUPSi(.),yi(-) E LJi=l ¢(Si(K»Y (K) (S (K) - K I{s:ssi(K)} (4.15)

+yi(K) (s - Ki) I{s>si(K)} - vi(s, Ki)} I F~] ,

where vi(s, Ki) is given by (4.14).

Observe that the optimization problem could be simplified if the trigger price Si
were dependent only on agent i's cost level«: instead the vector of all costs, K.
The reason is that if Si(Ki) equals Si(K) we can optimize the auctioneer's value
with respect to each agent i separately. In appendix C.3, it is shown that this
is the optimal solution indeed, i.e., Si*(Ki) = Si*(K), where Si*(.) is defined as
the optimal entry threshold of agent i. The idea of this simplification is based
on Laffont and Tirole (1987), where a similar argument is used to show that a
random incentive scheme is not optimal in the solution of their problem.

The auctioneer's value function is linearly dependent upon the probability that
agent i is the winner of the contract, yi(K). Thus, we can substitute yi(K) by
defining yi(Ki) = E [yi(K)IF~,Ki] in the optimization problem (4.15), where the
function yi(Ki) is interpreted as agent i's probability of winning the contract.
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Define VP(s; Ki) = SUPSi(.),yi(.) fJP(s; Ki) as the auctioneer's optimization prob-
lem when Si(K) is replaced by Si(Ki). For given yi(.), and hence for given yi(.),
the auctioneer's optimization problem (derived in appendix CA), is given by

( i( i) ( i F(K
i»)) ] i i}+ Y K s - K - I(Ki) I{s>Si(Ki)} f(K )dK .

(4.16)

Note that each of the n optimization problems given by (4.16) are very similar
to the principal's problem in chapter 2, equation (2.28). Observe that we now
can separate the problem of finding the optimal critical price Si* (Ki), and the
problem of choosing a winner of the contract. Thus, the optimal investment
strategy is identical to the optimal investment strategy in equation (2.30), as will
be seen by optimization of the auctioneer's simplified optimization problem in
(4.16), with respect to Si(Ki), i.e.,

(4.17)

The function ¢/ (Si* (Ki)) denotes the derivative of ¢(.) with respect to the optimal
investment strategy s-. The left-hand side of equality (4.17) represents the net
value of the auctioneer's payoff at the time when the investment is exercised. The
right-hand side is interpreted as the opportunity cost of exercising the option with
payoff value equal to Si*(Ki) _ Ki _ F(K')

J I(K') .

The control variable yi(K) is linear in the auctioneer's problem of finding the
investment strategy of agent i. Therefore, we choose an optimal yi*(K) such
that . {l if Ki < minjii Kj

yZ*(K) =
O if Ki > minjiiKj.

Thus, the agent with the lowest cost wins the contract, provided it is sufficiently
low. If Ki = minjii Kj the auctioneer is indifferent between which agent to

(4.18)

choose as a winner of the contract.
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As the optimal investment strategy given by (4.17) equals the optimal investment
strategy in the one-agent case, the efficiency is not improved when competition
is introduced. However, the winner of the contract in the competition proba-
bly has a lower investment cost than the agent in a principal-agent model, and
thereby the investment will probably take place at a lower cost. Moreover, if
the number of competing agents gets large, the winner's cost level gets close to
the lowest possible cost, K. When the winner's cost level converges to K, the
cumulative distribution F(·) converges to zero, which leads to no inefficiency in
the investment strategy.

4.2.3 Implementation of the contract

Using (4.14), (4.17) and (4.18), agent i's value of private information is found as

{
IK <1>(s)yi*()d if s _< Si*(Ki)Ki <1>(Si*(u» u u

Vi(s;Ki) =
rt'J*(s)yi*()d J,K <1>(s)yi*()d if s > Si*(Ki)JKi U U + t'J*(s)<1>(Si*(u» u u

(4.19)

Hence, we find that agent i's optimal value of the compensation Xi*(S, Ki) is
given by

when s > Si*(Ki). Otherwise, Xi*(S, Ki) = O. Equation (4.20) represents the
expected compensation of each agent participating in the auction. The main
difference between each agent's value of the compensation in the auction and the
agent's compensation in the principal-agent model, given by equation (2.34), is
that the compensation function in the auction model is adjusted for the prob-
ability of winning the contract, yi*(Ki). As the probability is lower than one,
each agent's expected compensation in the auction model is lower than in the
principal-agent model.

In the above expression of the optimal compensation function, each agent's
strategy is optimal based on "average quantities", i.e., the strategy depends on
yi(Ki) = E [yi(K)IF~,Ki] and Si(Ki) = E [Si(K)I{yi(K)=l}IF~,Ki].
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Now, construct a dominant strategy auction" where each agent has a reporting
strategy that is optimal for any reports by the other agents. We formulate a
second-price sealed-bid private values auction (or a Vickrey auction)" that im-
plements the optimal investment strategy, and selects the agent with the lowest
cost. We denote the compensation function Xi, and its value is given by

(4.21)

if Ki = min, Kh and Kj = minh;6iKh. If s ::; Si*(Ki), Xi(s, K) = O. Thus, Xi is
the optimal and implementable compensation to agent i, given that agent i is the
winner of the contract. Note that Xi is the optimal compensation to the winner
of the contract, whereas x- is each agent i's expected value of participating in
the auction. In appendix C.5 it is shown that each agent's expected value of the
compensation function in (4.21), E [Xi(s,K)IFg,Ki], equals the value in (4.20),

i.e., Xi*(s, Ki) = E [Xi(s,.K)IFg,Ki].

The implementable compensation Xi ensures that the agent having the lowest
investment cost obtains the contract. When agent iwins the contract, the agent's
compensation equals the value of his private information when the distribution is
truncated at to, Thus, competition for the best agent amounts to a truncation
of the interval (K, K) to (K, Kj), where Kj is the second-lowest report.

To sum up, we see that the optimal compensation in (4.21) is formally identical t ()
the optimal compensation when there is only one agent, given byequation (2.34).
with the exception that the truncation is changed from K to the second-lowest
report x«. Truth telling is an optimal strategy, whether there are competing
agents or not. The only difference between the principal-agent model and the
auction is that the upper level of possible reports is changed, leading to a lower
value of the agent's private information.

5A dominant strategy auction is an auction in which each agent has a strategy that is
optimal for any strategies of its competitors.

6For definitions, confer for instance Klemperer (1999) or chapter 1, page 17 of this disser-
tation.
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Figure 4.1: The compensation Xi as a function of the asset value s for different
values of second-lowest cost report Kj.

4.2.4 Numerical illustration of the effect of competition

Under the assumptions that the value of the asset in place is driven by a geomet-
ric Brownian motion, and the unobservable investment cost parameters Ki are
uniformly distributed, we illustrate some effects of competition. The parameter
values are identical to the base case parameter values in the numerical examples
of the similar model in chapter 2, page 43.

In Figure 4.1 the winner's compensation function Xi is drawn for different levels
of the second-lowest cost report Kj. We assume that agent i is the winner, and
that agent j gives the second-lowest cost report. In the case where the cost of
the agent with the second-lowest report equals 200, i.e., Kj = 200, the winner's
compensation is equal to the compensation in the principal-agent model, shown
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Figure 4.2: The winner's value Vi as a function of the asset value s. The number
of competitors is denoted by n.

in Figure 2.1. The compensation functions are equal in the two models in this
case because agent j's cost level coincide with the upper level cost K. As agent
j's cost level gets closer to the winner's investment cost Ki = 100, the value
of the agent's private information decreases. Moreover, as agent j's cost level
decreases, the interval where the compensation is independent of the asset value
s gets larger. This is the effect from reducing the possible cost reports from
[K,K] to [K,Kj]. In the limiting case, where K, = 100, the winner's value of
the contract is zero, as the winner only obtains a compensation equal to his cost
level for all asset values s. This situation is illustrated in the lower curve in
Figure 4.1. Observe that although the agent's value is zero, the situation does
not necessarily coincide with the full information case (except when Kj = K) as
the optimal investment strategy is not the same as under full information.
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Figure 4.3: The investor's value vP as a function of the asset value s. The
number of participants in the auction is denoted by n, The upper curve: full
information. The lower curve: no competitors. The second-lower curve: n = 2.
The second-upper curve: n = 4. Base case.

Figure 4.2 illustrates the effect from competition on the agent's value of private
information. In the figure we draw four curves representing the winner's contract
value when there is no competition (n = 1), and when there are 2,4 and 6 competi-
tors, respectively. The value function represented by the upper curve, showing
the case of no competition, is identical to the agent's value in the principal-agent
model, found in Figure 2.2. As the number of competitors increases, the winner's
value of the contract falls rapidly. In our example, the winner's value falls by
about two thirds when we go from no competition to two competitors. When
there are six competitors the value of each auction participant is close to zero.

Figure 4.3 illustrates the investor's value of the contract under competition. The
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upper curve is the full information case, whereas the lower curve is the value
when there is only one agent having private information. Thus, the lower curve
is identical to the investor's value under asymmetric information in the principal-
agent model, illustrated in Figure 2.2. The second-lower curve and the second-
upper curve are the investor's values in the case of asymmetric information and
when there are two and four competitors, respectively. From Figure 4.3 we see
that as the number of competitors increases the agent's value gets close to zero,
implying that the auctioneer's value gets closer to the full information value.
However, even when the winner's value is close to zero because of competition,
the optimal investment strategy is not efficient as long as the winner's cost is
above the lower limit K. The effect is illustrated in Figure 4.3. When there are
four competitors (corresponding to the second-upper curve) the investor's value
almost coincides with the value under full information in the interval where it is
optimal to invest immediately, i.e., when s > Si*(Ki) = 300. However, in the
interval where s ~ Si*(Ki), the difference between the full information case and
the auctioneer's value when n = 4 is larger.

4.3 Competition when the agents' private infor-
mation changes stochastically

4.3.1 Problem formulation

Now we assume that each agent 's private information changes stochastically.
The agents' respective private information is given by independent stochastic
processes. Once again, we organize the model as an auction of the Vickrey type.
However, the auction model is slightly changed compared to the case where the
agents' private information is constant: as the private information now changes
continuously, we assume that each agent participating in the auction gives new
reports simultaneously and continuously, until one or more agents report a cost
low enough to trigger investment. At this point in time, the agent with the lowest
cost report wins the contract, receives the compensation, and invests immediately.

It is not optimal to assign the contract to any of the agents prior to the time of
the investment. As mentioned introductorily, the reason is that the investment
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cost is given by a stochastic process that has independent increments over time.
Thus, if we are restricted to choose a winner of the contract prior to the time
of the investment, the contract value is lower than in the situation where the
auctioneer choose the winner at the investment time. In the model below we
assume that all the agents continuously participate in the auction, until a cost is
reported that is low enough to trigger immediate investment. At this time the
agent reporting the lowest cost wins the contract. As the winner is not chosen
prior to the investment time, the investment decision cannot be delegated to the
winner of the contract.

The model is an extension of the principal-agent model in chapter 3, where we
assume that the single agent's private information is stochastic. In chapter 3
the stochastic processes in the principal-agent model follows geometric Brownian
motions. Now we assume that the stochastic processes in the auction are time-
homogeneous Ito diffusions. However, the main results are very similar whether
we make use of geometric Brownian motions, or more general time-homogeneous
Ito diffusions.

The investment cost of each agent i is given by the function KI
where the investment cost is a function of a commonly observed variable Ct, and
a variable OL observable to agent i only". We assume that h(Ct,OD is increasing
in both variables.

The one-dimensional and nonnegative cost variable C, is specified by,

(4.22)

where Bf is a standard Brownian motion under the Q measure, iTc(·) represents
a given Lipschitz continuous volatility function, and r is the risk-free rate. A
special case of the market component of the cost is the geometric Brownian
motion in chapter 3, equation (3.2).

The variables O; are independently distributed between the agents. Agent i's
one-dimensional and nonnegative variable O; is given by

(4.23)

7Recall that in chapter 3 the cost function has the simpler multiplicative form Kt = Ct()t.
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The functions a(·) and ao(-) are given Lipschitz continuous functions. All the
agents face the same volatility function ao(')' The stochastic process of the
technical cost component Ot in chapter 3 is a special case of the process O: III

(4.23).

As earlier, each agent i obtains the compensation Xi (.), which is paid at the time
the investment is made.

Each agent reports a value O: related to his observed value O; at time t. We
assume that each agent cannot observe the others' reports. The vector of reports
at time t is denoted Ot = (O;, ... , O~), with lower and upper limits equal to ~ and
B, respectively, and ~,B E [0,00). Agent i's investment strategy is given by a
stopping time rJ E [O,fJ where f E (O,TJ represents the time when the option to
invest expires, T < 00, and T is the time horizon.

At the time the investment is made, agent i has a probability yi(Ot) of winning
the auction, where Ot = (OL ... , On is the vector of reports at time t. We make
the assumption

(4.24 )

Furthermore, we need

(4'r I._,) ,

The function yi(.) has the same interpretation in this section as in the auet ion
model where the investment cost is constant, section 4.2.

The set of incentive mechanisms at each point in time is formulated by (Xi (.). T~. y' i . ) ).

Assume that (0, F, Q) is a given probability space for the (2 + n)-dimensiollal
Brownian motion (Bf, Bf, Bf), where Bf is the n-dimensional Brownian process
given by Bf = (Bf, ...,B~), and Bf and Bf are both one-dimensional Brownian
processes. Agent i observes the variables St, C, and O;. The stochastic process
of the variable St is given byequation (4.1). Agent i does not observe the O/-I =
(OL ... , o;-I, 0;+1, ... ,O~), but the expectation and the variance of the competitors"
private information is common knowledge, i.e., the stochastic processes given h~'
(4.23) for i from l to n are known. Agent i's information set on time tis denoted
by ~S,C,Oi and generated by {S~, C~,O~,~ ~ t}.
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As in chapter 3 we now denote (s, c, ei) equal to (St, Ct, e;). Given an initial time
t, agent i's value function is represented by

. . ~. [ . . + S C 9i]v~(s,c,e\t;e~) = E g~(STiJ,cTiJ,e~9,To) 1Ft" , (4.26)

where

gi(St, c..«, t;{Jt) = E [e-rt (Xi(St,Ct,t;BD -yi(Bt)h(Ct,eD) I~S,C,9i]. (4.27)

The function gi (.) is understood as the agent's expected payoff at the time the
investment is made. The stopping times of agent i, TJ, may be dependent on
the reports of all the agents participating in the auction. Compared to agent
i's value when the investment cost is constant in equation (4.4), the investment
cost is now a function of two stochastic variables, and the compensation function
depends on the observable cost component Ct, in addition to the output value
St and the vector of privately observed cost components. Also, now the reports
change stochastically over time.

The auctioneer's information at time t is given by FtS,c. This means that the
auctioneer does not observe the vector et = (e;, ... , ef). However, he knows
the expectation and the variance of each agent's private information e;. The
auctioneer's value function at time t is given by

,t(8,c,t) = E [t,g[(Sr;,CrVJ)+IF,S,c] , (4.28)

where

(4.29)

The function gr (.) is interpreted as agent i's contribution to the auctioneer's
value at the time the investment is made.

The auctioneer's optimization problem is now given by

VP(s, c, t) = sup vP(s, c, t),
Xi(.),yi(.),Ti

(4.30)

subject to all the n agents' optimization problems, each agent having the following
optimization problem,

Vi (s, C, ei, t; Bi) = sup Vi (s, C, ei, t; Bi),
o'

(4.31)
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for any O::; t ::;i, {Ji E [fl, OJ.
Recall that in this auction, the auctioneer makes the investment decision, as the
decision cannot be delegated. This restriction is in contrast to the principal-agent
model where the private information changes stochastically, in chapter 3, as well
as to the auction model in section 4.2, where the private information is constant.

In sections 4.3.2-4.3.4 we derive the value and optimal strategy for the contract.
The procedure for the derivations resemble the derivations in section 4.2 and in
chapter 3.

4.3.2 The agents' optimal reporting strategies

We define a trigger function 'ljJi(Ct, t; (Jt) with similar properties to the analo-
gous function in the one-agent case of chapter 3: The investor chooses to invest
when St > 'ljJi(Ct, t; (Jt), and wait otherwise. However, the investment strategy
'ljJi(Ct, t; (Jt) is stochastic to each agent, as it depends on the vector of reports
given by all the agents.

Below we find each agent's truth telling condition. For this purpose we formulate
agent i's the value of the contract as follows,

(4.32)

where wi(.) denotes agent i's value in the region where the investment option is
not exercised.

Analogously to the assumption in chapter 3 we assume that only reports at the
investment time affect the compensation function. Thus, incentive compatibil-
ity requires that all the n agents' payoff values satisfy the following first order
condition,

= O, (4.33)
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similarly to the corresponding condition in (4.11).

Let vi(St, Ct, OL t) be agent i's value when truth telling is optimal. The vector of
the agents' true investment cost at time t is denoted by Ot = (Oi, ... , O~). Then
we state agent i's payoff when truth telling is optimal by

vi(St, c;O;, t)

(4.34)

By the envelope theorem, agent i's first-order condition is written as

(4.35)

-yi(Ot)hfJ; «; 0DI{st>tt>i(ct,t,fJt)} IJ:t,C,fJ
i
] ,

where hfJ:(-) denotes the differentiation of h(·) with respect to O:. The truth telling
condition in (4.35) is similar to the truth telling condition in the principal-agent
model of chapter 3, equation (3.11). The main difference is that the condition ill
(4.35) includes the probability yi(Ot), which implies that the optimal cornponsa-
tion is not independent of the agents' reports. In the case where the investment
cost h( Ct, OD is a constant, the truth telling condition in (4.35) equals tho ('011-

dition in (4.13) when investment is made immediately.

4.3.3 The auctioneer's optimization problem

To solve the auctioneer's optimization problem we proceed as in section 4.2. and
incorporate the nagents' truth telling restrictions as given by (4.35) int o t h«
auctioneer's optimization problem in (4.30)-(4.31).

We replace the compensation function in (4.29) by agent i's value of privat»
information given investment at time t. Define yi(OD = E [yi(Ot)IFS•C.fJ']. \\0f'

reformulate equation (4.29) to (derivation shown in appendix C.6),

gf(St,'ct, t) = E [e-rtyi(O;) (St - uc; oD) - gi(St, c..oL t)IF;'C], (4.36)

106



The next step in finding an unconstrained optimization problem for the auction-
eer, is to incorporate an expression of agent i's value of private information into
the auctioneer's optimization problem. In appendix C.7 it is shown that each
agent i's value of private information when the investment is made at time t can
be expressed as

(4.37)

We insert the expression in (4.37) into (4.36), and by simple derivations (see
appendix C.8) we find that

gnSt, Gt, t) = E [e-rtYi(OD (St - uc; O;) - ho; (Gt, O;)~i:;i~j)I ~S'C] ,
(4.38)

where !(O;lt) is the probability density of O;, and F(O:lt) is the cumulative dis-
tribution function of O:.
By equation (4.29) we know that the control variable yi(.) is linearly dependent
on agent i's contribution to the auctioneer's value. This means that the optimal
value of yi(.) is given by O or 1. Furthermore, equation (4.38) depends only
on agent i's report, and not at the other agents' reports, which means that
the optimal stopping time depends only on the winner of the contract. Thus.
the optimization problems with respect to yi and a stopping time Ti can be
separated, which means that the optimal stopping time in (4.28) can be split
into n programs, where each program i only depends on the cost reports of agent
i.

Suppose that yi(Ot) = 1, i.e., agent i is the winner of the contract. Combining
(4.28) and (4.38) the auctioneer's optimization problem if yi = 1 is given by

[E [ -rTi (8 h (C fli) h (C fl) F(O~iITi)) I S,C,Oi] I 'T"s.c]s~pE e Ti - Ti, UTi - Oi Ti,UTi !(O~iITi) ~ Jt·

(4.39)

For simplicity we have suppressed the subscript e in Ti in equation (4.39). As
in section 4.2 we find that the optimal investment trigger depends only on the
winner's cost level. This means that the critical price for investment is given bv
'Ø( C, o, t) instead of 'Ø(c, O, t).

107



The principal's optimization problem given by equation (3.20) in chapter 3, where
the stochastic processes of St, Ct and e; are driven by geometric Brownian mo-
tions, is a special case of the auctioneer's optimization problem with respect to
agent i. In the case where the auction model and the principal-agent model both
are driven by geometric Brownian processes, the auctioneer's and the principal's
respective optimization problems lead to the same optimal investment strategy.
This means that, similarly to the case where the private information is constant,
the optimal investment strategy is the same whether there is competition or not.

Let vf(St, Ct, eL t) be the auctioneer's value function when agent i wins the con-
tract, the auctioneer is committed to a truth telling contract, and the auctioneer's
information at time t is given by the information set ~s,c,(Ji, i.e.,

v[ (s, c, ei, t)
(4.40)

Also define

-p( ei) =rt ( h( ei) h ( ei)F(ei1t))9 s,c, ,t = e s - c, - (}i c, f(eilt) .

Thus, we solve the optimal stopping problem as if we know the private informa-
tion ei, similarly to the approach used in chapter 3, equations (3.23)-(3.25).

We find the optimal investment strategy by optimizing equation (4.40) with re-
spect to the optimal stopping time. Using the approach in chapter 3, equations
(3.23)-(3.25). The optimal solution must satisfy the variational inequalities":

vi(s,c,ei,t) ~ g[(s,c,ei,t) (4.41)

Lvi( s, c, ei, t) - rv[ (s, c, ei, t) ~ o (4.42)

max {Lv;(s,c,ei,t) -rvf(s,c,ei,t),g;(s,c,ei,t) -vf(s,c,ei,t)} = O. (4.43)

The differential operator L is given by

Lvf(s, c, ei, t) = ~ + (rs - o(s))¥s- + ~(J(s?å;:; + a(e)~

8For explanation of the solution procedure, confer the discussion following (3.23)-(3.26) in
chapter 3.
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where p(s, c) is the correlation between the standard Brownian motions Bf and
Bf. The difference between the operator here and in (3.26) is that now we as-
sume time-homogeneous Ito diffusions rather than processes driven by geometric
Brownian motions as is the assumption in (3.26).

Denote 1ji* as the optimal critical price. As the control variable yi (.) is linear in
the auctioneer's payoff values, we find that at any time t E [O, Tl, the optimal
solution of yi(Ot) is given by

. { 1 ifO; < minjioiOi and St > 'lj;i*(Ct,O:,t), t::; Ti
yt*(Ot) =

O if O; > minj#i Of.
(4.45)

The optimal solution says that the winner of the contract is the agent with the
lowest cost at the time it is optimal to invest.

4.3.4 Implementation

Let the optimal investment strategy found from optimization of (4.39) be given by
'lj;i*(Ct, O:, t). Denote fji*(St, Ct, t) as the optimal inverse entry threshold of agent
i, i.e., we invest immediately if O: < o-is; Ct,t) and wait if O: 2:: o-is; Ct, t).
Note that fj* now is the critical price for e, whereas it was the critical price for
Kt = CtOt in the principal-agent model in chapter 3. Furthermore, yi*(OD is
defined as the optimal yi(OD.

Agent i's optimal compensation function Xi* when St > 'lj;i*(Ct, OL t), is found
to be equal to (see the appendix, section C.9 for derivation of the result)

x-is; c;OI, t) = uo; O;)yi*(OD + J8~i*(8t,ct,t)««: u)yi*(u)du
t

(4.46)

f.
o .

- ;*(8 C t)w~(St,Ct,u,t)du.v e , t ,

if St > 'lj;i*(St, OI, t). Otherwise, x-is; Ct, OL t) = O. Note that the expected
compensation function Xi (.) is dependent on O: in the auction model, i.e., the
expected compensation is implemented by a direct mechanism.

If we compare the optimal expected compensation of agent i in (4.46) with the
corresponding compensation function when the investment cost is constant, in
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equation (4.20), we find that the compensation functions are similar even though
the contracts are different in the two cases: In the case where the investment
cost is constant, the winner of the contract may be chosen prior to the time the
investment is made, whereas the winner is chosen at the investment time when
the investment cost changes stochastically. However, if we let h(Ct, ØD be equal
to K, the compensation function in (4.46) converges to the function given by
(4.20).

So far we have only found each agent's optimal reporting strategy on average,
i.e., given the other agents' strategies through the expectation Yi(-). Now, we
construct a dominant strategy auction that implements the same investment
strategy as the one found from optimizing equation (4.39). In addition, the
dominant strategy auction selects the firm with the lowest investment cost at the
time of investment. This approach is similar to the one in the case of constant
private information in section 4.2. Let

h «; vi*(St, c; t))
+ fJ.(St,Ct,t) w~(St, Ct, u, t)du if 'Ij;*(Ct, ØL t) < St ~ 'lj;i*(Ct, Øf, t)

(4.47)

if ø; = mini ØL et = minl~i ø: and Xi(St, Ct, ØL t) = Ootherwise.

Note that the function Xi in (4.47) is the compensation to agent i, given that
he wins the contract, whereas the function x- in (4.46) represents each agent's
expected compensation of participating in the auction.

If we mimic the approach in appendix C.5 we find that

xrts; c; ø;, t) = E [Xi(St, c; øt, t)IFtS,C,8i] •

Thus, we conclude that the contract given by equation (4.47) is the optimal
contract under competition.

The winner's compensation is dependent on the cost of the agent having the
second-lowest investment cost. Thus, competition implies that the interval of
possible reports, [fl, OJ, is truncated to [fl, et], where et is the second-lowest
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report at time t, in the same way as for the case of a constant information cost,
given byequation (4.21).

In the subsection below we illustrate the model by assuming that the stochastic
processes are geometric Brownian motions. We compare the result of the auction
model to the principal-agent model in chapter 3.

4.3.5 Illustration of the results: Geometric Brownianmo-
tions

We illustrate the results by assuming that the stochastic processes follow the
same processes as in chapter 3. This implies that the dynamics of S(t) is given
by

dSt = (r - bs)Stdt + O"sStdB;,

rather than by (4.1), the observable part of the investment cost, Ct, follows the
process,

dCt = rCtdt + O"CCtdB~ ,

rather than (4.22), and the unobservable part of the investment cost, eL follows,

rather than (4.23). The investment cost function of agent i is given by Ki == cte:.
Furthermore, assume that the limits of the admissible cost reports are given by
fl. equals to O and (j approaching 00.

Using equation (4.47) we find that when the stochastic processes follow the geo-
metric Brownian motions above, the contract is given by

cvi*(St, c; t)
+ J:l'(St,Ct,t) w~(St, Ct, u, t)du if 'ljJi*(Ct,e:, t) < s :::;'ljJi*(Ct,ei, t)

(4.48)
if ei - . el ej -' el d X- i* (8 C ei t) - O th .l t - mmi t, t - mmZ,;6it an t, t, t, - o erwlse.
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Figure 4.4: The winner's optimal compensation for different levels of the second-
lowest cost report kj at the investment time, and for varying asset value s.

Compare the compensation functions under competition, (4.48), to the opti-
mal compensation function in the principal-agent model in (3.28). The main
difference is that the compensation under competition cannot be higher than
Kl = CtfJ1. Therefore, the transferred amount is lower under competition. The
closer the investment cost reported by the second-best agent is to the winner's
report, the lower is the winner's information rent. This implies a higher value to
the auctioneer.

We illustrate the effect from competition on the winner's compensation in Figure
4.4. The parameter values used are identical to the parameter values for the
numerical examples in chapter 3, see the base case table on page 72. We assume
that the winner's cost level ki is identical to k in the table. The figure shows the
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compensation given different cost levels kj of the agent with the second-lowest
cost level at the time the investment is made. The upper curve corresponds to
the compensation in the principal-agent model, compare Figure 3.6, the base case
where a(J = 0.2. As the cost levels of agent j (i.e., the agent with the second-
lowest cost report) gets lower, the compensation decreases as well. The effect is
similar to the corresponding effect on the compensation in the case where the
private information is constant in Figure 4.1. In the case where agent j reports a
cost level equal to the winner's cost level, i.e., when k, = kj = 100, the winner's
compensation is independent of the asset value s in the interval where immediate
investment is optimal. This corresponds to the interval where s > 218 in Figure
4.4. In this interval the winner's contract value equals zero as his compensation
just covers his costs of the investment.

In the special case of geometric Brownian motions we assume that the admissible
set of investment cost variables of the agents have a lower level of zero and no
upper level. Thus, if the number of competing agents gets very large, the agent
with the lowest cost will approach the lower cost level of zero. This is in most
cases not a realistic assumption. Thus, in this case we need to assume that the
number of agents participating in the auction is not "too" large.

4.3.6 Auction outcome when the competing agents have
different volatility parameters

Let us assume that the stochastic processes are given by geometric Brownian
motions as in section 4.3.5, but that the agents have different volatility parameters
related to the unobservable cost component. The volatility parameter of each
agent is known.

When the volatility parameters are different for each agent, agent i's stochastic
process with respect to the true investment cost Kt is given by

. . . c ...
dK; = (r - a)K;dt + acK;dB (t) + a~K;dB:, (4.49)

with the volatility parameter value a~being different for each agent participating
in the auction.

Each agent 's truth telling, first-order condition is identical to the one given by
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(4.35), with the exception that now the volatility parameter of each agent may
be different.

Furthermore, the formulation of the auctioneer's optimization problem is the
same as the one in equation (4.39). However the optimal stopping time Ti is now
different for each i, i.e.,

where different (J~'s yield different optimal investment triggers t/Ji*(Ct, t; (J~,O) for
each agent i. Thus, the auctioneer will follow the investment strategy of the
agent that has the volatility parameter value that results in the highest value to
the auctioneer.

In the numerical examples of the investor's value of the contract, Figure 3.8, the
investor's value increases in the value of (J~. Hence, in this case the auctioneer's
optimal investment strategy is to follow the investment strategy t/Ji(C, t; (Jo,O),
where agent i is assumed to have the highest parameter value of the volatility (Jo.

As in the case of identical volatility parameters, the winner of the auction is the
agent who reports the lowest cost in the interval where immediate investment
is the optimal strategy. The winner is paid according to the investment strat-
egy followed by the auctioneer. Suppose agent h is the winner of the contract.
Then he is paid according to (confer equation (4.48)) the optimal compensation
function

Summing up, the outcome of the auction is the qualitatively the same whether
the competing agents have different volatilities or not: all agents participate in
the auction until a cost is reported that is low enough to trigger investment. At
this time the agent with the lowest cost report wins the contract. However, the
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winning agent h implicitly follows the optimal investment strategy for agent i,
who has the highest volatility parameter value. Moreover, if one of the agent's
volatility function is higher than the previously assumed common volatility ao,
then the auctioneer's option value is now higher, whereas the agent's value is
reduced, compared to the case where all the agents have identical volatilities.

4.4 Concluding remarks

In this chapter we have extended the principal-agent models in chapters 2 and 3
to the case of n agents having private information. Similarly to the solutions of
the principal-agent models, we find optimal contracts via direct, truthful mech-
anisms. As is to be expected, competition leads to a higher contract value to
the investor, although the optimal investment strategy is identical whether we
have competition or not. The compensation, however, is lower in the case of
competition.

A difference from the principal-agent models is that the contract in the case
where the private information is stochastic, the investment decision cannot be
delegated to an agent. The reason is that in this case, the winner of the contract
is not chosen prior to the investment time.

A remaining question is how robust the model is of changes in some of the
assumptions. In section 4.3.6 we examined the special case of different volatility
parameters. We find that the auction outcome is the same (i.e., we find that the
agent with the lowest cost at the time the investment is exercised, is the winner
of the contract) compared to the case where the competing agents have identical
volatilities. However, the auctioneer's value from the option is higher when the
agents have different volatility parameters, because the auctioneer chooses the
investment strategy of the agent who has the volatility parameter value that
gives the highest value to the auctioneer.
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Chapter 5

Sequential investments: Private
learning

We formulate a sequential investment problem where new investment phases can
be temporarily stopped if the value of the project is low, and later restarted when
the profitability prospects improve. As new investment phases are realized the
manager (the agent) of the investments learns more about the profitability of the
project than the investor (the principal) does. The costs and the value of tlu
project are shared between the principal and the agent, depending on the aqcnt ....
information rent. We assume that the agent has private information about tlu
output value of the project, instead of about the investment cost as in earlur
chapters.

5.1 Introduction

In this chapter we return to an investment project within the framework of a
principal-agent model. However, we change the assumptions with respect to
the private information, and with respect to the number of investment decision-
made. Now we assume that an agent has private information about the output
oaiue' of an investment project, and that we have a sequence of investment

lAs in previous chapters, the terms output value and value of the" asset in place" are uSI ...1
interchangeably.
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decisions to make.

The manager (the agent) of a sequential investment project privately learns more
about the value of the project as new investment phases are realized: for each
investment phase that is finished, the agent observes an updated signal of the
output value. The output value is a stochastic variable that is completely revealed
when the last investment phase is completed. The investor (the principal) does
not obtain these signals about the output value of the project, and does not
observe the realized value of the completed project. Thus, in this model it is the
agent who obtains the output value from the project, and therefore the contracted
amounts are now paid from the agent to the principal.

In previous chapters we have assumed that the principal's payment to the agent
may depend only on the report made at the time when the compensation is
payable. Now we will investigate whether it may be optimal to let the payments
depend on previous reports, as well. As earlier, we assume that a principal
enters into a binding agreement with an agent, and that the agent has private
information. We find that it is not optimal to let the contract be dependent
on previous reports. The reason is that we assume that the privately observed
signals are driven by a Markov process.

As we formulate an investment project where investment decisions are made se-
quentially, there is a possibility to temporarily stop the project if the value of
the completed project falls". The model is similar to the one given in Majd and
Pindyck (1987), where a firm may invest continuously until the project is com-
pleted, and where the investments at no cost can be stopped and later restarted.
In both models there is a maximum rate at which investments can proceed, which
means that it takes "time to build" .

In our problem the sequential investments are not made continuously as in Majd
and Pindyck (1987). Instead the investments are made in "bulks", and each
investment phase takes a specified time to complete. However, if the amount of
time that each investment phase takes gets very small, our model converges to
the model in Majd and Pindyck (1987).

The sequential investment model partly draws upon MacKie-Mason (1985), and

2I.e., the investment project is analogous to a compound option.
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MacKie-Mason's model has a similar structure to ours. A main difference is that
MacKie-Mason (1985) does not formulate an optimal stopping problem, as in his
model it is never optimal to postpone further investments: one either continues
with a new investment phase when the previous one is finished, or abandons the
project forever.

The model is formulated in the next section. Section 5.3 examines the agent's
optimization problem. The principal's optimization problem is studied in section
5.4, and the optimal contract is characterized in section 5.5.

5.2 Model formulation

Assume that an investor (a principal) delegates the management of an invest-
ment project to an agent. The project consists of N investment phases. Each
phase j takes time Ilj > O to finish, and has an investment cost K, > O. The
project's value is realized when all the investment phases are completed. If all
the investment phases are finished at time t, the value S(t) = 7r(t)q(t) is realized.
We interpret S(t) as the value of the investment project if it were finished at time
t.

The value 7r(t) represents market price of output, whereas the variable q(t) may
be interpreted as, for example, "noise" , volume, technological uncertainty or de-
mand. The values 7r(t) and q(t) are both driven by geometric Brownian motions.
As in previous chapters we assume that the capital market is dynamically com-
plete, and that both the principal and the agent are well diversified. We assume
that the market price 7r(t) is spanned in capital markets, whereas the variable q(t)
is not correlated with capital markets. These assumptions simplify the problem,
as the investment project can be evaluated by risk-neutral pricing.

Thus, the stochastic process of 7r(t) is measured under the equivalent martingale
measure Q, i.e.,

d7r(t) = (r - <5)7r(t)dt + <77r(t)dB7r(t), 7r = 7r(O). (5.1)

The parameters r, <5 and <7 are the risk-free rate, the proportional convenience
yield and the volatility parameter, respectively, whereas B7r(t) is a standard
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Brownian motion under the Q measure. All the parameter values are positive.
Thus, the market price of output 7r(t) is observable to both parties.

The variable q(t) is only observable by the agent at each point in time when the
agent has finished an investment phase. The stochastic process q(t) is given by
the geometric Brownian motion

dq(t) = /'Cq(t)dt + vq(t)dBq(t). (5.2)

The standard Brownian motion B" (t) is independent of B7r (t). Hence, the process
of q(t) has identical processes under the true and the risk-adjusted measures. The
drift parameter is denoted /'C, and v is the volatility parameter of q(t).

The contract is entered into at time to. The agent's observation of q(t) is specified
by the variable (( t), where

«(t) = { (5.3)

The stopping time Tj is the time when investment phase j is started. This
means that Tj + ~j is the time when investment phase j is completed, and
% = q(Tj + ~j) is observed, j = 1,2, ... ,N. The agent's observations of % is
interpreted as updated signals of the value when the project is completed. The
privately observed value of the realized project is given by qN = q( TN + ~N).

Thus, q(t) is a hidden Markov process that is only observable to the agent at the
points in time when a new investment phase is completed".

The principal knows the expectation and the variance of qo at time to, as well as
the stochastic process in equation (5.2). The time elapsed since the last observa-
tion of q(t) is given by the process,

if to :S t < Tl + ~l

(5.4)
if Tj + ~j :S t < Tj+l + ~j+l.

3An article that treats the problem of valuation of contingent claims when the observation
of a stochastic process is incomplete, is Childs, Ott, and Riddiough (2001). The valuation
problems in the article are solved using optimal filtering results.
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To sum up, we describe the time-homogeneous system of states by

[
7r(t) ]

r(t) = ((t)
"l(t)

(5.5)

where the state variables are, respectively, the market price of the output, the
signals observed by the agent, and the time passed since the last signal obser-
vation. Define r(c) as the left limit of r(t), i.e., r(c) is interpreted as the
value of the stochastic variable immediately before the value at time t. When
any investment phase j is completed, the system changes from

(5.6)

to

(5.7)

The investment cost of each investment phase, Kj, is paid by the principal at
the point in time when a new investment phase is started. We assume that the
agent cannot start a new investment phase before the previous one is finished.

The sequence of optimal stopping times is given by T = {Tl, ... , TN}. The agent s
payments are denoted Y = {Yl, ...,YN}.

Analogously to the previous analyzes in this dissertation, we apply a direct trut il
telling mechanism. Application of this mechanism implies that we, in order to
solve the problem, let the agent report the privately observed signals to t he
principal, and we let the principal make the investment decision based on t ho
reports. When we have found an optimal contract, we find a delegation-based
contract that replicates the direct mechanism. The reports are defined by q =
{go, ... ,gN-I}.

In figure 5.1 a scheme of the model is drawn for the case of two investment phases.
i.e., N = 2. When the parties enter into a contract at time to, the agent privately
observes qo, reports that the signal is go, and makes the first investment decision
based on this signal. At a stopping time Tl investment phase 1 is exercised, and
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Figure 5.1: An illustration of the investment project in the case of two investment
phases

Waiting time .:lI Waiting time .:l2__._._ _..,_._ ----_ ------ .....
to

The parties
enter into
the contract.
The agent
observes qo
and
reports ilo.

'Tl

Investment
phase 1
begins.
The principal
pays the
Investment
cost Kl.
The agent
pays Yl to
the principal.

Investment
phase 1 is
completed.
The agent
observes ql
and
reports ill.

'T2

Investment
phase 2
begins.
The principal
pays the
Investment
cost K2.
The agent
pays Y2 to
the principal.

Investment
phase 2 is
completed.
The agent
observes q2,
and obtains
the value of
the completed
project.

the agent pays the pre-specified amount Yi. (.) to the principal. Furthermore, when
investment phase 1 is completed, the agent observes ql, reports (jl, and makes
his next investment decision based on this updated information. Investment
phase 2 is started at a stopping time 72, and the contracted amount Y:2(') is
simultaneously paid to the principal. When the last investment phase is finished.
the agent obtains the realized value from the project, i.e., he receives the o' assl't
in place".

Except from the signals ((t), privately observed by the agent, the principal ha...;IIll'
same information as the agent. The principal also knows when the agent obl ain-
new signals. Similarly to the approach in the previous chapters we define IIll'
principal's available information at time t by n'''', generated by C7r(~), 77(0: ~ ::::
t), whereas the agent's information at time t is specified by Ff, generated liv

(r(~);~~ t).

The principal's optimization problem at the time when the contract is entered
into is given by

Vp(7r, 77;(j)

- sUPY(.),rE [L.:.7=1 e-rTj [Y} ('7r(7j),77(7j);{j) - KjJ IPa''''] ,
(5.~)
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subject to the agent's optimization problem,

VA(7r, (, 7]; q) = SUPq E [e-r(TN+~N)7r(TN + tlN )q( TN + tlN)

- L:f=l e-rTjYj (7r(Tj), 7](Tj); q) 1.r6] ,
(5.9)

and the participation constraint,

(5.10)

The principal's value function in equation (5.8) depends on the investment cost
K, and the contracted payments Yj, paid and received, respectively, each time an
investment phase j is exercised. The amount YN can be interpreted as the princi-
pal's "output value" of the project, whereas the contracted amounts Yo, ... , YN-1

(partly) finance the investment costs Kj. The amounts Yj mirror the agent's value
of participating in the contract: Because of the private information, the agent
obtains the realized value of the investment project when it is finished, and the
values of the privately observed signals reflect how much the agent is willing to
pay for participating in the contract payments, and at the same time be induced
to report truthfully. Recall that the principal never observes the realized value
qN. This is the reason why the agent obtains the value of the finished project,
as formulated in the agent's value function (5.9). The contracted amounts Yj are
the agent's costs. The participation constraint is included in order to ensure that
the agent is willing to enter into a contractual agreement with the principal.

Below we characterize the model in more details. The optimization problem in
equations (5.8)-(5.10) consists of N compound optimal stopping problems, and
N optimization problems with respect to the reported signals. Thus, the model
is formulated similarly to a stochastic impulse control problem. The agent 's
optimal reports can be formulated as impulses. At any time we can intervene
our system of states by starting a new investment phase, and the value of this
intervention is dependent on the report (i.e., the impulse) given.

Define vf(·) and vfO as the principal's and the agent's respective (arbitrary)
value functions, i = 1, ... ,N, when we have completed N - i investment phases,
i.e., when we have i investment phases left. Furthermore, define switching func-
tions gf-l(') and gt-l(') as the principal's and the agent's respective values from
exercising investment phase j = N -i+l. The switching functions are interpreted
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as the values of switching from having i options left, to having i-l options".
Observe that we denote i as the number of options left, starting with N options
when the contract is entered into, and numbered decreasingly to 1 option left.
The notation j represents the number of investment phases exercised, going from
1 to N. When we are about to invest in investment phase j the agent's updated
signal is represented by qj-l. Thus, we have the relationships

P( . A A) _ E [ -TT P ( () (r); A A) 1-r7f,TI]Vi tt ;Tl, qo, .. , qj-l - e gi-l tt T ,Tl T ,qo, .. , qj-l.ro ,

and

where T is a stopping time.

In the formulation of the value functions above, we have not included a time
variable. This means that we implicitly have guessed that the problem is time-
homogeneous. Given time-homogeneity the agent's value function can be repre-
sented by

where ~ represents a time variable. Let Lqj-1vf denote the partial differential
operator, defined by

Lqj-lVf(~, 7r, Tl)

8vA ( ) ( Å) 8vA ( ) 1 2 2 82vA ( ) 8vA ( )= ~~, 7r, Tl + r - u 7r~ ~,7r, Tl +"2(i 7r 8rr2 ~,7r, Tl + i:;- ~,7r, TJ .

By the definition vf(~,7r,qj-l,Tl) = e-T~vf(7r,qj_l,Tl) we find that

where

is-: A( ) _ ( Å) åvf( ) 1 2 2å2vt( ) åvf( ) A( )
J Vi n, Tl - r - u 7r å7r it, Tl + 2"(i 7r å7r2 it, Tl + åTl n , Tl - rVi 7r, Tl .

(5.11)
By this transformation we get rid of the time dependence reflected in the åvt / å~
term. Thus, the "discounting costs" are incorporated through the term -rvf

4Valuation problems when there is a decreasing number of options is also analyzed in Ekern
(1993) and Sødal (2001).
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in (5.11), even though we do not include the time variable ~ in the definition of
Lqj-1v{ The partial differential operator in (5.11) is similar to the partial differ-
ential operator for arbitrage-free contingent claims, as presented in, for example,
Duffie (1996), section 5.C.

In order to find an optimal contract, the following variational inequalities must
be satisfied. For the agent's optimization problem we need, for i,j = 1, ..,N,
where j = N - i+ 1,

(5.12)

(5.13)

(5.14)

where the inequalities must hold for all states. The inequality in (5.12) says that
the value function vt is always higher than or equal to the switching functions
gt as it consists of the decision flexibility (i.e., options to wait), in addition to
the expected value from exercising the option. When we have equality in (5.12),
it is optimal to invest. As long as it is not optimal to intervene by exercising
investment phase j, we need Lqj-1vt = O. This requirement is stated in equation
(5.14).

The principal's optimization problem consists both of N optimal stopping prob-
lems, and of incentive problems because of the agent's privately observed signals.
The incentive problems are solved by the revelation principle. When this truthful
mechanism is satisfied, we can solve the principal's optimal stopping problems
as if he observes the agent 's private information. Thus, we define vi(·) as the
principal's value function when there are i investment phases left to complete,
for a given value of the signal qj-I. The reason we use the value v[(7r, qj-I, 'fl),

instead of v[ ( te, 'fl), is that we need to find the optimal investment strategy given
the private information qj-I. As long as we have incorporated the agent's truth
telling restrictions into the optimization problem given by v[ (.), we are allowed
to optimize the value function v[ (.), instead of vi(·). We have the relationship

vi( n , 'fl; iio, .. , iij-I) = 100vi (7r, qj-I, 'fl; Cjo,.. , Cjj-l)f(qj-IICjo, .. , Cjj-2, 'fl)dqj-I,

where f(·ICjo, ... , Cjj-2, 'fl) is the probability density of a signal qj-I, possibly depen-
dent on the agent's previous reports iio, ... ,iij-2. Note that, if the report qj-2 is
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incentive compatible (i.e., if it is truth telling), only this report in !(·11]0,... , I]j-2)
is of value, as the variable q(t) follows a Markov process.

Similarly to the agent's optimization problem, the principal's problem needs to
satisfy the variational inequalities, for i, j = 1, .. ,N, where j = N - i + 1,

(5.15)

(5.16)

(5.17)

for all states. The partial differential operator Lqj-l is identical to the operator
in equation (5.11). For the truth telling condition to hold, we require that the
variational inequalities in (5.12)-(5.14) and (5.15)-(5.17) result in the same op-
timal investment strategy: As the investment strategy is based on the agent 's
reports, we need to ensure that the agent is induced to follow the investment
strategy preferred by the principal. Otherwise, truth telling will not be optimal
for the agent.

The value of the investment project is shared between the principal and the
agent, and the respective shares are dependent upon the agent's value of private
information. As the number of unfinished investment phases decreases, we expect
to find that the value of the project increases, i.e., we guess that V6 > vi > ...>
vh, and vt > vt > ...> v~. We guess that the continuation region Dj has the
form

i.e., the continuation region is time-homogeneous. The function qj-l (.) is under-
stood as the entry threshold of starting investment phase j = N - i + 1. TIH'
increasing value functions as the investment project approaches completion implv
that the investment triggers are decreasing, such that qo > qr > ...> qN-l·

The optimal contract is derived from the agent's value of private information.
As already mentioned the problem is solved with help of the revelation principle.
Hence, in the next section we study the agent's truth telling constraints, which
will be used as constraints in the principal's optimization problem in section 5.4.
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5.3 The agent's truth telling constraints

In our model we have N truth telling constraints that need to hold, each con-
straint corresponding to the agent's private observation of an updated signal.

First, note that we do not assume that any contracted payments are payable when
all the investment phases are finished, i.e., when the value qN = q( TN + I:1N) is
realized. As all the costs are sunk, there is no way for the principal to detect a
lie.

Below we examine the incentive compatibility constraints for all the privately
observed signals.

The agent's switching function gtl denotes the value obtained by exercising
investment phase j = N - i+ 1, and is defined by

gf__l(11", Qj-l, 7]; qo, .. , qj-l)

- SUPqj_l E [e-rLljvtl (1I"(l:1j),q(l:1j), 7](l:1j); qo, .. , qj-l)

-}j(1I", 7]; qo, .. , qj-l)1 F6'],
for i, j from 1to N. The value when investment phase j starts, gtl (11", qj-l, 7]; qo, .. , qj-l),
consists of the value obtained after the investment phase is started, Vf-l ('), re-
duced by the amount paid to the principal, }j. The function gf-l(') may de-
pend on the reported current signal qj-l, as well as all previously given reports,
qo, ... , qj-2' The agent optimizes the switching functions with respect to the re-
ported signals, as shown in equation (5.18).

(5.18)

For use below, we also define the agent's value function when we have i investment
phases left,

vf(1I",qj-l,7];qO, .. ,qj-l)

{

wf(1I",qj-l,7];qO, .. ,qj-l) ifqj_l ::;qj-l(1I",7];qo, .. ,qj-l)

gtl (11", qj-l, 7]; qo, .. , qj-l) if qj-l > qj-l (11",7]; qo, .. , qj-l),

where wf(-) denotes the value function when we have i compound options left,
given that the investment decision is postponed. Recall that qj-l (-) is defined as
a critical value such that it is optimal to invest when Qj-l > qj_l(1I", 7]; qo, .. , qj-l).

(5.19)
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Now we study the truth telling conditions. At the stage where the agent has i
options left, the most recent signal is given by %-1. Thus, the agent optimizes the
function vf with respect to the current signal qj-l. For notational simplicity we
denote the agent's value function vf(7r, qj-l, 1]; qj-I) == vf(7r, %-1, 1]; qo, .. , qj-I),
where all the reports, except for the one given currently, are suppressed in the
notation. In this model we take a slightly different, but equivalent, approach
in order to find the incentive compatibility constraints. Using the approach
presented below, it is easier to understand how the truth telling constraints affect
the contract.

Truth telling implies that for any two values qj-l and qj-l the following inequal-
ities must be satisfied:

and
vf(7r, qj-l' 1]; qj-l) 2:: vf(7r, qj-l' 1]; qj-l).

The inequalities tell us that the contract needs to be designed such that the
value of reporting the truth is at least as high as the value of lying. Adding the
inequalities we find

(5.20)
-[vf(7r, qj-l, 1]; qj-l) - vf(7r, qj-l' 1]; qj-l)] 2:: o.

Suppose %-1 > qj-l· MacKie-Mason (1985) interprets a condition similar to the
one in (5.20) as follows: to ensure truth telling, the value of reporting the truth
must be at least as great when the truth is good news as when the truth is bad
news.

The incentive compatibility above can be evaluated further for the case where
the signal qj-l prescribes immediate investment, Le., when qj-l > qj-l. Replace
the function vf(·) in (5.20) by gf_l' and evaluate the inequality in (5.20) using
equation (5.18). The calculations are presented in appendix D.l. This yields the
following incentive compatibility constraint:

8Vf_1 (q(6.j); qj-l) _ 8Vf_1 (q(6.j); qj-l) > o.
8q(6.j) 8q(6.j)-

(5.21)
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The incentive compatibility constraint in (5.21) says that when there are i-l in-
vestment phases left to exercise, and the agent's latest information is given by the
. I he nrevi Ah'" m;4_1 (7T(~j),q(~j,17(~j);qo, .. ,qj)signa qj, t e previous report qj-I must ave a positive Impact on aq(~j)

if the incentive compatibility constraint is to hold. What about the impact on
vtl of the earlier reports qo, .. , qj-2? In order to solve our problem we need to
find the incentive compatible constraints for these reports as well.

Suppose investment phase j is exercised at time t. Then we know that the value
of exercising this investment phase is given by

(5.22)

We have already found the incentive compatibility constraint for qj-I' As we want
to study the incentive compatible constraint for each report qk, for k = 0, .. ,j - 2,
we reformulate the above value to

(5.23)

The expressions in (5.22) and (5.23) are equivalent". The value in (5.22) is refor-
mulated to (5.23) because we want to emphasize the dependence on the previously
given report qk. Byequation (5.23) we know that the incentive compatibility con-
straint for any earlier report has a similar impact as the report qj-I' This result
is obtained by replacing the report qj-I in equation (D.1) by qk, for k = 0, .. ,j -2,
as shown in the last part of appendix D.1. The truth telling constraint for each
report qk, k = 0, ..,j - 2, with respect to the value when there are j investment
phases left, is given by

8vtl(q(t);qk) _ 8vtl(q(t);q~) > °
8q(t) 8q(t) -' (5.24)

5The two expressions are equivalent as we can define

yielding
E [e-rt Jooogt-I (7r(t), q(t), 17(t); qk)!(q(t)liik, t)dq(t) IFJ']

= E [E(,71 [e-rtgtl (7r(t), q(t), 17(t); go, .. , gj-I)] IFJ'].
The left-hand side of the equality is identical to (5.23), and the right-hand side equals (5.22)
by conditional expectations.
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Thus, the incentive compatibility constraints for all earlier reports, {Jo,... , {JN-i,

require that each report has a positive impact on the agent's value vtlO. In
the next section the incentive compatibility constraints are incorporated in the
principal's optimization problem.

5.4 The principal's optimization problem

The principal's switching function is given by
p ( A A)gi-l 7r, ry; qo, .. , qj-l

(5.25)
= E [e-r~jvEI (r(~j); (Jo,.. , ili-I) + Yj(7r, ry; {Jo,.. , (Jj-I) - KjIPo,lI] .

Thus, the principal's value of exercising investment phase j, in (5.25), consists
of the value obtained upon investment, E[e-r~jvEI(·)IPo,lI], plus the amount
received from the agent, Yj, reduced by the investment cost Kj.

By substitution of Yj in equation (5.25), using equation (5.18), we find that
equation (5.25) can be formulated by

p ( A A )gi-I7r,ry;qO,··,qj-1

(5.26)

-gtl(7r,qj-l,ry;{JO, .. ,{Jj-l) -KjIPo,lI].

The optimization problem is solved iteratively. Thus, at the step where we are
about to find an optimal investment strategy for exercising phase i. we have
already solved for the values of VEl and vtl. The function gtl represents the
agent's value of exercising investment phase j. In a similar way to the reformu-
lation from (5.22) to (5.23), equation (5.26) can be reformulated to

gr- 1(7r, ry; {Jo,.. , (Jj-1)

-gtl (7r, qj-l, ry; {Jo,.. , (Jj-I) - Kj} f( qj-ll{Jo, .. , {Jj-2)dqj-lIPo,1I] ,

where the expectation of the principal's value with respect to qj-l is written on
"integral form" .
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The value in (5.27) depends on the probability density f(qj-1Iqo, .. , qj-2), which
is the density of the signal qj-1, given the previous reports qo, .. , qj-2). As long as
the agent has no incentives to lie, the probability density is given by f(Qj-1Iqj-2).6

Below we will discuss whether or not it is optimal to let the contracted amounts
}j(.)depend on the previous report qj -1. If not, we also need to check if it is
optimal to let }j be dependent on any earlier reports.

We have already mentioned that the optimization problem is solved iteratively.
Below we show that when i= 1, that is, when we have only one investment phase
left, we are able to find a closed form solution.

Assume that i = 1, and denote' q-(N-1) = {qo, ... , qN-2}, i.e., q-(N-1) is the
vector of all reports except the last one. The principal's value of starting the last
investment phase is given by

- roo { K(1I+flN)-6flN _ rqN-l 8wf('7r,U,1I)d _ K } f( IA-(N-1))d- Jo 7rqN-1e Jo au u N qN-1 q qN-1·
(5.28)

The result in (5.28) is a reformulated version of equation (5.27) when i = 1
and j = N. The derivation is presented in appendix D.2. In the case of
full information the investor's value of exercising the last investment equals
QN_1eK(1I+flN)-MN - KN. Thus, in (5.28) the "full information" payoff is reduced
by the agent's value of private information, JoqN-l 8wf1:,U,1I)du.

By some further calculations, shown in appendix D.3, the principal's value of
exercising the last option is written as

= roo [7reK(1I+flN)-6flN (q _ 1-F(qN_l!q-(N-l»)) _ K ] f(Q IQA-(N-1))dq
Jo N-l !(qN-l!q (N 1)) N N-1 N-1'

(5.29)
The fraction 1ff(qN-!:!q~N~;») is the inverse hazard rate, and is interpreted asqN-l q
the costs of asymmetric information at the time the last investment is exercised.
In equation (5.29) the principal's value of starting the last investment phase is
reduced by this fraction.

6Because the last observation is a sufficient statistic when the variable q(t) is driven by a
Markov process.
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The fraction If~~~J~~~~:~;)corresponds to the inverse hazard rate ~nin chap-

ters 2-4. Recall that ~rjis interpreted as the increase in the principal's invest-
ment cost at the investment time, due to an agent's private information about an
investment cost. Analogously, Iff-i') is the reduction in the principal's "output
value" because of asymmetric information.

Define M(t) = 7r(t)eti:(lI(t)+llN)-c5ll.N for TN-I + ~N-I :::; t < TN + ~N' By Ito's
lemma we find

dM(t) = (r - [J + K,)M(t)dt + aM(t)dB7r(t), m = M(O).

Replacing 7rell+llN by m, equation (5.29) is equivalently written as

(5.30)

The reason we substitute 7rell+llN for m, is that it reduces the number of states
from two (7r and fl) to one (m).

Denote vt as the principal's optimal value when there is only one invest ment
phase left before completion. The optimal investment strategy when there is OIH'

. h l f d h I-F(qN_1Iq-(N-1) O' c d fmvestment p ase et, an w en qN-I - f( l" (N 1) > ,IS lOun romqN-1 q

vt(m)

The optimization problem in (5.31) equals a perpetual American call opt ion.
where the stochastic variable is driven by a geometric Brownian motion. HI'IWC·.

the closed form solution is a well known result. The solution is derived ill ap-
pendix DA. Define an investment trigger function M*, taking only strictly po-i-

tive values. It is optimal to invest when m > M*, and to postpone the invest nu-ut
when m :::;M*. The critical price M* may depend on the current signal q,\' _ I. H.--

well as previously reported signals q-(N-I). We find that the optimal investment
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· M* h l-F(qN_llq-(N-ll) O' . btrigger w en qN-l- f( l' (N Il) > IS grven yqN-l q

\ ( 1 F( ! A-(N-l)))-l* . A-(N-l) __ "'_ _ - qN-l q
M (qN-l, q ) - A-I KN qN-l f(qN_l!ii-(N-l)) , (5.32)

h M*( A-(N-l)) hes i finit h l-F(qN_llq-(N-1l) < Ow ereas qN-l; q approac es m ill y W en qN-l - f(qN_llq-(N Il) _ .

The parameter A is given by

A ~ :~ [~<11-(r - 6 +Kl + ((r - 6 +Kl - ~<1~)'+ 2r~] > l

In order to ensure that A > 1, we require that fl, < 6.

As the signal qN-l is a constant in the optimal stopping problem in (5.31),
it seems to be optimal for the principal to reject the contract when qN-l -

lf~~~~~lq~:~;l) ~ O. However, in the next section we shall see that this is not
the case as long as it possible to find an inverse critical price qN-1 (m; ii-eN -1))

to the critical price M*(qN-l; ii-(N-l)).

5.5 Characterization of the optimal contract

In this section we characterize the optimal contract by examination of the con-
tracted payments Yj, j = 1, ..,N. Only in the case where i = 1 do we find a
closed form solution of the payment, presented in section 5.5.1. However, for
i > 1 we are able to characterize the contracted amounts, by studying how they
depend on the agent's reports. This is done in section 5.5.2.

5.5.1 The optimal contracted payment when i = 1

In this section we find the optimal amount YN. First, define the inverse critical
price for investment (using the result in (5.32)), qiv-l (m; q-(N-l)), such that the
inverse trigger function satisfies the relationship
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* l-F(qN_l(m)lq-(N-l)) .
when qN-l(m) - f(qN_l(m)!q (N l)) > o. Appendix D.5 shows that the value of
the contracted amount YN(·) is formulated as

lJ ( A-(N-l))
IN m,qN-l;q

mq* (m· q-(N-l)) _ rqN_l(mjq-(N-l)) ( m 1)))A M*(u; q-(N-l))du
N-l , JIj_N_l M*(ujq (N

C
(5.33)

l-F( * !,-(N-l))
where 9.N-1 is the value of the signal qN-l such that 9.~-1 - f(Ij_~:J~ q(N l)) = O,
and C is a constant sufficiently high to prevent the agent from investing when
* l-F(qN_l!q-(N-l))

qN-l - f(qN-l!q (N l)) :S O.

In order to keep the principal's value of the contract positive, we need to prevent
l-F( * !,-(R-l))

the agent from investing when qiv-l - f( .qNil, q(N l)) :S O, or when qN-l -
qN-l q

This is shown by studying the principal's optimal stoppingl-F(qN_dq-(N-l)) < O
!(qN-l!q (N l)) - .

problem in (5.31).

The contracted amount YN in equation (5.33) implies that the investment deci-
sion of the last investment phase can be delegated to the agent, as the amount is
independent of the agent's current private information at the stage where there
is only one investment phase left. However, so far we do not know whether
or not it is optimal to let the contracted amount YN depend on any previ-
ous reports. This question is examined in the following. Recall that the in-
centive compatibility restrictions in equations (5.21) and (5.24) require that
&v~(q(f:l.N-l);qk) _ ov~(q(f:l.N-Iljqk) > O for q > q' where k = O .. N - 2. Evalua-

oq(f:l.N-Il oq(f:l.N-Il - k k : , ,

tion of vt(q(b.N-I); qN-2) == vt(M(b.N-I), q(b.N-1); qo, .. , qN-2) leads to (using
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appendix D.5)

åvf(M(D.N -l), q(D.N -l); r(N -l»)
åqN-l

{

(
M(~N-l) )>. * '-(N-l)= MO(q(~N_,);q (N 1» M (q(D.N-l);q )

M(D.N-l)

if M(D.N-I) ::;M*(q(D.N-I); q-(N-l»)

if M(D.N-l) > M*(q(D.N_I);q-(N-l»).
(5.34)

When M(t1N-I) > M*(q(t1N-I); q-(N-I»), in (5.34) we find that 8vt(~~~~~~:~N-2) =

M(t1 _) leading to 8vf(q(f).N-I);qN-2) - åvt(q(f).N-l);q:.v_2) = O. If we substitute
NI, 8q(f).N_l) åq(f).N-l)

the right-hand side expression in (5.34) when M(t1N-I) ~ M*, into the incentive
compatibility constraint in (5.21), we find that the restriction in (5.21) is given
by

(5.35)

The inequality shows that for the incentive compatibility constraint to be satis-
fied, we need M*(qN-I); qk) ~ M*(qN-I); qD.

The property of the investment trigger M*(qN-I); qk) is examined by different i-
ating M*(qN-I; qk) with respect to the report qk, for k from O to N - 2. This
yields

(5.3(; )

as
å (I-F(qN-llqkJ)

!(qN-llqk) O
åqk <.

The result in (5.36) contradicts the incentive compatibility constraint in (;j.3~J)

for all qk, k = O,... ,N -1. Thus, we conclude that it is not optimal to let }~'V( .) cJt.-
pend on the reports q-(N-I), and that this means that the optimal compensat ion
is given by

YN(m,qN-I)

mq* (m) _lqN-l(m) (_!Il__) ..M*(u)du if * ( ) _ I-F(qiv_l(mi) ()
N-I IJ.N-1 MO(U) I qN-I m !(qiv_l(m» >

~ {
(5.3i)
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where

(5.38)

We have found that the contracted amount YN is given by a function of observable
variables only, it is not path dependent, and it implements the optimal strategy
when the informed agent makes the investment decision. Thus, the contracted
amounts lead to the same type of contracts as in the situations in chapters 2
and 3, where the agent has private information about the costs of the investment
project.

5.5.2 Characterization of the optimal contract when i > 1

A remaining question is if it is optimal to let Yj (. ), j = 1, ... ,N - 1, depend
on previous reports. We do not find closed form solutions for the contracted
amounts Yo, ... ,YN-l. However, we are able to find some properties of Yj, by
studying whether the amount depends on previously reports.

In the section above we examined the case where i = 1. Now we first assume
that i = 2. The agent's value at the time the second last investment phase is
exercised, is equal to

A( A A )gl ?T,qN-2, 'fl; qo, .., qN-2

= E [-rb.N-l fooo vf( ?T(~N-l), q(~N-l), 'fl(b.N_1))!(q(b.N_l)lq-(N-l))dq(b.,,· -} )

-YN-l (?T,'fl; q-(N-l))IFJ'] .
(5.39 )

Equation (5.39) equals equation (5.27) for i = 2 and j = N - 1. Note that
in equation (5.27) the function vtl (-) on the right-hand side of may depend 011

previous reports. However, in section 5.5.1 we have found that it is optimal not

to let vtl(') for i = 2, i.e., vf(·), depend on previous reports.

Thus, in equation (5.39) only the contracted amount YN-1 may depend on the
previous reports. This actually means that it is not optimal to let YN-1 depend
on previous reports either: for any reports the incentive compatibility constraint
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in (5.24) equals zero. The conclusion is that the contracted amount YN-l is
independent of reports previous to the current one, i.e., YN-l is path independent.

The conclusion implies that agent's value in (5.39) is independent of previous
reports, which means that v~ cannot depend on earlier reports either. Moreover,
by the same analyzes as above for i = 3, ... ,N this also means that none of the
subsequent values, Vt-l' depend on previous reports. Thus, we conclude that it
is not optimal to let any of the contracted amounts depend on reports previous
to the most recent one.

Although the contracted amounts does not depend on previous reports, the
agent's value of private information is still of value. The information rent can be
expressed as

A ~ rqN-i awfCJr,U,1];q-(j-l))
gi-l(Jr,Qj-l,1];q) = Jo aU du.

Using this expression, we find that the principal's switching function in equation
(5.26) can be formulated as

gf-l (Jr, 1])

This value is the principal's value of exercising investment phase j. The optimal
investment strategy when there is more than one investment phase left must be
found numerically, and is left for future work. However, the problem is simplified
compared to the problem we started with, as we have found that it is not path
dependent.

5.6 Conclusion

In this chapter we have studied sequential investment decisions in presence of
incentive problems. An agent has private information about the output value of
the realized investment project. As in the principal-agent models of chapters 2
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and 3 we find a delegation based contract, where the privately informed agent
makes the investment decisions.

A difference from the optimal contracts found in chapters 2 and 3 is that now the
agent pays a contracted amount to the principal each time a new investment phase
is exercised. In addition, the assumption of private information about the output
value has a different effect on the contract compared to the case where the agent
has private information about the investment costs. In the case of a privately
observed output value we need to let the contracted payment approach infinity
for some levels of the observed signal, in order to ensure that the principal's value
of the contract is positive.

Some of the calculations in this chapter have been rather tedious, but the results
are simple: the contract does not depend on reports previous to the latest reports
from the agent. When there is only one investment phase left, we find closed form
solutions, as the contract then is formulated as a perpetual American call option.
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Chapter 6

Summaryand concluding
remarks

This dissertation is a theoretical study of real options valuation and strategies in
the presence of incentive problems. The investment projects are evaluated under
the assumption that the asset values of the projects are uncertain, and we have
formulated the investment decision problems as optimal stopping problems. We
have assumed that some manager of some investment project is better informed
than some investor about the profitability of the project. This creates incentive
problems, which have been solved using a direct truth telling mechanism (the
revelation principle).

Previous results on valuation and strategies of uncertain investments have been
extended in the dissertation. We have shown that private information in our
models may lead to second-best optimal investment strategies, resulting in lower
values of the real options compared to the case where the agent has no privat»
information.

In chapters 2, 3 and 5 the incentive problems have been examined within a
principal-agent framework. In these chapters the models result in optimal COII-

tracts where the investment decisions are delegated to the agent, consistent wit li
well known results in the principal-agent literature. Chapter 4 has discussed the
incentive problems when more than one agent has private information about their
respective investment cost levels. In chapter 4 it has been demonstrated that the
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investment decision can be delegated to the contract winner only in the case
where the agents' private respective information is constant. When the private
information changes stochastically the principal makes the investment decision
as the contract winner is not chosen prior to the time the investment is made.

In chapter 2 we have studied how private information about a constant invest-
ment cost affects the strategies and value of an uncertain investment project.
It has been demonstrated that the interaction of a privately observed constant
investment cost and an asset value that is driven by an Ito diffusion, may result
in under-investment compared to the case of full information.

The model in chapter 3 have been extended to the case where the private infor-
mation changes stochastically: we let the privately observed investment cost and
the commonly observed asset value be driven by geometric Brownian motions.
In this case the conclusion with respect to the optimal investment decision was
found to be ambiguous: depending on the parameter values private observation
of the stochastically changing investment cost may result in over-investment as
well as under-investment. The reason is two opposing effects: the incentive effect
tends to higher costs of the project and thereby under-investment, whereas the
increased cost decreases the value of waiting, thereby tending to over-investment.

The numerical examples in chapters 2 and 3 illustrate that the investor's loss can
be substantially reduced because of asymmetric information.

We have found that the optimal strategies are not changed when we extend
the principal-agent models in chapters 2 and 3 to the case where two or more
privately informed agents compete about a contract that gives the winner the
right to invest in the project, as is done in chapter 4. However, the winner's value
of private information is lower in the case of competition than in the case of only
one agent having private information. The numerical illustrations in chapter 4
show that the value of the agent's private information converges rapidlyto zero
as the number of competitors increase.

In the principal-agent models of chapters 2 and 3 we have studied how changes
in volatility parameters affect the values of the principal and the agent. We have
found that the agent 's value as a function of the volatility parameter may be
decreasing. This effect is in contrast to the well known result that the option
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value under full information increases as a function of volatility. In the case
of a constant private information, modelled in chapter 2, we have illustrated
that the principal's option value too may decrease as a function of the volatility
parameter. The reason is that the effect from a second-best investment strategy
for some parameter values dominates the effect of the prospects of higher future
profits.

In chapter 5 we have formulated a sequential investment model where an agent,
each time a new investment phase is finished, privately observes a signal about the
output value of the realized investment project. We allow the contracted transfers
between a principal and an agent to depend on reports about previously given
reports. Thus, in this chapter the focus is on whether the optimal contract is
path dependent, rather than examining the optimal strategies and corresponding
values. We assume that the signals are driven by a geometric Brownian motion,
and find that it is not optimal to let the contract depend on previously given
reports.

Many simplifying assumptions have been made in the models. One limitation is
that we only consider complete contracts, meaning that all variables that may
have an impact on the contractual relationship are included. Secondly, we have
assumed that all the contracts are binding for the contracted period. The rela-
tionship cannot be breached or renegotiated.

Another aspect we have not considered is moral hazard effects, i.e., effects of
unobservable effort have not been included in the analyzes". Furthermore, in the
auction models of this dissertation we have not considered the situation where
the agents have different degrees of private information. As long as one agent is
better informed than the others, the better informed agent probably will have
a positive value of private information, even under competition. It might be
interesting to study how different degrees of observability affects option values
and strategies.

For simplicity we have assumed that uncertain values either can be spanned in
dynamically complete capital markets, or that the risk is independent of risk in

lHowever, in the case where both unobservable effort and private information is present, the
problem can be reduced to a pure private information/adverse selection problem, see Laffont
and Tirole (1993).
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these markets. Moreover, the investment problems we have studied are limited
to optimal stopping problems. Finally, in the principal-agent model of chapter
3, where it is assumed that the private information changes stochastically, we
have only considered the case where the private observations are given by con-
tinuous processes. For many applications it is more realistic to allow jumps in
the stochastically changing and privately observed variables.
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Appendix A

Appendix for chapter 2

A.l The second-order condition for a perpetual
American call option

The second-order condition of the option in the case where the principal ob-
serves the investment cost parameter, is derived from the first-order condition in
equation (2.12) (for notational simplicity, we write S;ym for S;ym(K)),

a2~~(s,K;S;ym)
aS;;m

Note that the first term on the right-hand side equals zero as [1 - ~gJ::::;(S;ym) - K)] =
Oby the first-order condition in equation (2.12). Rearranging, we find

which is non-positive when ¢"(S;ym) 2:: Q.
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A.2 The optimality conditions of a perpetual
American call option: The case of geomet-
ric Brownian motion

The first-order condition of the investor's value function in (2.20) is

if s > S;ym

The second-order derivative is

82~~m(s, K; S;ym)
8(S;ymF

{

(
_8 )(3 {( __ 8 ) (1- {3 + (3_!i_) - {3_K }

_ Os;... (s:... >, s:,_ (s:,_>' if < S*l s_ 8ym

if s > S;ym

The first term on the right-hand side is zero because (1 - {3 + (3s~ ) by thesym
82VP (8 KS' )first-order condition. Thus, s8('s.' )/ym ::; O, and the second-order conditionsym

is satisfied.

A.3 The agent's second-order condition for op-
timization w.r.t. S(K)

Differentiation of the first-order condition in equation (2.21) leads to

82vA (8,KjS(K))
8S(K)

= _¢(8)~'(S(K)) [X1(S(K)) _ </>'(S(K)) (X(S(K)) - K)]
¢(S(K))2 </>(S(K))

+ </>(8) [X"(S(K)) _ ¢"(S(K))¢(S(K))-¢'(S(K))2 (X(S(K)) - K)
</>(S(K)) </>(S(K))2

_ ¢'(S(K)) X'(S(K))]
</>(S(K)) .
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The first term on the right-hand side equals zero because of the first-order con-
dition in (2.21). Simplification yields

å
2vA(S,K;S(K)) ~ { [_ (<i>I(S(K)))2 _ <i>1I(~(K))] (X(S(K)) _ K)

åS(K) - <i>(S(K)) <i>(S(K)) <i>(S(K))

- <i>'(~(K)) X'(S(K)) + X"(S(K))}
<i>(S(K)) .

A.4 The revelation principle applied to our model

Applied to the model in this chapter, the revelation principle can be shown by the
following arguments (we follow the proof used by Salanie (1997), section 2.1.2).

The entry threshold S(K) and the compensation X(S(K), K) are based on the
report K.

Let M be the space of admissible reports, and let (X(·), SO, M) be a set of
incentive mechanisms that implement the compensation function X*, and the
investment strategy S*. Moreover, let K*(K) be the optimal report, so that X· =
X*(K*) and S* = S*(K*). Now consider the direct mechanism (X*, S*. K). If
it did not implement a truthful report, then an agent would prefer to announce
some K' other than K, and we would have

vA(s, K; X*(K'), S*(K'), K') > vA(s, K; X*(K), S*(K), K).

But by definition this would imply that

vA(s, K; X*(K*(K')), S*(K*(K')), K') > vA(s, K; X*(K*(K)), S*(K*(K)). k·)

so that K* would not be an optimal given that the true investment cost equul-

K. Hence the direct mechanism (X*, S*, K) must be truthful, and implemcnt
the compensation X* and the investment strategy S*.
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Å.5 The second-order condition for incentive com-
patibility

The second-order condition for k must be satisfied at k = K, which implies the
function vA(s, K) must be more convex than vA(s, K; k), i.e.,

82vA(S, K; k)
8k2

< 82vA(S,K)
- 8K2 '

K=K
(A.l)

where vA(s, K; k) is given by equation (2.22), and vA(s, K) equals

{
¢(~~1»(X(S(K), K) - K) if s ::;;S(K)

vA(s, K) =
X(s,K) - K if s > S(K).

(A.2)

The first-order condition of vA(s, K; k) with respect to te when k --:-K, and
when s ::;;S(K), is found to be equal to

8vA(s,!_(; K) I
8K K=K

_ -..!&L [ A A A, A _ </>'(S(K» (A _) A, ]- </>(S(K» Xs(S(K), K)S (K) + XK(S(K), K) </>(S(K» X(S(K), K) K S (K) .
(A.3)

Differentiating the first-order condition with respect to k, when k = K, yields,

82VA(S:~; K) I
8K K=K

</>(~~1)) [Xss(S(K), K)S'(K)2 + Xs(S(K), K)S"(K) + XKK(S(K), K)
(AA)

_ </>//(S(K»S'(K)2+</>'(S(K»S//(K)-(</>'(S(K»S'(K)t (A _)
</>(S(K»)2 X(S(K), K) K

</>'(S(K)) AI (A A, )]</>(S(K»S (K) Xs(S(K), K)S (K) + XK .

The first-order derivative of equation (A.2) when s ::;;S(K) is given by
8vA(s,K)

8K

</>(s) [ A A, A </>'(S(K» ( A ) A, ]i{S{K)) Xs(S(K))S (K) + XK(S(K), K) - 1- </>(S(K» X(S(K), K) - K S (K) ,
(A.5)
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yielding the second-order derivative,

å2vA(S, Kj k) I
åK2 .

K=K

¢(~~1)) [Xss(S(K), K)S'(K)2 + Xs(S(K), K)S"(K) + XKK(S(K), K)

_ ¢1(S(K))S'(K)2+¢'(S(K))S"(K)-:.(¢'(S(K))S'(K))2 (X(S(K) K) - K)
¢(S(K))2 ,

(A.6)

_¢'(S(K))S'(K) (X'(S(K) K)S'(K) +XK -1)]¢(S(K)) , .

Using the restriction in equation (A.l), this leads to the second-order condition,

_ ~(8) ¢'(~(K)) S'(K) > O.
¢(S(K)) ¢(S(K)) -

(A.7)

When 8 > S(K) we find that a2vAa~~;k) I. = XKK(8, K) and a
2
v;}/zK) -

K=K
XKK(8,K), which satisfies the condition in equation (A.l).

A.6 The agent's value of private information,
equation (2.25)

Integration of both sides of equation (2.24) when 8 ~ S(K),

t" dvA(s, u) = -iK ¢~(8) du,
iK du K ¢(S(u))

leads to

vA(s, K) _ vA(s, K) = _ rK ¢~(s). du.iK ¢(S(u))
When 8 > S(K), integration on both sides of (2.24),

11')8dvA(s, u) 11')8
d = - ldu,

KUK

results in
vA(s, 19(s)) - vA(s,K) = -(19(8) - K).

Rearrangements leads to equation (2.25).
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A.7 Partial integration

[K ([K ¢~(s) dU) j(K)dK
JK JK ¢(S(u))

By inserting the bounds Kand K in the first term on the right-hand side, we
see that this term equals zero.

A.B The optimal investment strategy

Differentiation of vP(s; S(K)) with respect to S(K) gives the first-order condition
for the optimal exercise value S*(K),

åvP(~; S(K) = ~(s) [1 _ ¢/(q(K)) (S(K) - K - F(K))] = O. (A.8)
åS(K) ¢(S(K)) ¢(S(K)) j(K)

As the fraction ¢(~~%» is positive, the expression in square brackets must be
zero. Equation (2.30) in the text is obtained by reorganizing and evaluating at
the optimal trigger S*(K).

The optimality conditions for the trigger value are satisfied as long as the second-
order condition

å2vP(s; S(K)
åS(K)2

- - ¢(;g;»2¢/(S(K)) [1- ¢:(~~~) (S(K) - K - ~«:n]
+ ~(s) [_ ¢"(S(K»¢(S.(K»-¢'(S(K»2 (S(K) _ K _ F(K») _ ¢'(~(K»] < O
¢(S(K» ¢(S(K»2 frK) ¢(S(K» - .

The first term on the right-hand side equals zero because of the first-order con-
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dition. Rearrangement leads to

(PV:S~~~~K) - ¢(~~%»[- ¢;:~~~)(S(K) - K - ~U~?)
_¢'(~(K» (1- ¢s(~(K» (S(K) - K _ F(K»))] < O.¢(S(K» ¢(S(K» f(K)-

As the last term equals zero because of the first-order condition, we are left with
the expression

ff2vP~s;S(K)) = _ ~(s) ¢"\S(K) (S(K)) _ K _ F(K)) < O
åS(K)2 ¢(S(K)) ¢(S(K)) j(K) - ,

which in turn means that ¢"(S(K)) ;:::o.

A.9 Implicit differentiation of the optimal in-
vestment triggers

D fi A(S* K) - S* - K - ¢(S;ym) - O h S* = S* (K) -e ne sym' - sym ¢'(S;ym) - ,were sym - sym ,cor
responding to the condition for the optimal entry threshold in the case of full
information, given in equation (2.14). By implicit differentiation we know that

(S*)' = _ AK(S;ym' K)
sym A. (S* K) ,s.ym sym'

leading to

(S*)' -1sym = - Ai(S· )2_"'(S· )"'''(S. ).l-'+' slJm 'fl sym 'Y sym¢'(S;ym)2
Rearranging, we get

Analogously, define B(S*, K) = S* - K - ~i~?- :~~..» = O,where S* == S·(K).
corresponding to the condition for the optimal entry threshold in the case of
asymmetric information, as written in equation (2.30). By implicit differentia-
tion,

(S*)' = BK(S·,K)
Bs·(S·,K)

148



Simplification of the above differentiation leads to

(S*)' = [1+ B(F(K)j !(K))] ¢'(S*)2 .
BK ¢(S*)¢"(S*)

A.IO Show that the communication-based com-
pensation is equal to the delegat ion-based
compensation

In order to show that ¢(ZS(k»X(S*(K), K) = ¢(ZS(k»X(S*(K)) we exploit the
fact that we from s = S*(K) can find the inverse investment trigger K = '!9(s) as
long as S*(K) is a strictly continuous and increasing function in K E [K,KJ.

By partial integration we find, using equation (2.33) and given s :S S*(K), that

¢(s) *
¢(S*(K)) X(S (K), K)

¢(8) K [ ¢(8)] K rK ( ¢(8)¢SO(SO(U»)(S*)'( )d- ¢(SO(K» + u¢(s*(u» K - JK U - (¢(s*(U»)2 u u

¢(8) K rK u ( ¢(8)¢S*(S*(U») (S*)'(u)du- ¢(SO(K» - JK - (¢(S*(U»)2 .

As K equals '!9(S*(K)), we know that u = '!9(S*(u)), leading to

¢(s) X(S*(K)) = ¢(s) K _ (K '!9(S*(u)) (_ ¢(s)¢s-(S*(u))) (SO)'( Il It/Il.
¢(S*(K)) ¢(S*(K)) JK (¢(S*(u)))2

By substitution of integration variables we obtain

¢(s) X(S*(K)) = ¢(s) K _ (SOCK)'!9(S*(u)) ( __¢(s)¢so(s*(u))) d.S"( Il).

¢(S*(K)) ¢(S*(K)) JSO(K) (¢(S*(u)))2

Partial integration leads to

¢(s) * * ¢(s) (SOCK), * ¢(s) _
¢(S*(K)) X(S (K)) = '!9(S (K)) ¢(S*(K)) + JSO(K) '!9 (S (u)) ¢(S*(u)) ss (Il).

The value of the compensation is a function of S(K), only, and thus, we han>

shown that ¢(ZS(k»X(S*(K), K) = ¢(ZS(k»X(S*(K)). As s -+ S*(K), implying
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Ø(s) 1 hØ(S.(K» ~ ,we see t at

lS*CJ() , * ¢(s) *
X(s) = s + 8 {) (S (u)) ¢(S*(u)) dS (u),

which equals equation (2.34), because fss*(J() {)'(S*(u)) Ø(~~(~»dS*(u) = JiJ~S)Ø(~~(~»du.

A.II The dead-weight loss L(s, K)

When s ::; S;ym(K) the dead-weight loss equals

L(s,K)

- ~~m(s, K) + ~~m(s, K) - VP(s, K) - VA(s, K)

- Ø(Si~~(K) (S;ym(K) - K) + O

[ Ø(8) (S*(K) K) JK Ø(8) d] JK Ø(8) d- Ø(si<) - - K Ø(S*(u» u - K Ø(S*(u» u

- Ø(Si!~(K) (S;ym(K) - K) - øf1f<) (S*(K) - K)

In the interval S;ym (K) < s ::; S* (K), we obtain

u»,K)

K [Ø(8) (S*(K) K) JK Ø(8) d] JK Ø(8) d- s - - ¢(s'K) - - K ¢(S*(u» u - K ¢(S*(u» u

s - K - øf1f<) (S*(K) - K) .

If S*(K) < s ::; S*(K) the dead-weight loss is

L(s,K)

- ~~m(s, K) + ~~m(s, K) - VP(s, K) - VA(s, K)

- s - K +0- [s - {)(s) - - J!9~Ø(~~(~»du] - [{)(s) + JiJ~ Ø(~~(~»du - K]

- O.

150



And finally, when s > S* (K) we find that

£(s, K) - V[ym(s, K) + ~~m(s, K) - VP(s, K) - VA(s, K)

- s - K + O - (s - K) - (K - K)

O.
Collecting these values lead to the dead-weight loss in equation (2.38).

Å.12 The value of the contract compared to the
value of selling the real option ex ante

If the principal sells the investment project to the agent, instead of entering
into a contractual relationship, the agent's gross value of the project after sale
equals ~~m(s, K), as the agent has full information. This means that the agent
accepts to buy the investment project if the principal's price is lower than, or
equal to, ~~m(s, K), given that entering into a contractual relationship is not an
alternative. The principal's price is denoted "(.

The principal's outcome from a sale is given by

,I{V8~m(s,Kl~'Y}+ OI{V.[ym(s,Kl<'Y}'

yielding the principal's value of sale, i.e., the principal obtains the value, if the
agent accepts the price, whereas the outcome equals zero if the agent does not
accept the principal's price. Thus, the principal's value of selling the realoption
ex ante, is given by

Vs~le(S) = ,Prob(VB~(s,K)I{8~s;ym(K)} ~ ,)Prob(s::; S;ym(K))
(A.9)

If sale is to be profitable to the principal, we need ~~le (s) ~ V p (s ).

In the case where s > S*(K), we know that Prob(s > S;ym(K)) = 1, and
Prob(s ::; S;ym (K)) = o. Thus, the principal's value of sale in the interval
s > S*(K) is given by

~~le(s)I{s>S.(K)} = ,Prob(s - K ~ I).
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The principal's value of contracting when s > S*(K) is (using equation (2.43))
given by

P -
V (s)I{s>s*(K)) = s - K.

This means that if sale is to be profitable, we need Vs~le(s)I{s>S*(K)} = /,Prob(s-
K 2:: /,) 2:: VP(s)I{s>s*(K)}' which leads to the inequality

/'Prob(s - K 2:: /,) 2:: s - K.

Note that ifwe let /' be equals to s- K, we obtain ~~le(S )I{s>s*(K)} = VP(s)I{s>s*(K)}"

The principal's value of sale when s > S* (K) is expressed as

s--y-K
- /' K-K '

where the last equality applies under the assumption that the investment cost is
uniformly distributed.

To optimize /" we differentiate Vs~le(S, /,), leading to

for /' E [s - K,s - KJ. For all possible values of /" the first-order condition is
negative. Thus we conclude that the optimal sales price /' equals s - K when
s > S*(K) and K is uniformly distributed, which means that ~~le(S) = VP(s).

In the case where s ~ S*(K), we find by evaluation of equation (A.9), and com-
parison of (A.9) and the principal's value function under asymmetric information
shows that selling the option ex ante is never optimal.
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A.13 Properties of the value functions

The first- and second-order conditions of X(s) in equation (2.41):

aX(s) = { ~ [1- q (S*CK»)ø 2~~f] > O if s::; S*(K)

as
O ifs>S*(K)

a2X() {_l øCø-l) (~)ø iK-K < Os _ 2 -sr- SOCK) Ø-l
---:a-s:'-2....:...-

O

if s ::;S* (K)

if s > S*(K)

The first- and second-order conditions of V:~m(s,K) in equation (2.20) with re-
spect to s are given by

avP (s K) {(3Sø-l(S;ym(K))-ø K ø~l > O if s ::;S;ym(K)sym , _

as - 1 if s > S;ym(K),

and

For VA(s, K) in equation (2.42) the first- and second-order conditions are formu-
lated as

aVA(s,K)
as

{3sø-lS*(K)-ø1 [2K-K _ (s*c~»)ø~] > O if s::; S*(K)
2 Ø-l SoCK) Ø-l

if S* (K) < s ::;S* (K)

O if s > S*(K),

{3({3 - 1)sø-2S*(K)-ø1 [2K-K - (s*c~»)ø~] > O if s::; S*(K)
2 Ø-l SOCK) Ø-l

if S*(K) < s ::;S*(K)

O if s > S*(K).
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The first- and second-order conditions for VP(s, K) in equation (2.43) are equal
to

if S*(K) < s s S*(K)

1 if s > S*(K),

(3((3 - 1)sf3-2S*(K)-f3~ (S*(K) - K + (~:i~;/ 2:-=-f] > O if s :::;S*(K)

if S*(K) < s :::;S*(K)

O if s > S*(K).
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Appendix B

Appendix for chapter 3

B.1 The agent's value of private information,
equation (3.13)

When k = kand 8 ~ 'IjJ(c, k, t) the agent's first-order condition in equation (3.11)
is equivalently written in the form

roo dvA(8, C, U, t) roo A( )l, du du= Jk Wu 8,c,u,tdu,

where we have integrated the first-order condition on both sides of the equality.
When k ~ 00, we obtain vA(.) ~ O. Thus, evaluating the integration on the
left-hand side of the equality above, and changing the sign at both sides of the
equality, leads to

V
A(8, c, k, t) = -100 W~(8, c, u, t)du

for 8 ~ 'IjJ(c, k, t), as stated in equation (3.13).

When 8 > 'IjJ(c, k, t), integration of the first-order condition in (3.11) gives

l

'l?(S,c,t) dVA(8 C U t) l'l?(S,c,t), , , du = _e-rtdu.
k du k

Evaluation of the integrals and change of signs yield

VA(8, c, k, t) - VA(8, c, 13(8, C, t), t) = e-rt (13(8, c, t) - k) .
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Observe that vA(s, c, 19(s, c, t), t) = - Jt9,%,c,t) w~(s, c, u, t)du. Ifwe replace vA(s, c, 19(s, c, t), t)
by - Jt9,%,c,t) w~(s, c, u, t)du and rearrange the above equality, we find that

vA(s, c, k, t) = e-rt (19(s, c, t) - k) - roo w~(s, c, u, t)du,
J t9(s,c,t)

equal to the expression in equation (3.13).

B.2 The principal's payoffvalue, equation (3.18)

Ifwe replace X(s, c, t) in (3.17) by the right-hand side of equation (3.14), we find
that

gP(s,e,t)= l°O{e-rt(s-19(S,e,t))+ roo w~(s,e,u,t)du}f(kle,t)dk.
o Jt9(s,c,t) .

When k = 19(s, c, t) we obtain

gP(s, c, t) = 100 {e-rt (s - k) + 100 w~(s, c, u, t)du } f(klc, t)dk. (B.1)

Partial integration of JoooJkoo w~(s, C, u, t)duf(kle, t)dk leads to

100 100 w~(s, c, u, t)duf(kle, t)dk

= Ut w~ (s, c, u, t) duF(kle, t)): - (-) Jooowt(s, c, k, t)F(kle, t)dk.

The first term equals zero, which implies that the equality above is given by

100 100 w~(s, c, u, t)duf(kle, t)dk = 100 wt(s, c, k, t)F(klc, t)dk.

Hence, we find that the right-hand side of equation (B.1) can be formulated as

p( ) roo { +rt ( ) A( )F(k1e,t)} (I )9 s, c, t = Jo e s - k + Wk S, c, k, t f(kle, t) f ke, t dk,

as given in equation (3.18).
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B.3 Reformulation of the principal's value, equa-
tion (3.27)

"tXT h h (B F(O,t») - k F(kle,t). h tvvewant to s ow t at s - c + !(O,t) - S - - !(kle,t)' l.e., t a

F(B, t) F(klc, t)c - ---'--'--c'-

f(B, t) - f(klc, t) . (B.2)

As the variables c, B, and k are log-normally distributed, we know that ln(c) '"'-'
N(me, le), In(B) '"'-' N(mo, 10) and ln(k) '"'-' N(mk, Ik), where mi and li, for
i = c, B, k denotes the expectation and the variance, respectively, of a normally
distributed variable ln( i).

Recall that the investment cost k is defined as k = cB, and define ln(klc) '"'-'
N(mkle, Ikle). Thus, ln(klc) = In(B) + ln(c), where, from the principal's point of
view, In(B) is an uncertain variable, whereas ln(c) is observed. Then we obtain
mkle = mo + ln(c) and Ikle = 10·

The conditional density of k given c is defined by

f(kl)
1 1 -~(ln(kle)-mkle)2_1

C = - e "Ikle

k J21TIkle
Observe that

ln(klc) - mkle = [ln(B)+ ln(c)] - [mo + ln(c)] = In(B) - mo,

and Ikle = 10· Substitution in the conditional density above leads to

f(klc) l l -.!(ln(O)-me)2..!...---e 2 "leee VEFii

- ~f(B).

Furthermore,

F(klc) = F (c:) = F(B).

H F(kle,t) F(O,t)
ence, !(kle,t) = c !(O,t) .
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B.4 Numerical implementation

The results in chapter 3 are implemented using an implicit finite difference
method for the two state variables St and Kt. Recall that in the numerical
examples we assume that Ct = 1 for all t, i.e., Ct is not a stochastic variable.

In order to find numerical solutions we solve the partial differential equation
LvP(s, k, t) - rvP(s, k, t) = Oby an implicit finite difference method. However,
before we approximate the partial differential equation by discrete steps, we trans-
form the partial differential equation LvP(s, k, t) - rvP(s, k, t) = O, as well as the
"payoff" function g(s, k, t) in (3.22).

When C; = 1, the investment cost Kt in (3.3) is driven by the stochastic process
d.K, = o.Ktdt + aoKtdBf. The output value St is driven by the process in (3.4).
Define the discounted processes St = e-rt St and Kt = e-rt Kt. By Ito's lemma
we obtain the dynamics

and

Next, we express the "payoff" function as a function dependent on the discounted
stochastic variables only, i.e., we define h(s, k, t) = gP(s, k, t), equal to

_ - _ - H(k, t)
h(s, k, t) = s - k - f(k, t) ,

where

lkert 1 1 l 2 lH(k t) = - e -"2(ln(u)-m;.:(t)) "k(t)

, O u V27r'Yk(t) ,

'Yk(t) = Var [ln(k)] , and mk(t) = E[ln(k)]. The function H(k, t) = F(k, t) repre-
sents a log-normal distribution of k. The upper integral variable ertk equals k,
and the function F(k, t) is presented in appendix B.3. The distribution H(k, t)
is numerically found by an approximation of the standard normal distribution,
presented in Abramowitz and Stegun (1965).
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Define XI(t) = In(St) and X2(t) = In(Kt). The stochastic processes of XI(t) and
X2(t) are, by Ito's lemma,

1 2 SdXI(t) = (-8s - 2(Js)dt + (JsdBt

and
1 2 odX2(t) = (a - r - 2(Jo)dt + (JodBt·

Furthermore, define (XI, X2) = (Xl (t), X2(t)) and V(XI, X2, t) = e-rtvP(s, k, t).
Thus, the partial differential operator LvP introduced in (3.26) is transformed to

LV(XI,X2,t) = ~(XI,X2,t) + (-88 - ~(J~)t:l (XI,X2,t) + ~(J~~(XI,X2,t)

We approximate the partial differential equation above based on an extension of
the implicit finite difference method presented in Clewlow and Strickland (1998).

Denote i == (0, ... ,N) as a time step, and tlt as the discrete time interval, i.e ..
t = itlt. Furthermore, j = (-Nj, ... ,Nj) and k = (-Nk, ... ,Nk) represent the
respective levels of the values of Xl and of X2 relative to their initial values. The
differences between two subsequent values of Xl and X2 are denoted tlXI and
tlx2, respectively. The approximations are given by

av ( t) VHI,j,k - Vi,j,k
at Xl, X2, ~ tlt '

av ( ) '" Vi,j+l,k - Vi,j-l,k-a Xl, X2, t '" 2/\ '
Xl ~XI

a2v ( ) '" Vi,j+l,k - 2Vi,j,k + Vi,j-l,k
a 2 XI,X2,t '" /\ 2 '
Xl ~XI

av ( ) '" Vi,j,k+l - Vi,j,k-l-a Xl, X2, t '" 2 /\ 'X2 ~X2
and

Replacing the derivatives of V(XI, X2, t) by the finite differences above, the discrete
approximation of the partial differential equation LV(XI, X2, t) - rv(xl, X2. t) = ()
equals

VHl,j,k ~ PumVi,j+l,k +PmuVi,j,k+l + PmmVi,j,k + PdmVi,j-l,k + PmdVi,j,k-l' (B.3)

159



where

and

Define K k = k exp( kÅX2), where k is assumed to be the initial cost level, and
Sj = sexp(jÅxl), where s is the initial output value. At each step i, we solve
the equations in (B.3) for j from -Nj + 1 to Nj - 1, and k from -Nk + 1 to
Nk - 1, together with the boundary conditions,

Vi,Nj,k - Vi,Nj_1,k - SNj - SNj_1,

Vi,-Nj+l,k - Vi,-Nj,k = O,

Vi,j,Nk - Vi,j,Nk_l - O,

Vi,j,-Nk+1 - vu-», - O.

(B.4)

(B.5)
(B.6)

(B.7)

The boundary condition in equation (B.4) is explained as follows. When the
output value Sj is at its maximum value SNj' a change in the value of one unit
equals the difference SNj - SNrl as there is a high probability that the option is
exercised. However, this boundary overvalues the change in the option value for
high levels of cost Kj. For high levels of Kj the payoff SNj - Kj - ~g:Hbecomes
negative.

When the investment cost equals the maximum level KNk as in (B.5), or the
output level is at its minimum level S-Nj as in (B.6), a difference in the states
of one unit, has an effect on the option value close to zero, as the option value is
very low for these states.

The boundary condition in equation (B.7) represents the effect on the option
value of a small change in the investment cost when the cost level equals K-Nk. A
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more correct right-hand side ofthis boundary condition equals K-Nk +~g~~;:::;-
K H(K_Nk+l,i). d f H . d . lif h l-Nk+l - f(K ') ,mstea o zero. owever, In or er to SImp l yte ca cu-

-Nk+l ,z
lations, we approximate the right-hand side by setting it equal to zero. This
simplification is justified for a small difference in K -Nk and K -Nk+l, as will be
the case when -Nk is large and ~X2 is small.

The solution procedure is as follows. The problem is solved backwards, which
means that first we solve for the optimal investment strategy at the time horizon,
i.e.,

[
ll(Kk,N)]VN,j,k= max O,Sj - Kk - f(Kk, N) .

For each i < N, we solve the set of equations, as described by equation (B.3)
for j from -Nj to Nj, and k from -Nk to Nk, and the boundary conditions in
equations (B.4)-(B.7). This set of equations has a band diagonal structure", and
is solved using routines described in Press, Teukolsky, Vetterling, and Flannery
(1992), chapter 2.4. Furthermore, at each time step i, and for each j and k we
apply the early exercise condition,

* [s K ll(Kk, i)]Vi,j,k = max Vi,j,k, j - k - f(Kk, i) .

The parameter values used in the numerical examples of chapter 3, in addition
to those specified in section 3.7, are N = Nj = Nk = 30 and ~XI = ~X2 = 0.04.
With these numbers the max increase in the output value over the five year
horizon is 232 per cent, and the max decrease is 70 per cent. The probabilities
that the values of S» = S5 and Kr = K5 exceed these limits are close to zero,
given our parameter values.

lA band diagonal system of linear equations has non-zero elements only along a few diagonal
lines, adjacent (above and below) to the main diagonal.
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Appendix C

Appendix for chapter 4

C.l Derivation of agent i's value function in equa-
tion (4.9)

The value function in (4.9) is found as follows. Equation (4.4) equals

By conditional expectations, the value function is formulated as,

Time-homogeneity implies that the value of the discounting factor can be writ t I'll
independently of the value of the options' payoff, i.e.,

From equation (4.8) we know that
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We exploit the relationship above, and replace STi. by the critical price Si(K),
K

leading to

vi(s, Ki) = E [E [ø(:i(~k)) (Xi(Si(K), K) - yi(K)Ki) I{ s~Si(K)}

+ (Xi(s,K) - yi(K)Ki) I{s>si(K)}! Fg,K]! Fg,K
i
] .

By conditional expectations we obtain,

vi(s, Ki) = E [ø(:}~l)) (Xi(Si(K), K) - yi(K)Ki) I{ s~Si(K)}

+ (Xi(s,K) - yi(K)Ki) I{s>Si(K)}! Fg,K
i
] ,

identical to equation (4.9) in the text.

C.2 Deriving the auctioneer's value function in
equation (4.10)

The auctioneer's value function is in (4.5) given by

vP(s; Kl ~ E [t, e-~i (Y'(KlS'i - X'(S'k' Klr Ft].
Conditional expectations lead to

vP(s;Kl ~ E [E [t, e-~i (Y'(KlS(Tll - X'(S(Tll, Klr Fg,K] Ft]
Because of time-homogeneity we are allowed to separate the expression of the
discounting term from the option's payoff as follows,

vP(s; K)

Next, we insert the value of the discounting factor as expressed in equation (4.8).

given an (arbitrary) value of the investment trigger, Si (K),

vP(s; K) = E [E [L:1 {ø(:i(~1)) (yi(K)Si(K) - Xi(Si(K), K)) I{s~Sl(K)}

+ (yi(K)s - Xi(S, K)) I{s>Si(K)}}! Fg,K] ! Ft] .
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This expression is equivalent to

vP(s; K) = E [2:~1{</>(;1;1)) (yi(K)Si(K) - Xi(Si(K), K)) I{s~Si(K)}

+ (yi(K)s - Xi(s, K)) I{s>si(K)}} l:Ft] ,

which is identical to equation (4.10).

C.3 Properties of the optimal investment strat-
egy

We now prove that in optimum we have Si*(K) = Si*(Ki).

Suppose that agent i is the winner of the contract, i.e., yi(K) = 1. Define agent
i's expected critical price as Si(Ki) = E [Si(K)I{yi(K)=l}l:F;,Ki]. For s ~ Si(K),
the principal's value if agent i wins the contract can be written as (from (4.15))

[
¢(s) (i i) i i i s]E ¢(Si(K)) S (K) - K I{s~Si(K)} + (s - K )I{s>si(K)} - V (s, K )1:Fo .

Observe that, by Jensen's inequality,

under the assumption that ¢(.) is a convex function and

This implies that

¢(s ) (i i i) i i¢(Si(Ki)) S(K)-K -v(s,K)

Thus, the auctioneer's value function can be replaced by a larger quantity, sub-
stituting Si(K) by Si(Ki). From this result we see that a stochastic mechanism
as given by Si (K) is not optimal.
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C.4 The auctioneer's simplified optimization prob-
lem

Define vP as the auctioneer's arbitrary value function when 8i(Ki) = 8i(K).
Replace the investment triggers 8i(K) by 8i(Ki), in the principal's value function
specified byequation (4.15), leading to

P [ n { ¢(s) i i i iV (s, K) = E Li=l ¢(Si(Ki))Y (K) (8 (K ) - K ) I{s:ssi(Ki)}

+yi(K) (s - Ki) I{s>si(Ki)} - vi(so, Ki)} I F~] .

Furthermore, conditional expectations yield

P [n [{ ¢( s) i i i iV (S, K) = E Li=l E ¢(Si(Ki))Y (K) (8 (K ) - K ) I{s:ssi(Ki)}

+yi(K) (s - Ki) I{s>si(Ki)} - vi(So, Ki)} I Ft,Ki] I F~] ,

which, by exploiting the definition yi(Ki) = E [yi(K) IFt,Ki], is written as

P [",n [{ ¢(s) i i i i iV (S, K) = E L..-i=l E . ¢(Si(Ki)) Y (K ) (8 (K ) - K ) I{s:ssi(Ki)}

+Yi(Ki) (s - Ki) I{s>si(Ki)} - vi(so, Ki)} I Ft,Ki] I F~] .

Each agent 's "contribution" to the auctioneer's value is an expression that de-
pends only on each agent's report Ki (i.e., the direct mechanism is not stochastic),
which means that the outer expectation operator is superfluous, resulting in

P( . ",n [¢(S) i i i i iV s, KZ) = L..-i=l E ¢(Si(Ki)) y (K ) (8 (K ) - K ) I{s:ssi(Ki)}

+yi(Ki) (s - Ki) I{s>si(Ki)} - vi(s, Ki)IFt,Ki] .

The above expression can equivalently be written

vP(s, Ki) = L~=l {J: [¢(~~%i)) yi(Ki) (8i(Ki) - Ki) I{s:ssi(Ki)}

+yi(Ki) (s - Ki) I{s>si(Ki)} - vi(s, Ki)] j(Ki)dKi}.
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Substituting the expression in (4.14) into the value above, and replacing Si(K)
by Si(Ki), leads to

vP(s,K)

- L:~=l {J: [( ¢>(;~2i» yi(Ki) (Si(Ki) - Ki) - J~ ¢>(~~(~»Yi(u)du) I{s::;si(Ki)}

+ (yi(Ki) (s - Ki) - sr yi( u)du + J19~s)4>(~~(~»yi( u)du) I{s>Si(Ki)}] f(Ki)dKi
}

- L:Z:l {J: [¢>(;~2i» yi(Ki) (Si(Ki) - Ki - ~{::?)I{s::;si(Ki)}
+ (Yi(Ki) (s - Ki - ~{::?)) I{s>Si(Ki)}] f(Ki)dKi} ,

where the last equality follows from partial integration of

lK lK ¢(s) i i i
K Ki ¢(Si(U)) y (u)I{s::;si(Ki)}duf(K )dK

and

respectively.

C.5 Equality between the two approaches offind-
ing the optimal compensation function

The probability v- (Ki) given the principal's optimal choice of the winner of t ll('
contract, equals [1 - F(Ki)r-1, which is understood as the probability of having
the lowest cost in a sample of n. Substitution of yi*(Ki) = [1- F(Ki)r-! ill
(4.20), leads to

- Ki [ F{Ki)Jn-l r19i*(s)[ F( )Jn-l d J,K ¢>i(s) [ F( )Jn-! d- 1 - + JKi 1 - u u + 19i*(s)¢>'(Si*(u» 1 - u u
(C.l)
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if s > Si(Ki*).

We will now show that Xi*(s, Ki) = E [Xi(s, K)IFt,Ki]. We treat Ki as the
first-order statistic in a sample of size n - 1, which means that we assume that
Ki is the lowest cost parameter in a sample of n - 1 parameters. We find
E [Xi(s, K)IFt,Ki] as follows

E [Xi(s,K)IFt,Ki] = J::*(8) Kid(-[l- F(Ki)]n-l)

+ J1'J~(8)(19i*(s) + J:';8) cj>(;~8{u»du)d(-[l- F(Ki)]n-l)
(C.2)

when s > Si*(Ki). Partial integration of equation (C.2) leads to

E [Xi(s, K)IFt,Ki]

= Ki[l- F(Ki)]n-l + J1'J'*(S)[1_ F(u)]n-1du + fK cj>(s) [1 - F(u)]n-1duK' J1'J'*(8)cj>(S'*(u»
(C.3)

if s > Si*(Ki). We see that equation (C.3) equals equation (C.l), and thus equals
equation (4.20).

C.6 Agent i's contribution to the auctioneer's
value, stochastic private information

By equation (4.27), and given truth telling, we find that

E [e-rt Xi(St, c;Ot, t) IFtS,c,Oi] = E [e-rtyi (Ot)h( c;oDIFtS,c,oi] + gi (St, c; Oi, t).

Substitute x: (St, Ct, Ot, t) in equation (4.29) by the right-hand side expression
above. This leads to

g[(St, c; t) = E [E [e-rt (yi(Ot)St - x-is; c;Ot, t)) IFtS,c,oi] IFtS'c]

- E [E [yi(Ot) (St - h(Ct,O:)) - gi(St,Ct,OLt)I~S,C,Oi] IFtS,c]

= E [e-rtyi(Ot) (St - uc; On) - gi(St, c;OL t)IFt,c] ,
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when truth telling is ensured. Since yi is linearly dependent on gr, we simplify
the equation to being dependent on the uncertainty with respect to OL only, i.e.,

as given in equation (4.36).

C.7 Agent i's incentive compatible value func-
tion

Suppose the investment is made at time t: Then the truth telling condition in
(4.35) can be written

Integration on both sides of the equality yields

Evaluation and reformulation leads to

As gi(St, Ct, OL t)I{St=1/Ii(ct,t,(lt)} = vi(St, Ct, O;, t)I{St=1/Ii(ct,t,llt)}, we obtain the re-
sult in (4.37).

C.8 Derivation of equation (4.38).

By inserting (4.37) into (4.36), we find that

gr(St, c; t) = E [yi(OD (St - uc; OD) - J~w~(St, c;u, t)dul ~s,C]
- J: {yi(OD (St - uc; OD) - J~w~(St, c; u, t)du} j(Otlt)dO;.
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Partial integration of the term It I! w~(St, c;u, t)duf(e~lt)de~ leads to
- t

If agent i's compensation function is to be truth telling, among other require-
ments, smooth pasting must be satisfied. This means that at the trigger St =
'Ij;(Ct, et, t), we need to have

where W~i denotes the first-order derivative of wi(-) with respect to e:. Replace
. t. . . .

WOti(St,ct,e;, t) by -hoi(Ct,eDYZ(eD in equation (C.4), which yields the result
t t

in (4.38).

C.9 The compensation function under compe-
tition and stochastic private information

From equation (4.34) we find that agent i's payoff value, given that the optimal
investment strategy is implemented, equals

which can be written as

e-rt x-is; c; e;, t) = e-rtyi( e;)h( c.,e;) - gi(St, c; e;, t). (C.5)

The last relationship is found by observing that x: (St, c. e~, t) = E [Xi (St, c;et, t) IFtS,C,Oi] ,
as the right-hand side of equation (C.5) only depends on e:, and not on the vector

et·

The value of gi(St, Ct, e;, t) is found by integration on both sides of the equality
in (4.35) when St > 'lj;i(Ct, e;, t), Le.,
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Evaluation of the equality above leads to

Next, replace gi (St, Ct, TJi(St, Ct, t), t) using the expression in equation (4.37),
yielding

Hence, we find that

x' (St, Cc;e;, t)

Evaluation at the optimal v- and TJi*yield (4.46) in the text.
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Appendix D

Appendix for chapter 5

D.I The incentive compatibility constraints

D . lici d A ( ~) A ( ~ ~) E .For simplicity, enotegi_l7r,qj-l,ry;qj-l =gi-l 7r,qj-l,ry;qO,··,qj-l· quation
(5.18) can be reformulated as

g{'_l (7r,qj-l, ry;i}j-l)

- E [e-r~j It vtl (r(~j); £]j-l)j(q(~j)lqj-l' ry)dqj (D.1)

-}j(7r, ry;£]j-l)IFJ'J .

For qj-l > qj-l' we know that vf = gtl· Replace vf in (5.21) by the right-hand
side of equation (D.1). Then the condition in (5.20) requires that for any qj-l
and qj-l' we need

E [e-r~j 1000vtl (r(~j); qj-l)j(q(~j)lqj-l, ry)dqj -lj(7r, ry;qj-l)IFJ'J

-E [e-r~j 1000vtl(r(~j); qj-I)j(q(~j)lqj-l' ry)dQj -lj(7r, ry;qj-l)IFJ'J

-E [e-r~j 1000vtl (r(~j); qj-l)j(q(~j)lqj-l' ry)dQj -lj(7r, ry;qj-l)IFJ'J

+E [e-r~j 1000vtl (r(~j); qj-l )j( q(~j) Iqj-l, ry)dqj - lj(1l",ry;qj-l) IFn

;::::o.
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Rearrangement of the above inequality leads to

E [e-r<lj 100 {Vt-l (r(~j); qj-l) - Vt-l (r(~j); qj-l)}

. (f( q(~j )!qj-l, ry) - f( q(~j )!qj-l' ry)) dq, !F6'] ~ o.

Evaluation of the integral leads to

E [e-r<lj [{ vtl (r(~j); qj-I) - V~_l(r(~j); qj-l)} (F(q(~j) Iqj-l, ry) - F(q(~j )Iqj-l , ry»)]:

_ roo {åvt_,(r(<lj;qj-t) _ åV:,-,(r(<lj;q;_,)} (F(q(~ ·)Iq· '11) _ F(q(~ ·)Iql '11») dq·IFr]Jo åq(<lj) åq(<lj) J J-l,'/ J J-l"/ ) o

~ o.

In the above inequality the first term equals zero as F( OO!qj-l, ry) - F( OOlqj-l' ry) =
Oand F(Olqj-l, ry) - F(Olqj_l, ry) = O. Thus, the above inequality is simplified to.

(D.2)

When qj-l > qj-l, we obtain F(q(~j)!qj-l) - F(q(~j)lqj_l) < O. Thus. for till'
incentive compatibility constraint in (D.2) to be satisfied, we need

8Vf_1 (q(~j); qj-l) _ 8vf_l (q(~j); qJ-I) > O
8q(~j) 8q(~j) -,

as is stated in (5.21).

The truth telling constraints for the earlier reports, (jo, .. , (jk, where k = O.'" j - 2.
are found below, by mimicking the procedure above for k = j - 1.

Suppose qk > ch· Then the truth telling constraints for each report qk wit"
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respect to the value of 9i-1 (.) is given by

E [e-rt 1000 (e-r~jvi-l (r(t); qk) - }j(7r(t), T}(t); qk)) f(q(t)lqk, T})dqkl.1'cf]

-E [e-rt 1000 (e-r~jvi-I(r(t);qk) - }j(7r(t),T}(t);qk)) f(q(t)lq~,T})dq(t)I.1'cf]

-E [e-rt 1000 (e-r~jvi-l(r(t); q~) - }j(7r(t), T}(t); q~)) f(q(t)lqk, T})dq(t)I.1'cf]

+E [e-rt (e-r~j 1000Vi-l (r(t); qk) - }j(7r(t), T}(t); q~)) f(q(t)lq~, T})dq(t)I.1'cf]

~ O.

Rearrangement of this inequality leads to the constraint in (5.24), as

-E [1000 (åvt_~~~;);qk) - åvt_~~~;);qkl) [F(q(t)lqk) - F(q(t)lqk)] dq(t)I.1'cf] ~ O.

D.2 The principal's switching function when i =
1

When i = 1 and j = N equation (5.25) is given by

96(7r,T}) = E [e-r~N (V6(7r(b.N),T}(b.N);i}) +V~(7r(b.N),q(b.N),T}(b.N)))

When all the investment phases are completed, the agent obtains the realized
value, whereas the principal receives nothing. Hence, V5 = Oand V~(7r(b.N), q(b.N), T}(b.N) =
7r(b.N)q(b.N). It follows that

95(7r, T}) = E [e-r~N7r(b.N )q(b.N) - 9~(7r, qN-I, T};q) - KNIPo,7J] .

Evaluation of the expression above leads to

9t(7r, T})= E [7rqN_Iell:(7J+~N)-8AN - lqN-1 åwf~:u, T})du - KNIPo,7J], (D.3)

where

E [cr~N7r(b.N )I.1'cf] - E [e-r~N7re(r-8-~C72)~N+C7(B"'(~N)-B7r(0))I.1'cf]
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and

Furthermore, the agent's value of private information at the time the last invest-
ment is exercised can be expressed as

lqN-1 8WA(7r u ry)
gt(7r, qN-l, ry) = o l 8~ , du, (D.4)

since the first-order condition of incentive compatibility when i = 1 requires that

when qN-l ~ q'fv-l

when qN-l > q'fv-l'

The value in equation (D.3) can be reformulated to

gt (7r, TJ)

- It {7rqN_1eK,(T/+b..N)-MN - IoqN-l åwt~:,U'T/) du - KN} !(qN_llij-(N-l)dqN_l'

(D.5)

D.3 The principal's value of exercising the last
option

Partial integration of 1000 IoqN-l åwt~'U'T/) dU!(qN_llij-(N-l) in equation (D.5) leads
to
gt (Tr,T/)

At the time when the investment is exercised, the smooth pasting condition
requires that 7reK,(T/+b..N)-Ob..N= åwf(Tr,QN-l,T/). Hence,

åQn-l

= roo {7r (qN leK,(T/+b..N)-ob..N- l-F(QN_llq-(N-l))) - K } f(q IqA-(N-l)dq
Jo - !(QN-llii (N 1)) N N-l N-l,

which is identical to the result in (5.29).
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D.4 The optimal investment trigger M*

We guess on the solution vi(m, qN-l) = AmA when m :S M*, where A and A are
constants. The parameter A is the positive root of

derived from the constraint LqN-1vt(m) = 0, where

a-p 1 a2-p
LqN-lvP(m) = (r - b + I'i:)m~(m) + -(72m2~(m) - rV6(m).° am 2 am2

At the entry threshold M*, we know by the variational constraint in (5.17) that
vi = gt when m = M*, leading to

A(M*)A = M* ( _ 1- F(qN-lltJo, ..tJN-2)) _ K
qN-l f( I ~ ~) N·qN-l qo, ··qN-2

Furthermore, at the trigger where m = M* the first-order derivative must be
continuous, Le.

AA(M*)A-l = _ 1- F(qN-lltJo, ··tJN-2)
qn-: f( I ~ ~ ) .qN-l qo, ··qN-2

Solving these two equalities with respect to the two constants A and MN' yields
A = (M*)l-\ and M* given by equation (5.32).

D.5 The agent's value of private information
and the contracted amount YN when i = 1

Using equations (5.18) and (5.19), we find that when i = 1 and j = N, the
agent's value function equals

whereas the agent 's switching function is represented by

A "\7 ( ~-(N-l))90 = mqN-l - IN m;q . (D.7)
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By the same approach as in section D.4, we guess on the solution vf = Bm'Y,
where B is a constant. At the critical price M* the value matching condition
needs to hold, i.e.,

leading to

{
(;::,)A (M*qN-I _ YN(M*, q-(N-I)))

vt(m,qN-I) =
mqN-I - YN(m, q)

ifm ~ M*
(D.8)

ifm> M*.

By equation (D.8), we find a necessary condition for truth telling,

{

( )
A

m * A-(N-I)' * A-(N-I)
dvf(m, qN-I) = M'(qN_dr(N l») M (qN-I; q ) If m s M (qN-I; q )

dqN-I
m if m> M*(qN_IJr(N-I)).

(D.9)
1 F(' I--(N-I»)

R Il th t d fi M*( . A-(N-I)) l f * - qN-I q Oeca a we ene -qN-I,q onyorqN_I- J(' I--(NI») >.qN-I q
* I-F(qN_dq-(N-I») - . . . *

For qN-I such that qN-I - J(' I'-(N l») 10, the critical pnce M approachesqN-I q
infinity, which implies that (;::,)A ----+ o. Thus, in order to find an expression
for the agent's value of private information, we find the lower value of the signal

1 F(- I'-(N-I»)
qN-I, denoted by qN l' such that QN-I - f( qN-I:q(N l») = O.- - qN-I q

Then, integration on both sides of the equality in equation (D.9) leads to t hc
agent's value of private information when i = 1,

J!l:~ll(M,(u,q)) A M* (u, q)du if m ~ flI'

m(qN-I - qN-I) + J!l~~ll(M'(U,q)r M*(u, q)du if m> M*_
(D.lO)

By the value of private information as formulated above, and equation (D.7). t tlf'
contracted amount YN is found to be equal to

YN(m, qN-I; q-(N-I))

mq* (rn; qA-(N-I)) -e->:': ( m )A M*(u' qA-(N-I))du
- N-l' 9.

N
-
1

M*(u;q (N 1)) , ~
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* I-F(qN llq-(N-l) . • • .
when qN-I - !(qN_Jq-(N-l) > 0, identical to the contracted amount III equation
(5.33).
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