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Overview

Overview

This thesis analyzes derivative prices in the Nordic powermarket. The Nordic
power market is chosen since it is one of the oldest and most liquid electricity
markets in the world. The thesis consist of four separate papers that together
analyzes the spot price, the forward price and derivatives in this market. A
short resume of each papers follows.

Smooth forward price curves in electricity markets

We have in this paper derived a method for calculating a continuous forward
curve from observed forward prices. The method is based on finding the
smoothest possible forward curve within a bid-ask spread. We express the
forward curve as a sum of a prior function and an adjustment function. The
prior function can be an arbitrary function, and will typically incorporate
subjective information about the forward curve. For example information
from forecasts generated by "bottom-up" models. The adjustment function
is a polynomial spline of order five and is used to adjust the prior function
to the observed forward prices. The forward and future contracts used to
construct the smoothed curve can have overlapping settlement periods.

Parameter estimation is done by solving a constrained minimization prob-
lem. This minimization problem can be solved by solving a system of linear
equations. Ifwe use bid / ask prices to construct the smoothed forward curve
the algorithm iterates to find the smoothest function. As the three examples
shows, the algorithm is flexible, stable and fast.

If calculation speed, continuous forward curve or closed form solution is
important requirements for the forward curve model, we believe our model
will be the best choice.
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An analysis of derivative prices in the Nordic power market

Forward curve dynamics in the Nordic electricity market l

In this paper we conduct an exploratory investigation of the volatility dy-
namics in the Nordic futures and forward market in the period 1995-2001.
The modelling framework is a standard lognormal spot price model similar
to the one suggested by Heath, Jarrow and Morton, 1992. We use smoothed
data and perform principal component analysis to reveal the factor structure
of the forward price curve.

The main results are as follows: Two factors are common across all matu-
rities. A two-factor model explains around 75%of total variation in the data.
The first two factors governing the forward curve dynamics are comparable
to other markets. The first factor is positive for all maturities, hence it shifts
all forward prices in the same direction. The second factor causes short and
long term forward prices to move in opposite directions. In contrast to other
markets, more than 10 factors are needed to explain 95% of the term struc-
ture variation. Furthermore, the main sources of uncertainty affecting the
movements in the long end of the forward curve, have virtually no influence
on variation in the short end of the curve. We argue that this behavior may
occur because electricity is a non-storable commodity. Note that the maxi-
mum maturity in our analysis is 2 years. One might suspect that contracts
sold in the OTe market with maturities further into the future are even less
correlated with short term contracts. These results indicate that modelling
the whole forward curve has less merit in this market than others. For exam-
ple, hedging long-term commitments using short-term contracts may prove
disastrous.

Analyzing flexible load contracts 2

In this paper we have analyzed flexible load contracts by formulating the con-
tract as a stochastic optimization problem. The value function is expressed

lThis paper is coauthored with Steen Koekebakker.
2This paper is coauthored with Arne-Christian Lund.
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as the solution of the Hamilton-Jacobi-Bellman equation in which the op-

timal control takes only the extreme values. By carefully examining the

dynamics of the spot price in the Nordic electricity market we decided to use

a time dependent mean reverting Ornstein- Uhlenbeck process. The process

modelled daily, weekly and yearly price cycles. In addition it captures mean

. reversion due to deviations in the hydrological balance. The process has 21

parameters which was estimated from historical price data by a mixture of

OLS and maximum likelihood. Estimation was conducted partlyon a weekly

data sample and partlyon an hourly data sample. This to distinguish the

short range factors from medium range factors.

To be able to solve the optimization problem we discretized the time and

state space and derived an algorithm to find the value function and optimal

control in each node. To dampen the effects of a truncated price space we

combined absorbing and reflecting boundary conditions.

We implemented the algorithm and calculated the optimal control for the

five year period 1. May 1997 to 30. April 2002. The accumulated revenue

from this control was compared to the revenue for nine market participants.

We find that our algorithm obtains the highest accumulated exercise revenue

for this period. The model also demonstrates that it has the cpurage to pick

many hours early if the prices are sufficiently good. This can be seen as a more

risky behavior, and may be a consequence of the risk neutral assumption.

Another observation is that our model seems to perform better for winter

contracts than for the summer contracts. We believe the performance for the

summer contracts can be improved with a more representative process.

We see several important model extensions for further research:

• The process modelling the spot price should exhibit spikes, i.e. sudden

jumps. This is especially important in the European market where price

spikes is common. This can be reflected in the model by introducing

a nonlinear function of the OU-process. The calibration could be done

with maximum likelihood as before.

• The underlying spot price process could be calibrated to the forward

3
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and future contracts traded in the market. Since electricity is a non
storable commodity, there is no clear connection between the expected
future spot price and the value of these financial products. To use the
financial market to predict the future spot price one first need to know
the market price of risk. If this market price of risk is unknown or
stochastic one may be better off calibrating the spot price partially to
historical information and partial to the information from the financial
market.

In our opinion this model demonstrates a great potential for utilization
of contracts of this type. The methods can be developed further to improve
the results even more. We stress that the methods are fully operational, and
can be implemented by practitioners, for instants for benchmarking or as an
aid to improve the exercise policy.

Empirical study of the risk premium in an electricity market

We have in this paper conducted an explorative analysis of the risk premium
in a power market. In context of our model of an electricity market the
risk premium is defined as the conditional expected forward price changes pr
unit risk. The discretized version of the risk premium was estimated by a
Nadaraya-Watson estimator, obtaining a nonparametric estimate. We used
a variable bandwidth to compensate for varying settlement period lengths
in our data. The bandwidth function was heuristically defined, but as the
simulation example shows, it seems to handle different lengths of settlement
periods good. By organizing the data sample with respect to T, b, r: and F

we estimated several versions of the risk premium. Our main findings were:

• Negative risk premium for all maturity dates (i.e. a contango market).

• Increasing volatility with increasing future price.

• Expected return is mean reverting with respect to future price in the

4
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price range 170 NOKjMWh to 270 NOKjMWh. Outside this range
the price is driven by some sort of momentum process.

• Clear seasonal patterns. The time of the year the forward is traded has
a major impact on the expected return, volatility and risk premium.

We believe that the complex nature of the risk premium in the Nordic electric-
ity market is related to the large degree of hydro-electric power production.
Especially the seasonal patterns and the mean reversion properties can be
linked to hydrological phenomena. Although ~any of our findings coincide
with statements from practitioners, we can not be certain that our findings
are not influenced by the estimation method. Further research should there-
fore focus on the estimators small and large sample properties. It would also
be interesting to see if the results are changed if we extend our datasample
to include the high price period that started autumn 2002.

This paper gives new insights of the forward price dynamics in the Nordic
power market. Knowing the drift, volatility and thereby the risk premium,
more precisely is helpful in financial engineering work. We also believe many
of the results will help producers and consumers in their hedging decisions
- at least it will guide the traders toward the forward contracts with the
highest return j risk ration.

5
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Smooth forward price curves

in electricity markets *

Fridthjof Ollmar

Abstract

In this paper we derive a method for calculating a continuous for-

ward curve in an electricity market. Since forward and future contracts

in electricity markets have settlement periods instead of settlement

dates, ordinary term structure construction methods can not be used.

In addition, electricity markets have strong seasonal patterns which

interest rate and FX markets do not have. Our method is based on

finding the smoothest possible forward curve within a bid-ask spread.

The forward curve consists of a prior function and an adjustment func-

tion. The adjustment function is a polynomial spline of order 5, where

the parameters are estimated by solving a constrained minimization

problem. The main advantages of our method are closed form solu-

tion, handling of overlapping contracts and calculation speed.

Key words: Maximum smoothness, electricity market, curve fitting

*1 would like to thank Jørgen Haug, Arne-Christian Lund and Jostein Lillestøl for

helpful comments.
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1 Introduction

Representing forward and future prices by one continuous term structure
curve is regarded as a good and an efficientway of representing market prices.
A term structure curve is also required if one is to implement one of the many
no-arbitrage term structure models.

Fitting a yield curve to market data in a fixed income market has been
studied for many years. The seminal paper in this field was McCulloch
(1971), Measuring the Term Structure of Interest Rates. A survey of dif-
ferent methods for constructing yield curves is provided in Estimating and
Interpreting the Yield Curve by Anderson and others. The two main ap-
proaches are either to fit one function to the entire yield curve by regression
or fit all observed yields by a spline. Although there remains no single defini-
tive solution to the problem of yield curve fitting, many practitioners regard
the spline-method as the better approach in a market with low liquidity.

Since forward and future contracts in an electricity market are delivered
during a time interval rather than a fixed moment of time, one cannot directly
apply methods used in fixed income markets. New methods for constructing
term structure curves are therefore sought after. Fleten and Lemming (2003)
derived a method based on optimizing a mixture of closeness to a prior func-
tion and a smoothness criteria. Although this method can be used with good
results to construct a short/low-resolution forward curve, our method! focus
on calculation speed and deriving a closed form solution.

lThe approach is inspired by Adams and Deventer (1994), Forsgren (1998), Lim and

Xiao (2002) and the method used by the risk management systems - Viz Risk.
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Smooth forward price curves in electricity markets

2 Market description

By definition energy is consumed and produced continuously and not at
a fixed moment of time. This difference from most other commodities is
reflected in how future and forward contracts in the electricity market are
designed. In addition to a load pattern, future and forward contracts in an
electricity market consists of a start and end date for a settlement period.
This is the case in the Nordic Power Exchange (Nord Pool), European Energy
Exchange (EEX) and several other electricity markets. With a load pattern
we mean a deterministic function of time that scale the amount delivered.
In this paper we will focus on a constant load pattern, also known as "base
load". Implementing other load patterns, such as "peak-load" , into the model

is possible. We will assume a constant'' risk free interest rate and thereby
assuming that the forward prices evolves in the same manner as future prices.

3 Constructing a smooth forward curve

We will first derive a simplified model for a forward function based on the
last traded or a closing price. Then we will extend the model to price the
forward function within a bid-ask spread.

3.1 Notation

Let <I> = {(Tl, Tn, (T~,Tn, ... , (T~,T~J} be a list of start and end dates for
the settlement period of the forward contracts. To be able to handle over-
lapping settlement periods we construct a new list, {to, tl, ... , tn}, of dates
where overlapping contracts are split into sub periods. This is illustrated in
figure 1.

As we can see from figure 1 the new list is basically the elements in <I>

sorted in ascending order with any duplicated dates removed. The bid and
ask price for the forward contract i E {1, ... ,m} is denoted Fl and F:A

21t is sufficient to assume a deterministic interest rate. See Cox et al. (1981)
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An analysis of derivative prices in the Nordic power market

respectively. In the simplified model we will instead use the closing price

denoted by FF. Next we introduce an exogenous prior function h(t). This
prior function can be interpreted as a subjective forward curve which we
want to adjust according to the market price. In this paper we do not make
any assumption about h(t). Further we define the forward function as

f(t) = h(t) + g(t)

where g(t) can be interpreted as an adjustment function.

3.2 Basic model

In this section we derive a model for a smooth forward curve based on closing
prices. With "smoothness" of a function expressed as the mean square value
of its second derivative, we define the smoothest possible forward curve on
an interval [to, tn] as one that minimizes

(3.1)

Note that the smoothness is calculated on the adjustment function, g(t), and
not on the forward function j(t). The reason for this is to better retain sea-
sonal patterns. In addition to be smoothest possible we want the adjustment
function to be twice continuously differentiable and horizontal at time tn. To
summarize we want the adjustment function to be:

Settlement period for the second contract

Settlement period for the first contract

Time

Figure 1: Splitting of overlapping forward contracts.
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Smooth forward price curves in electricity markets

• Twice continuously differentiable.

• Horizontal at time t-;

• Smoothest possible in the sense of (3.1).

• Such that the average value of the forward price function
j(t) = g(t) + h(t) for contract i is equal to the closing price FF.

Strictly speaking one should have that the present value of the forward price
function j(t) is equal to the present value of the period based forward con-
tracts FF. We will approximate the present value with the average value.
This is the same as assuming a zero interest rate. We argue that the interest
rate effect is less than both the smoothing and prior function effect, and thus
believe the approximation is valid. Similarly to Adam and Van Deventer
and Lim and Xiao we show in Appendix A that the smoothest adjustment
function with the above properties is a polynomial spline of order five. This
mean that we can write the adjustment function as

g(t) =

alt4 + blt3 + clt2 + dIt + el tE [to, tIl
a2t4 + b2t3 + C2t2+ d2t + e2 t E [tl, t2l

ant4 + bnt3 + cnt2 + dnt + en tE [tn-I, tnl

To find the parameters, æ, to the adjustment function, we solve the following
equality constrained convex quadratic programming problem

ltn
min [g"(t;x)l2dt
æ to

(3.2)

subject to the natural constraints in the connectivity and derivatives smooth-
ness at the knots, j = 1, ... ,n - 1,
(aj+l - aj)tj + (bj+l - bj)tJ + (Cj+l- Cj)t; + (dj+l - dj)tj + ej+l - ej = O Cl

4( aj+l - aj )tJ + 3(bj+1 - bj )t; + 2(Cj+l - Cj)tj + dj+l - dj = O C2

12(aj+l - aj )t; + 6(bj+1 - bj )tj + 2(Cj+l - Cj) = O C3
and

11



An analysis of derivative prices in the Nordic power market

g'(tn; æ) = O C4

fJJ e-rt(g(t) +h(t))dt= fJl e-rtFFdt
for 'i = 1, ... ,m. x is a vector of all parameters in g(t). The last constraint
ensures that the present value of the forward price function is equal to the
present value of the forward contracts. We approximate this condition (by
assuming r~O) with

c ~ l TtFi ~ Te_Ts ITs (g(t) + h(t)) dt
, a ,

This minimization problem has a total of 3n+m - 2 constraints. By insert-
ing the expression for g" (t) and integrating we can write the first part of the

C5

minimization problem as

where

144.6.5
5 J

18.6. 4J
8.6.3

J

O
O

18.6.4 8.6.3J J

12.6. 3 6.6.2J J

6.6.; 4.6.j
O O

O O
O O
O O
O O

O O O O

The dimensions of x is 5n x 1 and the dimensions of the symmetric H is
5n x 5n. All the constraints in (3.2) are linear with respect to æ. We show
in Appendix B how we can write the constraints, C1-C5, in the matrix form
Ax=B, where A is a 3n+m-2 x 5n matrix, and B is a 3n+m-2 x 1 vec-
tor. We obtain an explicit solution by the Lagrange multiplier method. Let
.AT = [AI, A2, ... , A3n+m-2] be the corresponding Lagrange multiplier vector
to the constraints. We can now express (3.2) as the following unconstrained
minimization problem

12



Smooth forward price curves in electricity markets

The solution [x*, A*] is thus obtained by solving the linear equation

(3.3)

The dimensions of the left matrix is 8n+m-2 x 8n+m-2. The solution
vector and the rightmost vector have the dimensions of 8n+m - 2 x 1.

Numerically solving (3.3) can easily be done by using a numerical algorithm,
such as Gaussian elimination, QR factorization, Cholesky factorization or
Cramer's rule. Since the left matrix in (3.3) is symmetric positive definite we
recommend using the faster Cholesky factorization method. If n or m is large
one could improve the calculation speed further by utilizing the sparseness
of the matrix.

3.3 Extended model

When the market is open for trading we do not observe exact prices but
rather a bid-ask spread. We will now extend the previous model to handle
bid-ask prices instead of fixed prices. An added feature when using bid-ask
prices are that we can incorporate missing prices. This can be done by setting
the missing contract's bid price as a very low value and the ask price as a
very high value. By replacing constraint C5 in (3.2) with

e 1 S (Tie (g(t) + h(t)) dt ~ F:B
T - T J7TS1, 1, i

i = l, ... ,m

and

i = l, ... ,m

we get a smooth forward function that is within the bid-ask spread. Un-
fortunately all of the constraints is no longer binding by equality and it is
therefore not possible to use the fast and easy Lagrange multiplier method.

There exists several methods to solve this problem numerically. See Judd
(1998) for a short description of some of the most commonly used algorithms.

13
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In this paper we will use a method inspired by the "active set" approach.
The strategy is to use the basic model (3.2) and change a pseudo close-price
in the direction implied by the sign of the Lagrangian within the boundaries
of the bid-ask spread. The algorithm is outlined as follows:

I. Initialization
Start by solving (3.2) with a pseudo closing price, FF = (Fl + FiB)/2,
iE{1, ... ,m}.

II. Start of optimization
Let the close-price-Lagrangian, '\3n-2, ... , '\3n+m-2, with the largest ab-
solute value be called ,\0, and adjust the pseudo closing price according

to

if ,\0 > Oand ,\A 2:: O
if ,\0 > Oand ,\A < O
if ,\0 < Oand ,\B > O
if ,\0 < Oand ,\B :::;O

where ,\A denotes the contracts Lagrangian with an average price equal
to the ask price FA. Similarly Xf denotes the contracts Lagrangian

with the average price equal the bid price FB.

III. Stopping criteria
The minimization ends when one of the following two criteria are ful-
filled. The first one is to stop if the following is true for each Ei

• average price ~o is equal to FB and '\f is still negative or

• average price FF is equal to FA and '\f is still positive.

This means that it is not possible to improve the smoothness by chang-
ing FF. The other stopping criteria is to stop when the improvement
of the smoothness is below some percentage ,.

14



Smooth forward price curves in electricity markets

where k is the iteration number. If neither of the stopping criteria are
satisfied the algorithm continues with step II.

The main advantage of this algorithm is the calculation speed. Convergenceis
usually obtained in m to 2m iterations. The reason for this rapid convergence
is mainly due to the relative small bid-ask spread compared to the value of
the adjustment function. That is a small bid-ask spread usually implies that
the bid or the ask constraint is binding and thereby reducing the number of
constraints with inequalities.

4 Numerical examples

To get a better understanding of how our model works and how we can
implement it, we illustrate with three examples.

4.1 Short example

In this example we do not use a prior function (i.e.. h(t) = O). We con-
struct the forward curve from the closing prices for the following contracts,
FC (t, TS, Te),

• FC(O, 1,2)=10.00 $/MWh

• FC(O, 2, 3)= 5.00 $/MWh

• FC(O, 3, 4)=10.00 $/MWh

Since the settlement periods do not overlap each other, and there are no gaps,
the forward curve will consist of three polynomials (n = m = 3). With knot
points at t = {1,2,3,4} and settlement periods at <I> = {(1,2),(2,3),(3,4)}
we write H as

15
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H=

o
o
o
o

892.8 270 56 O

270 84 18 O

56 18 4 O

O O O O

O O O O

O O O O

O O O O

O O O O

O O O O

O O O O

O O O O

o o
o o
o o
o o
o o
o 6076.8

o 1170

o 152

o o
o o
o o

o
o
o
o

o o o o
o o o o
o o o o
o o o o

and the linear constraints A,B as

o
o
o
o
o

1170

228

30

o
o
o
o
o
o
o

o
o
o
o
o

152

30

4

o
o
o
o o o
o o o
o o o
o o o
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The construction of AT is as follows: The two first columns ensures that g(t)
is continuous at the knots and thus everywhere. Column 3 and 4 make the
derivative of g(t) continuous at the knots and the next two rows makes the
second derivative of g(t) continuous at the knots. Columns 7 ensures that
the gradient at time t-. = 4 is zero. Finally columns 8 to 10 ensures that the
average value is equal to pC.

16



Smooth forward price curves in electricity markets

Short example
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2
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1 15 ~5 35 4

Time to maturity

Figure 2: The smoothed forward curve from the short example. The forward

curve consist of three polynomial functions. The closing prices are represented as

horizontally lines.

With H, A and B we construct the set of linear equations given by (3.2).
Solving the equation we get the solution æ" ,A*

-2.536

24.237

x* = -78.636 A* -
98.578

-30.255

1.549

-24.780

141. 943

-342.579

300.613

0.987

-3.949

5.924

-14.168

26.118

-47.389

74.340

23.695

lO.219

0.000

0.000

26.951

-47.389

121. 729

-74.340

As indicated by the signs of As, Ag and Aio we can increase the smoothness by
either increasing FC(O, 2, 3) or by reducing FC(O, 1,2) or FC(O, 3, 4). Given
a bid-ask spread around our fixed close prices our iterative algorithm would
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have started to change pC (0,2,3). The reason for this is that this contract
has the Lagrangian (,\Z = 121.73) with the largest absolute value. But for

this example, with only closing prices, the resulting smoothed forward curve
is f(t) = g(t, æ") and is plotted in figure 2.

4.2 Extended example

In this example we construct a smooth forward curve from more realistic
input parameters. For instance we use a bid-ask spread instead of a fixed
closing price, and we have both missing and overlapping forward contracts.
A prior function, h(t), is also used in this example.

Table I: Input parameters, extended example.

Bid price Ask price

F(O, O,5) 200.00 NOK/MWh 205.00 NOK/MWh
F(O, 5,10) missing
F(0,10,12) 220.00 NOK/MWh 225.00 NOK/MWh
F(O, 0,12) 180.00NOK/MWh 190.00NOK/MWh

Let us assume we believe that the future expected spot price is equal to
h(t) = 100cos(~;t) + 200 and want to adjust it to the market prices given
in table I. The time is denoted in months implying that the prior function

has an annually season and a maximum at t = o. The adjustment provided
by g(t) will capture a mixture of risk premium, cost of carry and different
belief about the future spot prices. The prior function we have chosen is very
crude and only serves as an example. In real life one should use a function
that is more able to capture seasonal patterns and long term growth.

To incorporate the missing contract into our model we introduce a con-
tract with a low bid and a high ask. We set the bid to 100 and the ask to 200.
This is approximately +/- 50 NOK from the price indicated from the one year
contract and the shorter contracts. Since we have overlapping contracts we
have t = {O,5,10, 12}. The first step is to calculate an initial pseudo closing
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Extended example

500,---,---,----,---,---,----,------,-----,
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Time to maturity in days

Figure 3: The smoothed forward curve from the extended example. The forward

curve for each iteration is plotted to get an impression of the effect of the prior
function and smoothness optimization.

prices and find the smoothed forward curve as described in the first example.

With FC = {202.5, 150, 222.5, 185} we get the following Lagrange values for

the four contracts: A;3,24,25,26 = {-0.0175, -0.0176, -0.0175, 0.0174}, Since

the second contract has the highest absolute Lagrange value its pseudo clos-

ing price is adjusted first. To find out how much we need to adjust the

closing price we calculate AB (by solving (3,2) with Ff = Ff). The AB was

positive indicating that we could improve the smoothness by setting the new

Table II: Information about each iteration.

Iter. ).:h ).24 ).25 ).26 xT Hx pC pC pC pC
1 2 3 4

1 -0.0175 -0.0176 -0,0175 0.0174 1.561 202.50 150,00 222,50 185.00

2 ~O ~O ~O ~O 0.025 202.50 148.86 222.50 185.00

3 ~O ~O ~O ~O 0.025 202.50 148.86 222,501 185.00

19



An analysis of derivative prices in the Nordic power market

close-price between Ff and Ff. According to step II of the optimization

algorithm, the new close price is F:!ew = )"C(FC - FB)/()..c - )..B) = 148.86.

With the new closing prices, the last step is repeated until the stopping cri-

teria is met. Table II shows lambdas, the total smoothness and closing prices

for each iteration. With I = 20% the stoping criteria exits the loop after

three iterations. The forward curve for each iteration is illustrated in figure 3.

For the first iteration the change in forward curve is substantial. This is due

to the relative large bid-ask spread for the missing contract. The effect of the

extra flexibility provided by using a bid-ask spread instead of a fixed price is

thus clearly seen. It also illustrates how the maximum smoothness criteria

affects the forward curve.

4.3 Example from Nord Pool

This example feature real data from Nord Pool, the Nordic power exchange.

The effect of the prior function on the smoothed forward curve is studied

in this example. We will also comment on the algorithms convergence and

calculation speed. The input data is from 1. August 2003 and is shown in

table III.

We see from the table that we have missing and overlapping contracts.

To measure the effect the prior function has on the forward function we try

four different prior functions

• Zero prior function, Le. no prior function.

• A single trigonometric function.

• A combination of six trigonometric functions.

• Spot price prognosis from a bottom-up model.

The first prior function is h(t) = 100 cos (;:s (t + 40)) + 200, and is con-

structed on the basis of a yearly season, a maximum in February and a

difference between maximum and minimum of 200 NOK/MWh. The second

20



Smooth forward price curves in electricity markets

Table III: Input parameters, Nord Pool example.

Ticker Start date End date Bid Ask

GU32-03 04.08.2003 10.08.2003 250.00 275.00

GU33-03 11.08.2003 17.08.2003 270.00 300.00

GU34-03 18.08.2003 24.08.2003 275.00 310.00

GU35-03 25.08.2003 31.08.2003 280.25 310.00

GU36-03 01.09.2003 07.09.2003 280.25 315.00

GB10-03 08.09.2003 05.10.2003 285.25 300.00

ENOMOCT-03 01.10.2003 31.10.2003 275.00 325.00

ENOMNOV-03 01.11.2003 30.11.2003 295.00 345.00

ENOMDEC-03 01.12.2003 31.12.2003 365.00

ENOMJAN-04 01.01.2004 31.01.2004 330.00 375.00

ENOMFEB-04 01.02.2004 29.02.2004 330.00

FWV2-03 01.10.2003 31.12.2003 317.00 319.00

FWV1-04 01.01.2004 30.04.2004 315.00 322.00

FWSO-04 01.05.2004 30.09.2004 190.00 208.00

FWV2-04 01.10.2004 31.12.2004 225.50 238.00

FWV1-05 01.01.2005 30.04.2005 235.00 250.00

FWSO-05 01.05.2005 30.09.2005 180.00 191.00

FWV2-05 01.10.2005 31.12.2005 220.00 240.00

FWYR-04 01.01.2004 31.12.2004 240.50 249.00

FWYR-05 01.01.2005 31.12.2005 214.00 220.00

FWYR-06 01.01.2006 31.12.2006 212.00 220.00

The price data is from Nord Pool 1. August 2003, 08:10. The contracts with a

ticker starting with a "G" are futures and the rest of the contracts are forwards.

Since the exchange at the time we collected the prices only had been open for 10

minutes, some of the contracts had no buyers or sellers. This is reflected as missing

prices for ENOMDEC-03 and ENOMFEB-04.
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prior function is from Lund and Ollmar's Analysing flexible load contracisr

paper. The prior function is estimated from spot prices for the period 1993
to 2001, and is made up of six trigonometric functions. This makes it more
able to capture different seasons in the spot price. The prior function is

6

h(t) = bo+ 2::: Rj cos(wjt + øj)
j=l

where
RI = 27.304 W - 271" Øl = -0.1101 - 8760*24

R2 = 5.683 W - 271" Ø2 = -2.2752 - 4380*24

R3 = 6.787 _ 271" Ø3 = -2.128W3 - 168*24

R4 = 3.931 271" Ø4 = -1.548W4 = 84*24

R5 = 9.595 271" Ø5 = -3.760W5 = 24*24

~ = 6.139 W - 271" Ø6 = -5.0936 - 12*24

and bo = 125.54. The third prior function is from a bottom-up model. The
price prognosis is provided by Skagerak Energy AS. The prior functions are
plotted together with the smoothed forward curves in figure 4. We see that
the bottom-up prognosis is not as smooth as the other priors.

The smoothed forward curves are constructed from m = 21 contracts and
are represented by a spline consisting of n = 32 polynomials. The algorithm
converged after 26 to 28 iterations depending on the prior function. On an
ordinary pc the computing time was about 5 seconds. As we can see from
figure 4 the effect of the prior function is different for different parts of the
curve. The effect of the prior function is small for the first 900 days of the
forward curve. After that, the choice of prior function influence the smoothed
forward function more and more. For time to maturity exceeding 900 days,
there are only forward contracts with a one year settlement period. This long
settlement period gives the adjustment function less structure / constraints,
and thus the prior function influences the smoothed forward curve more.
Overall, this example shows that the choice of prior function has little effect

3An extended version of this paper is included in this thesis.
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on the smoothed forward curve as long as it is constructed from contracts

with settlement periods shorter than one year.

Example from Nord Pool
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s:s:
::1' 250"oz

200
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100

50
o

Smoothed termstructures -
Prior functions -

600 800 1000 1200200 400
Time to maturity in days

1400

Figure 4: Four smoothed forward curves from Nord Pool together with three dif-

ferent prior functions. The effect of the prior function for forward prices with
time to maturity less than 900 days is minor. Only where the smoothed curve is
constructed by contracts with a one year settlement period, does the prior function

play a difference.

5 Concluding remarks

We have in this paper derived a method for calculating a continuous forward

curve from observed forward prices. The method is based on finding the

smoothest possible forward curve within a bid-ask spread. We express the

forward curve as a sum of a prior function and an adjustment function. The

prior function can be an arbitrary function, and will typically incorporate

subjective information about the forward curve. For example information

from forecasts generated by "bottom-up" models. The adjustment function
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is a polynomial spline of order five and is used to adjust the prior function
to the observed forward prices. The forward and future contracts used to
construct the smoothed curve can have overlapping settlement periods.

Parameter estimation is done by solving a constrained minimization prob-
lem. This minimization problem can be solved by solving a system of linear
equations. Ifwe use bid / ask prices to construct the smoothed forward curve
the algorithm iterates to find the smoothest function. As the three examples
shows, the algorithm is flexible, stable and fast.

If calculation speed, continuous forward curve or closed form solution is
important requirements for the forward curve model, we believe our model
will be the best choice.
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A Finding the smoothest function

We will in this section find the smoothest possible adjustment function, g(t),
that solves the following constrained minimization problem

rmin [g"(t; X)]2 dt
re to

(A.l)

subject to

(aj+I - aj )tj + (bj+I - bj )tJ + (Cj+I - Cj )t; + (dj+I - dj )tj + ej+I - ej = O Cl

4(aj+I - aj)tJ + 3(bj+I - bj)t] + 2(Cj+I - Cj)tj + dj+1 - dj = O C2

12(aj+I - aj)t; + 6(bj+I - bj)tj + 2(Cj+I - Cj) = O C3

for j = 1, ... ,n - 1, and

C4
and

C_I TtPi - Te_Ts fTs (g(t) + h(t)) dt
, z ,

C5

for i = 1, ... ,m. Where n is the number ofpolynomial expressions and m the
number of forward contracts. x is the parameter vector of the adjustment
function. We use a similarly approach as Adams and Van Deventer (1994)
and Lim and Xiao (2002) to find the adjustment function. To shorten our
notation we will use o: = Tt and (3 = 'T[, The first step of the proof is to
rewrite the minimization problem so it only contains second degree deriva-
tives, gli (t). Then we use the Lagrange method to find an expression for the
solution, and in the last part we show that the solution is a polynomial spline
of order five. By partial integration we know that

1{3 t2g"(t) dt = (32g'((3) - 0:2g'(0:) - 2 [(3g((3) - o:g(o:)-1{3 9(t)dt] (A.2)

J):

1{3 g(t) dt
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Since g(t) E Cl we can write g(x) as

g(x) = r g'(t) dt + g(to)i;

and with g'(tn) = Owe have

t:g(x) = g(to) - g"(V) dvdt
to t

(A.3)

Equivalently we use g(t) E C2 to write

g'(x) rg' (tn) - x gli(t) dt

ltn- x g"(t) dt (A.4)

Combining (A.2), (A.3) and (A.4) we write the last condition in (A.l) as

((3 - o;)Fp -1(3 h(t) dt 1(3 g(t) dt i = 1, ... ,m

(o; - (3) [ioaitn g" (v) dvdt - g( to)]

- (3c:gli(v) dvdt

1 ltn+_((32 - 0;2) g"(t) dt
2 (3

-~0;21(3 g"(t) dt
2 a

+~ 1(3 t2g"(t) dt (A.5)
2 a
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Let q(t) = g"(t). The constrained optimization problem (A.l) can now be
expressed as (assuming g(t) E C2)

L = min ltn q2(t)dt
q,A to

+1:"t,Ail(17 <'<T,'l [g( t) - Ff + h( L)l dt

t
L minltn q2(t)dt

q.): to

l
tn m [ I Itn+ to ~ Ai IT{t>Tn2(j)2 - 0:2)q(t) + IT{t<Tn(o: - j)) t q(v)dv

+IT{T;'<t<Tn [~t2q(t) - ~0:2q(t) - e Itn q(v) dV] - (o: - Ø)g(to)] dt

+1:"t,Ail{T! <'<7'1 J[- FF + h (t) l dt

Suppose q* is the solution of the optimization problem then

:f L(q* + fk)I€=o = O (A.6)

for any continuos function kO on the interval [to, tn] such that k(t) = q(t) -
q*(t). Solving (A.6) we get

:f L(q* + fk)I€=o O

t

1:" [2Q'(t) +t,Ai [I{'>T{) ~(ll2 - ,,2) H(1;'<t<T!) ~(t' - ,,') l] k(t) dt

+ lt
n [f Ai (IT{t<Tn(o: - j)) - IT{T;,<t<Tnj))] [Itn k(v) dV] dt = O
to t=l t

(A.7)

Next we make use of a variant of the lemma in Lim and Xiao (2002).
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Lemma A.l Given AO and hO are continuous Junctions and BO is inte-
grable, then

lb A(t)h(t) dt + lb B(t) lb h(v)dv dt O

iJ and only iJ

A(t) = -it B(v) dv Jor all a:::; t :::;b

By using the above lemma together with equation A.7 we get

- it: 2::1 Ai [IT{v<Tn(o: - (3) - IT{Tt<V<Tn(3] dv

for all t E [to, tn]. Rearranging we get

for t E [0:, (3]. Proving that q*(t) is a second-degree polynomial function.
Using q(t) = g"(t) we have that the function that solves (A.l) can be written
as the following fifth order polynomial spline

g(t) =

alt4 + blt3 + clt2 + dIt + el tE [to, tI]
a2t4 + b2t3 + C2t2+ d2t + e2 tE [tl, t2]
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B Construction of A and B matrices

In this section we show how we can write the conditions Cl to C5 on page
11 in the linear form Ax = B. Let n be the number of polynomials, m the
number of forward contracts and to, tl, ... ,tn the knot points of the polyno-
mials. The continuity condition Cl can then be written as the followingrows
in A

-tf-ti-ti-t,-1 tf ti ti t, 1 o o o o o 00000
o o o o o -ti-t~-t~-t2-1 ti t~ t~ t2 1 o o o 00
o o o o o o o o o o -t~-t~-t§-t3-1 t~t~t~t31

The corresponding elements in the B-vector are n - 1 zeros. Similarly we
express the second and third constraint as the following rows in A

-4ti -3ti-2t,-1 o
o o o o o
o o o o o

4tI 3tr 2t, 1 o
-4t~ -3t5-2t2-1 o
o o o o o

o o o o o
4t5 3t~ 2t2 1 o
-4t§ -3t§ -2t3 -1 o

o o o o o
o o o o o
4t§ 3t~2t31 o

-12t1'-6t, -2 o o
o o o o o
o o o o o

12ti 6t, 2 o o
-12t~ -6t2 -2 o o

o o o o o

o o o o o
12t~ 6t2 2 o o
-12t§-6t3 -2 o o

o o o o o
o o o o o

12t§6t3 2 o o

The corresponding elements in the B-vector are 2(ti - 1) zeros. Next we
include the terminal condition C4 as the following row in A

o o o o o 4t~ 3t~ 2tn o

The corresponding element in the B-vector is zero.
The last constraint, C5, is

Te ~ T~ rT~j f(t)dt -
J J J7jl~jg(t)dt

J

pC
J (B.l)

and ensures that close-price, PF, is equal to the average value of the smoothed
forward curve in the settlement period [Tf, TJl. To implement this constraint
we put the left side of (B.2) in the A-matrix and the right side in the B-
vector. For overlapping contracts we need to split the integral of g(t) into
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sub-periods. In the case with no overlapping contracts the sub-period is
equal to the contract's settlement period. By construction of the list of knot

points we have that each sub-period is equal to the domain of a polynomial.
We define

P7 [(TJ)5 - (Tn5] /5
P; [(TJ)4 - (TJ)4] /4
pt [(TJ)3 - (Tn3] /3
pt [(TJ? - (TI?] /2
pf TB=r:

J J

We can now implement the last constraint (assuming no overlapping con-
tracts) by inserting the followingm rows into A

~ ~ ~ ~ ~ o o
o o o o o pl pi
o o o o o o o

o o o o 000000

o o o o 000000

p~ p~ p~ p~ p~ o o o o o

To illustrate the splitting of the integral when we have overlapping contracts
lets assume that the first contract has a settlement period equal to [to, t2].
Now the last constraint can be written as

pl, pi: pil pg Pg pl pi pi pt pr o o o o o o o o o o
o o o o o pl pi Pi pt pr o o o o o o o o o o
o o o o o o o o o o P~ P~ p~ P~ p~ o o o o o

In both cases the element in B that correspond to each contract j is given
by

re
FF (TJ - TI) - isj h(t) dt

J

For a numerical example please see the main text.
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Abstract

We examine the forward curve dynamics in the Nordic electricity

market. Six years of price data on futures and forward contracts

traded in the Nordic electricity market are analyzed. For the forward

price function of electricity, we specify a multi-factor term structure

models in a Heath-Jarrow-Morton framework. Principal component

analysis is used to reveal the volatility structure in the market. A two-

factor model explains 75%of the price variation in our data, compared

to approximately 95% in most other markets. Further investigations

show that correlation between short- and long-term forward prices is

lower than in other markets. We briefly discuss possible reasons why

these special properties occur, and some consequences for hedging

exposures in this market.
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1 Introduction

With the rapid growth of derivative securities in deregulated electricity mar-
kets, the modeling and management of electricity price risk have become
important topics for researchers and practitioners. In the case of electricity,
contingent claims valuation and risk management were not considered im-
portant issues prior to market deregulation. Due to the special properties
of this commodity, volatility in deregulated electricity markets can reach ex-
treme levels, and a proper understanding of volatility dynamics is important
for all participants in the market place.

There are two lines of research focusing of commodity contingent claims
valuation and risk management. The traditional way has concentrated on
modeling the stochastic process of the spot price and other state variables
such as the convenience yield! (see for example Brennan and Schwartz 1985,
Gibson and Schwartz 1990, Schwartz 1997 and Hilliard and Reis 1998). This
approach has been adopted and modified in the recent electricity literature
by, among others, Deng (2000), Kamat and Ohren (2000), Pilipovic (1998)
and Lucia and Schwartz (2002).

The main problem with spot price based models is that forward prices are
given endogenously from the spot price dynamics. As a result, theoretical
forward prices will in general not be consistent with market observed forward
prices. As a response to this, a line of research has focused on modeling the
evolution of the whole forward curve using only a few stochastic factors, tak-
ing the initial term structure as given. Examples of this research building on

lThis direction is rooted in the theory of storage developed by Kaldor (1939), Working

(1948) and (1949), Telser (1958) and Brennan (1958) and (1991). According to the theory

of storage, the futures and spot price differential is equal to the cost of storage (including
interest) and an implicit benefit that producers and consumers receive by holding inven-
tories of a commodity. This benefit is termed the convenience yield. The most obvious

benefit from holding inventory is the possibility to sell at an occurring price peak.
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the modeling framework of Heath et al. (1992), are Clewlow and Strickland
(1999a) and (1999b), Miltersen and Schwartz (1998) and Bjerksund et al.

(2000).

Empirical investigations of forward curve models in commodity markets
have been conducted by, among others, Cortazar and Schwartz (1994) and
Clewlow and Strickland (2000). Cortazar and Schwartz (1994) studied the
term structure of copper futures prices using principal component analysis,
and found that three factors were able to explain 99% of the term structure
movements. Clewlow and Strickland (2000) investigated the term structure
of NYMEX oil futures and found that three factors explained 98.4% of the
total price variation in the 1998-2000period. The first factor (explaining 91%
of total variation) shifted the whole curve in one direction. They termed this
a "shifting" factor. The second factor, termed the "tilting" factor, influenced
short and long-term contracts in opposite directions. The third factor, the
"bending" factor, moved the short and long end in opposite direction of the
mid-range of the term structure.i

In this paper we adopt the forward curve approach and perform an em-
pirical examination of the dynamics of the forward curve in the Nordic elec-
tricity market in the period 1995-2001. Following the work of Cortazar and
Schwartz (1994) and Clewlow and Strickland (2000) we use principal compo-
nent analysis to analyze the volatility factor structure of the forward curve.
The forward price of electricity is the price today for a delivery of electricity
at some point in time in the future. This forward price function is not di-
rectly observable in the market place. Power contracts trading on Nord Pool
are all written on a future average; the delivery periods of the contracts.
Instead of working directly with the different financial contracts with vari-

2The multi-factor forward approach by Heath et al. (1992) was originally developed
for interest rate markets. Empirical work on factor dynamics in fixed income securities

markets have been conducted by Steely (1990), Litterman and Scheinkman (1991) and
Dybvig (1997), among others. The results in these studies are quite similar to the work

reported from the commodity markets. Typically, three factors explain 95%-98% of the

total variation in the forward curve.
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ous delivery periods, we compute a continuous forward price function from
each day's futures and forward prices. This data transformation process is
similar to the process of extracting a forward interest rate curve from a set
of fixed income products. We apply the principle of maximum smoothness

described in Adams and van Deventer (1994) and Bjerksund et al. (2000)
to compute dailyelectricity forward curves. In the framework of Heath et
al. (1992) we specify a geometric Brownian motion model for the evolution
of the forward price of electricity. We construct a dataset of forward price
returns. The maturities for the contracts that constitute the data set range
from one week to two years. Following the work of Cortazar and Schwartz
(1994) and Clewlow and Strickland (2000) we use principal component anal-
ysis to analyze the volatility factor structure of the forward curve. In the
short end of the term structure, the volatility increases sharplyastime to
maturity decreases. In other commodity markets one typically find that a few
factors are able to explain most of the variation in the forward prices. The
portion of explained variance is lower in the electricity market. We find that
a two-factor model explains 75%of the price variation in our data, compared
to approximately 95% in most other markets. Pilipovic (1998) conjectures
that electricity prices exhibit "split personalities". By this she means that
the correlation between short- and long term forward prices are lower in elec-
tricity markets than in other markets. We provide some empirical support
for this claim. The most important factors driving the long end of the curve
have very little impact on price changes in the short end. Furthermore we
find some evidence of changing volatility dynamics both seasonally and from
one year to another.

The rest of this paper is organized as follows: We give a short description
of the Nordic electricity market in section 2. Section 3 presents the multi-
factor models and section 4 describes the data set. In section 5 we show how
principal component analysis can be used in order to estimate the empirical
volatility functions and section 6 reports the results. Section 7 concludes the
paper.

36



Forward curve dynamics in the Nordic electricity market

2 The Nordic electricity market

2.1 History of the Nordic Power Exchange

From 1971to 1993a market called Samkjøringen co-ordinated the Norwegian
electricity production. Every week Samkjøringen set the daily or part-af-the-
day price for electricity. This price was used to determine the Norwegian
electricity production and the exchange with other countries. A new Energy
Lawwas approved by the Norwegian Parliament in 1990and came into effect
in 1991. The law introduced market-based principles for production and
consumption of electricity in Norway. After England and Wales in 1989,
Norway was the third country to deregulate the electricity market.

In 1993Samkjøringen merged with Statnett SF to create a new company
called Statnett Marked AS. Statnett Marked AS organized the new Norwe-
gian market place for electricity from 1993 to 1996. In 1996the Swedish grid
company, Svenska Kraftnat, bought 50% of Statnett Marked AS and became
part of the power exchange area. At the same time Statnett Marked AS
changed name to Nord Pool ASA. Finland joined the power exchange area in
1998, western Denmark in 1999 and eastern Denmark in 2000. The Nordic
electricity market is non-mandatory and a significant share of the physical
power and financial contracts are traded bilaterally.

2.2 The physical market

Today Nord Pool organizes and operates Elspot, Eltermin, Eloption, and
Elclearing. Elspot is a spot market for physical delivery of electricity. Each
day at noon, spot prices and volumes for each hour the following day are
determined in an auction. The equilibrium price is denoted the system price,
which may be considered a one-day futures contract. The followingday, the
national system operators organize a regulating- or balance market, where
short term up- or down regulation is handled. Since 1993 the turnover in
Elspot market has increased steadily from 10.2 TWh in 1993 to 111.2 TWh
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in 2001. In 1999, more than one fifth of the total consumption of electric
power in the Nordic countries was traded via Nord Pool.

2.3 The financial market

Eloption and Eltermin are Nord Pool's financial markets for price hedging
and risk management. Financial contracts traded on Eltermin are written
on the arithmetic average of the system price at a given time interval. 3

This time interval is termed the delivery period. The time period prior to
delivery is called the trading period. Both futures and forward contracts are
traded at Eltermin. The contract types differ as to how settlement is carried
out during the trading period. For futures contracts, the value is calculated
daily, reflecting changes in the market price of the contracts. These changes
are settled financially at each participant's margin account. For forward
contracts there is no cash settlement until the start of the delivery period.
European options written on underlying futures and forward contracts are
traded on Eloption.

The power contracts refer to a delivery rate of 1MW during every hour for
a given delivery period. Futures contracts feature daily market settlement in
their trading and delivery periods. Forward contracts, on the other hand, do
not have settlement of market price fluctuations during the trading period.
Daily settlement is made in the delivery period. None of the contracts traded
at Nord Pool are traded during the delivery period.

The contracts with the shortest delivery periods are futures contracts.
Daily futures contracts with delivery period of 24 hours are available for
trading within the nearest week.4 Weekly futures contracts with delivery
periods of 168 hours can be traded 4-8 weeks prior to delivery. Futures

3We only give a brief description of the different products traded at Nord Pool here.

For a detailed description see www.nordpool.no or Lucia and Schwartz (2002). Some
contracts traded in the OTe market have a different underlying reference price than the

system price. Such contracts are not considered in this study.
4These contracts have only a short (and illiquid) history, and will not be included in

our data set when analyzing the volatility structure in the market.

38

http://www.nordpool.no


Forward curve dynamics in the Nordic electricity market

contracts with 4 weeks delivery period, are termed block contracts. The

forward contracts have longer delivery periods. Each year is divided into
three seasons: VI - late winter (January 1- April 30), SO- summer (May 1 -
September 30) and V2 - early winter (October 1 - December 31). Seasonal
contracts" are written on each of these seasonal delivery periods. In January
each year, seasonal contracts on SOand V2 the coming year and all three
seasonal contracts for the next two years are available. Furthermore, yearly
forward contracts are available for the next three years. In other words, the

(average based) term structure goes 3 to 4 years into the future, depending
on current time of year.

In 1995 the total volume of financial contracts traded on Nord Pool and
OTC was 40.9 TWh. In 2001, this number reached 2658 TWh. The most
heavily traded contracts are the two seasonal contracts with shortest time
to maturity. On average 100-200weekly contracts and 200-300seasonal con-
tracts are traded each day.

3 Multi-factor forward curve models

Our model setting is similar to the forward interest rate model of Heath
et al. (1992). The model we investigate in this paper is a special case
of the general multi-factor term structure models developed for commodity
markets in Miltersen and Schwartz (1998). We consider a financial market
where the uncertainty can be described by a K-dimensional Brownian motion
(WI, ... ,WK) defined on an underlying probability space (n,lB',IQ) with the

filtration lB'= {:Ft: t E [O,T*J} satisfying the usual conditions and represent-
ing the revelation of information. The probability measure IQ represents the
equivalent martingale measure. Throughout the paper we assume constant
risk free interest rate, so that futures prices and forward prices with common
maturity are identical (see Cox et al. (1981)).

5Fr-om 1995 to the end of 1999 special seasonal futures contract were traded. These

contracts are also included in the estimation of the model.
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Let the forward market be represented by a continuous forward price
function, where f(t, T) denotes the forward price at date t for delivery of
the commodity at time T, where t < T < T*. Given constant interest rates
the futures and forward prices are by construction martingales under the
measure Q. Consider a model" where the dynamics of the forward price is
given by

df(t, T) K
f(t, T) = ~ eri(t, T)dWi(t) (1)

with solution

Several specifications of (1) have been proposed for the Nordic electricity
market. Lucia and Schwartz (2002) propose a spot price model and derive
analytical expressions for futures/forward prices. They consider mean re-
verting spot price models both in level and log form. It is easy to show that
their log based model is consistent with a forward price model with

where er and I\, are positive constants. This model produce a falling volatility
curve in T, approaching zero as T -+ 00. Audet et al. (2002) conduct
an empirical study of the negative exponential volatility function. They
generalize the one-factor model above. The volatility dynamics of futures
contracts with different time to maturity are given by fixed constants of the
negative exponential function above. But, different from the one-factor model
of Lucia and Schwartz (2002), each contract is driven by a separate Brownian

6In this paper we present a standard lognormal model for the evolution of the forward

curve. There is still no consensus on how the dynamic properties of electricity prices

should be modeled (see discussion in Lucia and Schwartz 2002, Johnson and Bartz 1999
and Knittel and Roberts 2001). In a previous version of this paper we included a second
model, the multi-dimensional arithmetic Brownian motion. Since the results from both

models were qualitatively very similar, the arithmetic model was omitted to save space.

These results are available from the authors upon request.

40



Forward curve dynamics in the Nordic electricity market

motions. Hence, there are as many Brownian motions as there are contracts

in their model. These Brownian motions are given a parametric correlation
structure, adding flexibility compared to the model considered by Lucia and
Schwartz (2002). Bjerksund et al. (2000) propose both a one-factor and a
three-factor model. The one-factor model is given by

a
erl (t, T) = T b + c-t+

where a, b and c are positive constants. With realistic parameter values, this
specification produces a sharply falling volatility curve in T. As T -+ 00 the
volatility converges to c. Bjerksund et al. (2000) also propose a three-factor

model
(JI(t,T) = T-~+b

l

er2(t, T) = C~~CtP
er3(t, T) = c

with all parameters assumed positive. This three-factor model allows a richer
structure of the forward price dynamics. They argue that the one factor
model may be adequate for pricing contingent claims, while the three-factor
model is better suited for risk management purposes. Note that in all the
models above, given that all the parameters are positive, each individual
Brownian motion will move forward prices of all maturities in the same di-
rection. As we will see from the empirical analysis, this property of the
proposed models is inconsistent with our empirical findings.

4 Descriptive analysis and data preparation

We are interested in the volatility dynamics of the forward price function
described above. This forward price function, giving us today's price of a
unit of electricity delivered at a specific instant in the future, is not directly
observable in the market place. The power contracts trading on Nord Pool
are all written on a future average; the delivery periods of the contracts. We
need to pin down the relationship between the forward price function and
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the average based contracts. Let F (t, Tl, T2) be today's contract price of an

average based futures contract delivering one unit of electricity at a rate of

T2~Tl in the time period [Tl, T21 , where Tl and T2 is the beginning and the

end of the delivery period of the contract, and t :S Tl < T2. Suppose that

the contract price is paid as a constant cash flow during the delivery period.

Then the expression for the average contract is (see Bjerksund et al. (2000)):

(2)

where

Lucia and Schwartz (2002) note that F (t, Tl, T2) ~ T2~Tl J~2 f(t, u)du is a

very good approximation of (2) for reasonable levels of interest rates. We

use this approximation in the empirical analysis.

4.1 Smoothed data

Instead of working directly with the different financial contracts with various

delivery periods, we compute a continuous forward price function from each

day's futures and forward prices. The smoothing procedure is based on the

principle of maximum smoothness suggested by Adams and van Deventer

(1994). The smoothness criterion they state for the forward rate function is

the one that minimizes the functional

(3)

while at the same time fitting observed market prices," They show, in an

interest rate setting, that the yield curve with the smoothest possible for-

ward rate function according to this criterion, is a quartic spline function

7Here the derivatives are taken with respect to the second time index.
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Smoothed forward curve
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Figure 1: Power contracts and the smoothed forward curve on March 26, 2000.

The dotted lines represent the actual market prices, and the length of the dotted

lines corresponds to the delivery period on which the contracts are written. The
weekly contracts (one dot) and block contracts (four dots) are futures contracts,

and the seasonal contracts are forward contracts. The solid line is the smoothed

term structure.

that is fitted between each knot point on the yield curve.f We use a quartic

spline function to estimate a twice continuous forward function that prices

all traded assets within the bid/ask spread." The result of this smoothing

procedure on March 27, 2000 is illustrated in figure 1. The horizontal dotted

8For a comprehensive description of the maximum smoothness approach see Adams

and van Deventer (1994) and Lim and Xiao (2002).
9A sinusoidal prior function is defined prior to estimation to pick up the strong seasonal

pattern in this market.
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lines are closing prices on weekly, block and seasonal contracts. We have
computed the smoothed forward price function on each of the 1340 trading
days in our sample using all the contracts available each day. In figure 2
we have plotted weekly forward curves during the 1995-2001 sample period.
Note the clear annual seasonal variation with high winter and low summer
prices. The contract with the longest time to maturity increases from 80
weeks in 1995 to 208 weeks in 2001.

Forward prices Forward returns
W-01 W-52 W-104 W-01 W-52 W-104

Mean 145.51 159.54 163.47 -0.00297 0.00004 -0.00016
Median 130.18 153.49 158.88 -0.00228 -0.00013 -0.00000
Min 45.25 99.91 101.24 -0.38777 -0.06893 -0.25187
Max 356.00 262.03 275.75 0.21606 0.08876 0.22739
Std.dev 64.10 36.04 33.17 0.04094 0.01427 0.01471
Skewness 1.21 0.76 0.63 -0.42187 0.35750 -1.01313
Kurtosis 3.91 3.18 3.26 11.28 8.15 116.69
No. obs. 1340 1340 1279 1339 1339 1278

Table I: Descriptive statistics for electricity forward prices and returns. The table

reports statistics from three points on the term structure, the one week forward

price (W-01), the one year forward price (W-52) and the two year forward price
(W-104). The sample period is 1995-2001.

Table I shows descriptive statistics on three different points on the term
structure; W-01 (one week to maturity), W-52 (one year to maturity) and
W-104 (two years to maturity). We note that the mean forward price is
increasing with maturity. This means that the market on average can be
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described by contango.l" We note that the one-week forward price has fluc-
tuated substantially during the sample period. The fluctuations decrease
with time to maturity. To further examine the time series properties of the
data, we have plotted the time series of forward prices with the same three
maturities in figure 3. It is obvious that the one-week contract is much more
erratic than the one- and two-year contract. Note that the short-term price
varies around the long-term price indicating some sort of mean reversion.
Roughly speaking the market was in normal backwardation in 1996 and in
contango in the 1997-2001period.

4.2 Constructing a data set

The forward price model in (1) describes the stochastic evolution under an
equivalent martingale measure, and not under the real world measure where
observations are made. Although there may be risk premia in the market
that cause futures prices to exhibit non-zero drift terms, the diffusion terms
are equal under both measures. So the volatility function in (1) can be
estimated from real world data. As noted by Cortazar and Schwartz (1994),
this is only strictly correct when observations are sampled continuously. In
our analysis we use daily observations as a proxy to a continuously sampled
data set. Let f(tn, tn +Tm) denote the forward price at date t-. with maturity

at date t-. + Tm, where Tm = Tm - t« is time to maturity for the contract.
Our discrete approximations of (1) is

lOContango is used to describe the situation when the futures price is above the expected

futures spot price. The opposite situation is usually termed normal backwardation. We

must be careful when using this relationship in markets with seasonal price variation. By
choosing maturities exactly one year apart, forward prices on the same time of the year

are compared and seasonal variation is no longer a problem.
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Data sample
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Figure 2: Surface plots of smoothed forward curves. Weekly surface plots (calcu-

lated from observed contracts each wednesday) for each of the years in our sample.

Our data sample consists of a total of 1340 forward curves.

where n 1, ... ,N.
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Time series of forward prices
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Figure 3: The graphs are time series plots of the forward prices with one week

(solid line), one year - (dashed line) and two years (dotted line) to maturity.

For a set of maturity dates {Tl, ... , TM}, we construct a data set from the
smoothened data.

x=
XN,1 XN,2 XN,M

We first compute daily forward price functions from the observed market
prices. From these forward functions we compute 104weekly midpoint prices
(equidistant forward prices), one price for each week along a two years term
structure. Within each week these maturities are held constant. Next we
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compute N = 1339 time series observations on price returns. The contracts
are rolled over each Friday. Let us illustrate our approach using the contract
with maturity in one week: The daily returns from Monday to Friday are
computed from the contracts with maturity the following week (Tl)' On
Friday we observe the price of the contact with maturity two weeks ahead

( T2)' The return and difference on this contract is calculated from Friday
to Monday. Reaching Monday, this contract has now become the new one-
week contract. We use this approach of fixing the time to maturity to avoid
problems of seasonality in prices over the year. Finally we pickM= 21 price
returns with different maturities among the 104weekly prices. If we scale Tm

in "weeks-to-maturity" the specificmaturities chosen are Tl, ... ,TM = [1,2, 3,
4,5,6,7, 12, 16,20,24,28,32,36,40,44,48,52,70,88, 104]. The maturities
are chosen in such a way that they reflect the actual traded contracts. In
the shortest end we pick 7 maturities with weekly intervals, mimicking the
weekly contracts. The next 11 maturities are 4 weeks apart. There are only
three maturities in the last year of the term structure, representing seasonal
contracts. In table I we report descriptive statistics on the one week-, one
year- and two year forward price returns for the whole sample period. The
standard deviation is sharply falling with time to maturity. We also note that
kurtosis is high, and that skewness is different from zero. The sign of the
skewness changes along the term structure. In table II we report descriptive
statistics on semi-annual and seasonal sub-interval.

5 Principal component analysis and volatility

functions

Principal component analysis (PCA) is concerned with the identification of
structure within a set of interrelated variables. It establishes dimensions
within the data, and serves as a data reduction technique. The aim is to de-
termine factors (i.e. principal components) in order to explain as much of the
total variation in the data as possible. In order to use principal component
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Panel A: Yearly sub-intervals

1995-1996 1997-1998 1999-2001

W-01 W-52 W-104 W-01 W-52 W-104 W-01 W-52 W-104

Mean -0.0010 0.0021 0.0009 -0.0053 -0.0013 -0.0010 -0.0019 0.0001 0.0002

Median 0.0000 0.0014 0.0004 -0.0038 -0.0013 -0.0002 -0.0028 -0.0002 0.0000

Min -0.3878 -0.0689 -0.0413 -0.1735 -0.0665 -0.2519 -0.1571 -0.0421 -0.0382

Max 0.2161 0.0888 0.0436 0.1530 0.0641 0.2274 0.1844 0.0628 0.0870

Std.dev 0.0478 0.0189 0.0128 0.0395 0.0146 0.0197 0.0377 0.0099 0.0089

Skewness -1.3863 0.4130 0.0587 -0.2520 -0.1409 -1.2750 0.5407 0.9451 2.7326

Kurtosis 18.1721 6.2541 4.3285 5.6143 6.1021 92.5537 6.2602 11.0183 27.1745

No. obs. 315 315 254 500 500 500 524 524 524

Panel B: Seasonal sub-intervals

Late winter (V2) Early winter (VI) Summer (SO)
W-01 W-52 W-104 W-01 W-52 W-104 W-01 W-52 W-104

Mean -0.0050 -0.0008 -0.0005 -0.0025 -0.0001 -0.0007 -0.0019 0.0008 0.0005

Median -0.0037 -0.0009 -0.0003 -0.0027 0.0000 0.0000 0.0000 0.0003 0.0001

Min -0.3878 -0.0689 -0.0413 -0.1571 -0.0592 -0.0925 -0.1735 -0.0665 -0.2519

Max 0.2161 0.0888 0.0411 0.1844 0.0640 0.0870 0.1611 0.0696 0.2274

Std.dev 0.0403 0.0125 0.0102 0.0365 0.0166 0.0135 0.0448 0.0133 0.0177

Skewness -1.9178 0.1379 0.0753 0.5613 0.3284 -0.2259 -0.0710 0.5179 -1.3945

Kurtosis 26.9764 13.2301 5.8892 6.9858 5.8229 14.0679 4.7574 8.4175 131.6298

No. obs. 382 382 323 433 433 431 524 524 524

Table II: Descriptive statistics of daily forward price returns from the smoothed

term structure. In panel A the analysis is performed on each two year sub-interval

of the total sample. In panel B the data set is shuffled, and the analysis is performed
on 3 seasonal sub-intervals, V2 (early winter), Vi (late winter) and SO (summer)

(see the text for exact period specifications). The table reports statistics from three
points on the term structure, the one week forward price (W-Oi), the one year
forward price (W-S2) and the two year forward price (W-104).
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analysis to estimate the volatility function in (1) we assume that the function
only depend on time to maturity Tm. Not allowing the volatility functions to
depend explicitly on t precludes seasonal variation in the volatility functions.
Assume that we have a total of N observations of 1\{ different variables con-
tained in vectors xj , X2, ... , XM all of which dimension is (N x 1)_n Let the
data matrix, X, be given by

Xll Xl2 XIM

X = [ Xl XM ]
X21 X22 X2M

X2

XNI XN2 XNM

The corresponding sample covariance matrix, of order M, is denoted 'Il. The
orthogonal decomposition of the covariance matrix is

'Il =PAP' (4)

where

Pll Pl2 PIM

P = [Pl PM ]
P21 P22 P2M

P2

PMI PM2 PMM

and
All O O
O A22 O

A=

O O AMM

A is a diagonal matrix whose diagonal elements are the eigenvalues All,
A22, ... ,)WM, and where P is an orthogonal matrix of order 1\{ whose ith

llThroughout this section we write matrices in bold upper case letters, vectors in bold

lower case letters and elements in plain text. We suppress superscripts for notational

convenience throughout this section.
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column, Pi, is the eigenvector corresponding to Aii. p' is the transpose of

P. The matrix Z = XP is called the matrix of principal components. Its

columns, Zi, are linear combinations of the columns of X with the weights

given by the elements of Pi. That is, the ith principal component is

where Pij is the element in the jth row and ith column of P. The sample

covariance matrix of Z is given by

var(Z) = P'llIP = p'pAP'P = A

since P'P' = p'p = I, where I is the identity matrix, hence the Z variates are

uncorrelated, and the variance of z, = Aii. The eigenvectors on the diagonal

of A are of convention ordered so that All 2: A22 2: ... 2: AMM. To explain

all the variation in X, we need M principal components. Since the objective

of our analysis is to explain the covariance structure with just a few factors,

we approximate the theoretical covariance matrix using the first K < M
eigenvalues in (4). Unfortunately, we lack any solid statistical criterion to

determine the number of factors that constitute the theoretical covariance

matrix. Hair et al. (1995) discuss several criteria:

1. Eigenvalue criterion; only factors eigenvalues greater than 1 are con-

sidered significant.

2. Scree test criterion; the test is derived by plotting the eigenvalues

against the number of factors in their order of extraction, and the

shape of the curve is used to evaluate the cutoff point.

3. Percentage of variance criterion; additional factors are added until the

cumulative percentage of the variance explained reach a pre-specified

level.

We consider all of these criteria, but the latter criterion is the one fre-

quently employed in the finance literature. The K factors should explain
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a "big" part of the total covariance of the underlying variables (typically
around 95%). The proportion of total variance accounted for by the first S
factors is

Cumulative contribution of first S factors = 2:S1 Ai
2:i=l Ai

Component loadings are often computed to facilitate interpretation of the
results from a principal component analysis. Here, we instead plot the em-
pirical volatility function, C7i (.), directly from the eigenvalue decomposition

as

(5)

where i = l, ... ,S. Here we have suppressed the time index, emphasizing the
fact that the volatility is independent of calendar time. We can use (5) to
plot easy-to-interpret volatility functions.

6 Empirical results

In table III we report the results from the PCA analysis conducted on the
full sample. We note that a one factor model is able to explain 68% of the
variation of price returns. The eigenvalue and scree test criteria both agree
upon a two factor model with a total of 75% variation explained. This is
considerably lower than in other markets. Typically two or three factors
explain more than 95% of total variations in forward prices. For example,
Clewlow and Strickland (2000) investigate the term structure of NYMEX
oil futures and find that three-factors explain 98.4% of the total price varia-
tion. The fact that as much as 25% of the variance in the electricity market
maturity specific, is, as far as we know, a feature unique to this market. If

we increase the number of factors the percentage variations explained will
naturally increase. We also note from table III that a target of say 95%
explained variation requires more than 10 factors in our data. It is obvious
that the 8 additional factors do not explain variation common to the whole
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term structure. We will examine this more closely below, but first we will
investigate the shape of the first two factors.

Factor Ind. Cum.

Fnl 0.68 0.68
Fn2 0.07 0.75
Fn3 0.05 0.80
Fn4 0.03 0.83
Fn5 0.03 0.86
Fn6 0.02 0.88
Fn7 0.02 0.89
Fn8 0.02 0.91
Fn9 0.01 0.92
FnlO 0.01 0.94

Table III: Principal component analysis of forward price returns. The analysis is
performed on the whole data set, 1339 observations from September 1995 to March

2001. The table reports the individual contribution (Ind.) of each factor (Fn.) of

the total variance, and the cumulative effect (Cum.) of adding an additional factor.

We now want to take a closer look at the volatility dynamics represented
by the first two factors that affect the whole term structure. From the eigen-
values and the corresponding eigenvectors for the two first factors, we use
(5) to plot the corresponding volatility function in figure 4 along with the
overall volatility. The scaling on the vertical axes are annualized volatilities.
Data for the whole sample period is used in these calculations. Note that
the overall volatility is very high in the short end of the term structure, and
that it falls rapidly with time to maturity. After approximately one year it
stabilizes. Turning to the individual volatility functions, we see that the first
factor is positive for all maturities, shifting all forward prices in the same
direction. It causes much bigger movements in the short end than in the
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long end. The second factor causes short and long term forward prices to
move in opposite directions. These two factors are qualitatively equal to the
first two factors reported in Clewlow and Strickland (2000) for NYMEX oil
futures, which they denoted the tilting factor and shifting factor respectively.

Volatility functions - full sample

60%

50%

40%

30%

~
~ 20%
(5
>

10%

0%

-10%

-20%
o 20 40 60 80 100

Time to maturity in weeks

Figure 4: Volatility functions and overall volatility in the full sample period 1995-

2001. The volatility functions are computed from price returns. The functions are

annualized using a factor of square root of 250 (number of trading days).

Pilipovic (1998) argues that the correlation between short-term and long-
term forward prices seems to be lower in electricity markets than in other
markets. If this is indeed the case, we would expect factors explaining a
lot of variation in the long end of the term structure, being able to explain
far less of the short term movements, and vice versa. We conducted the
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PCA analysis once again to take a closer look at this. First we computed 10
principal components capturing about 95% of variation. Then all 10 factors

were sorted according to size for each of the maturities. Hence for each of
the 21 maturities, the 10volatility functions resulting from the PCA analysis
are sorted according to their ability to explain the overall variation for that
particular maturity. The results are given in table IV. 12

The first column reports the variation explained by the most important
factor for that particular maturity. The number in superscript is the factor
number. Hence factor number 1 is the most important factor for explain-
ing overall volatility. The second column reports the cumulative variance
explained by adding the second most important factor for that particular
maturity. Again, the superscript indicates the importance of this factor in
explaining total variation for all maturities. We note that factor number 1
is the factor explaining most of the variation for each maturity within the
first year. Factors number 1 and 2 are among the 4 most important factors
for all maturities. However, in the long end of the term structure, factors
number 9 and 6 are the most important ones. In other words, the most im-
portant factors driving the long end of the curve have very little impact on
price changes in the short end. On average, very little is gained in terms of
percentage variation explained, by increasing the number of factors beyond
5. Combined, this evidence supports the conjecture made by Pilipovic (1998)
that electricity prices exhibit "split personalities". Why do we see this kind
of forward curve behavior in the electricity market? The answer possibly
lies in the non-storable nature of electricity. For example, assume that the
Swedish government makes a final decision to phase out their nuclear electric-
ity production and decides to start cutting production two years from now.
This would lower future supply, resulting in rising futures prices with more
than 2 years to maturity. In a market where storage is possible, speculators
would buy for storage (and/or producers would hold back production), as a
reaction to the anticipated rise in electricity prices. This would in turn result

12The rest of the tables and figures are located in the appendix for space considerations.
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in a positive shift in spot and short-term futures prices as well as long term
futures prices. Since buying for storage is impossible'" in electricity markets,
the price on electricity will stay low until the date of reduced production.
Consequently, only futures contracts with maturity after the production cut
will react to this information. Pursuing this line of reasoning further, we
are tempted to conjecture that other power markets, with less flexible hy-
dropower than the Nordic, might experience even lower correlation between
long term and short term forward prices. Temporary shocks in such a system
will produce erratic spot prices to balance supply and demand. If the shocks
are temporary, long term prices will be unaffected, and this will strengthen
the "split personality" effect. Hydropower production offers most flexibility
when it comes to smooth temporary shocks. In other words, the correla-
tion between long term and short term forward contracts increase with the
amount of hydropower in the system.

Using the whole sample period in our calculations, we implicitly assume
that volatility dynamics have been constant in the 1995-2001 period. We
want to investigate yearly and seasonal differences. However, our method-
ology does not allow calendar time dependence in the volatility functions.
As a second best alternative, we repeat our PCA analysis in different sub-
samples. In table V we report the results from PCA analysis on two years
sub-intervals and seasonal sub-intervals. The two first volatility functions
and overall volatility for each sub-sample are plotted in figure 5. From ta-
ble V we see that the V1 and SOsub-periods, fewer factors are needed to
explain 95% of the variation in the data. Dividing into semi-yearly samples
resulted in increased explanatory power of the 10 factors. This indicates
that volatility dynamics changes both seasonally and from one year to the

13A large part of the electricity in the Nordic market is produced in hydropower based

production units. Many of these units have reservoir facilities that, to some extent, enable

them to move energy between periods. Such reservoir facilities provide a relatively high
level of operating flexibility. Still, the reservoir capacity is not big enough for producers
to shut down production for long periods of time without spilling water.
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other!". Seasonally changing forward curve dynamics indicate that the price
sensitive information is cyclical. Specifically, the results in table V seem to

indicate that information released during autumn (V2 is October 1 - Decem-
ber 31) influences the forward curve differently than information received
during the rest of the year. The rest of the year information has a stronger
tendency of moving the whole curve (fewer factors produce higher explana-

tory power). What is special about autumn information? Autumn is the
season with biggest precipitation. This is the most important variable affect-
ing hydropower-based supply. Production decisions are made based on the
level of water in the reservoir and anticipated rainfall in the future. When
there is plenty of water in the reservoirs, and the producer expect heavy
rainfall in the coming season, he will increase production today to give room
for anticipated future precipitation. This affects spot prices and short term
forward contracts. In the Nordic market, the average reservoir water level
changes quite rapidly. This would indicate that prices of long term forward
contracts are not very much influenced by current reservoir levels. The cur-
rent reservoir situation, whether exceptionally dry, or exceptionally wet, may
change many times before the long term contracts mature. This conjecture,
that volatility forward curve dynamics in the Nordic market are influenced by
reservoir level and expected inflowis left for future research. Also, changes in
the marketplace might influence the volatility dynamics of the forward curve.
Either implicitly through changes in the spot price dynamics, or explicitly
through conditions affecting supply and demand of futures contracts. The
most notable change is the growth of the market. In the first sub-period,
Norway and Sweden constituted the whole market. In the next period sub-
period, Finland was also a part of the market, and in the final sub-period
Denmark joined. This means that there are more producers and consumers
operating in the spot market, and hence, the equilibrium spot price dynam-

14Wealso computed the non-parametric Kolmogorov-Smirnoff test on equality of distri-

butions across seasons and years. The test results, not reported here, showed rejections of
equal distributions on 1% level in all cases.
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ics may have changed as a result of this. On the other hand, neighboring
countries have been affecting spot prices in Nordic market prior to formally
joining the market, through exporting power from, and importing power to
the market. The flow of power between the Nordic countries started long
before market deregulation started. This weigh against a hypothesis of very
distinct regime shifts as a result of new member countries joining the market.
Both the volume of traded contracts, and the number of participants trading
futures and forward contracts have grown dramatically in the time period
investigated. This fact is also a possible source of changing volatility dynam-
ics. Unfortunately, our methodology does not provide the appropriate tools
to formally test the influence of new member countries, or increased volume
on the volatility dynamics. This is left for future research. Still, from the
volatility function in figure 5 we recognize the shifting and tilting factor as
the most important factors driving the forward curve in all sub-periods.

7 Conelusions

In this paper we conduct an exploratory investigation of the volatility dy-
namics in the Nordic futures and forward market in the period 1995-200l.
The modelling framework is a standard lognormal spot price model similar
to the one suggested by Heath et al. (1992). We use smoothed data and
perform principal component analysis to reveal the factor structure of the
forward price curve.

The main results are as follows: Two factors are common across all matu-
rities. A two-factor model explains around 75%of total variation in the data.
The first two factors governing the forward curve dynamics are comparable
to other markets. The first factor is positive for all maturities, hence it shifts
all forward prices in the same direction. The second factor causes short and
long term forward prices to move in opposite directions. In contrast to other
markets, more than 10 factors are needed to explain 95% of the term struc-
ture variation. Furthermore, the main sources of uncertainty affecting the
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movements in the long end of the forward curve, have virtually no influence

on variation in the short end of the curve. We argue that this behavior may
occur because electricity is a non-storable commodity. Note that the maxi-
mum maturity in our analysis is 2 years. One might suspect that contracts
sold in the OTe market with maturities further into the future are even less
correlated with short term contracts. These results indicate that modelling
the whole forward curve has less merit in this market than others. For exam-
ple, hedging long-term commitments using short-term contracts may prove
disastrous.
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A Tables and figures

Cumulative variance explained
Maturity lth 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

W-Ol 0.861 0.912 0.953 0.966 0.967 0.975 0.978 0.979 0.974 0.9710

W-02 0.901 0.952 0.963 0.966 0.967 0.965 0.968 0.969 0.964 0.9610

W-03 0.911 0.932 0.956 0.967 0.965 0.963 0.968 0.969 0.9610 0.964

W-04 0.911 0.933 0.942 0.956 0.957 0.965 0.968 0.969 0.964 0.9610

W-05 0.891 0.953 0.962 0.966 0.965 0.969 0.967 0.968 0.9610 0.964

W-06 0.881 0.943 0.966 0.977 0.972 0.978 0.975 0.9710 0.979 0.974

W-07 0.851 0.903 0.936 0.947 0.952 0.955 0.958 0.959 0.9510 0.954

W-12 0.761 0.812 0.865 0.8810 0.897 0.919 0.928 0.926 0.924 0.923

W-16 0.751 0.842 0.895 0.917 0.928 0.924 0.929 0.936 0.9310 0.933

W-20 0.721 0.832 0.875 0.884 0.899 0.9010 0.907 0.913 0.916 0.918

W-24 0.701 0.822 0.869 0.898 0.9010 0.915 0.924 0.933 0.936 0.937

W-28 0.671 0.802 0.858 0.874 0.887 0.893 0.899 0.8910 0.896 0.895

W-32 0.611 0.772 0.854 0.8810 0.905 0.923 0.939 0.947 0.948 0.946

W-36 0.631 0.782 0.855 0.894 0.928 0.933 0.947 0.949 0.946 0.9410

W-40 0.631 0.772 0.858 0.885 0.909 0.914 0.9210 0.933 0.936 0.947

W-44 0.591 0.774 0.882 0.908 0.919 0.923 0.925 0.926 0.927 0.9310

W-48 0.614 0.831 0.932 0.948 0.943 0.957 0.9510 0.966 0.969 0.965

W-52 0.571 0.754 0.862 0.898 0.919 0.9210 0.927 0.933 0.936 0.935

W-70 0.559 0.7610 0.891 0.932 0.948 0.956 0.957 0.954 0.955 0.953

W-88 0.386 0.531 0.647 0.722 0.765 0.793 0.808 0.8110 0.819 0.814

W-I04 0.536 0.737 0.791 0.832 0.853 0.865 0.8710 0.894 0.899 0.898

Avg. 0.71 0.83 0.88 0.90 0.92 0.92 0.93 0.93 0.93 0.93

Table IV: Most important factors across maturities for price returns. We have
first conducted a principal component analysis using 10 factors. Then the impor-

tance of each factor is sorted for each maturity. The table reports the cumulative

variance explained when adding one additional factor. The factor number is in su-
perscript. The bottom row reports the the average cumulative variance explained.
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V2 VI SO 1995-1996 1997-1998 1999-2001

Factor Ind. Cum. Ind. Cum. Ind. Cum. Ind. Cum. Ind. Cum. Ind. Cum.

Fnl 0.59 0.59 0.70 0.70 0.80 0.80 0.70 0.70 0.58 0.58 0.73 0.73

Fn2 0.09 0.68 0.08 0.78 0.06 0.87 0.08 0.78 0.09 0.67 0.08 0.81

Fn3 0.05 0.73 0.05 0.83 0.04 0.91 0.06 0.83 0.07 0.74 0.05 0.86

Fn4 0.04 0.77 0.03 0.86 0.02 0.93 0.03 0.86 0.06 0.80 0.02 0.88

Fn5 0.04 0.81 0.03 0.89 0.01 0.95 0.03 0.89 0.04 0.83 0.02 0.90

Fn6 0.03 0.84 0.02 0.91 0.01 0.95 0.02 0.91 0.04 0.87 0.02 0.92

Fn7 0.02 0.86 0.02 0.93 0.01 0.96 0.02 0.92 0.02 0.89 0.01 0.93

Fn8 0.02 0.89 0.01 0.94 0.01 0.97 0.01 0.94 0.02 0.91 0.01 0.94

Fn9 0.02 0.90 0.01 0.95 0.01 0.98 0.01 0.95 0.02 0.93 0.01 0.95

Fn10 0.02 0.92 0.01 0.96 0.00 0.98 0.01 0.96 0.01 0.94 0.01 0.96

Table V: Principal component analysis of forward price returns. The first three

columns report the results from seasonal subintervals, V2 (early winter), Vi (late

winter) and SO (summer) (see the text for exact period specifications). The next

three columns report results from each two year sub-interval of the total sample.
The table reports the individual contribution (Ind.) of each factor (Fn.) of the

total variance, and the cumulative effect (Cum.) of adding an additional factor.
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Volatility functions for different samples
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Figure 5: The two first volatility functions and overall volatility. The volatility

functions on the left hand side are computed from different seasons corresponding

to seasonal contracts traded at Nord Pool and the functions on the right hand side
are computed from the time periods 1995-1996, 1997-1998 and 1999-2001. The

functions are annualized using a factor of square root of 250 (number of trading
days).
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Abstract

In this paper we analyze flexible load contracts (FLC), a type of

"swing" option. This contract type has existed in energy markets for

a long time and has proved to be challenging to value. The term

swing refers to the flexibility in the amount of energy that the holder

of the contract can receive. We formulate the FLC as a stochastic

optimization problem. The price process, modelled as a time depen-

dent Ornstein-Uhlenbeck process, is calibrated to the spot price on the

Nordic electricity market. With this process the optimization prob-

lem is solved numerically. The results of the algorithm are compared

with the exercise policy for nine market participants. We find that

our algorithm obtain the highest accumulated exercise revenue for the

five year period 1997-2002.

Key words: Swing options, electricity market, empirical.
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1 Introduction

The first power plants built in the first part of the previous century were built
to meet the nearby industry's demand for electricity. To reduce transmission
losses or the cost of transporting the raw material used to produce the elec-
tricity, the industries were often located close to the power plants. Another
characteristic of this early stage was that the same firms were the owners of
both the power plants and the industry that used the power. The value of
electricity was consequently not exogenous calculated but endogenous valued
as a part of the product costing. When it was possible to sell energy surplus,
the need to formulate and value electricity contracts occurred. One of the
first type of contracts to be traded was the contract that g~vethe ~w__!l~rthe
right to a certain amount of energy within a giyenperiod of time. To make it_ -..---. --.. .._._--,-_ -- .._-~----~.~ -- -

possible to deliver the electricity t~e seller restricted the maximum amount
per hour (i.e. the effect) the buyer could withdraw. The buyer of the contract
could then withdraw electricity, given the effect restriction, to cover his own
electricity demand. This type of contract was the predecessor to a type of
swing option known today as a flexible load contract (FLC).

Since the first flexible load contracts were traded, most electricity con-
sumers and producers have interconnected themselves with a national or
international power grid. In recent years many countries have also deregu-
lated their electricity marked. These changes have increased the possibility
to utilize the flexible load contract. Earlier the owner of a flexible load con-
tract had to withdraw the amount he consumed and any surplus energy was
wasted. With a spot market the buyer of the contract can withdraw energy
from the seller of the contract and sell it in the spot market. To meet his own
demand for electricity he can buy it directly from the spot market instead
of exercising the contract. By incorporating the spot market the owner of
'---~--- -

a flexible load contract can fully utilize the flexibility_ofthe contract. This
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effect has naturally increased the value of the contract. But it has also made

the problem to value and decide when to exercise the contract more difficult.

Swing contracts have been used in several markets to hedge against fre-

quent price and demand spiking behavior that is followed by a reversion to
\

normal levels. More generally this type of contracts is of value in any market

where the physical transfer of the underlying asset must take place through

interconnected networks, and is thus ,~mbject to volume, constraints. This is

the case for natural gas and pipelines, electricity and cable based telecom-

munications and their transmission lines, wireless telecommunications and

their bandwidths. Despite the long history of swing options and their impor-

tance as a risk management tool, there has been limited research regarding

valuation of such contracts.

One of the first methods used to value a FLC was by modelling the con-

tract as a hydroelectric power plant with no inflow. Optimization methods

for hydroelectric power has been studied since the early 1960s. Stage and

Larsson (1961) developed one of the first optimization methods forhydroelec-

tricpower plants. Their method was called incremented cost of waterpower

and was based on finding the hydroelectric production that minimize the cost

of the thermal power in a system where hydroelectric power is predominant.

To implement this type of model one usually has to represent all hydro-

electric power production as one representative hydroelectric power plant. If
the individual hydroelectric power plants are significantly different from each

other, representing them as one unit may be an inaccurate representation.

Since there was no spot or forward market when the model was developed,

they did not incorporate any information from these markets into the model.

Instead they regarded the price as an endogenous function of the marginal

production costs. This is a good approximation when there is no spot or for-

ward market. If there exist a spot or forward market it is simpler to regard

the price as exogenous.--_._.- •...__ .. _ .._~. __ .---~.

Recent literature on valuing flexible load contracts/swing options is based

on (~~ingent cla!ms and derivative theory. If there exist a forward market

69



An analysis of derivative prices in the Nordic power market

with the same resolution! as the flexible load contract, Øksendal shows in his

PhD thesis (2001) how it is possible to value a FLC by replicating it with a

portfolio of future contracts. Similarly, Keppo (2002) shows that it is possible

to hedge and thereby value a swing option if there exists an option market .
._----------

The problem with these methods is that they only works when we have a

forward market or an option market with equal or higher resolution than the

FLC contract. If we try to use the method in practice we will discover that

this assumption is not fulfilled. Typically the FLC has an hourly resolution
while the forward market has a weekly or monthly resolution. This lack of

_,,--- .._ -.._-_---- --
completeness in the forward market will result in an erroneous valuation _Qf

the flexible load contract.

In line with Jaillet, Ronn and Tompaidis (2003), Bjørgan, Song and Liu

(2000), Thompson (1995), Lavassani, Simchi and Ware (2001) we have chosen

to regard the FLC as a contingent claim on the spot price and analyze it with------_
numerical techniques. We assume there is no forward market, or that the

---- -- ----~_.~--
owner of the contract is unable to participate in the forward market. This

is equal to assuming that the spot price is a risk neutralized price process,

obtained by the incorporation of a model of the cost-of-carry or the market-

price-of-risk function. ~stimation and incorporation of_~a,JlretJ:i~k i~;r:>_~~ible

~_ is left for future work.

To get a better understanding of how flexible load contracts works lets

assume we have a spot market for electricity and that we have just bought

an 8335 MWh flexible load contract.", The contract has a maximum effect of

5 MWh per hour and a delivery period from 1. May 1997 to 30. September

1997. The price we paid for this contract was 115 NOKjMWh or 958525

NOK, and the delivery period of the contract consists of 3672 hours. Assum-

ing profit is maximized, our target will be to exercise the contract during the

lWith "same resolution" we mean that if the FLC is based on an hourly resolution

then the forward market must have one forward contract for each hour in the delivery
period of the FLC.

2Wewill use this contract as an example throughout the paper
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1667 3 of the total 3672 hours with the highest spot price. Every day at 10
am we must inform the seller of the contract which hours the following day

we want to exercise our right to buy for 115 NOK/MWh. The energy we
~- -

~~y__~_igthen be sold in the spot market, and our profit/loss will be the dif-
ference between 115NOK/MWh and the price we manage to sell the energy

in the ~pot_~~~~~t for. The flexibility of the contract is the ability to change
our exercise policy during the delivery period. After buying the contract we
may ask ourselves the following questions: How high should the spot price
be before we start exercising the contract? What is its theoretical value?
Which factors influence the value of the contracts and how do they influence
the contract? This paper will answer some of these questions.

The remainder of this paper is organized as follows. In the next section
we formulate the FLC as a mathematical optimization problem, and in sec-
tion three we analyze the spot price and decide upon a spot price model.
Then in section four we analyze how we can solve the optimization problem
numerically. In section five we describe our data-set and estimate the price
process. The results and concluding remarks are given in section six and
seven.

38335MWh/5MW =1667h
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2 Mathematical formulation of the FLC

We will in this section show how we can find the optimal exercise policy
and corresponding contract value by formulating the FLC as an continuous
stochastic optimal control problem.

2.1 FLC as an optimization problem

Wechoose to formulate the flexible load contract as a continuous time stochas-
tic optimal control problem. In the real world this optimization problem is a
combined discrete-continuous problem. It seems natural to think of the spot
price as a continuous process. The control is however chosen on an hourly
basis. Still one hour is a small time interval compared to the total contract
length. A continuous model formulation is therefore natural. When we later
implement a numerical scheme, one hour is used as the basic discrete time
interval.

We study a control problem related to the optimal delivery of electrical
power. We assume that a contract for a specified amount of energy over a
period [0,Tl is given. The price of the electricity at a certain time t E (0,T)
is given by a specified price process Pt. We assume that the 'producer' is a
small participant in the market, so the price does not depend on the amount
of delivered power. Further we assume that the contract puts restrictions
on the delivery; At each instant the rate of delivered energy must be in a
specified interval. Let Qt denote the amount delivered up to time t. Our
goal is to find the optimal control choice at each moment t, and for all levels
of Q and P. This is a feedback form of the control. With this optimal policy
in hand, the controller can choose the best delivery, given the current levels

of the state variables. Further, the actual value of the contract is important
when such contracts are bought or sold. We now show how this problem
may be formulated as a stochastic optimal control problem with a terminal
condition.

Suppose that we have agreed to deliver M units of a product (e.g. power)

72



A nalyzing flexible load contracts

during the period [O, T]. The delivery rate is called Ut. Therefore

with Qo = O. Obviously Q must satisfy QT = J; iud: = A1. This is an end
constraint on the variable Qt. We assume that the control Ut must be in an
interval rua, Ul] for all t. Further, the contract specifies that the holder of
the contract is paid a spot price P; for the delivered amount of product. We
assume that P follows a process

where Wt is a Brownian motion, /1 and (J" may be functions of t and P. At
time t the price P; ~ p, and the amount Qt ~ q are known by observation.
The objective for the producer is now to maximize the net present value. Let
the function ITrepresent the instantaneous profit of the delivery, and is the
discount factor. We want to find the value function

V(t, q,p) = maxE iT e-8sIT(s, us, Ps)ds.
uEU t

(2.1)

when t < T and the corresponding control under the condition that Q(T) =
M. This side condition calls for a control space U which is explicitly depen-
dent of t and Q. In general such problems are hard to solve. In this case we

~aLn:~f91TIluia.te_theproblem to get a state independent control space. In
subsection 2.3 we give a more precise formulation of the problem but first we
need to study the structure of the problem more thoroughly.

2.2 Further observations

The function V(t, q,p) is the value of the remaining period, given that the
time is t, the delivered amount so far is q, and the current spot price is p.
As seen above, there is an intimate relationship between the control and the
level of the Q variable. When the problem is solved numerically, we take
advantage of this. We would expect that the value V must be found for all
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p> 0, all Q E [0,M] and for all tE [0,T]. Actually this is not necessary. Let

us take a closer look on the condition Q(T) = M. The restriction limits the

Q-space that must be considered. See figure 1. For this problem to be well

3
,
: ~~~o _

--_:_------_?~-~--~

Q(t)

4
Possibility area for Q

T t

Figure 1: The possible values of Q(t), given the restrictions on Ut.

posed we must assume that Ttu, < M < TUI. The problem is trivial if one

of the two extremes is binding. The upper boundaries of the parallelogram

are traced out by the policy

U = Ul for tE [O,Tll

u = Uo for t E [Tl, Tl

where

T
_ M -uoT

l-
UI - Uo

The lower boundaries are on the other hand given by

U = Uo for t E [0,T2]

u = Ul for t E [T2, Tl

where
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Depending on the parameters of the problem we may have Tl < T2, Tl = T2

or T2 < Tl.
To simplify the analysis and the numerical scheme we focus on a problem

with control restrictions of the form [0,Ul]. This is no limitation since a con-
tract with the limitation [Uo, Ul] may be modelled as a flexible load contract
with [0, (Ul - uo)], combined with a contract with constant delivery Uo in the
same period.

2.3 Precise formulation

We can now formulate the optimization problem precise without a state
dependent U. By defining the stopping times

Tl inf{t; Qt = M}

T2 inf{t; Qt = Ul· (t - T2)}

the value function can be expressed as

V(t, q,p) = maxEt{ jT e-<5sII(s, Us, Ps)ds (2.2)
uEU t

+I(x=M)(QT)F(T,PT) + [1- I(X=M)(QT)]G(T,PT)}.

Here the functions F and G is defined as

F(t,p) = E [iT e-<5sII(s, Uo, Ps)dSI Pt = p]

G(t,p) = E [iT e-<5sII(s, Ul, Ps)dsl Pt = p]

NowU is the space of functions taking values in [0,Ul]. It is important to
keep in mind that this is not an optimal stopping problem.

2.4 The Hamilton Jacobi Bellman equation

First of all we assume that the instantaneous profit is given by

II(U, P) = ou.I',
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and let a = 1 for simplicity of notation. This turns the control problem into
a problem which is completely linear in the control u. We therefore expect
optimal controls of the so called 'bang-bang' type.

We want to find the value function V(t, q,p). Define the space (see fig-
ure 2) D(t) C JR.2 by

D(t) = {(q, t) E {M > q > O}n {Ul t ~ q > Ul . (t - T2)} } .

The function V : D(t) x JR. -+ JR. can be found as the (viscosity) solution of
the partial differential equation

\It + j-l(t,p)Vp + ~(J2(t,p)Vpp + max{uVq + e-8tup} = O. (2.3)
2 uEU

Here subscripts' on V denotes the partial derivatives with respect to the sub-
script. This equation is called the Hamilton Jacobi Bellman (HJB) equation.
The equation cannot be uniquely solved without proper boundary conditions.

M ------ - - - - - - - - ,.------------------1

Q(t)

T t

Figure 2: The (t, Q) projection of the parallelepiped, defining the space O(t).

We know that the value is zero at time T, Le.

V(T,q,p) == O V q,p.
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Further, V(t,q,p) = F(t,p) when q = M and V(t,q,p) = G(t,p) when
q = Ul . (t - T2). From the definition of F and G we see that they can be
found as solutions of the following partial differential equations"

1 2Wt + fL(t, p) Wp + 2"0" (t,p)Wpp = O

) 1 2 () -otWt + fL(t, p Wp + 2"0" t,p Wpp + Ule p = O (2.4)

both with end condition W(T,p) = O. We see that this gives F(t,p) == O.
We now focus on the maximum operator in equation (2.3). Observe that

e-otp> -Vq :::} u= Ul

e-otp = -Vq :::} u= ?

e-Otp < -Vq :::} u= Uo·

It can be shown that the optimal control only takes the extreme values, thus
a bang-bang control. This is a consequence of the risk neutral formulation.

The flexible load contract is now formulated as a stochastic control prob-
lem. Observe that the equations in this section suggests that the value func-
tion may be found by backward induction, starting at time T. To solve the
problem we need to specify a reasonable spot price process. We focus on this
task in the next section.

4Alternatively, for a price process with simple structure, the functions may be calculated

directly from the definitions. We chose however to keep the presentation general with

respect to the process choice.
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3 Modelling the spot price

We will in this chapter analyze the spot price to find a suitable stochastic
differential equation that models it. After deciding upon a stochastic process
we will show how we can calibrate the process parameters to data.

3.1 Examining the spot price

The Nordic spot market for electricity is a market for physical delivery of
electricity. Each day at noon, spot prices and volumes for each hour the fol-
lowing day are determined in an auction. The spot price is the clearing price
that makes the demand for a given hour match the supply. Real aggregated
supply and demand curves for hour 12 on 10. July 2000 are shown in figure 3.
To understand the dynamics of the spot price it helps to understand the dy-
namics of the aggregated supply- and demand curve. Since a high degree of
all energy used for heating in the Nordic countries is electricity, the demand
for electricity is closely linked to temperature. The demand for electricity is
also influenced by general work activity. Due to limited choice in alterna-
tive energy forms and lack of end users that actually observe real time price
movements, the demand for electricity is highly inelastic (i.e. independent
of market clearing price). The inelasticity of the demand curve can be seen
from the steepness of the demand curve in figure 3. From figure 4 we see
that the demand followsdaily, weekly and yearly cycles. We also observe a
small growth in electricity demand of approximately 1% to 1.5% per year.
Induced by extreme weather conditions one can on several occasions observe
temporary spikes in electricity demand. These spikes are not sustainable and
the demand reverts back to normal levels within a short time.

In contrast to the nearly price independent electricity demand, the sup-
ply characteristics of the electricity producers are price responsive. The sup-
ply characteristic is mainly a function of generation technology, fuel costs,
availability of generation and the possibility of import/export. The supply
depends, in the long run, on the production cost for electricity. In the short
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Figure 3: Supply and demand curves for hour 12 on 10. July 2002.

run the supply is influenced by production outages and constraints in the
power grid. Production costs for thermal based power depends mainly on
the degree of utilization and fuel costs. For hydroelectric power the pro-
duction cost depends more on the reservoir filling, inflow and accumulated
snow. The sum of deviation of reservoir filling and accumulated snow from
the normal level is called the hydrological balance. Estimated hydrological
balance together with spot price for the period 1996-2001are shown in figure
5. From the figure we see a clear mean reversion in the hydrological balance.
If we compare the hydrological balance with the spot price for the same pe-
riod we see a strong negative correlation (Since we have inverted the scale
in the figure it appears to be positive correlation). The empirical correlation
coefficient is -0.72. The strong negative correlation is due to the fact that the
hydroelectric power has a high alternative cost when the hydrological balance
is below normal and a low alternative cost when the balance is above normal.
The share of hydroelectric power in the Nordic electricity market is approx-
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imately 60%5. It is therefore no surprise that the supply curve is strongly
influenced by the hydrological balance. Since the hydrological balance is so
important it is crucial that the price process we choose is able to capture its
effect.

5The total consumption of electricity for the Nordic countries were in 2000 384 TWh,
and 234 TWh of this was hydroelectric power.
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Figure 4: In the first figure we have total consumption of electricity in Norway
during Tuesday 20. October 1998. The second figure is the total consumption
during one week (19. October 1998 - 25. October 1998) and the third figure is the
total consumption during a period of 4.5 years. As we can see the consumption of
electricity follows daily, weekly and yearly cycles. Since the demand curve is highly
inelastic we expect to find the same cycles in the electricity price.
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Figure 5: System price together with the hydrological balance. The hydrological
balance is defined as the energy in snow and water minus their normal values. We
have inverted the scale of the system price to illuminate the negative correlation.

3.2 Selecting a model

This section addresses the challenge of selecting a suitably stochastic process
to model electricity prices in the Nordic electricity market. For reasons men-
tioned in the previous subsection the stochastic characteristics of electricity
production and consumption are reflected directly in electricity prices. In
addition to the lack of storability the cyclical patterns of electricity demand
makes modelling the electricity price a challenge.

By analyzing the Nordic electricity market we find following important
factors influencing the spot price process:

• Cyclical patterns in demand over the course of the day, week and year.

• Price spikes or fast mean reversion due to unusualload conditions.

• A slow mean reversion in price caused by mean reverting hydrological
balance.
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• Other factors such as fuel prices, currency exchange rates, emission
costs and climate changes.

These characteristics is also found in other electricity markets, see Knittel
and Roberts (2001) and Lucia and Schwartz (2002). Since we are analyz-
ing flexible load contracts with a settlement period of approximately six to

twelve months we focus on modelling the spot price dynamics within this
time horizon.

In the book "Energy modelling and the management of uncertainty"
(2001), B. Johnson and G. Barz analyzed how the following four stochastic
differential equations managed to model the spot price for different electricity
markets:

Brownian motion: dPt = /-ltdt + O"dWt
Mean reversion, OU: dPt = K,(at - Pt)dt + O"dWt
Geometric Brownian motion: dPt = /-ltPtdt + O"PtdWt
Geometric mean reversion: dPt = K,( at + ~2 - InPt)Ptdt + O"PtdWt

where Pt is the spot price of electricity, /-lt is the drift term, O" is the diffusion
term, Wt is a Brownian motion, K, is the speed of mean reversion and at is a
sort of long run mean. They tried the above models with and without jump
terms. The jumps where modelled with a Poisson arrival time, Bernoulli
(positive or negative) jump direction, and exponential jump magnitude. The
eight models where tested on four different electricity markets. They found
the best model regarding sum of log-likelihood values for the Nordic electric-
ity market to be the mean reversion with jumps followed by the pure mean
reversion model. Since we chose not to incorporate jumps into our model, we
use the mean reverting Ornstein-Uhlenbeck process to model the spot price.

To model the seasonal changes in the demand curve, we need a time
dependent mean. In addition wewant some kind ofmean reversion to capture
the effect of the hydrological balance. Since this reversion is slow compared
to the mean reversion generated by price spikes, we need to separate them. If
wedo not separate them we get a mixture of fast and slow reversion. This will
result in a volatility that is so high that the daily and weekly price patterns
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will vanish and a volatility that is too small to model the large deviation
from the long run mean due to the hydrological balance. We specify the
price process as Pt = Xt + Dt, where X, represents the low frequent changes
and D, represents the high frequent changes. It is now possible to model the
slow hydrological mean reversion together with annual seasons in Xt, and
high frequent changes such as fluctuation in price over the course of the day
or a week in Dt. We define the high frequent changes, Dt, as changes within
one week and X, as all other changes. Further we specify changes in X, as

b'
dXt = at(bt + ....!:. - Xt)dt + O"tdWt,

at
(3.1)

where at is the speed of mean reversion due to hydrological balance, b; is
the normal seasonal price, b~ is the derivative and a, is the price volatility.
We specify the normal seasonal price, bt, and D, as a sum of trigonometric
functions.

k

bt bo+L Rf cos(wft + <pf)
j=1

k

= bo+L {Af cos(wft) + Bf sin(wft)}
j=1

l

u; do +L Rf cos(wft + <pf)
j=1

l

do +L{Af cos(wft) + Bf sin(wft)}
j=1

(3.2)

where Aj = R, cos(<Pj), Bj = - Rj sin(<Pj), w is the frequency, <Pis the phase,
R is the amplitude and bo is a constant level. The parameter do will later
be used to ensure that the process D, starts at zero every week. Choos-
ing appropriate frequencies, phases and amplitudes we can model the daily,
weekly and yearly price patterns. By specifying bt and D, as we did in (3.2)
we could alternatively simplify Pt by incorporating Dt in bt as an extension
to the sum of trigonometric functions. Since we are going to use different
sampling intervals for the estimation of the parameters in Xt and Di, we will

84



A nalyzing flexible load contracts

keep D, separated from bt. The explicit solution to the price process, Pt, is

given by

If we let at = a, a, = (J we can write P; as

where E: is a standard normal distributed random variable. From the above

equation we see that the Gaussian process, Pt, has an conditional mean equal
to iP, - Ds - bs)e-a(t-s) +D,+ bt and a conditional standard deviation equal
to (Je-c;:(t-S) )1/2. Since the expected value of Pt, when t -+ 00, is equal to

b, + Dt, we can interpret b; + D, as the long run mean function for the price
process.

3.3 Parameter estimation method

In the previous section we chose a stochastic differential equation with solu-
tion given by equation (3.4) to model the spot price. In this section we will
show how to estimate all the parameters in this process. Since the distribu-
tion of P; is known, we can make use of the maximum likelihood estimation
method. Let the parameter vectors a = {a, (J, wf, ... ,wf, wP, ... ,wP} and

{3 = {bo, A!, ... ,A:, Bf,···,Bf, Ap, ... ,Af, Bp, ... ,BP}· The reason
for collecting the parameters into two vectors is to shorten our notation and,
as we see later, we can use different methods to obtain the estimates of the
different parameter vectors.

Let P= [PtI' Pt2' •.• , Ptn] be a vector of observations of Pt at t = tI, t2, ... , tn.
The maximum likelihood estimates O: and ~ are the solution to the following
maximization problem

(a,~) = arg max 'li (P, a, (3)
01,(3

(3.5)
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where Pt rv N(m(pti Ipti-l; o, (3) , s( (};)) and

w(P, o, (3)
n

L log f(pti Ipti-l; o, (3),
i=l

m(pti Ipti-l; o, (3)

s( (};)

This maximization problem has a parameter space of 3(k + l+1) dimensions.

As we discovered in the first section of this chapter the spot price has
three distinct seasons. The seasons have periods of one day, one week and
one year. To get a realistic representation of the spot price we need at least
two trigonometric functions to represent each season. With k = 2 and l = 4
the maximization problem given by (3.5) has a 21 dimensional parameter
space. Numerically solving a maximization problem with such a high degree
of freedom can be difficult. To simplify the problem we fix the frequencies
wX and wD toJ J

wX = 27r/8760 wX 27r/4380 (year)l 2

wD = 27r/168 wD 27r/84 (week)l 2

wD 27r/24 wD 27r/12 (day)3 4

We have here assumed an hourly sampling resolution of P. The frequencies
in the left column makes the long run mean follow cycles with a period of
one year, one week and one day. The frequencies in the right column are
set to one half of the frequencies in the left column. The reason for this
is to make the long run mean able to model non-symmetric seasons. With
fixed frequencies we only need to estimate 15 parameters with maximum
likelihood. To further reduce the number of parameters to be estimated by
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maximum likelihood we reformulate (3.4) as

k k

Yli = boZo(ti) + LA;ZtX(ti) + LBJZfX(ti)
j=l j=l

l l

+L Af ZtD(ti) + L Bf ZfD(ti) + Cti (3.6)
j=l j=l

where

Yli = (Pti - Pti-l e-a(ti-ti-I))/ s(a)

Zo(ti) (1- e-a(ti-ti-I))/s(a)

ztx (ti)
Z!X (ti)
ztD(ti)
Z!D(ti)

{cos(wf ti) - e-a(ti-ti-l) cos(wf ti-I)} / s(a)
{sin(wfti) - e-a(t~-ti-I) sin(wfti-I)}/s(a)
{cos(wfti) - e-a(ti-ti-l) cos(Wfti-l)}/s(a)
{sin(wfti) - e-a(ti-ti-l) sin(wfti-I)}/s(a)

The solution of the stochastic differential equation is now linear in the (3
parameters, and by following the principles of concentrated likelihood we
can use ordinary least square to obtain an estimate of (3. See Koopmans
and Hood (1953) for more details regarding concentration of likelihood. By
specifying the frequencies and reformulating (3.4) we were able to reduce the
number of parameter to be estimated by maximum likelihood from 21 to 2.
Solving equation (3.5) is thus equal to solving

(3.7)

A_ A AX AX AX AX AD AD AD AD.
where (3 - {bo,Al , ... ,Ak ,Bl'· .. ,Bk' Al , ... ,Al' Bl , ... ,Bl} IS the or-
dinary least squares estimate. The procedure used to solve this maximization
problem is as follows: First we start with an initial guess a, and find the cor-
responding Ø(a) by OLS. The OLS-estimates together with a are then used
to calculate the value of the log likelihood function. This procedure is then
repeated until we find the a that maximizes the log likelihood function and
thereby solving the problem. We will later in section 6 use (3.7) on historical
price data to estimate the parameters of the spot price process.
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4 Numerical solution

In this section we show how the problem formulated in section 2 can be solved
numerically on a discrete state space.

4.1 Discretization

To solve the problem on a computer we need to discretize the time and state
space. In this market the natural smallest time scale is one hour, and this is
chosen as the basic time discretization. In combination with the limitations
on the control, this also gives the discretization of the Q space, see figure 6.
The parameters of the traded contacts are typically specified such that Tl, T2

and T are all integers. The price space is truncated and divided into N

Figure 6: The natural nodes in the Q-space.

uniform intervals. The value function is found in every node of the three
dimensional parallelepiped in the (t, q, P)-space. We use backward induction,
starting at time T.

The time horizon T is typically measured in whole hours. If Tl = M is an
Ul
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integer number of hours", it is natural to use one hour as the basic discrete
time interval. In this case both Tl and T2 are reached after an integer number
of periods. The initial time node is denoted O,the last node is T, that is,

O = to, ... , tT = T

totally T + 1 nodes. The control applied in the first hour is found in time-
node O.

The time discretization combined with the control gives a natural dis-
cretization of the Q space into Tl + 1 nodes, see figure 7. Totally the (Q, t)
space consists of (Tl + l)(T - Tl + 1) nodes".

Q(t)

Node 3

Node2

Node 1

° 2 3 4 5 6

Figure 7: The discretization of the (t, Q)-space.

The price process Pt studied in section 3 is unbounded. The infinite P-

space must therefore be truncated before the optimization problem can be
solved numerically. Assume that the process can only take values in [P, Pl.

6This is typically the case for the traded contracts. To increase numerical stability we
may introduce e.g. four sub steps within each hour.

7For the test case we have Tl = 1667 and T = 3672. Therefore, with the P space divided
into 100 intervals, we get 335 million nodes in the three dimensional parallelepiped.
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This interval is represented discretely as {P, P + ~P, p +2 .~P, ... ,p +N .
~P, P} that is, Pi = P + i .~P.

4.2 The numerical scheme

On the grid previously stated, we define

This is a discrete approximation to the continuous value function'' in equa-
tion (2.1), see page 73. After the choice of control the HJB equation (2.3)
reduces to the partial differential equation

Vi + jJ(t,p)Vp + ~0"2(t,p)Vpp + itVq + e-lititp = O (4.1)

where it is either O or Ul.

Let us first focus on the interior of the P-space. We use finite difference to
approximate the derivatives of V. At time tk we use the known value function
Vk+l to approximate Vq while the unknown Vk is used for Vp. Therefore the
scheme is explicit in the q-variable and implicit in p. We use

~fVk}
Vk+l _ Vk,

'"
t,] t,]

åt i,j '" f::::..t

~{Vk}
Vk+l _ Vk+l

:::::; i+l,j i,j
åq i,j f::::..q

:p {V:~j} { Vk'+I-Vk, when jJ?'O1,'2 1,,2

:::::; k 6.Pk
11;'1-11;'1-1 when jJ < O.6.p

_!_ {Vk}
Vk+l - 2Vk + vk l

:::::; t,] t,] t,]-

åp2 i,j (f::::..p)2

This is a downwind-upwind discretization of ~~, Observe that the approxi-
mation is done in the flow-direction of the underlying process. Define

jJ+ max(jJ, O)

jJ max(-jJ,O),

8We denote the approximation and the true (continuous) function as V, When this is
unclear, the continuous function is called V.
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Observe that M+ +M- = IMI and M+ - M- = M· Inserting the above approxi-
mations into (4.1) we get

V;k+l _ V;k
~,J ~,J

b.t

Using that b.q = b.tUl, it E {O,Ul} and collecting the terms, we get

when it = Ul. When it = O the equation is

Vk+l _ Vk
~,J ~,J

b.t

Observe that this may be seen as discrete representations of (2.4) with the

convention that we move up in the Q-grid over the time step when Ul IS

chosen.

Since we use backward induction, Vk+l is completely known at time tk.

At the boundaries two and three (see figure 2 on page 76) the control must
be Ul and O respectively, that is, there is no choice here. At these boundaries
the value function is equal to the functions Gand F. At the boundaries one
and four, and in the interior both control choices may be used.

The above scheme can be organized as

kV;k bkV;k kV;k -si; k At Wk+l ( k )a· .. 1+ . ·+c· "+l=e U"PJ'U + .. U··J ~,J - J ~,J J ~,J ~,J ~,J ~,J (4.2)
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where

At the boundaries 2 and 3 of the (Q, t)-space (see figure 1 on page 74) fl
is known. At each time step tk and for each Q-node qi away from these
boundaries we find the optimal control

and thereby also the righthand side of the linear system of equations defined
by equation (4.2).

Before we focus on the discretization on the boundaries of the P-space, we
show how the above scheme may be linked to a Markov chain approximation
of the underlying stochastic process.

With reference to the book by Kushner and Dupuis (2001) we note that
the scheme (4.2) may be written as

vk =~,J

l={j-l,j+l}

with the following definition of the "probabilities";

p(i,j; k, k + 1)

p(i,j - 1; k, k)

p(i,j + 1; k, k)
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Observe that p(.) 2:: O and 2: p = 1. With this representation we see that this
scheme may be associated with a Markov chain approximation of the price

process. The chain lives in the discrete (p, t) space, and time is treated as
just another state variable. At each period there is only a certain probability
that a time step is taken. See figure 8. This intuition proves useful when we

study the boundaries of the P-space in the next subsection.

Interior Boundary

O 2 Oj+1

: (Reduced)

O

'(~
O O O

k hl k k+1

Time

Figure 8: The Markov chain interpretation, with reflection on the boundary.

4.3 The boundaries of the price space

In this section we study the boundaries of the truncated P-space [P, Pl. Two
different types of boundary conditions are used. We first present the method
called "Absorption". This type of boundary conditions typically arise when
a process is absorbed in a boundary node, and a specified value is known in
that node. In this case conditions are put directly on the value function. In
the theory of partial differential equations such boundary conditions is called
"Dirichlet" conditions.

The second method is called "Reflection", and must be used when we
study a process that is reflected at a boundary. In this case it is important
that the discrete Markov chain is reflected in the proper direction. This can
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be seen to correspond to conditions on the derivative of the value function,
so called "Neumann" conditions.

We now show in detail how these boundary conditions affects the above
scheme.

4.3.1 Absorption

We first focus on how absorption may be implemented. Suppose that the
value v:~is known (or approximated) for all k, i at the boundaries of the
P-space, that is,

v:~ V(tk, qi, P)

V:~N+l - v«, qi, P)
for all i, k. Next to the lower boundary the equation (4.2) must be changed
to

bkVk kVk - -8tk k At Wk+l ( k ) kv- (t P)1 i,l + Cl i,2 - e Ui,lPlU + i,l Ui,l - al », qi,_

and

bk vk k Vk _ -Mk k A Wk+l ( k) k V-( P)N i,N + aN i,N-l - e Ui,NPNut + i,N Ui,N - cN tk, qi,

at the upper. Remember that Po = P and PN+l = P.
In this subsection the value function were taken as given at the boundary.

The problem is that it may be hard to say anything meaningful about this
value in advance. The error done in this specification typically propagate
towards the center of the grid. It is damped as it gets far away from the
boundary, but still this may be a problem for the scheme, especially when
the volatility (modelled by (7) is large. The solution is to truncate the price
process at levels far away from the regions of interest. Further, we must
keep an eye on the approximate solution near the boundaries, and adjust the
specifications if it is clearly inconsistent with the real value function. Such
methods are quite easy to implement, but is costly since the grid must be
enlarged and the resulting value function inspected carefully.
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4.3.2 Reflection

Reflection is an alternative to the method studied in the previous section.
The idea is easier grasped when we think of our scheme as a (Markov chain)
approximation of the movements of the price process. Instead of letting
the process be absorbed at the boundaries as in the last section, we now
assume that the process is reflected at the boundaries. This may be seen as
a condition on the derivative of the value function, and as such, a weaker
condition.

When the real process possess reflection, it is important that the reflec-
tion in the scheme is implemented in a consistent manner. The process we
study has no natural reflection. We have therefore freedom to choose the
approximation. What the most efficient reflection looks like is not obvious
in advance, and we found a good approximation by experimentation.

At the boundaries the chain was reflected back into the grid, we here use
the lower boundary as an illustration. When the chain goes from node 1 to
node Oit is immediately returned to node 1, i.e. the probability p(I, 1;t, t)
is positive. Now the expected movement of the process is shifted upwards.
To reduce this effect, we decrease p(I, 2; t, t) and increase p(I, 1; t, t) further.
For our problem this procedure proved efficient.

We here present the chosen probabilities at node 1,

p(I,I;t,t)
p(I,I;t,t+I)
p(I, 2; t, t)

-~
bl
1
b;"

_ Cl-al

bl '

where a, b and c (we have suppressed the time index) is defined on page 92.
We see that they sum to unity. Further, if the drift is positive at node 1,
they are all positive and less than one. Therefore we may interpret them as
transition probabilities. The procedure is similar at node N.
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4.4 Implementation of the scheme

Our problem is time dependent, with very explicit periodicity on a daily,
weekly and yearly scale. Further, the mean reversion effect is small. This
means that the drift of the process change sign during the day. We may
therefore suspect that the reflection procedure at node 1 is a good approxi-
mation when the drift is positive, but poor when the drift is very negative.
Opposite in node N. We have therefore implemented absorption when the
drift is smaller than a chosen level (e.g. zero). The value associated with
the absorbing node is approximated as the value at the previous time step.
Then the unknowns ~~l' ... ~~ may be found as the solution of the system

of linear equations defined in equation (4.3). Afterwards ~~o and ~~N+I can
be approximated with interpolation of their neighboring values.

To illustrate the above discussion we present the scheme in a situation
where reflection is used on the lower boundary, and absorption on the upper.

We can find ~~ for all k, i, j by the followingprocedure

1. ~~ = O is given from the end conditions.

2. When ~~/lis given, find if = [~\, ... ,~~Nl as the solution of the
following linear system of equations (For simplicity of notation, we
suppress the sub- and superscripts of V,A and G.)

AV=G (4.3)

where

bl Cl O O

a2 b2 C2 O

A=
O aN-I bN-I CN-I

O O aN bN
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and

G=
+ W.k+1(Uk)z,2 z,2

Wk+1( k) TTk+ i,N Ui,N - CNvi,N+l

Here

This system of equations is tridiagonal and can be solved efficientlyby
Gauss elimination.

3. Iterate from step 2.

Observe that the coefficientsa, b,c of the A matrix are independent of the
control and the Q-Ievel. Therefore, at a given instant tk, the A matrix is the
same for all Q-Ievels. The three-diagonal system of equations is solved once,
with a loop calculating the solutions corresponding to the different righthand
sides. This improves the efficiencyof the algorithm considerably. Also ob-
serve that bi ~ 1.0, and that the matrix A is strictly diagonal dominant.
This secures the stability of the scheme.

4.5 The control matrix

The algorithm in the previous section calculates the value and the optimal
control in each node of the grid. As previously pointed out, the grid may
typically have more than 300 million nodes. Consequently it is inefficient
to store all the information. We chose to store the value only at the first
time step. This gives an estimate for the initial value of the contract. The
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value of the contract may be interesting at later time steps if the contract is

re-traded, but we put this aside at the present.

The optimal control is however needed at each node of the grid. Still the

structure of the problem gives a limited demand for storage. The point may

be explained by the following argument.

Suppose the time is tk and the current price is Pl. Focus on the amount

delivered up to this point, i.e Qt. If we choose to deliver Ul for Qt = qj, then

we chose Ul for all qm where m < j. Therefore we need only keep the critical

qii, such that

u~ { ~'
for ti < n
for ti 2:: ii.

This critical level must be found for all tk and all Pl, thus giving a N x T

matrix. See figure 9. If the process parameters are fixed for the whole

<D
E
::>g

Price o
Time

Figure 9: The control matrix for the FLC described in the introduction.

period, this matrix is generated only once. This can be quite time consuming,

especially when the contract horizon is long.
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The real observed price is now used to find the optimal control for each

hour, and to calculate the realized value of the contract. In section 6 we use

this algorithm to analyze several different contracts. The resulting control

policy is compared to the strategy of competitors in the market.

4.6 Deterministic test

It is important to try to check the results generated by the numerical algo-

rithm. For this problem we have no explicit solution to compare with. Still,

if we let a == O, we may test the algorithm by the following method.

Suppose we study a contract over the period" [0,168] and that we have

to find the 100 hours with the highest price. If the price process is purely

deterministic, the price is known for the whole period at time O. It is therefore
a simple task to find the hours to exercise the contract. The time O value we

achieve (called explicit solution below) is compared with the value calculated

by our algorithm. The price grid is [-50,300] with L::.p = 3.846. In the

time space we use L::.t = 1. The results are presented in table 1. Relative

error is the absolute error divided by the explicit solution. Observe that

Table I: Deterministic test of the algorithm
Price time O Explicit solution Algorithm Absolute error Relative error

-23 -14666 -6988 7678 -0.520
O 7597 8821 1224 0.160
50 55840 54311 -1529 -0.027
100 104104 102461 -1643 -0.016
150 200789 198949 -1840 -0.009
250 249205 245088 -4117 -0.017

the numerical scheme is good in the middle of the grid but worse close to

the boundaries, especially at the lower boundary. The error close to the

boundaries is expected. We can however not explain the asymmetry in the

error.

In this version of the paper we do not include the proof for convergence

9For simplicity, we study a contract with a short settlement period.
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of the algorithm. This proof is rather technical and does not give any new
intuition for a reader interested in applications.

4.7 Remarks

The above scheme has transition only to neighboring!" nodes. This limits

the possible movements of the process from hour to hour. The weakness of
this implementation may be dealt with in different ways. One possibility is
to use non-local finite difference approximations. Another is to introduce
intermediate time steps, where the control is inherited from the large time
step of one hour.

An easier way to more flexible movements of the process is to introduce
intermediate time steps. At each small step the optimal control is found. The
control for the present hour is the accumulated controls for the sub-steps. We
have promising results using this method, but the full study of this extension
is left for future work.

l°From one time step to the next the Markov chain may move to other nodes. This
is because the probability that a time step is actually taken is less than 1.0. If a fully
explicit scheme was used, the chain had been limited to the neighboring nodes. This
motivates, from a Markov chain perspective, why implicit schemes are more stable than
explicit schemes.
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5 Data and estimation

We have chosen a stochastic process for the spot price and developed a nu-
merical algorithm to find the value and optimal policy for a flexible load
contract. The next step is to implement our algorithm. To do this we need
to estimate the price process from historical prices.

5.1 Price data

To estimate the parameters in the price process we use historical spot prices
obtained from Nord Pool. The spot price is called system price, and is the
price in NOK for one MWh of electricity Jor a given hour. Our data sample
consists of 76 608 hourly prices from 4. January 1993 to 1. October 2001.
See figure 10 for a graphical illustration of the data sample. There where no
missing data but the prices were in a standard time format. Since cyclical
patterns of electricity demand over the course of a day mostly depends on
the time shown by the clock and not the time implied by the sun, we need
to adjust for daylight saving time. To adjust for daylight saving time we
inserted one fictitious price observation in the spring and removed one in the
autumn. The observation we inserted in the spring was the average of the
price value before and after. If we do not adjust for daylight saving time we
will get a phase shift between the daily patterns on a winter day and the
daily patterns on a summer day.

Another characteristic of our data sample is that it includes several price
spikes due to unusual load conditions. Since we chose a price process with-
out a jump term we are unable to model price spikes or fast mean reversion
directly. We must therefore be careful not to let the spikes influence the
parameter estimation too much. By closer inspection it seems that the price
spikes mainly occurs in the morning or in the afternoon, with a duration of
one to six hours. Fortunately the data sample used to estimate the parame-
ters in the weekly process, Xt, does not include many spikes. The reason for
this is that the data sample consist of the first hour on every Monday and
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System price
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Figure 10: System price for the period 4. January 1993 to 1. October 2001, a
total of 76 608 hours. Since we have plotted hourly prices we can more clearly see
the occasional price spike. We can also see periodicity in the price.

at this time of the night the demand is low and price spikes rarely occurs.
Since the intra-weekly process, Dt, is deterministic an occasional spike does
not influence the estimation much. If we look at the descriptive statistics in
table II the price spikes shows up as increased skewness and kurtosis. We
can also see from figure 10 that the occurrences of price spikes has increased
dramatically the last three years. The descriptive statistics also indicate that
the spot price is lower and more volatile in the summer than the rest of the
year. The low price is due to the seasonal pattern of electricity consumption,
and the high volatility is because of deviations in hydrological balance.

5.2 FLC data

To be able to compare our algorithm to real market participants we have
managed to get hold of an unique data-set. The data-set consist of historical
FLC policies for nine real market participants. The policies are for two kinds
of flexible load contracts:
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• Summer FLC: With a settlement period from 1. May to 30. September.

The flexibility is to exercise in 1667 of 3672 hours (45.4%) .

• Winter FLC: With a settlement period from 1. October to 30. April.

The flexibility is to exercise in 3333 of 5088 hours (65.5%).

Together these two contracts make up a flexible load contract called "5000

hours FLC with 2/3 of the volume in the winter and 1/3 in the summer."

For three of the participants we have policies from 1. May 1997 to 1. May

2002, and for three other participants we have policies from 1. May 1999.

Due to incompatibilities we could only use the summer FLC policies for the

remaining three participants.

The FLC data was obtained from Skagerak Energi AS - one of Nor-

way's leading power companies. To get hold of the data set we had to

anonymize the data by scaling the contracts and by naming the participants

as Cl, C2, ... , C9.

5.3 Parameter estimation

With the price data we can now begin the estimation of the parameters in

the spot price process. As we recall from section 3 it is possible to estimate

the spot price parameters by solving the maximization problem given by

(3.7) on page 87. To separate the fast mean reversion generated by large and

sudden changes in the demand or supply from the more slowly mean rever-

sion generated by the hydrological balance, we used a two stage estimation

procedure. First we estimated the parameters in X, from hourly prices with

a weekly sampling interval. By construction D, will start out at zero every

week, meaning that D, will be zero in the weekly data sample. Assuming

an hourly sampling resolution of P, we pick every 168'th value and use this

data sample to estimate the parameters a, 0", Af, bo, A:i, Bf and Bf by

solving (3.7) on page 87. The second stage is to estimate the parameters in

I); from the full data sample P. To get an estimate for the parameters in D,

we insert the parameters estimated from the first stage into (3.6) and solve
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the maximization problem given by (3.7). To ensure that D, start at zero at

the beginning of every week, we set do equal to the value of =E at time tI.

Data sample
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Figure 11: We can here see the relationship between the D; sample and the X;
sample. We have in this figure on purpose picked a period with price spikes to
show that X; is usually not effected by spikes.

To incorporate new spot prices into our sample we re-estimated the pa-

rameters 1. May and 1. October each year. The re-estimation of the param-

eters made it possible to adapt to changes in dynamics of the spot price and

use the largest available sample to get more accurate estimates. The results

are given in table III. As we can see from the estimated parameters the

speed of mean reversion, a, is equal in all sub samples. This indicates that

the mean reversion property of the spot price dynamics is unchanged over

the last eight years. This is however not the case for the volatility parameter,

o, which has decreased. The deseasonalised long run mean, bo + do, has also

decreased during the data period. Since we are operating with nominal prices

we expected an increase, but the effect of the deregulation of the electricity

market and several years with more than normal precipitation must have

counteracted this.
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The remaining parameters in the table determines the shape of the sea-
sonal patterns. The day and weekly price patterns are quite stable through-

out the sample period. The parameters Af, A~, Hf and B~ which control
the yearly price cycle on the other hand seems to be more varying. This may
indicate that the yearly price pattern is influenced by other factors than just
the deviation from long run mean and the time of the year.
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Table II: Descriptive statistics

Nominal prices
Avg Min Max SD Skewness Kurtosis

1993* 80.04 14.27 193.75 41.10 0.1896 2.1258
1994 182.65 60.81 459.35 68.49 1.0679 7.0252
1995 117.67 25.38 210.89 60.59 -0.5807 2.7852
1996 253.63 102.97 391.62 79.16 0.2880 3.0466
1997 134.99 28.40 377.80 73.61 0.7945 4.4389
1998 116.35 17.97 735.28 70.47 0.5873 17.7840
1999 112.11 39.99 654.98 67.29 1.9075 28.3528
2000 103.33 19.01 1808.66 66.06 12.7962 410.4873
2001* 188.46 31.21 1951.76 67.86 11.6510 218.7751
Full sample 142.42 14.27 1951.76 67.86 2.2028 33.5961
WI 154.56 20.36 1951.76 65.90 5.4542 100.3643
SO 124.54 14.27 391.62 73.05 1.0170 3.7532
W2 157.53 29.45 735.28 51.37 1.1702 6.0739

Deseasonalized prices
Avg Min Max SD Skewness Kurtosis

1993* -34.41 -94.98 90.41 28.15 0.31 2.64
1994 57.05 -51.22 318.14 40.31 1.30 8.77
1995 -7.93 -107.76 75.60 28.87 -0.49 3.23
1996 128.55 -7.91 271.32 53.04 0.03 2.38
1997 9.06 -74.10 234.89 28.50 1.02 5.85
1998 -9.30 -97.56 583.46 27.80 1.99 46.66
1999 -13.48 -61.04 509.17 23.27 3.81 60.41
2000 -22.25 -74.80 1658.95 36.79 19.46 724.19
2001* 66.58 -93.85 1801.81 68.14 10.55 195.98
Full sample 18.35 -107.76 1801.81 63.78 2.74 39.26
WI 14.32 -88.16 1801.81 63.26 5.99 113.10
SO 20.48 -97.56 271.32 70.63 1.09 3.68
W2 20.09 -107.76 583.46 50.44 1.31 6.29

Descriptive statistics conducted on yearly and seasonal subsamples. WI denotes the period 1.
January to 30. April, SO denotes the period 1. May to 30. September and W2 denotes the
period 1. October to 31. December. The deseasonalized is performed by subtracting EdPs],
s = {l, ... ,8760} from the prices at the beginning of each year. The main results from the
statistics is that the average prise has decreased and the skewness and kurtosis has increased.
We also see that the skewness and kurtosis is highest in the WI-period, and the S-period has
the highest volatility.
*not all prices for this year is included in the calculation of the statistics
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6 Results

The purpose of this paper is to study how a flexible load contract can be

exercised optimally when only historical spot price information is used. We

divide this chapter into two parts. In the first part we analyze the exercise

policy from our algorithm and in the second part we study different properties

of a FLC.

6.1 Results from the case

In this section we focus on the case contract defined in the first section. This

was a FLC for. the summer 1997 (from 1. May to 1. October), totally 3672

hours. In our case we paid 958525 NOK for the right to withdraw 8335 MWh,

with a maximum of 5 MWh per hour. Therefore our target is to exercise the

contract during the 1667 hours with the highest spot price.

In figure 12 we show how our algorithm exercised the contract during the

summer period of 1997. The plot shows the accumulated control (i.e. the

Q-variable) at each instant. We compare this with the aposteriori best path

which picks exactly the best 1667 hours. We also show how the contract

was utilized by a market participant. Even though the historical contract

is closer to the aposteriori best, it is not necessarily better than the model.

This is because there is no monotonicity in the value of the policies as we

get closer to the ex post optimal curve. This can be illustrated by the policy

picking the same hours as the optimal, but with a 12 hours lag. This policy

will normally perform poorly (because of the low price levels in the night)

but it will be very close to the aposteriori optimal curve. In figure 12 we have

also plotted the frequency plot of all the prices together with the distribution

of the prices for the exercised volume. As we can see, our model managed

to exercise most of its volume on the "right side" of the price distribution.

This indicates an ability to distinguish a high-price state from a low-price

state. The actual performance of the model is difficult to measure from the

frequency plot or the accumulated control. Therefore we need to calculate
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Table IV: Value of exercised FLG (Summer-1997)
Total revenue Revenue excess Excess revenue
from FLC base load per MWh

Model:
lh 1 000559 98353 11.80
24h 982 141 79935 9.59

Competitors:
Cl 1 010 281 108 075 12.97
C2 1 000506 98300 11.79
C3 1 007 316 105 110 12 61
C4 986806 84600 10.15
C5 1 013 166 110 960 13.31

Value of the exercised FLC obtained by our model and 5 competitors. Since the total
revenue mainly consist of the value of the base load, and this base load is often hedged
when a FLC is bought, it is common to look at the total or per MWh excess revenue.
For this particular FLC we see that competitor C5 managed to obtain the highest
revenue, with our model obtaining a 1.2% lower total revenue.

the realized revenue from the different policies. The results are given in
table IV. We see that the model based on an hourly update gets a fourth
place, but the difference from the other competitors is relatively small. The
model has an advantage since the control can use hourly price information.
We can adjust for this and use the (possibly!") more realistic model where a
24 hours deterministic development of the observed price is used to find the

control. We see that the result is worsened, as expected.

It is not possible to conclude how good our model is just by analyzing a
single FLC. Wemust keep in mind that this problem is of a stochastic nature.
Therefore even though we knew the real stochastic process (which of course is
impossible) the optimal control could give bad results when only one season

llThe market participants does have good estimates for price development the following
days. If we use this information the model with an hourly update may be realistic after
all.
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(i.e. one replicate) is studied. But since the expected value is maximized,

the long run accumulated value should be good. In the next subsection we
introduce a new FLC for the winter period and again show how our model
performs compared to reallife competitors during the 1997 - 2002 period.

6.1.1 Results 1997-2002

To supplement the FLC for the summer period we introduce a new type of
FLC for the winter period 1. October to 30. April, totally 5088 hours. The
new contract has a total volume of 16665 MWh and a maximum effect of
5 MW. Our goal is therefore to pick the 3333 hours with the highest price.
With this contract we are able to showhow the model performs over the whole
1997 - 2002 period. Finding a good method to compare different contracts
is not straight forward. Contracts with the same degree of flexibility and
with equal delivery period must be used. In addition competitors may have
different risk attitudes. We decided to focus on the excess revenue obtained
for the period 1997-2002.

The results are presented in table V and figures 15 to 23 starting on
page 123. We may draw some conclusions from the results. First of all, our
model manage to obtain the highest accumulated revenue during the period.
The model also demonstrates that it has the courage to pick many hours
early if the prices are sufficiently good. Opposite, the model waits for a long
time if the prices are poor. This can be seen as a risky behavior, and may
be a consequence of the risk neutral model+ formulation. The results also
shows that the results vary substantially from extremely good (as in W2001)
to extremely bad (as in W2000), but with a good average performance. This
may also be seen as a materialization of risk neutrality. We will in the next
subsection take a closer look at the FLC for the winter period 2000, and try
to analyze the result.

Another observation is that our model seems to perform better for the
winter contracts than for the summer contracts. One reason can be that the

l20n the other hand, we believe that this routine does the correct trade off between the
different effects of the model such as interest rate, volatility, reversion and periodicity.
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winter contract has a lower degree of flexibility than the summer contract.
For the winter contract we have to exercise 3333/5088 >::::i 65.5%of the hours
against only 1667/3672 >::::i 45.4% for the summer contract. Another reason
may be that the process is best calibrated to the winter data. The reason for
this is that sincewe have only used two trigonometric functions to model the
changes through the year, the process can not model the summer vacation
and all the holidays in May properly. The low prices in the summer is
typically expected to appear 6 months after the highest winter prices. This
is not necessarily the case in the real world. Normally the lowestprices appear
in the vacation weeks of July. Our spot process does not expect collapse in
the July prices, and therefore the routine has a tendency to pick too few
hours in May and June. Then, when the really poor prices appear in July
these hours cannot be exercised either. Now the routine is basically forced
to take all the hours in August and September. This scenario is broken if
the early summer prices are sufficiently high as in the summer of 2001. We
believe that the performance in the summer contracts could be improved
with a more representative process. Several different ideas can be followed.

• We could include more trigonometric functions into the spot process.

• We could estimate separate summer and winter processes.

• We could include a drift term into the process such that the holidays
are placed properly.

We feel that we have demonstrated that the model works quite good with
this level of precision, and leave the process of refinements for future work.
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6.1.2 A closer look

The revenue from the FLC during the winter 2000 period was very low.
In fact the revenue was lower than the value of a base load contract. We
have two different explanations for this. Firstly, there may be weaknesses

in the routine, especially due to the limitations of the movements of the
discretized price process from hour to hour. Secondly and more important
there are clearly an informational asymmetry since the market has access to
information the model does not have.

From figure 21 on page 129 we see that the algorithm starts out with
an exercise policy close to maximum. This was a result of the higher-than-
normal prices in this period. The degree of exercised volume was later re-
duced some, and the difference between the competitors policy and ours was
reduced. During February our model saw sufficiently high prices to exercise
the remaining volume, thereby missing several price spikes in March and
April. This is reflected in the density plot on page 129 as the low volume
exercised in the 180 - 240 price range. Ifwe had used a price process that was
able to model spikes, the algorithm would not have exercised the remaining
volume so soon. The forward prices did capture large parts of the price spikes
and if incorporated would have helped. On the other hand the FLC for the
winter 2001 period did very well since the routine overlooked the predictions
given by the forward market. So the effect of information from the forward
market is not clear. We therefore believe the main reason for the poor winter
2000 results was the algorithms inability to capture the possible future price
spikes.

6.2 Analyzing properties of a FLC

In the remaining part of this section we analyze different properties of the
flexible load contract such as pricing, value of flexibility, different update
policies and parameter sensitivity.
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Figure 13: The value in NOK/MWh for a FLG against spotprice pr. 1.May 1997.

6.2.1 Pricing

Until now we have primarily focused on the FLC's exercise policy. We now

turn our attention to valuation of the contract.

In our context we have no forward market, so the value of a FLC should

be the expected discounted cash flow generated from the optimal exercise

policy. If there is a forward market, the FLC price would be influenced by

several factors such as the expected value of the exercise policy, risk premium

in the forward market and the value of the strategy consisting of using a FLC

to hedge forward contracts with the highest price. To illustrate the last part,

let us assume there exist a 1667 hours base-load forward contract with a price

125 NOK/MWh and a settlement period within the period 1. May 1997 -

30. September 1997. Then the price of the FLC defined in the introduction

section must be greater than 125 * 5 * 1667 = 1041875 NOK. If not, we

can construct an arbitrage by selling the forward and buying the FLC and

choosing an exercise policy corresponding to the settlement period of the

forward contract. This would give us a positive present value with no risk.
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Figure 14: The left plot shows the initial value of 20 FLC's with different degrees
of flexibility. The right plot presents the price pr. MWh as a function of the
flexibility when the spot price is 125.54 NOK. This was the long run price level pr
1. October 2001.

Figure 13 presents the time zero value of the optimal exercise policy for
the FLC defined in section 1 on page 70. Clearly the value is increasing with
increasing spotprice. The effect of the mean reversion of the spot price can
be seen as a slower increase or decrease in the curvature when the spot price
moves away from the long term spot price level of 149.91NOK/MWh. Even
with a negative spot price, the contract has a positive value.

6.2.2 Flexibility

The flexibility of a flexible load contract can be measured by the percentage
of the hours we must exercise. A high percentage implies a low flexibility
and vice versa. The FLC's value pr MWh is increasing with increasing flex-
ibility. If we have no flexibility the FLC is basically an ordinary base load
contract. To see the value of the flexibility we have valued several contracts
with different degrees of flexibilities. The results are given in figure 14. The
contracts have a one year settlement period. We used parameters estimated
from 1993-2001,given in the right column in table III on page 107. Observe
that the value falls close to the upper grid boundary when the flexibility is
high. This is a numerical error due to the grid constraints.
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6.2.3 Sensitivity to the spot volatility and mean reversion

We will now analyze the sensitivity of the spot volatility and speed of mean

reversion. The analyze is conducted by first changing the spot volatility,
a, while keeping all the other parameters constant and then changing the
speed of mean reversion. We used the same parameters as used in our case
contract. With a spot price of 150 NOK we got a value of 1 352 230 with
a = O, 1 381 588 with a = 2 and 1 446 230 with a = 4. This indicates that
the value of a FLC increases with an increase in the volatility. Byexamining
the exercise policy we noticed a tendency to wait longer with the exercise
when the volatility was high. As we can see from the expression for the
spot price process, (3.4) on page 85, the spot diffusion is reduced when the
speed of mean reversion is increased. That is, a has the opposite effect as
the spot price volatility a, With infinite reversion the spot price would be
deterministic, and the contract exercised according to the seasonal patterns.

6.2.4 Time between updates of the exercise program

As discussed earlier the market participants use different effort to optimize
the utilization of these contracts. The trade off between payoff and effort
must be done carefully. The time invested in the optimization must be bal-
anced against the size of the contract. To analyze the sensitivity to the time
between updates of exercise program we find exercise revenue for different
lengths between policy updates. The idea is to calculate the full optimal con-
trol matrix with an hourly resolution. The 24 hours exercise program is then
calculated by using the observed spot price once every day, and a determin-
istic development of the price between these observations. This was repeated
with weekly and biweekly observations. From table VI and table VII we see
that the largest average decrease occurs from hourly to daily update. Hourly
updates may seem unrealistic, but price-conditioned exercise policies exists
and are very similar to hourly updates.

The effect of time between updates is less in the summer than in the
winter. The difference in revenue from weekly to biweekly is very small,

117



An analysis of derivative prices in the Nordic power market

Table VI: Effect of time between policy-updates, I
1h 24h 168h 336h

S-1997 11.79 9.59 9.82 9.82
W-1997 10.76 11.16 10.84 10.95
S-1998 -1.04 -4.27 -5.08 -4.49
W-1998 11.18 11.12 10.77 10.22
S-1999 20.88 18.62 18.30 18.33
W-1999 10.04 9.48 9.10 8.28
S-2000 17.30 11.88 12.74 12.27
W-2000 -4.56 -3.90 -5.59 -4.38
S-2001 20.83 18.30 17.34 17.07
W-2001 13.24 12.47 12.28 12.07
Avg. summer 13.95 10.82 10.62 10.60
Avg. winter 8.13 8.07 7.48 7.43
Avg. all 11.04 9.45 9.05 9.01

The effect of time between policy-updates expressed as excess revenue per MWh.

Table VII: Effect of time between policy-updates, II
1h 24h 168h 336h

S-1997 98353 79935 81 850 81 850
W-1997 179 315 185980 180649 182482
S-1998 -8670 -35 590 -42342 -37424
W-1998 186315 185315 179482 170316
S-1999 174 035 155 200 152 531 152 781
W-1999 167 315 157985 151 652 137986
S-2000 144 195 99020 106 188 102270
W-2000 -75990 -64 995 -93 157 -72 993
S-2001 173620 152530 144529 142278
W-2001 220645 207815 204646 201 147
Sum summer 581 450 451 095 442 755 441 755
Sum winter 677050 672 100 623271 618938
Sum all 1 259 050 1 123 195 1 066026 1 060693

The effect of time between policy-updates expressed as excess revenue.

indicating that one could use a biweekly update policy for small contracts or
if updating the policy is costly.
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7 Concluding remarks

In this paper we have analyzed flexible load contracts by formulating the con-

tract as a stochastic optimization problem. The value function is expressed

as the solution of the Hamilton-Jacobi-Bellman equation in which the op-

timal control takes only the extreme values. By carefully examining the

dynamics of the spot price in the Nordic electricity market we decided to use

a time dependent mean reverting Ornstein- Uhlenbeck process. The process

modelled daily, weekly and yearly price cycles. In addition it captures mean

reversion due to deviations in the hydrological balance. The process has 21

parameters which was estimated from historical price data by a mixture of

OLS and maximum likelihood. Estimation was conducted partlyon a weekly

data sample and partlyon an hourly data sample. This to distinguish the

short range factors from medium range factors.

To be able to solve the optimization problem we discretized the time and

state space and derived an algorithm to find the value function and optimal

control in each node. To dampen the effects of a truncated price space we

combined absorbing and reflecting boundary conditions.

We implemented the algorithm and calculated the optimal control for the

five year period 1. May 1997 to 30. April2002. The accumulated revenue from

this control was compared to the revenue for nine market participants. We

find that our algorithm obtains the highest accumulated exercise revenue for

this period. The model also demonstrates that it has the "courage" to pick

many hours early if the prices are sufficiently good. This can be seen as a more

risky behavior, and may be a consequence of the risk neutral assumption.

Another observation is that our model seems to perform better for winter

contracts than for the summer contracts. We believe the performance for the

summer contracts can be improved with a more representative process.

We see several important model extensions for further research:

• The process modelling the spot price should exhibit spikes, i.e. sudden

"jumps". This is especially important in the European market where
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price spikes is common. This can be reflected in the model by intro-
ducing a nonlinear function of the OU-process. The calibration could
be done with maximum likelihood as before.

• The underlying spot price process could be calibrated to the forward
and future contracts traded in the market. Since electricity is a non
storable commodity, there is no clear connection between the expected
future spot price and the value of these financial products. To use the
financial market to predict the future spot price one first need to know
the market price of risk. If this market price of risk is unknown or
stochastic one may be better off calibrating the spot price partially to
historical information and partial to the information from the financial
market.

In our opinion this model demonstrates a great potential for utilization
of contracts of this type. The methods can be developed further to improve
the results even more. We stress that the methods are fully operational, and
can be implemented by practitioners, for instants for benchmarking or as an
aid to improve the exercise policy.
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Empirical study of the risk premium in

an electricity market *

Fridthjof Ollmar

Abstract

We conduct an explorative analysis of the risk premium in the

Nordic power market. From our theoretical model of an electricity

market, we define the risk premium as the conditional expected re-

turn pr unit risk. The discretized version of the risk premium is es-

timated by a Nadaraya-Watson estimator, obtaining a nonparametric

estimate. From forward and future data from 1995 to 2002 we find:

A negative risk premium (implying that the market on average can

be described by contango), increased volatility with increased forward

price and clear seasonal patterns. We argue that the large dependency

on hydroelectric power in the Nordic power market is the main reasons

for the structure of the risk premium.

Key words: Risk premium, electricity market, nonparametric

*1would like to thank Gunnar Stensland, Arne-Christian Lund and Jostein Lillestøl
for helpful comments. 1would also like to acknowledgehelpfulsuggestionsfrom the par-
ticipants at the Statkraft alliancemeeting in Amsterdam 2003.
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lIntrod uction

With risk premium we mean expected return pr unit risk. The risk premium
is important for producers and consumers wanting to hedge their exposure.

It is also essential for traders wanting to maximize their return / risk ratio.
For financial engineering purposes, knowing the risk premium enable us to
risk-adjust cash flows.

A positive risk premium means that the commodity forward prices are
backwardated. Backwardation implies that immediate ownership of the phys-
ical commodity entails some benefit or conveniencewhich deferred ownership
via a long forward position does not have. The reverse situation is called con-
tango. The benefit or disadvantage expressed as a rate is usually called the
convenience yield. For commodities that sustain over time (i.e. they are
storable), convenience yield is a naturally concept. The classical theory of
convenience yield is often referred to as "the theory of storage" and is based
on work by Kaldor (1939), Working (1948 and 1949) and Telser (1958). The
theory explains convenience yield as a timing option, and the main idea is
that the holder of a storable commodity can decide when to consume it. If
it is optimal to store a commodity for future consumption, then it is priced
like an asset, but if it is optimal to consume it immediately, it is priced as a
consumption good. The spot price of a storable commodity is thus the max-
imum of its current consumption and asset value, and the forward prices is
derived from the asset value of the deferred right to consume after delivery.
With nonstorable commodities like electricity we must price them as pure
consumption goods.

The value of a consumption good depends on the relative bargaining pow-
ers amongst the market participants. In a power market we have: Producers
(who wants to sell), consumers (who wants to buy) and traders (who buy or
sell depending on the expected profit they get).
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In this paper we examine the risk premium in an electricity forward mar-
ket. The nonstorable property of electricity renders the cost-of-carry rela-

tionship between the spot price and the forward price useless. Since it is
possible to store the good that is used to produce electricity (e.g. in an
hydro-power electricity market it is possible to store the water that is used
to produce the electricity), one could argue that the traditional methods of
cost of carry can partially be used in an electricity market. In our study
we will not use the cost-of-carry relationship. Instead we will model a single
electricity forward contract and use the expected return and volatility of this
contract to find the risk premium.

The paper is organized as follows. We start by deriving a model of an

electricity market in section 2. Then in section 3 the model is discretized and
estimators are derived. The estimators are then in section 4 used on several
data samples to analyze the risk premium. The paper concludes with some

remarks.

2 The model

In this explorative study of the risk premium, we start by constructing a
model of a single future contract in an electricity market. We apply a simi-
larly notation / setting as Duffie in "Dynamic asset pricing theory" (1996).
Fix a measurable space (O,F), where ° is to be thought of as states of the
world and the elements of F as events. On this measurable space we will
construct the real world probability measure, P, and one or more equivalent
martingale probability measures, Q. The first object we need to define is the
source of unexpected information i.e. noise. To model new information we
use a single Brownian motion B E JR, restricted to some time interval [0,Tl,
on a given probability space (O,F, P). In addition we fix the standard fil-

tration JF = {Ft: t E [0,Tl} of B.

In our model the noise will be related to the spot price, St, of electricity.
Due to lack of storability and price inelastic demand, we expect a high spot
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price volatility. We argue that this high volatility will make the dynamics
of the spot price dominant to the dynamics of the short term interest rate.
We will therefore assume a deterministic interest rate, rt. By assuming a
deterministic interest rate forward prices will evolve in the same manner as
future prices. See Cox et. al. 1981. The first asset we introduce is the spot
price, S of electricity

where /-ls : JR x [O,T] .........JR, (js : JR x [O,T] .........JR and s E JR. We can think of
St as the price at time t for one MWh (Mega Watt hour). We assume that
it is possible to trade in S. But since storing electricity is not economical
feasible we will not assume that it is possible to purchase electricity today
at the spot price and store it for subsequent sale, i.e. we will not be able to
make use of the cost of carry principle. The lack of storability is one of the
most important features that distinguishes the electricity market from most
other commodity markets.

Next we introduce a forward market into our model. Due to the non-
storability of electricity, the forward contract has a settlement period instead
of a fixed settlement date. We define a forward in an electricity market as
a security that pays the difference between the forward price and spot for

a given settlement period. The next asset we introduce in our model is a
period based base-load forward contract. The name base load refers to the
distribution of the delivered quantum and means that the delivered quan-
tum is evenly distributed in the delivery period. Let F(t, TS, Te) denote the
price at time t for one MWh delivered evenly distributed in the time period
[TS, Te]. Where TS is the start of the settlement period and Te is the end of

the settlement period. Since the true price of a forward contract is zero we

136



Empirical study of the risk premium in an electricity market

have

O E~ [i~e(Su - F(t, TS,Te))e-JoUr(v) dv dU]
~

(1)

where E~ [ l denotes the conditional expectation (condition on Ft) with re-
spect to a probability measure Q which is defined by the density process

where A : n x [O,Tl ~ JR and can be interpreted as the market price of
risk process. At this stage we have not assumed any functional form for
A. From Girsanov's theorem and the assumptions leading to the martin-
gale property of the forward price W.r.t Q-measure, we can write (1) in the
following stochastic differential equation form

The above equation is of course under the real probability measure P, and
the real world drift term /-LP must therefore be equal to A (Jp. We willlater
use this relation to estimate the risk premium connected to the electricity
forward.

3 Estimation

In the previous section we defined a general model of the price movements
of a single forward contract in an electricity market. We will in this section
discretize and estimate the drift and diffusion of this contract.
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3.1 Discrete approximations

Before estimating the risk premium, we discretize the forward process. Let
F(t, TB, Te) be a time homogeneous Ito diffusion of the form

For a twice differentiable function f : JR x [O,TJ ---+ JR the infinitesimal gener-
ator A of f(x, t) is defined as

Af(x, t) =

(3)

We can think of the generator A as the infinitesimal expected change in
a function of a stochastic variable. It is possible to write the conditional

expectation Et[f(Ft+~, t + ~)J in the form of a Taylor series expansion, (see
Stanton 1997 for details),

(4)

:(t

Af(Ft, t) = ~ Et[f(Ft+~, t +~) - f(Ft, t)J +f ~!An f(Ft, t)~n-l
n=2

where ~ == u - t and An f means A operated on f n times. To derive an
approximation to the drift f-lp(Ft) and the diffusion IJp(Ft) we consider the
following functions

u(x, t) x

and

From (3), the definition of the infinitesimal generator A, we get

Au(x, t) = f-lp(x)
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and

Av(x, t) = 2(x - Ft)!1p(x) + (J~(x)

and with x = F; we get

From equation 4 we get the following N'th order Taylor approximation for
!1p(Ft) and (J}(Ft)

1 N 1
= ~ Et[Ft+~ - Ftl + L n!Anu(Ft, t)~n-l + O(~N)

n=2
N

(J~(Ft) = ~ Et[(Ft+~ - Ft)2l + L ~!Anv(Ft, t)~n-l + O(~N)
n=2

If we choose N = 1 we get the following first order approximations

iEt[Ft+~ - Ftl + O(~)
iEt[(Ft+~ - Ft)2] +O(~)

(5)

We can now use these approximations to find an approximation to the risk
premium. From equation 2 on page 137 we have that the forward drift term,
!1P, must be equal to ..\a y ; implying (for a positive (Jp)

..\(Ft) = !1p(Ft)
(Jp(Ft)

and together with equation 5 we have the following first order Taylor approx-
imation of the risk premium

This equation will be the basis for our estimation procedures.

3.2 The estimator

We will derive an estimator for the drift and diffusion term of our period based
forward. A nonparametric estimation method is preferred since we know little
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about the functions wewant to estimate. Common nonparametric regression
estimators are Nadaraya-Watson (Nadaraya 1964,Watson 1964), smoothing

splines (Schoenberg 1964, Reinsch 1967), and local polynomials (Stone 1977,
Cleveland 1979). We choose to use the Nadaraya-Watson estimator since
it is intuitive, flexible and can easily be extended to handle our data. Let

(Xl, ~FI), ... , (Xn, ~Fn) be a set of independent and identically distributed
pairs of random variables where X, are scalar predictors and the ~Fi scalar
responses. In regression analysis, a functional relationship between predictor
and response is assumed as

(6)

where the Ei are independent and satisfy E(Ei) = O and V(Ei) = (j2(Xi). The
goal is to estimate m(Xo). The Nadaraya-Watson estimator is based on a
local approximation of m(x) by a constant m(xo); provided that x is close to
xo. The estimator of m(x) can be represented by the weighted local mean

m(xo) (7)

where h is the bandwidth and KO is the kernel density which is used to
weight each observation. In the above regression analysis, the functional
relationship between predictor and response is one dimensional, while our
observed data depend on several variables (observation time, start of settle-
ment period and end of settlement period). We must therefore transform
the observations into data that can be used by the Nadaraya-Watson estima-
tor. The transformation is performed by introducing a variable bandwidth
and organizing the observations by: Average time to delivery, observation
seasonal date and delivery seasonal date.

The use of a variable bandwidth has been advocated for various reasons.
Such a local bandwidth should e.g. adopt to: Local curvature of m, local
variance in case of heteroscedasticity or local density of design points. Our
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reason for wanting to have a variable bandwidth is to adjust for variable
length of settlement period in our data sample. The idea is to have a nar-

row bandwidth for forward contracts with a short settlement period and a
wider bandwidth for forward contracts with a longer settlement period. The
variable bandwidth, h, is heuristically defined as the solution to

j+Te;_T
S (X)

K - dx = 9
_Te-Ts h

2

(8)

where 9 is the percentage of the total weight the settlement period is given.
Meaning that 9 = 0.8 gives the observations in the settlement period a total
weight of 80%. The effect this smoothing percentage is illustrated in figure l.
KO is the kernel density and is used to weight each observation. There are
many types of kernels to choose from and we have chosen the standard normal
probability kernel.

0.2

g=0.8 -
g=0.6 -

0.5

0.4

1:' 0.3
rn
.~

0.1

Ts Te

Figure 1: Two weight functions with different smoothness parameters. The area
under the two functions are 0.8 and 0.6. With Te - TB = 2 the h-value for g = 0.8

is 1.040 and the h-value for g = 0.6 is 1.0625. Meaning that a large g implies a

narrow bandwidth.
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The notation we will use for the data sample is as follows: Each obser-
vation of a forward or a future contract is defined by an observation date,
a closing price, a start of settlement and an end of settlement date. Let
i E {1, ... ,n} denote a time index and ti the observation date. For each
observation date we can have several contracts with different settlement pe-
riods. By letting j be an index of all the different settlement periods we can
write the start of settlement as TJ and the end of settlement as Tr So the
observed closing price at time ti for a contract with the settlement period

[Tf, TJ] can be represented by F(ti, TJ, Tn·
The second step of transforming the observation into data which can be

used by the Nadaraya-Watson estimator is to organizing the observations by

• T - average time to delivery.

• f'i, - observation seasonal date.

• b - delivery seasonal date.

Since we are working with a delivery period instead of a fixed delivery date
we approximate time to maturity by average time to maturity defined by

T~ +Te
J J

2
(9)

Observation seasonal date, f'i" is defined as the number of days from 1. Jan-
uary to the observation date t. Similarly the delivery seasonal date, b, is
defined as the number of days from 1. January to the average settlement

_---- Ti,j __

TB
J

Te
J

Figure 2: Illustration of the average time to maturity, T. ti is observation date

number i, TJ start of settlement period for contract number j and TJ is the end of

settlement period for contract number j.
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date t + T. For each of the variables stated above we will estimate two ver-
sions of /JF(Ft), CTF(Ft) and '\(Ft). One version that depends on F; and one
that does not depend on F; (i.e. a constant).

Using the variable bandwidth in (8) together width the Nadaraya-Watson

estimator in (7) we can now estimate /JF and CTFby the following estimators
One dimensional version:

LK( ,j(Xi,j, a, gX)) Zi,j

(lF(a)
i,j

- LK( ,j(Xi,j, a, gX))
i,j

2:K( Ij(Xi,j, a, gX)) {Zi,j - (lF(X)} 2

o-~(a)
l,}= 2:K (/j(Xi,j, a, gX))

l,}

z· . F(ti,TJ,Tj) - F(ti-1,TJ,Tj)va

Ij(X, a, gX) = (X - a)/h(TjS _ Tje, ga:)

(10)

(11)

Two dimensional version:

(lF(a, (3)

LK (/j(Xi,j, a,«: ,j(Yi,j, (3, gY)) Zi,j
i,j

(12)

_l,_} ~ ---;- (13)

LK (,j(Xi,j, a, gX), ,'j(Yi,j, (3, gY))
i,j

Zi,j = F(ti,TJ,Tj) - F(ti-1,TJ,Tj)

Ij(X, a, gX) (x - a)/h(TJ - Tj, gX)

Ij(y,{3,gY) = (y-{3)/h(TJ-Tj,gY)

We have data sampled at Xi,j and (Xi,j, Yi,j) for the two dimensional case.
I can be interpreted as scaled observations. hO is the bandwidth and gX and
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gY are smoothness parameters. gX determines the bandwidth with respect

to the x-dimension and gY determines the bandwidth with respect to the
y-dimension. KO is the kernel density and is given by

1. dim K(x)
2. dim K(x, y)

_ (27r)-1/2 exp {_~X2}
_ (27r)-1 exp {_~(X2 + y2)}

3.3 Testing the estimator

It is beyond the scope of this paper to derive the properties of the estimator
we are going to use in this paper. Instead we will test the estimator on
simulated data. Let the price dynamics of a forward contract, F, with an
average time to maturity of r days be determined by

dFt = f-1(r)dt + O"(r)dBt, Fo = x

where the drift term is

f-1(r) =

O
-0.5(r - 50)/50

-0.5

0.15(r - 150)/215 - 0.05

rE [0,50J

rE [50, 100J

r E [100, 150J

r E [150,365J

and the diffusion term is

a
r>Or/7 + b + c,

a 2.180

b - 4.475

c 0.193

The parameters for the diffusion term is estimated from the full sample
volatility function in Koekebakker and Ollmar (2003) "Forward curve dy-
namics in the Nordic electricity market!" .

lThis paper is part of this thesis, and the data is visualized in figure 4 in the paper.
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Figure 3: Simulated price data for four forward contracts.

The data used for estimation is prices from a forward with a quarter of

a year settlement period. This forward is split into three monthly contracts

when the average time to delivery reaches 182 days. This is visualized in

figure 3. This means we simulated 365 daily prices for the three forwards

with a one month settlement period. The price of the forward with a quarter

of a year settlement period is calculated from the average of the three monthly

forwards''.

The data sample of the simulated prices is made up of 184 daily prices

from the quarterly forward, 151 daily prices from the monthly forward closest

to delivery and 181 daily prices from the second closest contract to delivery

and 211 daily prices for the last contract. The total data sample consist of

727 prices.

We estimate the drift and diffusion by using the estimators (10) and (11).

The estimated functions together with the real functions are given in figure 4.

We see that the estimated drift is close to the real drift. The splitting of the

2We have used a zero interest rate in this example
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Estimated mu(tau), simulated data
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Figure 4: Estimated f..L( T) and er(T) on simulated data,
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quarterly forward into monthly contracts at T = 182 did not influence the

estimated function much. The estimated volatility function is very close to
the real volatility function.

To get an impression of the estimators inference properties we repeated
the simulation several times. The overall impression was that the estimators
can be regarded as accurate and the results can be trusted.

3.4 Data

To conduct our empirical study of the risk premium in an electricity market
wechose to use data from one of the oldest and most liquid electricity markets
in the world - Nord Pool. Nord Pool was the first international electricity
market and was established in 1996. At the present time the power exchange
area consists of Norway, Sweden, Finland and Denmark. Nord Pool organizes
and operates the physical market Elspot and the financial market Eltermin.

Financial contracts traded on Eltermin are written on the arithmetic
average of the system price at a given time interval. This time interval is
termed the delivery period. The time period prior to delivery is called the
trading period. Both futures and forward contracts are traded at Eltermin.
The contract types differ as to how settlement is carried out during the
trading period. For futures contracts, the value is calculated daily, reflecting
changes in the market price of the contracts. These changes are settled
financially at each participant's margin account. For forward contracts there
is no cash settlement until the start of the delivery period.

The contracts with the shortest delivery periods are futures contracts.
Daily futures contracts with delivery period of 24 hours are available for
trading within the nearest week. Weekly futures contracts with delivery
periods of 168 hours can be traded 4-8 weeks prior to delivery. Futures
contracts with 4 weeks delivery period, are termed block contracts. The
forward contracts have longer delivery periods. Each year is divided into
three seasons: VI - late winter (January 1- April 30), SO- summer (May 1 -
September 30) and V2 - early winter (October 1 - December 31). Seasonal
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contracts are written on each of these seasonal delivery periods. In January
each year, seasonal contracts on SO and V2 the coming year and all three
seasonal contracts for the next two years are available. Furthermore, yearly
forward contracts are available for the next three years. In other words, the
(average based) term structure goes 3 to 4 years into the future, depending
on current time of year.

From Nord Pool we obtained closing prices for all contracts traded from
25. September 1995 to 27. July 2002 a total of 44385 contracts", Information
regarding settlement periods were also obtained from Nord Pools database.
To get a better understanding of the format of the dataset a short sample is
reproduced in table I.

Table I: Sample of the contract-data

1 1 25.Sep 95
1 2 25.Sep 95
1 3 25.Sep 95
2 1 27.Sep 95
2 2 27.Sep 95
2 3 27.Sep 95
3 1 28.Sep 95
3 2 28.Sep 95
3 3 28.Sep 95

GU40-95 144.50 12.0 279.0 267
GU41-95 146.81 09.0ct 95 16.0ct 95 19.0 286.0 267
GU42-95 149.50 16.0ct 95 23.0ct 95 26.0 293.0 267
GU40-95 147.00 02.0ct 95 09.0ct 95 9.5 278.5 269
GU41-95 148.00 09.0ct 95 16.0ct 95 16.5 285.5 269
GU42-95 150.00 16.0ct 95 23.0ct 95 23.5 292.5 269
GU40-95 147.00 02.0ct 95 09.0ct 95 8.0 278.0 270
GU41-95 148.00 09.0ct 95 16.0ct 95 15.0 285.0 270
GU42-95 149.00 16.0ct 95 23.0ct 95 22.0 292.0 270

This is a sample of the contract data obtained from Nord Pool. i is the day index and
ti is the observation date. j is the period index and in this table consist of three periods
i.e. j = 1,2,3. Ticker is the Nord Pools ticker for the observed contract. Where 'G'
stands for base-load, 'U' indicates that the contract has a one week long settlement period
and '40-95' tells us that the settlement period is week number 40 of year 1995. Since 25.
September 1995 was a Monday T1,1 = "5.5 Oct - 23.5 Sep" = 12 days. /'\:3,3= 270 is the
number of days from 1. Jan 1995 to 28. Sep 1995, and Oi,j is Ki,j + Ti,j'

3Some of the contracts were left out due to some minor errors in the datafiles.
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4 Empirical results

By using the estimators given by equations 10- 13 on the price data we have
estimated several versions of f-tF, (fF and A.

4.1 Functions of T

The first variable we decided f-tF, (fF and A might depend on was the average
time to maturity, r. By talking to market participants we got the impression
that contracts with a maturity less than three months were mainly bought
by retail companies to hedge their procurement costs. We therefore expect a
negative risk premium for this period (i.e. we expect {t( r) to be negative for
r E [0,100]). There was also a common opinion among market participants
that future contracts with a 3 to 36 months horizon were mainly used to
take pure speculative positions or to hedge the power producers production
revenue. If this is the case, we expect to find a positive risk premium (i.e.
you get a positive return by owning a future contract). For contracts with
more than three years to maturity liquidity issues plays an important role.
Since power producers rarely hedge their long term risk, we believe this will
result in a negative risk premium.

The estimated empirical functions for f-tF(r), (fF(r) and A(r) are given in
figure 5, 6 and 7 respectively. The first thing we observe from the estimated
drift term is that it is negative and increaseswith time to maturity. For r = 5
the estimated drift is -0.50 NOK/MWh, meaning that future contracts with
an average time to delivery of 5 days have an expected daily price change of
-0.50 NOK/MWh. The negative drift increases toward -0.1 NOK/MWh as
average time to maturity increases to 100 days. The relative strong negative
drift for contracts with a maturity date less than three months is consistent
with the conjecture that retail companies pay a premium to hedge their
procurement costs. Contracts with a maturity date from 3 months to 3 years
also have a negative drift. This is not in line with our prior belief about a
positive premium for future contracts with this maturity horizon. It may
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Estimated mu(tau), full sample
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Figure 5: Estimated f..L( T) on the full sample. The figure shows conditional ex-
pected return on a future contract with an average time to maturity equal to 1". We
see that the owner of a future contract on average has a negative return. Implying
a negative risk premium. The red line is calculated with a narrow bandwidth and
the blue line is calculated with larger bandwidth.

be a result of many years with more than normal precipitation and thereby

giving a somewhat biased estimate. It may also be due to the so-called "peso"

problem". In the Nordic electricity market the peso problem can be viewed

as the possibility of a "dry year" with a huge profit for the owner of a future

contract, Since this scenario is not in our historical data sample we estimate

a negative risk premium despite the possibility that it may be positive. From

the same figure we see that contracts with a maturity date of more than three

years have a negative drift, supporting the liquidity conjecture.

If we inspect the estimated drift term in figure 5, or the risk premium in

4This term goes back to Milton Friedman in his analysis of the Mexican peso during the
early 70's. The Mexican interest rate remained significantly above the US interest rate,
although the peso was pegged at 0.08 dollars per peso. Friedman argued that the interest
rates reflected an expectation about a future devaluation of the peso. In August 1976, the
peso was devaluated by 37.5% to a new rate of 0.05 dollar per peso, thus validating the
previous interest rate differential.
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figure 7 with an average time to maturity equal to 7 and 35 days we see a

short decrease. We believe this is related to T = 7 marks where future con-

tracts with a one day settlement period converges to futures with a one week

settlement period, and T = 35 marks approximately where future contracts

with a one week settlement period converges to futures with a four week

settlement period. This may indicate that the risk premium is linked to the

type of future contract. This would be the case if the market participants

regarded futures with T E [0,7), T E [7,35) and T > 35 as three distinct

markets.

Another feature of the estimated drift term is that it does not converge

to zero as time to maturity decrease. This implies some sort of a "delivery

arbitrage" 5. Since the liquidity for future contracts with a daily settlement

period is low, the negative drift term for the very short end may be a result

of a liquidity premium.

The estimated volatility functions are as expected decreasing with time to

maturity. This is known as the "Samuelson effect". The empirical volatility

function based on the full sample starts out at 8 NOK (T = O) and decrease

rapidly for the next 100 days to approximately 2 NOK (T = 100). For the

next 1000 days the volatility function converges to approximately 1 NOK.

We can interpret the volatility function (j(T) as the rate of change of the

conditional standard deviation of F. Thus a value of 5 NOK for T = 10

tells us the expected standard deviation for the daily price change of a future

contract with approximately the next week as settlement period.

Figure 7 shows the estimated ,\(T) expressed as the expected daily future

price change in NOK/MWh pr unit risk. The risk premium has much of the

same characteristic of the estimated drift term. It is negative and is lowest in

the short end. The function starts with a value of -0.08 for T = O and rapidly

increases to -0.03 for T = 35. Then increases more slowly to its maximum

of -0.02 for T = 200. After that it decreases, reaching -0.05 for T = 1000. A

5Since we can not economical store electricity this is only an arbitrage in an expectation
sense.
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Estimated sigma(tau), full sample
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Figure 6: Estimated u( T) based on the full sample. The volatility-function starts
at 6-7 NOK/MWh pr day and after 100 days falls down to approximately 2
NOK/MWh. For future contracts with an average time to maturity of one to
three years the volatility is approximately 1NOK/MWh.

possible explanation for the low premium for contracts with a average time

to maturity of 200 days is that these futures are the most heavily traded

contracts and are often used to take speculative positions.
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Estimated lambda(tau), full sample
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Figure 7: Estimated risk premium, A(T), based on the full sample. The risk
premium is defined as the conditional expected return pr unit risk, fJ( T) / 0'( T). We
see a top at T = 35 days. This is approximately the time when block-contracts
are split into weekly contracts. Lambda with an average time to maturity with less
than 117days are estimated on futures contracts with a one day settlement period.
These contracts have a low liquidity and this may explain the peak for T = 5. The
highest value, -0.02 for the risk premium is for an average time to delivery of 21717
days.
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4.2 Functions of T and F

In this section we assume that MF, (JF and)" are functions of T and F. To

estimate the two-dimensional functions we use (12) - (13). The results are

given in figure 10 to 12. To visualize the functions we have plotted the domain

of its input variables and represented the values of the functions by color.

Red colors represents high values and blue colors represents lower values. To

emphasize where the functions are zero we have marked the places with a

black line. Further we have masked parts of the figures. The masked parts

are areas with few data observations and therefore contains less significant

estimates.

Estimated mu, full sample, g'=0.6, gF=10
_--

s:
5:::;;
>2 200
Oz
.s
s
'~150

"5u..

100

50
O

__ -- _------
100 150 200 250 300 35050

Average time to maturity in days

0.4

0.2

O

-0.2

Figure 10: Estimated f.-l( T, F) based on full sample. The value of the estimated
drift is given by the color of the figure. Red colors indicates positive values and
blue colors indicates negative values. The black line indicates a zero drift. From
the figure we see a mean reverting pattern around the price level 220 + / - 50
NOK/MWh level.

From the estimated drift, fl(T, F), visualized in figure 10, we see signs of

mean reversion. The mean reversion show up in the figure as blue values in

the area (T = 75,F = 250) and red / yellow values in the area (T = 75,F =
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175). Since there are few observations of futures with a price of more than

250 and an average time to maturity of more than 200 days, we can not

tell if the mean reversion exists for the more long term contracts. However

we see that the futures price has a negative drift if the price gets below 150

NOK/MWh and a positive drift if the price gets above 275 NOK/MWh. This

indicates that the future price is mean reverting around the price level 220

+/- 50 NOK/MWh, and has a momentum around this band.

~
:2
'" 200oz
.£
ID
.~

g.150
':i:;
LL

--_. _ _I
200

50
O 50 300150 250100

Average time to maturity in days
350

Figure 11: Estimated U(T, F) based on full sample. From the figure we see a that
the volatility increases with the price of the future.

The estimated diffusion in figure 11 shows a clear connection between

the future price and the volatility. As the future price increase so does the

volatility. This is consistent with a geometric-like diffusion process. For

futures with an average time to maturity of more than 20 days the volatility

is more sharply falling as the future price decreases.

The estimated risk premium .\(T, F), in figure 12, shows both the mean

reversion pattern of the drift term and the geometric properties of the diffu-

sion term.

By observing the spot price dynamics and the futures curve we see a clear
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Estimated lambda, full sample, g'=0.6, gF=10
-----

.<::;s:
:;:
" 200oz
.s
".2
Cl.
~ 150

"5
LL

._-----350250 300
Average time to maturity in days

Figure 12: Estimated'>"( T, F) based on full sample. The risk premium is defined
as the conditional expected return pr unit risk. We see that the mean reversion
pattern in the estimated return is present in the risk premium.

seasonal pattern. This pattern is a result of a higher demand for electricity

in the winter than in the summer. Since the seasonal variations can be

considerable, we divide our future prices into six samples:

1 Futures observed in the VI-period (1. January - 30. April).

2 Futures observed in the SO-period (1. May - 30. September).

3 Futures observed in the V2-period (1. October - 31. December).

4 Futures delivered in the VI-period (1. January - 30. April).

5 Futures delivered in the SO-period (1. May - 30. September).

6 Futures delivered in the V2-period (1. October - 31. December).

The estimated functions {lF(7, F), O"F(7, F) and ~(7, F) for the six samples

are given in figure 15 to 20 starting on page 167 in the Appendix.
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For sample 2, 3 and 4 we see the same mean reversion patterns for

[lF( T, F) as we found for the full sample estimates. For the other samples

the reversion pattern is not so clear. Although it is difficulty to see any

clear seasonal patterns in the functions, we note that the functions indeed

have seasonal variations. Dividing the data sample into several smaller sea-

sonal samples is a crude way of examining seasonal patterns. A better way

of examining the seasonal patterns is to organize the observation according

to seasonal observation date, K" or seasonal delivery date, 8, and use a two

dimensional estimator.

4.3 Functions of T and J

To see if the seasonal delivery date, 8, influence the drift, diffusion or the

risk premium we estimate the functions using the two dimensional Nadaraya-

Watson estimator. The results are given in figure 13. Surprisingly all three

figures shows clear signs of diagonal stripes. Since we have time to maturity

on one axis and seasonal delivery date on the other, the diagonal patterns

represents something that is specific to the seasonal observation date, K,.

4.4 Functions of T and fl,

To better understand the diagonal patterns of the previous estimation, we

again use the two dimensional Nadaraya-Watson estimator to estimate the

functions of average time to delivery and seasonal observation time. Results

are given in figure 14. Diagonal patterns are now horizontal patterns and

suggests that expected return, volatility and risk premium all have seasonal

patterns.

The estimated drift term, [lF(T, K,), is positive in March, May, September

and medio December. In all other periods it is negative. We also note that

the sign of the drift is nearly independent of the average time to maturity.

The most negative areas are in January, February, medio June to medio July

and October, for forwards with less than 50 days to delivery.

Seasonal patterns are also present in the estimated volatility function.
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We see that contracts with less than 30 days to delivery traded in January,

February, May and December has the highest volatility. The seasonal pat-

terns of the volatility does not coincide with the seasonal patterns of the drift

term. From figure 14 we see a high volatility for contracts with an average

time to maturity exceeding 50 days and a delivery date in January, March,

June, August or October.

From the figure of the risk premium we see that buying a forward in

March, May and September gives a high conditional expected return pr unit

risk. Equivalent selling a forward in February or a forward with less than 50

days to delivery in June-July and October will give a high expected return

pr unit risk.
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5 Concluding remarks

We have in this paper conducted an empirical analysis of the risk premium

in a power market. In context of our model of an electricity market the

risk premium is defined as the conditional expected forward price changes pr

unit risk. The discretized version of the risk premium was estimated by a

Nadaraya-Watson estimator, obtaining a nonparametric estimate. We used

a variable bandwidth to compensate for varying settlement period lengths

in our data. The bandwidth function was heuristically defined, but as the

simulation example shows, it seems to handle different lengths of settlement

periods good. By organizing the data sample with respect to T, 6, K., and F'

we estimated several versions of the risk premium. Our main findings were:

• Negative risk premium for all maturity dates (i.e. a contango market)

• Increasing volatility with increasing future price

• Expected return is mean reverting with respect to future price in the

price range 170 NOKjMWh to 270 NOKjMWh. Outside this range

the price is driven by some sort of momentum process.

• Clear seasonal patterns. The time of the year the forward is traded has

a major impact on the expected return, volatility and risk premium.

We believe that the complex nature of the risk premium in the Nordic electric-

ity market is related to the large degree of hydro-electric power production.

Especially the seasonal patterns and the mean reversion properties can be

linked to hydrological phenomena. Although many of our findings coincide

with statements from practitioners, we can not be certain that our findings

are not influenced by the estimation method. Further research should there-

fore focus on the estimators small and large sample properties. It would also

be interesting to see if the results are changed if we extend our datasample

to include the high price period that started autumn 2002.

This paper gives new insights of the forward price dynamics in the Nordic

power market. Knowing the drift, volatility and thereby the risk premium,
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more precisely is helpful in financial engineering work. We also believe many
of the results will help producers and consumers in their hedging decisions
- at least it will guide the traders toward the forward contracts with the
highest return / risk ration.
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