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1. Introduction 
The Nord Pool area covers presently Norway, Sweden, Denmark, Finland and Estonia. Previously, 

prices were calculated also for a German price area (Kontek), however, since November 2009, this 

price area has been replaced by market coupling with the central western European area. At Nord Pool 

Spot area prices are calculated for the day-ahead market. Since the market is settled many hours before 

real time, imbalances occur, and they are settled by intraday trading in Elbas and in the close to real 

time regulation markets. Nord Pool Spot is a voluntary pool. However, trades between Elspot areas are 

mandatory. Nord Pool Spot covers about 70 % of the physical power in the Nordic region (except 

Iceland), and the pool is used not only for mandatory trades but also to increase legitimacy of prices 

and as a counterpart. 

There are three types of bids at Nord Pool Spot. These are hourly bids for individual hours, block bids 

that create dependency between hours, since a block bid is accepted only for a whole block of hours, 

and finally, flexible hourly bids, which are sell bids for hours with highest prices. In the analysis we 

don’t have information on block bids and flexible hourly bids, so we will treat all bids as hourly bids. 

Accepted block bids will sometimes be part of the bid curves, however, as price independent buy or 

sell bids. 

Considering congestion, the day-ahead market takes grid constraints partly into account by calculating 

different prices for relatively few price areas. For most of the cases considered in this report there are 

10 price areas in the Nord Pool area, and transfer capacities are given by the system operators between 

these areas before the market agents submit bids, and Nord Pool calculates area prices. This means 

that zonal pricing or market splitting is used in the day-ahead market for the presumably largest and 

long-lasting congestions within Norway and for congestions on the borders of the control areas, 

including two price areas in Denmark. Moreover, from November 2011, due to European regulation, 

Sweden is split into 4 price areas. For constraints internal to the price areas, they are resolved by 

counter trading or re-dispatching in the regulation market. The system operators in the Nord Pool area 

are transmission system operators, owning and controlling the national grids. They are incentive 

regulated and the net effects of the incomes from zonal pricing and the expenses from re-dispatching 

are passed on to domestic customers. This may also give incentives to relieve internal constraints by 

reducing transfer capacity between the Nord Pool bidding areas. 

Congestion management affects the efficiency of the Nordic electricity market and the prices quoted in 

the day-ahead market of Nord Pool Spot. NVE describe in the tender documents that they particularly 

want to consider how more pricing areas and the implementation of a more detailed network model in 

the calculation of the spot prices can contribute to more efficient price signals to producers and 

consumers, depending on where they are located. For analysis of congestion management within an 

exchange area, with a market infrastructure that allows for a certain number of geographic prices on an 

hourly basis, the optimal (economic) power flow model is often used as the reference point. This is 

normally a single period model that maximizes social surplus, given the supply and demand curves 

that exist for each connection point in the network, as well as the limitations imposed by thermal and 

other capacity constraints in the transmission grid. The optimal power flow is a snapshot, and the 

dynamic adjustment over time is left to the players, which means that supply curves for a period 

include opportunity costs such as water values, etc. The question then is whether the procedures for 

market clearance can achieve a solution that is close to the optimal power flow with optimal prices for 

each generation and load point (optimal nodal prices). 
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Our analysis of congestion management methods for the Nordic electricity market takes as a starting 

point the optimal power flow for a single hour. The efficiency of a specific market mechanism can 

then be evaluated based on the degree to which one can realize the optimal power flow. In the Nordic 

power market this is dependent on the formulation of practical rules for area price determination at 

Nord Pool Spot. These rules imply a number of simplifications and approximations compared to the 

optimal power flow benchmark. For a start, prices are not noted for each connection point in the 

system, instead area prices are computed, that are uniform within larger areas of the network. The 

number of price areas and how the boundaries of these are exactly determined, therefore, affects 

economic efficiency. Another simplification is that market participants bid within each zone and not at 

each generation or load point. This results in uncertainty regarding the effects of a bid on the system, 

and consequently a possibility that the capacity control is imprecise. Likewise, the transmission 

capacities are often associated with transfer interfaces that include several transmission lines. This also 

results in a rougher capacity control compared to if line capacities were used individually. In the whole 

Nordic system there is a practice of "moving" a transmission constraint within a price area to an area 

boundary, by reducing capacity between price areas. Previous work has shown that this is a practice 

that can be costly and greatly affects the level of the area prices in different regions.  

A common Nordic power exchange gives the opportunity to determine locational prices in a way 

similar to the optimal power flow, where the congestion costs are determined at market clearing. By 

including a detailed network model in the price calculation, the system operator's definition of trade 

capacities becomes redundant. Prices and power flows can be calculated simultaneously for each hour 

based on an optimization procedure in which the social welfare based on the players' bids to the power 

exchange in the various areas is maximized. However, this requires more and smaller areas than 

today's 10 price areas at Nord Pool Spot. More and smaller areas are necessary to determine the exact 

location of production and consumption in the network. 

The aim of the project has been to investigate the effects of a market system, which takes advantage of 

more information about the physical system in terms of capacities and flows, and the location of 

supply and demand bids. We have used the OptFlow model, with a more detailed representation of the 

Nordic electricity market and a possibility to solve different power flow models, including a DC 

approximation of the full AC power flows. Different market scenarios have been developed and the 

model is used to investigate questions like: 

- How are the nodal prices compared to area prices or zonal prices for different scenarios? 

- How do production and consumption patterns change under different pricing mechanisms? 

- Which constraints are binding in the different scenarios? 

- How does the determination of transfer capacities between bidding areas affect the utilization of 

the transmission network? 

- How do transfer capacities affect prices? 

- How does the implementation of security requirements affect prices? 

- How detailed should your model be to have an efficient market solution?  
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2. Locational price models 
The objective of a deregulated power market is efficiency in the short and long run, through at 

competitive short term power market with efficient utilization of existing resources, as well as an 

optimal long term development of the power system. The efficient short run utilization of limited 

generation and transmission capacity can in principle be found by solving an optimal economic 

dispatch problem, where the difference between consumer benefits and production cost is maximized, 

subject to generation and transmission constraints. The latter include thermal and security constraints. 

If we solve this optimal economic dispatch problem, we get a value of power for each location in the 

transmission system, and this is a benchmark for the value of power at different locations that can be 

used for assessing congestion management methods. In this chapter we shortly describe the three 

locational price models that we analyze in this report. The nodal prices are the based on the value of 

power obtained from an optimal economic dispatch problem. Simplified zonal prices and optimal 

zonal prices represent two different simplifications or approximations of the nodal prices. A more 

formal description of the different locational price models can be found in Appendix 2. 

2.1 Nodal pricing 

Schweppe et al. (1988) described nodal prices as the locational prices consistent with the principle of 

prices equal to marginal cost in a power market. Nodal prices maximize net social welfare given the 

physical constraints of the transmission network and transmission losses (if included in the model). 

Hogan (1992) introduced the concept of contract networks, providing financial capacity rights, and 

Harvey et al. (1996) describe the inclusion of contingency heuristics. 

Due to the fact that power flows in an electricity network obey certain physical laws and the nature of 

electricity flow is such that it cannot be routed and will take all available paths between origin and 

destination, nodal prices or locational marginal prices as they are frequently called possess some 

specific properties. A single limitation can induce price differences throughout the network, there may 

be flow from a high price node to a low price node, and a new line may result in lower social surplus 

(see for instance Wu et al., 1996). 

If the network on the left hand side of Figure 2-1 represents all injection and withdrawal points in a 

network, and all links between the nodes, the nodal pricing mechanism will result in a price for each 

connection point in the system. 

 

Figure 2-1 Locational prices 
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2.2 Zonal prices 

Zonal prices is a “simplification” of nodal prices, implying fewer prices than there are connection 

points, and some sort of aggregation. How this aggregation is specifically done, is however not well 

defined. What is to be aggregated? It can be prices only or the physical network model itself. This is 

illustrated by the middle and right hand side of Figure 2-1. 

2.2.1 Optimal zonal prices 

Aggregating prices only, i.e. economic aggregation, the topology of the network is represented in full 

while the prices within (pre)defined zones are required to be uniform. This is illustrated by the middle 

part of Figure 2-1, where the 9 nodes have been divided into three groups, but the original network is 

still visible. In this case, bids are given for nodes and the capacities are set for individual lines, but 

prices are determined for zones. We will call these prices optimal zonal prices, since they are found by 

solving an optimal economic power flow problem, with the extra requirements that prices of nodes 

belonging to the same zone are to be equal.  

Optimal zonal prices have been studied by Bjørndal and Jörnsten (2001). They are second best 

compared to optimal nodal prices. Different divisions are preferred by different agents (producers and 

consumers in a node have opposite interests for instance) and grid revenues may be negative under 

optimal zonal prices. There may be many variants of “adverse flows”, i.e. power flowing from high 

prices to low prices, and it is very difficult to find an optimal zone division. This depends on market 

characteristics and hourly costs, topology of the network etc., which makes it difficult to decide upon a 

division if it is to be fixed for a longer period. If there are too few zones, it may be impossible to find 

prices that are uniform within predefined areas and in addition clear the market subject to all relevant 

constraints.  

2.2.2 Simplified zonal prices 

The area prices or zonal prices used in the Nordic power market are better represented by the right 

hand part of Figure 2-1. In this pricing approach, which we call simplified zonal prices, the original 

detailed network and the three defined zones have been replaced by three aggregated nodes and some 

aggregated connections between these. We can say that the network has been physically aggregated, 

and the network has been highly simplified, thus neglecting the physical characteristics of the power 

flows. This is not straightforward for electricity networks. Injections and withdrawals in different 

nodes within a zone can in general have very different effects on the power system. It is also an open 

question how to determine characteristics of aggregated lines, i.e. admittance and capacity. Contrary to 

ordinary transportation networks where flows can be routed, an aggregated line consisting of two 

individual links may have flows in opposite directions. In such a case, both individual lines may be 

overloaded even if the sum of the flows is zero. 

In the simplified zonal price model, detailed information on nodal bids is lost, and constraints within a 

zone are not represented. Setting capacities on aggregated lines is difficult, if they are too restrictive, 

the power system may not be fully utilized, if they are too encouraging, the market outcomes may 

result in infeasible flows.  
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3. Case study – calibration of model and data 
We analyze the effect of different congestion management methods on hourly prices/quantities for 

different supply/demand scenarios. Our simulation cases differ only with respect to the supply and 

demand bid curves, while the topology and capacities of the network are kept constant.  

3.1 Topology and capacities 

3.1.1 Topology 

The network topology is illustrated by Figure 3-1. The Norwegian part of the network model has 178 

nodes and 242 lines, and it corresponds roughly to the Norwegian central grid. The network model for 

Sweden is simpler, with roughly 27 nodes and 42 lines, and is based on the Samlast model (SINTEF, 

2012). The other Nord Pool Spot price areas DK1, DK2 and Finland are represented with a single 

node each. The same is true for Kontek and Estonia, for the cases where these price areas existed. 

3.1.2 Line parameters 

The admittance value for each line is based on reactance, resistance and line voltage numbers. The 

thermal capacity for each line is based on line voltage and maximal line current. The specific formulas 

for admittance and thermal capacities are given in Appendix A.2. Line parameters for Norwegian 

nodes are given in Statnett (2010) or supplied by our contact persons in NVE. Parameters for the 

Swedish network are taken from the Samlast model (SINTEF, 2012) provided to us by NVE. 

Capacities for lines between countries, except between Sweden and Norway, have been set to Net 

Transfer Capacity values (see Nord Pool Spot, 2012). 

3.1.3 Security constraints 

We have included security constraints for the Norwegian part of the network. Each security constraint 

models the potential outage of a network component. The outage of a component will typically lead to 

a redirection of the power flow. The effect of outage on power flow could be determined 

endogenously as part of the optimization procedure, or it could be specified in advance. An example of 

the former type of approach is found in Peperman & Willems (2003), and Statnett’s procedure is an 

example of the latter type. The restrictions implied by Statnett’s approach can be modeled as “cut 

constraints”.  An example of a cut constraint described in Statnett (2010) is the constraint related to the 

Vemork-Flesaker line. If it should fall out, 35 % of the power currently flowing over this line is 

assumed to be redirected to the Tokke-Flesaker line, which has a thermal capacity of 710 MW at a 

temperature of 10ºC. Hence, the flow over Tokke-Flesaker plus 35 % of the flow over Vemork-

Flesaker should not exceed 710 MW. Our model includes 38 such constraints, and they are explained 

in more detail in Appendices A2 and A3. 
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Figure 3-1 Network topology 



 SNF Report No 15/12 

 

7 

 

3.2 Bid curves 

Our model has piece-wise linear bid curves for supply and demand (see also appendix A4). We 

consider supply and demand for a single hour, hence features involving multiple hours, such as block 

bids and ramping restrictions, are not included. Since we apply different bottleneck handling methods 

while keeping the bid curve scenarios constant, we implicitly assume that the choice of method does 

not affect the bid curves. In practice this might not be true, since the chosen bottleneck method will 

affect prices, and hence the expected water values that are embedded in the bid curves.  

We have constructed 8 bid curve scenarios, based on data for 8 hours in 2009/2010, as shown in Table 

3-1 below. The cases were chosen to reflect different conditions with respect to load and import in 

Norway, as shown in the last two columns of the table. Since bids to Nord Pool Spot are only related 

to price areas, we do not have any data for supply and demand curves for smaller areas, matching the 

more disaggregated topology of our network model. Thus, for Norway and Sweden we have 

constructed nodal bid curves, to be described in more detail below. For the remaining Elspot bidding 

areas we have used the actual bid curves from Nord Pool. Table 3-2 gives an overview of the Elspot 

areas for the different cases. In the following chapters we will look into the details of the results for 

some of the cases. 

Table 3-1 Overview of selected cases 

Load Import Date Hour Load (GWh) Net import (GWh) 

Medium High 5/5-2010 21 13,87 4,6 

Medium Medium 30/3-2009 6 14,38 -0,1 

Medium Low 7/10-2010 11 14,22 -4,3 

Low High 1/8-2010 6 8,48 3,6 

Low Low 1/9-2009 1 9,04 -3 

High Low 15/12-2010 19 20,95 -3,2 

High High 10/1-2010 15 20,89 2,3 

Record 
 

6/1-2010 10 23,99 0,7 

Table 3-2 NordPool bidding areas 

Date 
No. of bidding 

areas in Norway 

SE, DK1,  

DK2, FI 
Estonia Kontek 

5/5-2010 5 x x  

30/3-2009 2 x  x 

7/10-2010 5 x x  

1/8-2010 5 x x  

1/9-2009 3 x  x 

15/12-2010 5 x x  

10/1-2010 3 x   

6/1-2010 3 x   
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3.2.1 Data issues 

For each of the case hours, Statnett has given us nodal data on generation and exchange in the 

Norwegian central grid. Load for each node is calculated as the difference between generation and 

exchange. Some issues related to data quality had to be addressed in this phase of the project. For 

many nodes/hours the computed load numbers were negative, and there were also many instances with 

higher reported generation than installed effect. According to Statnett these problems are mainly 

caused by inaccurate reporting, where generation/load has not been assigned to the correct nodes. We 

have handled these data problems by reallocating generation/load among nodes. Nodes with 

unreasonably high generation numbers and/or negative load have been grouped together with 

neighboring nodes. A total of 128 of the 177 nodes have been assigned to 24 groups. For each of the 

24 groups, the total generation and load was reallocated among the member nodes according to a fixed 

set of weights, while keeping the sum constant for the group. We used maximum generation and load 

as allocation weights for generation and load, respectively, and the weights can be found in Tables 8.2 

in Statnett (2010). 

3.2.2 Generation bid curves for Norway and Sweden 

The bid curves that we have used have from one to six linear segments, as illustrated in Figure 3-2, 3-3 

and 3-4 below. The total capacity for each of the Norwegian nodes is set equal to available winter 

effect as given in Table 8-1 in Statnett (2010). For the Swedish nodes we have made a rough 

estimation of  nodal capacities based on data for actual generation for SE1-SE4 obtained from Svenska 

Kraftnät (see svk.se), and we have also taken into account the capacity data given in Nord Pool Spot 

(2011). 

 

 

Figure 3-2 Bid curve – hydro/wind power 

For most of the Norwegian nodes as well as nodes in northern Sweden (SE1 and SE2), with mostly 

hydro power, we have used bid curves similar to the one shown in Figure 3-2. The first bid curve 

segment have a constant marginal cost of 2,5 Euros/MWh, and may represent intermittent power 

0
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generation, e.g., river hydro power plants and/or wind. The size of the first segment, i.e., the amount of 

capacity in the first segment, has been set by taking into account the location of wind and river plants, 

as given in the data set for Samkjøringsmodellen. In addition to the actual “intermittent” capacities we 

have added capacity to the “intermittent” bid curve segment in order to calibrate our bid curves to the 

observed Nord Pool Spot bid curves. The extra capacity added in this manner is allocated among the 

nodes in proportion to the total available nodal capacities. 

The shapes of the hydro/wind bid curves differ depending on the location of the node/case in question, 

and this will be discussed further in the section on calibration below. 

We have assumed most of the capacity in SE3, except for the Ringhals and Forsmark nodes, to be 

thermal, and for these nodes have used bid curves equal to the one shown in Figure 3-3, with a 

constant marginal cost equal to 60 Euros/MWh. Bid curves for the Mongstad and Kårstø generation 

plants in Norway have been set in the same way. For the three nuclear plants in Sweden we have used 

a constant marginal cost of 4 Euros/MWh, as illustrated in Figure 3-4. 

 

Figure 3-3 Bid curve – thermal power 
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Figure 3-4 Bid curve – nuclear power 

3.2.3 Load bid curves for Norway and Sweden 

For load we have determined the bid curves for the respective cases based on observed load, as 

reported by Statnett / Svenska Kraftnät. The general shape of the demand curves is as shown in Figure 

3-5. The bid curve for each node has an inelastic part given by the vertical segment. We also allow for 

elastic demand if the price offered at the node drops below a certain level. The elastic part of the bid 

curve may consist of up to two linear segments, as shown in the figure. 

 

 

Figure 3-5 Load bid curve 
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3.2.4 Calibration of demand bid curves for Norway and Sweden 

In this section we explain how the bid curves have been calibrated, and we use the case corresponding 

to hour 19 on the date 15/12-2010, as an illustrative example. 

For each Nord Pool Spot bid area NO1-NO5 and SE we perform the following steps in order to 

calibrate the load bid curves: 

1) The inelastic (nodal) load quantity is set equal to total load minus load for industrial 

consumers in the node
1
.  

2) The elastic segment is determined by setting the two break point prices, as well as the relative 

sizes of the two elastic segments, in order to make the shape of the aggregate OptFlow 

demand bid curves match the shape of the corresponding Nord Pool curves. If necessary, we 

also scale the total elastic demand (observed load for industrial consumers in the top load 

hour). 

Figure 3-6 shows the demand bid curve for the node Halden, and Figure 3-7 shows the aggregate 

demand curve for NO1, i.e., the bidding zone that Halden belonged to on December 15, 2010. The 

inelastic demand for Halden is 149 MWh/h, while the inelastic demand for NO1 is 6754 MWh/h. The 

most elastic demand curve segment is defined for prices between 82 Euros/MWh and 60 Euros per 

MWh, while demand elasticity is lower for prices below 60
2
. Note that the aggregate OptFlow demand 

curve gives higher demand for any price level than the corresponding Nord Pool Spot demand curve. 

This is as expected, since the OptFlow curve is based on total load, including load that is not 

channeled through Nord Pool Spot.  

                                                      
1
 The only information we have on load for industrial consumers is for Norway (KII), and it is the consumption 

during the top load hour for each year. We have used the average consumption during the top load hour for 2009 

and 2010. We do not have information on industrial consumption in Sweden. In our base case we model (almost) 

all load in Sweden as inelastic. 

2
 The following table shows the implied demand elasticities, measured at the mid-point of each of the elastic 

curve segments: 

 

NO1 NO2 NO3 NO4 NO5 SE 

Segment 1 -6,45 -32,00 -8,11 -1,36 -7,95 -1,35 

Segment 2 -0,14 -0,21 -0,33 -0,82 -0,05 -0,33 
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Figure 3-6 OptFlow demand bid curve for Halden, 15/12-2010, hour 19 

 

Figure 3-7 Aggregated demand bid curves for NO1, 15/12-2010, hour 19 

3.2.5 Calibration of supply bid curves for Norway and Sweden 

Similarly to the procedure described in the previous section, the generation bid curves for each of the 

bid areas NO1-NO5 and SE have been calibrated using the following procedure: 

1) Determine break point prices as well as relative segment sizes for hydro/intermittent nodes in 

order to make the aggregate OptFlow supply bid curves match the corresponding NordPool 

curves. 

2) Shift all generation bid curves in order to make the horizontal distance between the aggregate 

OptFlow curve and the Nord Pool curve approximately equal to the distance between the 
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For the case in question, step 1 resulted in supply bid curves like the example shown for Sima (NO1) 

in Figure 3-8. The maximal winter effect for Sima is 878 MWh/h. In order to satisfy the distance 

requirement in Step 2 we added 9,6 % to the initial capacities of all the nodes in NO1, hence the model 

“capacity” for Sima is 962 MWh/h. The fact that the distance between this “capacity” and the bid 

curve is considerable is due to the fact that the price at the end point of the bid curve is set to a very 

high number (10000) in order to make the slopes of the aggregate OptFlow and Nord Pool Spot curves 

approximately equal. The resulting aggregate supply bid curve for NO1 is shown in Figure 3-9. 

 

Figure 3-8 OptFlow supply bid curve for Sima, 15/12-2010, hour 19 

 

Figure 3-9 Nord Pool Spot and calibrated aggregate OptFlow bid curves for NO1, 15/12-2010, hour 19 
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4. Results for 15-12-2010 hour 19 

4.1 Calibration of bid curves 

 

 

Figure 4-1 Nord Pool Spot bid curves and aggregate OptFlow bid curves for Norway and Sweden, 15/12-2010, hour 19 
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Figure 4-1 compares the constructed disaggregated bid curves to the actual Nord Pool bid curves, by 

aggregating the disaggregated curves of the OptFlow model for the different price areas. Figure 4-1 

shows the aggregate OptFlow bid curves for all 5 Norwegian areas and the Swedish price area that 

applied to the specific date in December 2010
3
. We see that the shapes of the (aggregated) constructed 

OptFlow curves reflect the actual Nord Pool bid curves quite closely, however, the volumes are 

different. This is so because the Nord Pool bid curves only cover parts of the actual load / production 

(on average 70-80 %). In order to evaluate the effect on the power system in more detail, i.e. similar to 

the production and exchange data received from Statnett, we need to model the total load, covering (at 

least close to) 100 % of the supply and demand for the Norwegian areas
4
.  

The remaining Elspot price areas are modeled as single nodes in the disaggregated OptFlow model, 

and we have used the actual Nord Pool bid curves for hour 19 on 15/12-2010. These bid curves are 

shown in Figure 4-2.  

 

                                                      
3
 The Nord Pool Spot bid curves include accepted block bids. We have also adjusted the NO2 and NO4 bid 

curves for export to the Netherlands and import from Russia, respectively, in order to distinguish clearly between 

domestic and foreign demand/supply. 

4
 We have used data from Svenska Kraftnät to calibrate the Swedish bid curves. As can be seen from Figure 4-1, 

the calibrated curves are almost identical to the Nord Pool Spot bid curves. We expected higher volumes also for 

the Swedish curves, and the data allow for different interpretations. We have tested the effects of increasing the 

supply and demand volumes by approximately 10 %, the effects are small, and we have kept the curves in Figure 

4-1 for the analyses that follows. 
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Figure 4-2 OptFlow bid curves = Nord Pool Spot for other Elspot areas, 15/12-2010, hour 19 

In Table 4-1 – Table 4-4 we compare the actual Nord Pool Spot prices and quantities of hour 19 

15/12-2010 to prices and quantities obtained from the OptFlow model. Columns (I) show the actual 

values from the Elspot market clearing. The corresponding OptFlow values shown in columns (II) and 

(III) are computed using two different bid curve scenarios: For the values in columns (II), the actual 

bid curves submitted to Nord Pool Spot for this hour are used, whereas the numbers in columns (III) 

result from computing the “Nord Pool Spot market clearing” using our calibrated bid curves. For the 

OptFlow computations we have used the actual Nord Pool capacities for (aggregate) interzonal 

connections. Intrazonal capacity constraints, constraints related to Kirchhoff’s second law, as well as 

security constraints, have all been relaxed. Hence, the OptFlow model used closely resembles the 

model used for the computation of the Elspot prices. 

If we consider the three price vectors in Table 4-1, we see that the Elspot prices (I) and the area prices 

calculated by the OptFlow model with Nord Pool Spot bid curves (II) match exactly
5
. This shows that 

the OptFlow model is capable of reproducing the Nord Pool Spot results when using the same bid 

                                                      
5
 We do not reproduce the actual Elspot system price in the Optflow model, however, this may be due to 

differences in accepted block bids between the system price and the actual area prices. 
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curves. Moreover, the differences between the actual Elspot prices (I) and the OptFlow area prices 

calculated on the basis of the disaggregated OptFlow bid curves (III) are quite small. Contrary to (I) 

and (II), the disaggregated bid curves cover 100 % of production and consumption, thus it is difficult 

to calibrate the bid curves so as to match the prices of the aggregated curves exactly. However, the 

relatively small differences between (I) and (III) show that the disaggregation we have developed 

works reasonably well in aggregate, although it still leaves a great deal of uncertainty with respect to 

how accurate the distribution of production and consumption on the nodes within the bidding areas is. 

This is however, as close as we can come with the data provided. 

Table 4-2 – Table 4-4 show production, load and exchange for the Nord Pool Spot areas for the three 

model variants. The differences between the Elspot quantities (I) and OptFlow quantities with Elspot 

bids (II) are due to imports from and exports to the power markets adjacent to the Nord Pool area, i.e., 

Russia, Latvia, Poland, Germany, and the Netherlands
6
. The OptFlow quantities with Elspot bids (II) 

differ somewhat from the OptFlow quantities with calibrated bid curves (III), especially for Norway, 

but the exchange quantities match quite well. This is expected, since at Nord Pool Spot, trades across 

price areas must be bid into Elspot, while trades within the price areas need not to do so. The 

generation and load volumes of solution (III) is thus expected to be higher than the Elspot volumes in 

(I) and (II) for the Norwegian areas, while the exchange values of the various solutions in Table 4-4 

should be (at least approximately) equal. Refer also the above comments to Figure 4-1. 

Based on the limited data available on disaggregated bid curves, we conclude that the disaggregation 

in (III) is a reasonable starting point for analyzing different congestion management methods for hour 

19, 15/12-2010. In order to evaluate the effects on the disaggregated power system, we need all 

production and consumption represented. Thus, the prices and quantities of column (III) is the starting 

point of our comparisons, i.e. column (III) will represent the “Nord Pool Spot” area price solution. 

Table 4-1 Comparison of prices for three model variants, 15/12-2010, hour 19 

Bidding 

area 

(I) 

NPS actual area 

prices 

(II) 

OptFlow prices with 

NPS bid curves 

(III) 

OptFlow prices with 

calibrated bid curves 

NO1 104,56 104,56 105,63 

NO2 104,56 104,56 105,63 

NO3 130,50 130,51 130,70 

NO4 130,50 130,51 130,70 

NO5 104,56 104,56 105,63 

DK1 130,50 130,51 130,70 

DK2 130,50 130,51 130,70 

SE 130,50 130,51 130,70 

FI 130,50 130,51 130,70 

EE 38,95 38,95 38,95 

 

                                                      
6
 In order to reproduce the Elspot prices we have accounted for exports and imports by including price 

independent bids in the adjacent areas. The flows between Norway and the Netherlands, and between Russia and 

Finland/Norway, are included in the Elspot bid curves for NO2, NO4, and Finland, respectively. We have 

adjusted the respective bid curves for NO2, NO4, and Finland so that solution (II) only represent domestic 

generation and load. The quantities used for imports and exports are based on the exchange data published at 

Nord Pool Spot’s web page. 
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Table 4-2 Comparison of production quantities for three model variants, 15/12-2010, hour 19 

Bidding 

area 

(I) 

NPS 

production 

(II) 

OptFlow production 

with NPS bid curves 

(III) 

OptFlow production 

with calibrated bid 

curves 

NO1 4435 4435 5021 

NO2 5762 5762 6645 

NO3 1580 1580 2344 

NO4 2693 2666 3142 

NO5 1656 1656 3028 

DK1 3323 3323 3323 

DK2 1994 1541 1541 

SE 19619 19219 19201 

FI 7765 6378 6378 

EE 723 668 668 

 

Table 4-3 Comparison of load quantities for three model variants, 15/12-2010, hour 19 

Bidding 

area 

(I) 

NPS 

load 

(II) 

OptFlow load with 

NPS bid curves 

(III) 

OptFlow load with 

calibrated bid curves 

NO1 6210 6210 6754 

NO2 3152 2451 3344 

NO3 1746 1746 2548 

NO4 1388 1388 1850 

NO5 1092 1091 2494 

DK1 2993 2767 2767 

DK2 2294 2294 2294 

SE 22334 22334 22293 

FI 7984 7984 7984 

EE 358 231 231 

 

Table 4-4 Comparison of exchange quantities for three model variants, 15/12-2010, hour 19 

Bidding 

area 

(I) 

NPS 

net exchange 

(II) 

OptFlow net 

exchange with NPS 

bid curves 

(III) 

OptFlow net 

exchange with 

calibrated bid curves 

NO1 -1775 -1775 -1734 

NO2 2610 3311 3300 

NO3 -166 -166 -204 

NO4 1305 1278 1292 

NO5 565 565 534 

DK1 330 556 556 

DK2 -300 -753 -753 

SE -2715 -3115 -3091 

FI -219 -1606 -1606 

EE 365 437 437 

 

In the following, we compare prices and quantities for different congestion management methods, 

including nodal pricing, optimal zonal pricing (taking into account all constraints) and simplified zonal 

pricing (area prices like Nord Pool Spot, disregarding loop flow and intrazonal constraints). 
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4.2 Prices 

Table 4-5 compares four sets of prices for hour 19 on 15/12-2010. Actual Nord Pool Spot prices are 

given in the first price column (corresponding to (I) / (II) in Table 4-1), while the second and third 

columns show, respectively, the simplified and optimal zonal prices calculated by the OptFlow model. 

The simplified zonal prices correspond to (III) in Table 4-1, while optimal zonal prices take into 

account the specific location of all bids on the nodes and all constraints of the disaggregated power 

system. The three rightmost columns show descriptive statistics for the optimal nodal prices within 

each price zone. We see that when moving from simplified zonal prices (= area prices) to optimal 

zonal or nodal prices, prices increase in NO1, NO2, NO5, while prices decrease in NO4. The prices in 

the other areas remain almost the same or vary around the corresponding simplified zonal prices. Note 

however, that the price vectors are not directly comparable, since actual and simplified area prices do 

not take into account all constraints in the system. We will come back to this point later. 

Table 4-5 OptFlow prices versus actual Nord Pool Spot prices, 15/12-2010, hour 19 

Bidding 

area 

Actual 

NPS 

Zonal prices Optimal nodal prices 

Simplified Optimal Average Min Max 

NO1 104,56 105,63 137,08 131,15 131,12 131,28 

NO2 104,56 105,63 110,00 131,13 131,13 131,14 

NO3 130,50 130,70 137,57 131,44 131,33 131,72 

NO4 130,50 130,70 87,53 80,09 74,89 120,09 

NO5 104,56 105,63 1999,87 774,29 125,22 2000,00 

DK1 130,50 130,70 114,43 131,13 131,13 131,13 

DK2 130,50 130,70 172,00 131,13 131,13 131,13 

SE 130,50 130,70 137,24 130,54 93,65 132,52 

FI 130,50 130,70 134,86 129,27 129,27 129,27 

EE 38,95 38,95 36,10 38,95 38,95 38,95 

 

From Table 4-5, we notice that NO5 experiences a tremendous price increase compared to the 

simplified zonal prices, and that the maximum nodal price in NO5 is equal to the price cap of Nord 

Pool Spot of 2000 Euros/MWh (the optimal zonal price in area NO5 is also close to the price cap). In 

Figure 4-3 we have sorted the optimal nodal prices from the lowest to the highest. The colors show 

which bidding area the nodal prices belong to. On the first axis the price columns are weighted by the 

consumption in the nodes. The figure shows that only a few prices are close to the maximum price, 

whereas the other prices take on values mostly below 132 Euros/MWh. The figure shows that most of 

the price variation is linked to a small share of the total consumption. 
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Figure 4-3 Variation in nodal prices, 15/12-2010, hour 19 

Looking more closely at the price data, we see that the nodes with prices equal to the price cap are 

Arna, Fana, and Mongstad. In Figure 4-4 we show the market clearing prices and quantities for these 

nodes together with the bid curves in the nodes. Considering the Arna node, the red colored upward 

sloping curve is the supply curve, and the dotted vertical line close to its steepest part represents the 

quantity supplied at the market clearing price of 2000 Euros/MWh. The demand curve in Arna is 

represented by the vertical blue line, showing an inelastic demand of 677 MWh/h. The Nord Pool Spot 

price cap of 2000 Euros/MWh is implemented in the OptFlow model, and can be illustrated in the 

Arna node by the horizontal blue colored segment of the demand curve
7
.  

                                                      
7
 Likewise, a horizontal segment at price equal to 2000 Euros/MWh could represent the price cap in the supply 

curves. This is however not implemented in the OptFlow model. 

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 10000 20000 30000 40000 50000

E
u

ro
s/

M
W

h

Consumption (MWh/h)

NO1

NO2

NO3

NO4

NO5

DK1

DK2

SE

FI

EE



 SNF Report No 15/12 

 

21 

 

 

 

 

Figure 4-4 Bid curves and market clearing prices and quantities for Arna, Fana, and Mongstad, 15/12-2010, hour 19 
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feasible in the OptFlow model, however, in economic terms, we are dealing with an infeasibility. The 

difference between the inelastic demand and the “market clearing” demand can be interpreted as the 

necessary curtailment of consumption in the Arna node in order to obtain a feasible flow. The difficult 

constraints in the present case are the cut constraints Bergen 1 and Bergen 2, which impose the 

following requirements: 

Bergen 1: Flow (Fana-Samnanger) + Flow (Evanger-Dale) ≤ 670 MW 

Bergen 2: Flow (Fana-Samnanger) + Flow (Dale-Arna) ≤ 670 MW 

In the present case, these two cut constraints are not possible to comply with unless the price is at the 

price cap and the quantity is lower than 677 MWh/h
8
.  

This corresponds to the situation referred to by Bye et al. (2010) and described by various other 

reports like Baldursson et al. (2011); that is to say, for long periods the Norwegian power system has 

been operated at below agreed upon security standards, due to high loads and/or lack of transmission 

capacity. In a nodal pricing system, this becomes very visible, as do the representations of the security 

constraints imposed. In the following analyses of the 15/12-2010, hour 19 case, we relax the infeasible 

cut constraints. I.e. the Bergen 1 and Bergen 2 cut constraints are removed from the disaggregated 

optimization problems of the OptFlow model. The relaxation will change the optimal nodal and zonal 

prices, while the simplified zonal prices will be unaffected, since the cut constraints are not directly 

included in this price calculation anyway
9
. 

Summary data for the new prices is given in Table 4-6 and shows that all prices are now below 141 

Euros/MWh. Moving from simplified zonal prices to optimal zonal or nodal prices results in price 

increases in NO1, NO2, NO3, NO5, and FI. Prices decrease in NO4, while for the rest of the areas 

optimal prices vary around the simplified area prices or are fairly unaffected by the change (EE). 

Again, the price vectors are not directly comparable, since actual and simplified area prices do not take 

into account all constraints in the system, thus at these prices, the resulting flows will not comply with 

the system constraints. 

  

                                                      
8
 In the present case, there are alternative optimal solutions, curtailing demand in Arna or Fana, or a combination 

of the two. In principle, we could also have solutions producing at levels above the capacity limits in the Arna, 

Fana or Mongstad nodes. However, in our implementation, infeasibilities will always be handled by curtailing 

demand. 

9
 In practice, the cut constraints may affect the import and export capacities that the system operators set between 

the bidding areas, and that are given to the Elspot market clearing. 
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Table 4-6 Prices with relaxed Bergen security constraints, 15/12-2010, hour 19 

Bidding 

area 

Actual 

NPS 

Zonal prices Optimal nodal prices 

Simplified Optimal Average Min Max 

NO1 104,56 105,63 140,51 139,25 139,21 139,40 

NO2 104,56 105,63 110,00 139,23 139,23 139,24 

NO3 130,50 130,70 141,04 139,59 139,45 139,91 

NO4 130,50 130,70 88,19 80,74 74,77 126,58 

NO5 104,56 105,63 140,35 135,65 125,22 139,24 

DK1 130,50 130,70 124,77 139,23 139,23 139,23 

DK2 130,50 130,70 120,61 139,23 139,23 139,23 

SE 130,50 130,70 140,69 138,51 93,65 140,83 

FI 130,50 130,70 138,17 137,09 137,09 137,09 

EE 38,95 38,95 36,10 38,95 38,95 38,95 

 

Figure 4-5 and Figure 4-6 show the optimal nodal prices for consumption and production respectively, 

where prices are sorted from lowest to highest, and column widths represent volumes. For a quick 

visual comparison of aggregate price differences, the simplified zonal prices are shown in a similar 

way. Since the simplified zonal prices are also sorted from lowest to highest, the curves cannot be 

compared directly for each MW, in the sense that a specific point on the first axis may represent 

different locations in the two curves. For instance, the maximum priced node belonging to NO5 is 

located in the right hand part of the optimal nodal price curve, whereas it is located in the price 

segment at 105,63 Euros/MWh in the left hand part of the simplified zonal price curve. Thus the 

nodes / areas may have different sequencing in the two figures and in the two curves shown. 

Comparing the total volume weighted prices (i.e. the areas under the curves) we notice that for this 

hourly case, the nodal prices are on average higher than the simplified zonal prices. The reason for this 

is that the nodal prices include shadow prices for all transmission constraints (except cut constraints 

Bergen 1 and Bergen 2), whereas the simplified zonal prices do not, thus implying a solution that 

results in infeasible flows (see also next section). We also notice that the nodes in a specific bidding 

area like NO1 and NO5 are placed at several different locations along the first axis, i.e. some nodes 

should be in the lower end of the price distribution, whereas others should be in the high price end, 

although for NO1 especially and NO5, the nodal price differences within the zones are not very large. 

 

Figure 4-5 Nodal prices and load quantities, 15/12-2010, hour 19 
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Figure 4-6 Nodal prices and production quantities, 15/12-2010, hour 19 

Figure 4-7 and Figure 4-8 further illustrate the geographical variation in the optimal nodal prices. The 

color scale show different price intervals and the nodes are weighted by load and generation volumes. 

The node sizes show the concentration of load and production, although this also depends on the level 

of detail available on the power system in different parts of the Nordic power system (DK1, DK2, FI 

and EE being represented by single nodes). The figures also show that for the present hour there are 

exports from the Nord Pool area to Lithuania, the Netherlands and Germany (Figure 4-7) and imports 

to the Nord Pool area from Russia and Germany (Figure 4-8). 

It is interesting to note from Table 4-6 and Figure 4-5 – Figure 4-8 that even if Sweden now has 27 

different prices instead of one the prices are very similar, except for the Tornehamn node, with 

relatively low quantities. 
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Figure 4-7 Nodal prices weighted by consumption, 15/12-2010, hour 19 
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Figure 4-8 Nodal prices weighted by production, 15/12-2010, hour 19 
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In Figure 4-9 and Figure 4-10 we compare simplified and optimal zonal prices. The figures are similar 

to Figure 4-5 and Figure 4-6 for optimal nodal prices, except that we have sorted simplified zonal 

prices from lowest to highest, and shown the corresponding optimal zonal price in the same sequence. 

Thus it is easier to compare the changes that result in the zonal prices from taking into account all 

constraints and the specific location of bids to nodes (optimal zonal prices) instead of only a subset of 

the constraints or some indirect representation of the constraints (simplified zonal prices). Figure 4-9 

and Figure 4-10 elaborates on what is already shown in Table 4-6, that some zonal prices increase 

while others decrease. Moreover, as a weighted average, prices increase when all constraints are taken 

care of in the optimal zonal prices. The simplified zonal prices are lower on average (volume 

weighted), but on the other hand, as we will look more closely into in the next section, they result in 

infeasible power flows. 

 

Figure 4-9 Optimal zonal prices and load quantities, 15/12-2010, hour 19 

 

Figure 4-10 Optimal zonal prices and production quantities, 15/12-2010, hour 19 
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4.3 Power flows and bottlenecks 

Since we do not consider power losses, price differences are related to bottlenecks in the power 

system. In this section we show a summary of the capacity utilization of the grid for the present case, 

and we investigate the status of the capacity constraints under the various pricing methodologies. 

The power flows of the simplified zonal solution have been calculated using a two-stage approach. In 

the first stage, we compute the nodal supply and demand quantities from the simplified zonal prices 

(where line capacity constraints have been replaced by aggregate inter-zonal capacity constraints
10

, 

and where loop flow is not considered). This can be done since we have constructed the disaggregated 

supply and demand curves, thus we allocate the zonal supply and demand to the nodes belonging to 

each zone. Based on the nodal load and generation quantities from the first stage, we compute the final 

line flows, using a detailed network model that also takes loop flow into consideration, but without 

considering any network capacity constraints, except some restrictions with respect to flows over 

HVDC lines
11

. Thus we obtain the power flows that will result from injections and withdrawals in the 

nodes that are consistent with the simplified zonal prices (refer also chapter 2). In case of ties, we 

choose a solution that maximizes social surplus. A similar procedure is used to find the flows in the 

unconstrained solutions
12

. 

Figure 4-11 shows the power flow of the nodal price solution. The links are weighted by the flow 

sizes, HVDC links are shown by dotted lines, and the binding thermal capacity constraints are shown 

in red colors. We notice that there are four links that are operated on their thermal capacity limits, and 

their capacities and the shadow prices on the constraints are shown in Table 4-7. The shadow prices 

show the value of increasing the corresponding thermal capacity limits, i.e. the increase in social 

surplus. For the present case, being able to increase the flow from EE to FI and from Tornehamn to 

Sildvik has the highest values. 

Table 4-7 Shadow prices for binding capacity constraints with nodal pricing, 15/12-2010, hour 19 

From To Max Shadow price 

EE FI 365 98,15 

Tornehamn Sildvik 166 48,26 

FI Forsmark 550 2,07 

DK1 Ringhals 740 0,02 

                                                      
10

 We have also included the cut constraints for Sweden (cut 2) and DK1 (cut B) that was used by Nord Pool 

Spot for this hour. 

11
 Letting the flow over HVDC lines vary freely introduces too much freedom, and the solutions that we obtained 

with unrestricted HVDC flows were in many cases unreasonable. Since the flow over an HVDC line can be 

controlled in practice we think it is reasonable to restrict the flow over HVDC lines in the second stage. For the 

NO2-DK1 and DK2-SE lines we fix the flow in the second stage based on the first stage results. For the FI-SE 

line (Fenno-Skan) the situation is more complicated, since there is also an AC connection between Finland and 

Sweden, and the FI-SE flow from the first stage could represent either of the two connections between the two 

price areas. Instead of fixing the flow over the FI-SE HVDC line we have chosen to impose the capacity 

constraint for this line in the second stage. The flow in the second stage is chosen such that the sum of thermal 

losses is minimized. 

12
 For the unconstrained solution, we impose the capacity constraints on the HVDC lines mentioned in footnote 

11. 
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Figure 4-11 Line flows and thermal bottlenecks for optimal nodal price solution, 15/12-2010, hour 19 
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The histograms in Figure 4-12 – Figure 4-14 describe the utilization of the lines’ thermal capacity 

limits under the three pricing methodologies that we consider. For nodal pricing, optimal, and 

simplified zonal pricing, respectively, the figures show the number of lines operating within different 

intervals of capacity utilization. We distinguish between inter-zonal lines (red color) and intra-zonal 

lines (blue color). For instance, in Figure 4-12 we can see that in the nodal price solution 7 lines (4 

inter-zonal and 3 intra-zonal) are operated at between 90 and 100 % of their capacity. For the present 

case, we notice that, regardless of congestion management method, most of the lines are operated well 

below their thermal capacity limits. We can also see from Figure 4-14 that the simplified zonal 

approach results in infeasible power flows over some lines, i.e. power flows that exceed the line 

capacities. The figure shows that this occurred for 2 out of 301 lines, and one of these lines is inter-

zonal. 

 

 

Figure 4-12 Line capacity utilization with nodal pricing, 15/12-2010, hour 19 
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Figure 4-13 Line capacity utilization with optimal zonal pricing, 15/12-2010, hour 19 

 

 

Figure 4-14 Line capacity utilization with simplified zonal pricing, 15/12-2010, hour 19 
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As discussed in section 4.2, the present case represents an instance in which it is necessary to relax 

some of the cut constraints: Bergen 1 and Bergen 2. In the nodal price solution, we have the following: 

Bergen 1: Flow (Fana-Samnanger) + Flow (Evanger-Dale) ≤ 670 MW 

  475 + 266 = 744 > 670 

Bergen 2: Flow (Fana-Samnanger) + Flow (Dale-Arna) ≤ 670 MW 

  475 + 293 = 768 > 670 

This means that the relaxed cut constraints are overloaded by approximately 11 % and 15 % in the 

nodal price solution. 

Figure 4-15 – Figure 4-17 show the utilization of the cut constraints for the different pricing methods, 

including the relaxed Bergen cuts. The figures show that Bergen 1 and Bergen 2 are infeasible in all 

the three solutions. Looking more closely at the nodal price solution, there are three cut constraints 

that are operated on their capacity limit
13

. The shadow prices for these three, Hasle eksport, Nordland, 

and Fardal overskudd 1, are given in Table 4-8.  

 

Figure 4-15 Cut capacity utilization with nodal pricing, 15/12-2010, hour 19 

 

                                                      
13

 In Figure 4-15, it seems like Flesaker 4 = 0.45 ∙ Flow (Rjukan-Sylling) + Flow (Rød-Hasle) ≤ 1170 is also on 

its capacity limit. However, the capacity utilization is 99.5 % and the shadow price of the cut constraint is 0. 

Note also that since the cut constraints are direction dependent, capacity utilization below – 100 % does not 

constitute a problem. 
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Table 4-8 Shadow prices for cut capacity constraints with nodal pricing, 15/12-2010, hour 19 

Cut name Capacity From To 
Share of flow  

included 
Shadow price 

Hasle eksport 1600 Hasle Borgvik 1 0,08 

 

  Halden Skogssäter 1 

 Nordland 1000 Ofoten Ritsem 1 65,26 

 

  Nedre Røssåga Ajaure 1 

 

 

  Tunnsjødal Verdal 1 

 

 

  Tunnsjødal Namsos 1 

 

 

  Sildvik Tornehamn 1 

 Fardal overskudd 1 750 Modalen Evanger 1 14,02 

 

  Fardal Aurland1 1 

  

While all the cut constraints, except the ones that are relaxed, are fulfilled in the optimal nodal and 

optimal zonal price solutions, we can see from Figure 4-17 that the Nordland cut is not satisfied in the 

simplified zonal solution. I.e. in addition to 2 of the thermal constraints, also one of the cut constraints 

is violated in the simplified zonal solution. 

 

 

Figure 4-16 Cut capacity utilization with optimal zonal pricing, 15/12-2010, hour 19 
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Figure 4-17 Cut capacity utilization with simplified zonal pricing, 15/12-2010, hour 19 

4.4 Load and generation quantities 

In this section we compare the load and generation quantities produced by the different pricing 

methods. In Figure 4-18 we show the differences in load for each node, i.e. the difference between the 

quantities consumed in the simplified zonal solution and the quantities consumed in the optimal nodal 

and the optimal zonal solutions. We notice that the differences are quite small. The consumed 

quantities at optimal nodal and zonal prices are almost identical, and the differences between these two 

solutions and the simplified zonal solution are quite small. This is due to the relatively inelastic 

demand in the present case. With rather high prices, the market outcomes are on the inelastic parts of 

the demand curves, even in nodes where there is some elastic demand (like energy-intensive industry). 
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Figure 4-18 Differences in load between simplified zonal and the other two pricing approaches, 15/12-2010, hour 19 

Figure 4-19 shows the same differences for generation quantities. We observe that in general, the 

quantity differences are larger for generation than for consumption, especially between the simplified 

zonal solution and the other two solutions. Optimal nodal and optimal zonal quantities are quite 

similar, except for EE. The latter can be illustrated by Figure 4-20, which shows the stepwise 

generation bid curve for Estonia. At the optimal nodal price / simplified zonal price (these are equal 

according to Table 4-6) the price curve hits the supply curve at an almost horizontal part. Even a very 

small price reduction would change the quantity quite much when the supply curve takes this form. 

In Figure 4-21 we show the bid curves for Nedre Røssåga, the node where the optimal nodal / optimal 

zonal generation differs most from the generation at the simplified zonal price. From the upper part of 

the figure we see that the change in nodal price is quite large, and this leads to a significant reduction 

in quantity produced. For the optimal zonal price in the lower part of the figure, we see that the price 

reduction is smaller. However, the quantity reduction is of similar size. This is one of the instances 

where the optimal zonal price solution has a price strictly higher than the marginal cost (see also 

Appendix 5 for a description of this phenomenon).  

The production of Nedre Røssåga is strongly affected by the limitations of the Nordland cut. This is 

also the case for the other nodes in Figure 4-21 that have large reductions in generation when moving 

from the simplified zonal solution to the optimal nodal/zonal price. Similarly, the largest positive 

quantity differences are linked to nodes that are located close to the Fardal cut (refer Table 4-8 which 

shows the cut constraints with positive shadow prices). These two cuts will be discussed further in 

Section 4.6.2, where we discuss the number of price areas. 
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Figure 4-19 Differences in generation between simplified zonal and the other two pricing approaches 

 

Figure 4-20 Differences in generation, Estonia 
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Figure 4-21 Differences in generation, Nedre Røssåga 

4.5 Surpluses 

In Table 4-9 we show the changes in surplus compared to the unconstrained market solution. The 

absolute values of the consumer surpluses are not very meaningful, since demand is very inelastic, at 

least for high prices, and we have capped the consumer surplus at the price cap of 2000 Euros / MWh. 

This way, the consumer surplus and the total social surplus are very much affected by the price cap. 

Moreover, since the surpluses of the simplified zonal solution are not comparable to the optimal nodal 

and zonal prices that take into account all constraints, we have shown the number of overloaded 

thermal and security constraints in the last row of the table. Alternatively, we should model counter 

trading, and take into account any efficiency effect from those. This is however, not straightforward. 

In order to obtain reasonable solutions in such a model, we need to make assumptions on the degree of 
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flexibility in real time for the different producers and consumers (demand response). If we assume the 

same bid curves both for the day-ahead and the balancing / regulation market, an optimal re-dispatch 

takes us to the optimal nodal price solution. This is if we do not take into account any start up 

restrictions or other kinds of inflexibility neither in the day-had market nor the real time market. 

For the present case, we see that moving from simplified zonal prices to optimal zonal or nodal prices 

leads to a reduction in consumer surplus, and an increase in producer surplus and grid revenue. The 

grid revenue increases most with optimal zonal prices, and the producer surplus increases most with 

nodal pricing. Since we disregard some constraints in the simplified zonal solution, the total surplus 

seems to go down a bit, however this must be balanced by the infeasibilities that are left in the 

simplified zonal solution and which are dealt with in the optimal zonal and optimal nodal solutions. In 

the end, the infeasibilities must be taken care of in the simplified zonal solution too, this may be costly 

for society, and this cost is not reflected in Table 4-9. 

Table 4-9 Unconstrained surplus and surplus differences (1000 Euros), 15/12-2010, hour 19 

 
Un- 

constrained 

Simplified 

zonal 

Optimal 

zonal 
Nodal 

Producers 6799,5 38,0  451,8  624,8 

Consumers 99249,1 -111,7  -639,5  -761,4 

Grid 0,0 68,6  170,4  120,9 

Total 106048,7 -5,1  -17,3  -15,6 

Infeasibilities 
2 lines 

1 cut 

2 lines 

1 cut 
None None 

(Bergen 1 and Bergen 2 are overloaded in all solutions.) 

We see that the difference between total surplus in the unconstrained solution and the optimal nodal 

price solution is 15600 Euros. This corresponds to the minimum congestion cost possible for this hour. 

The optimal zonal price solution would lead to a small increase in the congestion cost, to 15700 Euros. 

 

4.6 Sensitivity analyses 

In this section we present different sensitivity analyses. We have focused on the effects of 

 The transfer limits set between zones 

 The number of price areas 

 The implementation of security constraints 

 Increasing the demand elasticity 

4.6.1 Effects of capacities in aggregated network 

In this section we show how the capacities set on the aggregated zonal interfaces affect the area prices 

of the simplified zonal model and the utilization of individual link capacities and cut constraints. We 

focus on the links and cuts that at some point are violated or close to being so.  
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As an example, consider the capacity between NO1 and SE, often referred to as the Hasle interface
14

. 

Figure 4-22 shows the effects of changing the aggregate capacity of NO1-SE on some of the 

individual line flows that are at the capacity limit (green lines) or above (red and blue lines). The 

nominal capacity of the NO1-SE connection is 2145 MW (dotted vertical line on the right hand side), 

while the capacity given to the market for the specific hour is 600 MW (dotted vertical line on the left 

hand side of the figure). We notice that when reducing the capacity of NO1-SE the utilization of 

Tornehamn-Sildvik and Ranes-Aura increases, but most of the increase takes place below the Nord 

Pool Spot capacity of 600 MW. The lines marked in green color are unaffected by the NO1-SE 

capacities. However, some of these flows are restricted to be on or below the capacity limits
15

.  

 

 

Figure 4-22 Line capacity utilization versus capacity NO1-SE 

Figure 4-23 shows similar effects for the cut constraints. Again we focus on the constraints that are 

close to or above the capacity limit. We see that the Nordland cut and the infeasible Bergen cuts 

become more overloaded when decreasing the capacity of NO1-SE. Again most of the effect takes 

place at capacities lower than the Nord Pool Spot transfer capacity. 

                                                      
14

 The capacity between NO1 and Sweden has often been reduced in the Nord Pool Spot market clearing due to 

constraints internal to Southern Norway and / or Sweden. “Hasletrappen” for instance indicates a heuristic for 

how the Norwegian system operator sets capacity at NO1-SE based on the expected load in the Oslo-region. The 

higher the load in Oslo, the lower the export capacity to Sweden, and this is due to the capacity of the Hallingdal 

and Flesaker interfaces within Southern Norway. 

15
 This is in order to obtain reasonable flows when transferring the net injections of the simplified aggregated 

market clearing model into the disaggregated network model. 
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Figure 4-23 Cut capacity utilization versus capacity NO1-SE 

Figure 4-24 shows the different area prices, and their dependence on the capacities set in the simplified 

zonal solution. We see that the capacity of NO1-SE can potentially have a large effect on the area 

prices. In this case, all prices except EE are equal at the NTC capacity, at the Nord Pool Spot capacity 

of 600 MW, some of the prices differ, and at even lower capacities the price differences can be 

considerable.  
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Figure 4-24 Area prices versus capacity NO1-SE 

Figure 4-25 – Figure 4-27 show similar sensitivity analyses for the NO4-SE interface. Decreasing the 

capacity set on the NO4-SE interface in the simplified zonal model mostly increases the flows on the 

individual links that are close to or above capacity limit. The picture is different for the cut constraints, 

and Figure 4-26 shows that a reduction in the capacity NO4-SE to about half its NTC capacity will 

decrease the utilization of the Nordland cut. This will also affect prices considerably, as shown in 

Figure 4-27.  
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Figure 4-25 Line capacity utilization versus capacity NO4-SE 

 

 

Figure 4-26 Cut capacity utilization versus capacity NO4-SE 
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Figure 4-27 Area prices versus capacity NO4-SE 

Finally, Figure 4-28 – Figure 4-30 show the effects of reducing the capacity between DK1 and SE. We 

notice from Figure 4-28 that some lines will have increased flow while others will decrease when 

capacity is reduced. The cut constraints shown in Figure 4-29 are not so sensitive towards this 

capacity, although at very low capacities, the BKK cut becomes active. Prices shown in Figure 4-30 

are however sensitive already from the first MW of reduced capacity. A reduction in capacity of about 

100 MW would effectively split the Nord Pool market into two price areas in addition to Estonia. 
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Figure 4-28 Line capacity utilization versus capacity DK1-SE 

 

Figure 4-29 Cut capacity utilization versus capacity DK1-SE 
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Figure 4-30 Area prices versus capacity DK1-SE 

In practice there are many ways of combining the capacities over all the interfaces. To conclude this 

section we show the effect of setting zonal interface capacities in two different ways, i.e. we compare 

the prices and infeasibilities at the actual Nord Pool capacities to the prices and infeasibilities that 

would result when using the flows of the optimal nodal price solution and the optimal zonal price 

solution instead. Table 4-10 shows the NPS capacities between zones, as well as the flow-based 

capacities that we have used. Since we have used the actual flows of the nodal and optimal zonal 

solutions, the corresponding capacities are shown here as single-sided. 

Table 4-10 Capacities for links between zones in the simplified zonal model 

Links between zones 
NPS capacity Cap. from nodal model Cap. from opt. zonal model 

Forward Backward Forward Backward Forward Backward 

DK1 DK2 590 600 0 435 0 433 

DK1 NO2 950 1000 27 0 23 0 

DK1 SE 740 0 740 0 740 0 

DK2 SE 1700 0 0 735 0 732 

FI EE 365 365 0 365 0 350 

FI SE 1740 1410 191 0 175 0 

NO1 NO2 1700 2500 0 2813 0 2811 

NO1 NO3 -200 200 18 0 17 0 

NO1 NO5 650 700 0 500 0 501 

NO1 SE 600 95 1581 0 1581 0 

NO2 NO5 250 700 0 150 0 151 

NO3 NO4 0 900 0 486 0 485 

NO3 SE 600 900 340 0 342 0 

NO4 SE 800 700 514 0 516 0 
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Figure 4-31 and Figure 4-32 compare the new area prices to the area prices in the simplified model, 

but with the original Nord Pool Spot capacities. We can see that prices in NO1, NO2, NO3, and NO5 

increase while the price in NO5 decreases. Using the optimal nodal price flow or the optimal zonal 

price flow as the basis for setting the capacities, leads to only small differences. This is shown in Table 

4-11 as well. Table 4-11 also shows that the area prices that result when using the optimal nodal and 

zonal power flows to set transfer capacities are more similar to the optimal nodal and zonal prices than 

the prices found with the Nord Pool Spot capacities.  

 

 

Figure 4-31 Simplified zonal prices with interzonal capacities from nodal flows 

 

 

Figure 4-32 Simplified zonal prices with interzonal capacities from optimal zonal flows 
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Table 4-11 Prices with different aggregate transfer capacities, 15/12-2010, hour 19 

Bidding 

area 

Actual 

NPS 

Simplified zonal 

Optimal 

zonal 

Optimal 

nodal 

(average) 

Actual 

NPS 

capacities 

Cap. from 

nodal flow 

Cap. from 

opt. zonal 

flow 

NO1 104,56 105,63 137,50 138,34 140,42 139,25 

NO2 104,56 105,63 137,50 138,34 140,26 139,23 

NO3 130,50 130,70 137,50 138,34 140,94 139,59 

NO4 130,50 130,70 76,00 75,98 88,17 80,74 

NO5 104,56 105,63 132,63 133,17 140,26 135,65 

DK1 130,50 130,70 137,50 138,34 124,77 139,23 

DK2 130,50 130,70 137,50 138,34 120,61 139,23 

SE 130,50 130,70 137,50 138,34 140,59 138,51 

FI 130,50 130,70 137,09 138,08 138,08 137,09 

EE 38,95 38,95 38,95 38,90 36,10 38,95 

 

In Table 4-12 we show the changes in surpluses and allocation of surpluses. The surpluses are not 

comparable since the infeasibilities are different, and we note that even if we use the flows from the 

optimal nodal and zonal price models to set capacities, the resulting flows still contain infeasibilities. 

Table 4-12 Unconstrained surplus and surplus differences (1000 Euros) with different aggregate transfer limits 

 
Un- 

constrained 

Simplified zonal 
Nodal 

 
Actual NPS 

capacities 

Cap. from 

nodal flow 

Cap. from 

opt. zonal flow 

Producers 6799,5 38,0 560,1 600,6 624,8 

Consumers 99249,1 -111,7 -678,0 -716,2 -761,4 

Grid 0,0 68,6 103,2 99,3 120,9 

Total 106048,7 -5,1 -14,7 -16,3 -15,6 

Infeasibilities 
2 ind. lines 

1 cut 

2 ind. lines 

1 cut 

1 ind. line 

2 cuts 

1 ind. line 

2 cuts 
None 

(Bergen 1 and Bergen 2 are overloaded in all solutions.) 

 

Looking more closely at the solutions, Table 4-13 and Table 4-14 show that the cut constraints, except 

for the Bergen cuts, are much closer to feasibility when using the optimal flows to set capacities. It is 

not surprising that the feasibility of the Bergen cuts is not improved when using the flow-based 

capacities, since these cut constraints have been excluded when computing the flows that we use to set 

the capacities. 

Table 4-13 Overloaded lines under various model settings 

Model settings Line Capacity Overload Overload % 

Unconstrained 
Torneham-Sildvik 166,2 18,7 11,3 

EE-FI 365 68,8 18,8 

Simplified 

zonal model 

Actual NPS capacities 
Torneham-Sildvik 166,2 24,1 14,5 

Ranes-Aura 96 1,8 1,9 

Flow-based cap. from 

nodal model 
Torneham-Sildvik 166,2 28,2 17,0 

Flow-based cap. from 

opt. zonal model 
Torneham-Sildvik 166,2 28,7 17,3 
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Table 4-14 Overloaded cuts under various model settings 

Model settings Cut Capacity Overload Overload % 

Unconstrained 

Nordland 1000 255,3 25,5 

Bergen 1 670 136,8 20,4 

Bergen 2 670 156,4 23,3 

Simplified 

zonal model 

Actual NPS capacities 

Nordland 1000 274,2 27,4 

Bergen 1 670 146,8 21,9 

Bergen 2 670 163,3 24,4 

Flow-based cap. from 

nodal model 

Nordland 1000 8,3 0,8 

Fardal overskudd 1 750 15 2,0 

Bergen 1 670 130,2 19,4 

Bergen 2 670 151,9 22,7 

Flow-based cap. from 

opt. zonal model 

Nordland 1000 6,4 0,6 

Fardal overskudd 1 750 16,1 2,1 

Bergen 1 670 129,8 19,4 

Bergen 2 670 151,7 22,6 

 

 

4.6.2 The number of price areas 

In this section we discuss the effect of changing the number of price areas. We take the zones per 

15/10-2010 as a starting point, and we discuss the effect of increasing the number of price areas in the 

simplified zonal pricing model. When we introduce new price areas, the total surplus will tend to 

decrease because of the more restricted model formulation, but the extra restrictions can also improve 

the feasibility of the resulting load flow. 

Since we know that the optimal nodal prices result in a feasible load flow, it is natural to consider the 

level of the nodal prices when determining the price areas for the simplified zonal model
16

. Figure 4-

33 shows nodal prices and load flow, as well as the assignment of nodes to price areas that was used 

on the date 15/12-2010. Of the NPS price areas it is only NO4, and to some extent NO5, where there is 

substantial variation in nodal price levels within the price area. In Sweden the node Tornehamn plays a 

special role, since it is disconnected from the rest of the Swedish network, and since its nodal price is 

much lower than the other Swedish nodes. These observations suggest some obvious alterations to the 

NPS zonal configuration, and we will now discuss them in more detail. The cases that we will discuss 

are briefly described in Table 4-15. 

                                                      
16

 It is however not necessarily so that the nodes with most similar prices should belong to the same zone. This is 

discussed by Bjørndal and Jörnsten (2001). 
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Table 4-15 Overview of the cases 

Case Capacities Zonal configuration 

I Actual NPS capacities, with NTC 

values for new interconnections. 

Actual NPS configuration on December 15, 2010. 

II Same as I, but with four price areas in Sweden. 

III 

Based on  

aggregate net flow over 

interconnections from nodal 

approach (see also Section 4.6.2). 

Same as I. 

IV Same as III, but with Tornehamn transferred from SE to NO4. 

V 

Same as IV, but we create a new price area NO6 from some of the nodes in 

NO4. The two new price areas are separated by the line Nordreisa-

Kvænangsbotn. 

VI 

Same as V, but we create a new price area NO7 in the northern part of NO5. The 

new price area is separated from the remaining nodes in NO5 by the Fardal 

overskudd 1 cut, i.e., by the lines Modalen-Evanger and Fardal-Aurland1. 

VII 
Same as VI, but NO6 is divided in two price areas separated by the line Lakselv-

Adamselv. 

VIII Same as IV, but each node in the original NO4 is a separate price area.  
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Figure 4-33 Nodal prices and load flow, red lines indicate binding line constraints 
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Our starting point is the actual price area configuration, shown as Case I in Table 4-15. As discussed 

previously, and shown in Table 4-16, this configuration gives a congestion cost (compared to the 

unconstrained case) of 5100 Euros, i.e., much lower than the cost of the nodal approach. However, the 

simplified approach gives a load flow that is not feasible, since two individual lines and one cut is 

overloaded.  

Case II is the same as Case I, except that Sweden has been split into four price areas, as implemented 

by Nord Pool Spot from November 1, 2011. Splitting Sweden into several price areas makes it 

necessary to set capacities on a number of interconnections that were not present in the model from 

before. Also, it is not obvious that the capacities on the existing interconnections should be the same 

after the change. In Case II we have used the same capacities for existing interconnections, and we 

have set the capacities of new interconnections by using NTC values as of February 10, 2012
17

. We 

see from Table 4-16 that the change reduces the congestion cost somewhat, but that it does not 

alleviate the problem of all infeasible load flows. Interestingly, as can be seen from Figure 4-34 and 

Table 4-17, the splitting of Sweden has the opposite effect of what one might expect, i.e., that the 

prices become uniform over almost the whole Nord Pool area, with the exception of Estonia. Table 4-

16 shows that there are still lines and cuts with infeasible flows given the solution from the simplified 

model. Increasing the number of price areas, introduce more constraints into the problem, which in 

itself should lead to increases in congestion cost. However, in practice more capacity can be given to 

the transfer capacities that are actually modeled, and this brings the congestion cost down. In this case 

the net effect is a reduction in congestion cost. 

 

Table 4-16 Congestion costs (1000 Euros) and infeasibilities for various cases with the simplified zonal approach 

 

Uncon- 

strained 

surplus 

Simpl. zonal with 
NPS/NTC cap. 

Simplified zonal with flow-based 
capacities from nodal approach Nodal 

I II III IV V VI VII VIII 

Producers 6799,5 38,0 64,7 560,1 607,3 616,0 604,1 621,3 617,4 624,8 
Consumers 99249,1 -111,7 -99,1 -678,0 -738,9 -748,9 -736,8 -759,6 -770,4 -761,4 
Grid 0,0 68,6 31,1 103,2 116,4 117,6 117,2 122,9 137,5 120,9 

Total 106048,7 -5,1 -3,3 -14,7 -15,2 -15,3 -15,4 -15,4 -15,6 -15,6 

Infeasibilities 
2 lines 

1 cut 

2 lines 

1 cut 

1 line 

1 cut 

1 line 

2 cuts 

0 lines 

3 cuts 

0 lines 

3 cuts 

0 lines 

2 cuts 

0 lines 

2 cuts 

0 lines 

1 cut 
None 

Line 

overload 
(%) 

Ranes-Aura - 1,9 - - - - - - - - 

Sildvik-Torneh. 11,3 14,5 12,1 16,9 - - - - - - 
FI-EE 18,8 - - - - - - - - - 

Cut 

overload 
(%) 

Fardal oversk. 1 - - - 2,0 2,0 2,0 - - - - 

Nordland 25,5 27,4 26,0 0,8 3,2 2,5 3,2 2,7 0,7 - 
Hasle eksport - - - - 0,2 0,1 0,2 0,1 - - 

 

 

 

 

                                                      
17

 We have taken into account the fact that Fenno-Skan 2 did not exist in December 2010, hence the capacity on 

the interconnection between Finland and SE3 has been set to 550 MW, i.e., the capacity of Fenno-Skan 1. 
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Figure 4-34 Simplified zonal prices with 4 zones in Sweden (Case II) 

Table 4-17 Area prices for cases I-VIII 

 

Simpl. zonal prices with 

NPS/NTC cap. 

Simplified zonal prices with flow-based 

capacities from nodal approach 
Nodal prices 

I II III IV V VI VII VIII Min Max 

NO1 105,63 124,21 137,50 139,34 139,34 139,34 139,34 139,34 139,21 139,40 

NO2 105,63 124,21 137,50 139,34 139,34 139,34 139,34 139,33 139,23 139,24 

NO3 130,70 124,21 137,50 139,34 139,34 139,34 139,34 139,34 139,45 139,91 

NO4 130,70 124,21 76,00 76,31 76,12 76,12 76,12 75,10 - 89,21 74,77 93,65 

NO6 
    

107,76 107,76 97,00 92,45 - 105,39 92,45 105,39 

NO8 
      

122,25 119,63 - 126,58 119,63 126,58 

NO5 105,63 124,21 132,63 132,63 132,63 139,23 139,23 139,23 139,23 139,24 

NO7 
     

125,22 125,22 125,22 125,22 125,22 

DK1 130,70 124,21 137,50 139,34 139,34 139,34 139,34 139,33 139,23 139,23 

DK2 130,70 124,21 137,50 139,34 139,34 139,34 139,34 139,34 139,23 139,23 

SE1 

130,70 

124,21 

137,50 139,34 139,34 139,34 139,34 139,34 

138,03 140,83 

SE2 124,21 138,76 139,41 

SE3 124,21 139,17 139,28 

SE4 124,21 139,21 139,23 

FI 130,70 124,21 137,09 137,09 137,09 137,09 137,09 137,09 137,09 137,09 

EE 38,95 38,95 38,95 38,95 38,95 38,95 38,95 38,95 38,95 38,95 

 

As shown in Figure 4-33, NO4 and NO5 are the only price areas where the nodal prices differ 

substantially within the area, and this observation suggests that further splitting of NO4 and NO5 may 

be necessary in order to remove the flow infeasibilities. However, since we do not know how the 

system operators would set the interconnection capacities in a system with a different price area 

configuration, we shall not use the NPS/NTC capacities in the following discussion. Instead, we shall 

set the capacities of each interconnection based on aggregate net load flow from the nodal approach. 

Cases III-VIII are all based on this way of setting the capacities between the price areas. 
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Case III is based on the actual Nord Pool Spot price areas for December 2010, and will serve as the 

starting point for the discussion in the rest of this section. Comparing the area prices for Case III to the 

average nodal prices for the bidding areas in Table 4-11 (Section 4.6.1), we notice that they are quite 

similar. As seen from Table 4-16, however, the resulting flow in case III is still infeasible. The flow 

from Tornehamn to Sildvik is 16,9 % above the capacity limit. Note that the area price in Sweden is 

137,5 Euros/MWh, while the area price in NO4 is 76 Euros/MWh. Hence the power flows from a 

high-price area to a low-price area, contrary to what one would expect. The explanation for this 

phenomenon is that Tornehamn is not connected to the rest of the Swedish network, hence it is not 

physically possible to trade power at the Swedish price in this node. The simplified zonal model does 

not “know” that the connection between Tornehamn and the rest of Sweden does not exist, and hence 

sets a common price for the entire price area. An obvious remedy in order to improve the quality of the 

solution from the simplified model is to assign Tornehamn to the price area NO4 instead of Sweden, 

as it is done in Case IV. We see from Table 4-17 that the price in Sweden goes up from 137,50 

Euros/MWh to 139,34 Euros/MWh, and that the price in NO4 goes up from 76,00 Euros/MWh to 

76,31 Euros/MWh. Since there is a uniform price in Sweden and Norway, except NO4 and NO5, the 

change also has effect for other price areas. Table 4-16 shows that the congestion cost goes up from 

14,7 to 15,2. All the line capacity constraints are now satisfied, but there are still three cut constraints 

that are violated. 

The two most violated cut constraints, as indicated by the shadow prices in Table 4-18, are the 

Nordland cut and the Fardal (overskudd 1) cut. The Nordland cut is illustrated by the green lines in 

Figure 4-35. The area price in NO4 in Case IV is 76,31 Euros/MWh, while the area price in NO3 and 

SE is 139,34 Euros/MWh. From the nodal prices in Figure 4-35 we see that there is a potential for a 

high-price area consisting of the northernmost nodes in NO4. If we can increase the price in Finnmark 

we can counteract the power flow southwards to NO3 and Sweden, over the Nordland cut. In Case V 

we create a price area, NO6, in Finnmark, delimited by the Nordreisa-Kvænangsbotn line. Table 4-17 

shows an area price in NO6 of 107,76 Euros/MWh, while the area price in the “new” NO4 is 76,12 

Euros/MWh. There is a slight reduction in the overload over the Nordland cut, from 3,2 % to 2,5 %. 

 

 

Table 4-18 Shadow prices for cut capacity constraints with nodal pricing 

Cut name Capacity From To 
Share of flow  

included 
Shadow price 

Hasle eksport 1600 Hasle Borgvik 1 0,08 

 

  Halden Skogssäter 1 

 Nordland 1000 Ofoten Ritsem 1 65,26 

 

  Nedre Røssåga Ajaure 1 

 

 

  Tunnsjødal Verdal 1 

 

 

  Tunnsjødal Namsos 1 

 

 

  Sildvik Tornehamn 1 

 Fardal overskudd 1 750 Modalen Evanger 1 14,02 

 

  Fardal Aurland1 1 
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Figure 4-35 Nodal prices and load flow for NO4, binding line constraints are indicated by red lines 

 

Figure 4-36 shows a similar picture for the NO5 price area. The level of the nodal prices indicate that 

the price level should be lower behind the Fardal cut, as illustrated by the green lines in the figure. In 

order to avoid excessive flow over this cut we can create a separate price area, NO7, for the nodes 

behind it (Case VI). We see that the price for NO7 becomes 125,22 Euros/MWh, while the remaining 

nodes in NO5 has a much higher price of 139,23 Euros/MWh. Table 4-16 also shows that the Fardal 

cut is no longer violated. 
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Figure 4-36 Nodal prices and load flow for NO5 

Since the Nordland cut is slightly violated in all the cases up to now, we attempt to improve the 

situation by splitting NO6 into two price areas, separated by the Lakselv-Adamselv line. The price in 

the new area NO8 becomes 122,25 Euros/MWh, while the remaining nodes in NO6 has a price of 

97,00 Euros/MWh. However, the Nordland cut is still violated by a few percentages. Table 4-17 and 

Figure 4-37 show that the resulting area prices match the nodal prices quite closely. We find the 

largest differences between nodal and simplified zonal prices in NO4, NO6, and NO8. In order to get 

rid of the infeasibilities in the simplified zonal approach we attempt to move the prices in these three 

areas even closer to the nodal prices. One way of doing this is to give each of the nodes in these areas 

their own price. I.e., we allow for nodal prices (in a simplified model) in NO4, NO6 and NO8, while 

we keep the area configuration for the rest of the network. We see from Table 4-16 that the congestion 

cost for Case VIII is approximately equal to the congestion cost for the nodal approach, and that the 

overload over the Nordland cut is now reduced to 0,7 %. 
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Figure 4-37 Area prices and consumption for Case VII 

4.6.3 Security constraints 

In the following we consider a different approach to the security constraints. Instead of the cut 

constraints we reduce the capacities of the individual lines to a fraction of the nominal thermal 

capacities, like in Neuhoff et al. Figure 4-38 – Figure 4-45 show the price changes (weighted by 

consumed quantities on the first axis) and the utilization of the cut constraints that follows from the 

computed prices and quantities. Only the cuts on the left hand side of Figure 4-39, Figure 4-41, Figure 

4-43, and Figure 4-45 at utilization above 100 % are violated. In the price diagrams in Figure 4-38, 

Figure 4-40, Figure 4-42, and Figure 4-44 we compare nodal prices with the reduced individual line 

constraints to nodal prices with thermal and cut constraints (solid line) and simplified zonal prices 

(dotted line). 

 

 

Figure 4-38 Nodal prices with line capacities set to 100 % of nominal capacities 
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Figure 4-39 Security cut capacity utilization with line capacities set to 100 % of nominal capacities 

 

 

Figure 4-40 Nodal prices with line capacities set to 90 % of nominal capacities 
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Figure 4-41 Security cut capacity utilization with line capacities set to 90 % of nominal capacities 

 

 

Figure 4-42 Nodal prices with line capacities set to 80 % of nominal capacities 
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Figure 4-43 Security cut capacity utilization with line capacities set to 80 % of nominal capacities 

 

 

Figure 4-44 Nodal prices with line capacities set to 70 % of nominal capacities 
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Figure 4-45 Security cut capacity utilization with line capacities set to 70 % of nominal capacities 

 

When restricting the capacities more, the nodal prices increase and the price differences increase. On 

the other hand, the number of overloaded cuts decreases (except between 100 % and 90 %), and when 

the capacity is set to only 70 % of the nominal capacity, only 3 cut constraints are overloaded, i.e. the  

infeasible Bergen cuts and the Nordland cut. We can also see from the price figures that the prices in 

NO1 are the most affected when capacity decreases.  

Table 4-19 shows the changes in surplus and infeasibilities. When restricting capacities, surplus is 

transferred from consumers to producers and the grid. When capacity is lowered to 70 % of the 

nominal values, we see that the grid revenues increase a lot, and that the total social surplus is also 

negatively affected. Note however again that the surpluses cannot be directly compared as the 

solutions differ when it comes to infeasibilities. 

 

Table 4-19 Unconstrained surplus and surplus differences (1000 Euros) with different security constraints 

 
Un- 

constrained 

Simplified 

zonal 

Nodal with red. line capacities Nodal w/sec. 

cut constraints 100 % 90 % 80 % 70 % 

Producers 6799,5 38,0 85,8 108,1 274,8 949,9 624,8 

Consumers 99249,1 -111,7 -126,0 -169,9 -355,3 -1498,9 -761,4 

Grid 0,0 68,6 36,5 57,8 72,9 516,3 120,9 

Total 106048,7 -5,1 -3,6 -4,0 -7,7 -32,6 -15,6 

Infeasibilities 
2 ind. lines 

1 cut 

2 ind. lines 

1 cut 
4 cuts 5 cuts 2 cuts 1 cut None 

(Bergen 1 and Bergen 2 are overloaded in all solutions.) 
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4.6.4 Demand elasticity 

In this section we study the changes in prices when we allow for some elasticity of demand in the 

inelastic parts of the demand curves. As seen in Figure 3-5 the calibrated load curves are almost totally 

inelastic at high prices. In the present case, for most areas except NO4 and SE, this inelastic segment 

includes the Nord Pool Spot price. For each of the areas then, except NO4 and SE, we introduce a 

more elastic demand by tilting the inelastic segments of the demand curve around the “Nord Pool 

Spot” price point (i.e. the prices found in the simplified zonal price solution). This is illustrated in 

Figure 4-46 for NO1. The price elasticity of demand measures the change in quantity demanded as a 

result of a price change:  

PQ

PQ

P

P

Q

Q

e









  

We use an approximation of the formula, using price and quantity increments from the given “Nord 

Pool” price point, to construct new demand curves with varying elasticities. We set the price reduction 

equal to the difference between the “Nord Pool Spot” price and the lowest price point of the original 

inelastic part. Then we increase the quantity such that the resulting elasticity is equal to the predefined 

level. The other sections of the load curve are shifted to the right according to the quantity increment. 

Figure 4-46 illustrates the new calibrated demand curves for NO1 with segments of various elasticities 

along with the actual Nord Pool Spot demand curve (blue curve) and our original calibrated demand 

curve with an inelastic segment (yellow curve). We can see that the new elastic demand curves 

“rotate” around the Nord Pool Spot price of 105.  
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Figure 4-46 Comparison of demand curves, with and without the elastic segment, 15/12-2010, hour 19 

 

The graphs in Figure 4-47 – Figure 4-51 show the consumption and production weighted nodal prices 

for different elasticities. We compare the new nodal prices with the original nodal prices (solid line) 

and the original simplified zonal prices (dotted line). We see that the nodal prices decrease with 

increasing elasticity. Moreover, the price variation decreases. In the Table 4-20 we show the mean and 

standard deviation values of the nodal prices with different demand elasticities. From columns 2 and 3 

we see that both the mean and the standard deviation decrease with growing elasticity. In columns 4 

and 5 we show the volume weighted mean and standard deviation, with 50 percent weight on 

production and consumption each, and they show the same effect. 

 

Table 4-20 Nodal prices descriptive statistics for different elasticities of the demand curve segment, 15/12-2010,  

hour 19 

 

      Weighted 

Demand elasticity Mean SD Mean SD 

0,025 123,0 22,7 131,2 14,9 

0,05 120,0 21,2 127,5 14,0 

0,075 118,5 20,3 124,0 13,4 

0,1 116,9 19,5 123,0 12,9 
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Figure 4-47 Nodal prices with more elastic demand curves (e = 0,025), 15/12-2010, hour 19 
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Figure 4-48 Nodal prices with more elastic demand curves (e = 0,05), 15/12-2010, hour 19 
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Figure 4-49 Nodal prices with more elastic demand curves (e = 0,075), 15/12-2010, hour 19 
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Figure 4-50 Nodal prices with more elastic demand curves (e = 0,1), 15/12-2010, hour 19 
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Figure 4-51 Nodal prices with more elastic demand curves (e = 0,5), 15/12-2010, hour 19 

In Table 4-21 we show the surpluses for the different elasticities. We have one subtable for each 

elasticity since all the solutions, not only the nodal price solution, change when the elasticities change. 

By construction (tilting the demand curves in the “Nord Pool Spot” price point) the simplified zonal 

solution is almost the same for all cases, except the very last. We note that by increasing the elasticity, 

the allocation of surplus changes. Compared to the unconstrained cases the transfer from consumers to 

producers and the grid is smaller, particularly for the producers. The difference in total social surplus 

between the unconstrained solution and the nodal price solution shows the cost of the bottlenecks in 

the system. From Table 4-21, we can see that also the minimum congestion cost is somewhat reduced 

if demand becomes more elastic. 
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Table 4-21 Surpluses and surplus differences (1000 Euros) for various demand elasticities, 15/12-2010, hour 19 

  Unconstrained 
Simplified Nodal with  

zonal demand elasticity e=0,025 

Producers 6739,7 105,1 478,4 

Consumers 93058,4 -178,3 -604,8 

Grid 0,0 67,9 111,7 

Total 99798,1 -5,4 -14,7 

Infeasibilities 
2 lines 2 lines 

None 
1 cut 1 cut 

 

  Unconstrained 
Simplified Nodal with  

zonal demand elasticity e=0,05 

Producers 6730,4 101,7 293,8 

Consumers 86796,0 -176,7 -410,6 

Grid 0,0 69,0 103,0 

Total 93526,4 -6,0 -13,8 

Infeasibilities 
2 lines 2 lines 

None 
3 cuts 1 cut 

 

  Unconstrained 
Simplified Nodal with  

zonal demand elasticity e=0,075 

Producers 6729,1 101,4 164,5 

Consumers 81683,5 -176,9 -275,1 

Grid 0,0 69,2 97,3 

Total 88412,6 -6,4 -13,2 

Infeasibilities 
2 lines 2 lines 

None 
3 cuts 1 cut 

 

  Unconstrained 
Simplified Nodal with  

zonal demand elasticity e=0,1 

Producers 6727,8 101,4 64,1 

Consumers 78936,6 -177,4 -170,0 

Grid 0,0 69,3 93,0 

Total 85664,4 -6,8 -12,9 

Infeasibilities 
2 lines 2 lines 

None 
3 cuts 1 cut 
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  Unconstrained 
Simplified Nodal with  

zonal demand elasticity e=0,5 

Producers 6433,3 -27,0 -27,0 

Consumers 72639,4 -63,6 -56,4 

Grid 0,0 79,7 72,8 

Total 79072,7 -11,0 -10,7 

Infeasibilities 
2 lines 2 lines 

None 
1 cut 1 cut 
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5. Results for 07-10-2010 hour 11 

5.1 Calibration of bid curves 

 

 

Figure 5-1 Nord Pool Spot bid curves and aggregate OptFlow bid curves for Norway and Sweden, 7/10-2010, hour 11 
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Figure 5-1 compares the constructed disaggregated bid curves to the actual Nord Pool bid curves, by 

aggregating the disaggregated curves of the OptFlow model for the different price areas. We have 

constructed the supply curves so that the aggregated nodal supply curves resemble the actual Nord 

Pool Spot curves, and so that the thermal capacities that we know is producing in this specific hour 

have marginal costs that allow them to do so. The information on the nodal supply curves are however 

so limited that we can only say that the case is inspired by 7-10-2010 hour 11. Figure 5-1 shows that in 

aggregate the nodal supply curves fit rather well. For this specific hour we have chosen supply and 

demand curves for the Swedish nodes such that the volumes in the OptFlow model are higher than the 

Nord Pool Spot volumes. The curves thus reflect the fact that Nord Pool Spot is not a mandatory pool, 

and that some of the trade is not going through Nord Pool Spot. 

The remaining Elspot price areas are modeled as single nodes in the disaggregated OptFlow model, 

and we have used the actual Nord Pool bid curves for hour 11 on 7/10-2010 as shown in Figure 5-2.  

 

Figure 5-2 OptFlow bid curves = Nord Pool Spot for other Elspot areas, 7/10-2010, hour 11 

Table 5-1 – Table 5-4 compare the actual Nord Pool Spot prices and quantities of hour 11 of 7/10-

2010 to prices and quantities obtained from the OptFlow model. Columns (I) show the actual values 

from the Nord Pool Spot market clearing. The corresponding OptFlow values shown in columns (II) 
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and (III) are computed using the two different bid curve scenarios described earlier: For the values in 

columns (II), the actual Nord Pool Spot bid curves for this hour are used, whereas the numbers in 

columns (III) result from computing the “Nord Pool Spot market clearing” using our calibrated 

disaggregate bid curves. For these OptFlow computations we have used the actual Nord Pool 

capacities for (aggregate) interzonal connections. Intrazonal capacity constraints, constraints related to 

Kirchhoff’s second law, as well as security constraints, have all been relaxed. Thus, these aggregated 

OptFlow prices are calculated the same way as the Elspot prices. 

Table 5-1 shows that the Elspot prices (I) and the area prices calculated by the OptFlow model with 

Nord Pool Spot bid curves (II) match exactly, and that there are only very small differences between 

the Elspot prices (I) and the OptFlow simplified zonal prices based on the disaggregated OptFlow bid 

curves (III). Production and consumption numbers in Table 5-2 and Table 5-3 are higher for model III 

than for model II, since model III is to reflect all volumes. The exchange quantities in Table 5-4 are 

similar for the three model variants. The differences between I and II are due to imports and exports 

(see also the corresponding explanation for the case in Chapter 4), while the differences between II 

and III are due to the calibration of the disaggregated bid curves. For the latter, the biggest differences 

are for NO1 and NO2.  

Even though the numbers do not match exactly, we use the calibrated disaggregate bid curves to 

evaluate the effects of different congestion management methods. As for the previous case, the 

following analyses use model III for comparisons with the simplified zonal price solution. This is to 

isolate the effects of the different congestion management methods from differences that are due to the 

lack of disaggregated data. In the following sections, we compare prices, quantities and surpluses for 

the different congestion management methods. 

 

Table 5-1 Comparison of prices for three model variants, 7/10-2010, hour 11 

Bidding 

area 

(I) 

NPS actual area 

prices 

(II) 

OptFlow prices with 

NPS bid curves 

(III) 

OptFlow prices with 

calibrated bid curves 

NO1 50,04 50,04 50,25 

NO2 50,04 50,04 50,25 

NO3 52,28 52,28 52,40 

NO4 50,32 50,32 50,35 

NO5 50,04 50,04 50,25 

DK1 56,48 56,48 56,48 

DK2 56,48 56,48 56,48 

SE 52,28 52,28 52,40 

FI 52,28 52,28 52,40 

EE 52,28 52,28 52,40 
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Table 5-2 Comparison of production quantities for three model variants, 7/10-2010, hour 11 

Bidding 

area 

(I) 

NPS 

production 

(II) 

OptFlow production 

with NPS bid curves 

(III) 

OptFlow production 

with calibrated bid 

curves 

NO1 3 461,9 3461,9 4239,2 

NO2 3 796,9 3796,8 4151,1 

NO3 1 120,7 1120,6 1897,0 

NO4 2 001,9 1973,9 2318,0 

NO5 2 287,2 2287,2 2635,2 

DK1 2 634,8 2634,8 2634,8 

DK2 1 150,2 1150,2 1150,2 

SE 13 296,5 13296,6 14536,3 

FI 5 575,3 4275,3 4285,3 

EE 504,8 504,8 504,8 

 

Table 5-3 Comparison of load quantities for three model variants, 7/10-2010, hour 11 

Bidding 

area 

(I) 

NPS 

load 

(II) 

OptFlow load with 

NPS bid curves 

(III) 

OptFlow load with 

calibrated bid curves 

NO1 3 483,3 3483,3 4059,4 

NO2 2 208,7 1508,7 2093,0 

NO3 1 374,5 1374,5 2158,4 

NO4 1 051,9 1051,9 1396,0 

NO5 1 159,0 1159,0 1477,1 

DK1 3 196,2 2796,2 2796,2 

DK2 2 384,8 1834,8 1834,8 

SE 15 226,8 14883,8 16127,1 

FI 5 123,9 5123,9 5122,4 

EE 621,1 373,5 373,5 

 

Table 5-4 Comparison of exchange quantities for three model variants, 7/10-2010, hour 11 

Bidding 

area 

(I) 

NPS 

net exchange 

(II) 

OptFlow net 

exchange with NPS 

bid curves 

(III) 

OptFlow net 

exchange with 

calibrated bid curves 

NO1 -21,4 -21,4 179,8 

NO2 1 588,2 2288,1 2058,1 

NO3 -253,8 -254,0 -261,3 

NO4 950,0 922,0 922,0 

NO5 1 128,2 1128,2 1158,2 

DK1 -561,4 -161,4 -161,4 

DK2 -1 234,6 -684,6 -684,6 

SE -1 930,3 -1587,2 -1590,8 

FI 451,4 -848,5 -837,1 

EE -116,3 131,3 131,3 
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5.2 Prices 

Table 5-5 compares four sets of prices for hour 11 on 7/10-2010. Actual Nord Pool Spot prices are 

given in the first price column (corresponding to (I) / (II) in Table 5-1), while the second and third 

columns show, respectively, the simplified and optimal zonal prices calculated by the OptFlow model. 

The simplified zonal prices correspond to (III) in Table 5-1, while optimal zonal prices take into 

account the specific location of all bids on the nodes and all constraints of the disaggregated power 

system. The three rightmost columns show descriptive statistics for the optimal nodal prices within 

each price zone.  

 

Table 5-5 Prices 7/10-2010, hour 11 

Bidding 

area 

Actual 

NPS 

Zonal prices Optimal nodal prices 

Simplified Optimal Average Min Max 

NO1 50,04 50,25 51,81 51,12 50,95 51,81 

NO2 50,04 50,25 51,06 51,02 51,01 51,04 

NO3 52,28 52,40 52,56 52,60 52,09 52,84 

NO4 50,32 50,35 55,22 50,97 50,61 52,65 

NO5 50,04 50,25 51,04 48,23 47,45 51,04 

DK1 56,48 56,48 51,65 53,24 53,24 53,24 

DK2 56,48 56,48 56,35 53,24 53,24 53,24 

SE 52,28 52,40 53,28 53,17 51,17 53,30 

FI 52,28 52,40 53,02 53,02 53,02 53,02 

EE 52,28 52,40 39,40 53,02 53,02 53,02 

 

We see that when moving from simplified zonal prices (= area prices) to optimal nodal prices, there 

are rather small changes in prices. The price changes are somewhat larger for optimal zonal prices, the 

largest change being for Estonia. 

Figure 5-3 and Figure 5-4 show the optimal nodal prices for consumption and production respectively, 

where prices are sorted from the lowest to the highest, and column widths represent volumes. The 

simplified zonal prices are shown in a similar way.
18

 We notice that the lowest and highest prices are 

reduced, and that in the middle part of the figures, the nodal prices are very similar to the simplified 

zonal prices. 

                                                      
18

 Since the simplified zonal prices are also sorted from lowest to highest, the curves cannot be compared 

directly for each MW, as a specific point on the first axis may represent MWs at different locations. 
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Figure 5-3 Nodal prices and load quantities, 7/10-2010, hour 11 

 

Figure 5-4 Nodal prices and production quantities, 7/10-2010, hour 11 

Figure 5-5 and Figure 5-6 further illustrate the geographical variation in the optimal nodal prices. The 

color scale show different price intervals and the nodes are weighted by load and generation volumes. 

The node sizes show the concentration of load and production, although this also depends on the level 

of detail available on the power system in different parts of the Nordic power system (DK1, DK2, FI 

and EE being represented by single nodes).  

The figures also show that for the present hour there are exports from the Nord Pool area to most of 

the adjacent areas, Russia being the exception from which there is a relatively large import to FI. 
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Figure 5-5 Nodal prices weighted by consumption, 7/10-2010, hour 11 
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Figure 5-6 Nodal prices weighted by production, 7/10-2010, hour 11 
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Figure 5-7 and Figure 5-8 compare simplified and optimal zonal prices. The figures are similar to 

Figure 5-3 and Figure 5-4 for optimal nodal prices, except that we have sorted simplified zonal prices 

from the lowest to the highest, and shown the corresponding optimal zonal price in the same sequence. 

Thus it is easier to compare the changes that result in the zonal prices from taking into account all 

constraints and the specific location of bids to nodes (optimal zonal prices) instead of only a subset of 

the constraints or some indirect representation of the constraints (simplified zonal prices). As Table 5-

5 shows already, Figure 5-7 and Figure 5-8 show that some zonal prices increase while others 

decrease.  

 

Figure 5-7 Optimal zonal prices and load quantities, 7/10-2010, hour 11 

 

Figure 5-8 Optimal zonal prices and production quantities, 7/10-2010, hour 11 
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5.3 Power flows and bottlenecks 

Figure 5-9 shows the power flow of the nodal price solution. The links are weighted by the flow sizes, 

HVDC links are shown by dotted lines, and the binding thermal capacity constraints are shown in red 

colors. We notice that there are three links that are operated on their thermal capacity limits, and their 

capacities and the shadow prices on the constraints are shown in Table 5-6. The shadow prices show 

the value of increasing the corresponding thermal capacity limits, i.e. the increase in social surplus. 

For the present case, the shadow prices on the thermal constraints are not very high. 

 

Table 5-6 Shadow prices for binding capacity constraints with nodal pricing, 7/10-2010, hour 11 

From To Max Shadow price 

Kristiansand DK1 1000 2,22 

Malmö DK2 1300 0,03 

FI Forsmark 550 0,14 
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Figure 5-9 Line flows and thermal bottlenecks for optimal nodal price solution, 7/10-2010, hour 11 



 SNF Report No 15/12 

 

81 

 

The histograms in Figure 5-10 – Figure 5-12 describe the utilization of the lines’ thermal capacity 

limits under the three pricing methodologies. For nodal pricing, optimal, and simplified zonal pricing, 

respectively, the figures show the number of lines operating within different intervals of capacity 

utilization. We distinguish between inter-zonal lines (red color) and intra-zonal lines (blue color). 

Regardless of congestion management method, most of the lines are operated well below their thermal 

capacity limits, and for the present case we notice from Figure 5-12 that even the simplified zonal 

approach results in feasible power flows over all individual lines, i.e. no thermal constraints are 

violated.
19

 

 

Figure 5-10 Line capacity utilization with nodal pricing, 7/10-2010, hour 11 

 

                                                      
19

 The procedure for calculating power flows from a given set of nodal prices and quantities are described in 

previous chapters. 
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Figure 5-11 Line capacity utilization with optimal zonal pricing, 7/10-2010, hour 11 

 

 

Figure 5-12 Line capacity utilization with simplified zonal pricing, 7/10-2010, hour 11 

Figure 5-13 – Figure 5-15 show the utilization of the cut constraints for the different pricing methods. 

Looking more closely at the nodal price solution, there are three cut constraints that are operated on 

their capacity limit. The shadow prices for these three, Hasle eksport, Nordland, and Fardal overskudd 

2, are given in Table 5-7.  
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Figure 5-13 Cut capacity utilization with nodal pricing, 7/10-2010, hour 11 

 

Table 5-7 Shadow prices for cut capacity constraints with nodal pricing, 7/10-2010, hour 11 

Cut name Capacity From To 
Share of flow  

included 
Shadow price 

Hasle eksport 1600 Hasle Borgvik 1 2,39 

 

  Halden Skogssäter 1 

 Nordland 1000 Ofoten Ritsem 1 2,22 

 

  Nedre Røssåga Ajaure 1 

 

 

  Tunnsjødal Verdal 1 

 

 

  Tunnsjødal Namsos 1 

 

 

  Sildvik Tornehamn 1 

 Fardal overskudd 2 750 Mauranger Blåfalli 1 3,59 

 

  Fardal Aurland1 1 

  

While all the cut constraints are fulfilled in the optimal nodal and optimal zonal price solutions, we 

can see from Figure 5-15 that two of the cut constraints are violated in the simplified zonal solution. 

These are the Fardal overskudd 1 and Fardal overskudd 2 cuts. It is interesting to notice that the first of 

these two are not operated on its capacity limit neither in the optimal nodal solution nor in the optimal 

zonal solution. 
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Figure 5-14 Cut capacity utilization with optimal zonal pricing, 7/10-2010, hour 11 
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Figure 5-15 Cut capacity utilization with simplified zonal pricing, 7/10-2010, hour 11 

5.4 Load and generation quantities 

In Figure 5-16 we show the differences in load for each node, i.e. the difference between the quantities 

consumed in the simplified zonal solution and the quantities consumed in the optimal nodal and the 

optimal zonal solutions. We notice that the differences are very small between the optimal nodal and 

optimal zonal quantities. Compared to the case in chapter 4, the differences between the simplified 

zonal solution and the other two solutions are somewhat larger. The prices are lower for this case, and 

the elasticities are higher, and this explains the larger differences in consumed quantities even if the 

price differences are smaller. 
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Figure 5-16 Differences in load between simplified zonal and the other two pricing approaches, 7/10-2010, hour 11 

 

Figure 5-17 shows the same differences for generation quantities. Also for this case the quantity 

differences between the simplified zonal solution and the other two solutions are larger for generation 

than for consumption. The optimal nodal and optimal zonal quantities are very similar.  

 

Figure 5-17 Differences in generation between simplified zonal and the other two pricing approaches, 7/10-2010,   
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Figure 5-18 Differences in generation, DK1, 7/10-2010, hour 11 

In Figure 5-18 we show the bid curves for DK1, the node where the optimal nodal / optimal zonal 

generation differs most from the generation at the simplified zonal price. We see that there is a 

horizontal part of the supply function at about 55 Euros/MWh. This bid is included at the simplified 

zonal price, but not at the optimal nodal or zonal price. 

 

5.5 Surpluses 

In Table 5-8 we show the changes in surplus compared to the unconstrained market solution. For the 

present case, we see that moving from simplified zonal prices to optimal zonal or nodal prices leads to 

a small increase in total surplus, and at the same time the infeasibilities are gone. The optimal nodal 

and optimal zonal solutions have opposite effects on producers, consumers and grid revenue. We 

notice that the optimal zonal prices lead to negative grid revenues. Since the simplified zonal solution 

also here implies some infeasibility, the total surpluses are not comparable. Relieving the 

infeasibilities in the simplified zonal solution will incur higher costs than those reflected in Table 5-8, 

since counter trading is needed in order to relieve the constraints.  
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Table 5-8 Unconstrained surplus and surplus differences (1000 Euros), 7/10-2010, hour 11 

 
Un- 

constrained 

Simplified 

zonal 

Optimal 

zonal 
Nodal 

Producers 2364,2 21,1 42,9 28,8 

Consumers 75841,2 -39,3 -49,9 -41,4 

Grid 0,0 15,1 5,5 11,1 

Total 78205,4 -3,1 -1,5 -1,5 

Infeasibilities 
4 lines 

6 cuts 

0 lines 

2 cuts 
None None 
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6. Results for 1-8-2010 hour 6 

6.1 Calibration of bid curves 

 

Figure 6-1 Nord Pool Spot bid curves and aggregate OptFlow bid curves for Norway and Sweden, 1/8-2010, hour 6 
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Figure 6-1compares the constructed disaggregated bid curves to the actual Nord Pool bid curves, by 

aggregating the disaggregated curves of the OptFlow model for the different price areas. Also for this 

case the figure shows that in aggregate the nodal bid curves fit rather well with the Nord Pool bid 

curves. For this case the volume differences between the Nord Pool curves and the constructed 

disaggregate bid curves seem smaller than for the previous cases. The supply and demand curves for 

the Elspot price areas that are modeled as single nodes in the disaggregated OptFlow model, and 

where we have used the actual Nord Pool bid curves for hour 6 on 1/8-2010 are shown in Figure 6-2. 

 

Figure 6-2 OptFlow bid curves = Nord Pool Spot for other Elspot areas, 1/8-2010, hour 6 
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calculated by the OptFlow model with Nord Pool Spot bid curves (II) match almost exactly, and that 
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For the production, consumption and exchange numbers in Table 6-2 – Table 6-4 the differences 

between I and II are due to imports and exports, while the differences between II and III are due to the 

calibration of the bid curves, so as to include all production and load. For the exchange quantities the 

differences between II and III are quite small. 

Based on this, we conclude that the calibrated data set is a reasonable starting point for analyzing the 

effects of different congestion management methods in an hourly market similar to hour 6 on 1/8-2010 

in the following sections. 

 

Table 6-1 Comparison of prices for three model variants, 1/8-2010, hour 6 

Bidding 

area 

(I) 

NPS actual area 

prices 

(II) 

OptFlow prices with 

NPS bid curves 

(III) 

OptFlow prices with 

calibrated bid curves 

NO1 7,29 7,31 7,00 

NO2 7,29 7,31 7,00 

NO3 7,29 7,31 7,00 

NO4 7,29 7,31 7,00 

NO5 7,29 7,31 7,00 

DK1 7,29 7,31 7,00 

DK2 7,29 7,31 7,00 

SE 7,29 7,31 7,00 

FI 7,29 7,31 7,00 

EE 30,63 30,63 30,63 

 

Table 6-2 Comparison of production quantities for three model variants, 1/8-2010, hour 6 

Bidding 

area 

(I) 

NPS 

production 

(II) 

OptFlow production 

with NPS bid curves 

(III) 

OptFlow production 

with calibrated bid 

curves 

NO1 1881 1881 2188 

NO2 1095 400 461 

NO3 607 607 619 

NO4 438 438 440 

NO5 572 572 715 

DK1 1384 984 984 

DK2 780 524 524 

SE 11565 11015 11186 

FI 3172 1808 1807 

EE 207 207 207 
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Table 6-3 Comparison of load quantities for three model variants, 1/8-2010, hour 6 

Bidding 

area 

(I) 

NPS 

load 

(II) 

OptFlow load with 

NPS bid curves 

(III) 

OptFlow load with 

calibrated bid curves 

NO1 1725 1725 2019 

NO2 1987 1987 2045 

NO3 1482 1482 1494 

NO4 968 968 975 

NO5 1458 1458 1609 

DK1 963 963 963 

DK2 780 780 780 

SE 8272 8272 8446 

FI 3609 3609 3609 

EE 459 224 224 

 

Table 6-4 Comparison of exchange quantities for three model variants, 1/8-2010 

Bidding 

area 

(I) 

NPS 

net exchange 

(II) 

OptFlow net 

exchange with NPS 

bid curves 

(III) 

OptFlow net 

exchange with 

calibrated bid curves 

NO1 156 156 169 

NO2 -891 -1586 -1583 

NO3 -875 -875 -874 

NO4 -529 -529 -534 

NO5 -886 -886 -894 

DK1 422 22 22 

DK2 0 -256 -256 

SE 3293 2743 2740 

FI -437 -1801 -1802 

EE -252 -17 -17 

 

6.2 Prices 

Table 6-5 compares the four sets of prices for hour 6 on 1/8-2010. The actual Nord Pool Spot prices 

are given in the first price column (corresponding to (I) in Table 6-1), while the second and third 

columns show, respectively, the simplified and optimal zonal prices calculated by the OptFlow model. 

The simplified zonal prices correspond to (III) in Table 6-1, while optimal zonal prices take into 

account the specific location of all bids on the nodes and all constraints of the disaggregated power 

system. The three rightmost columns show descriptive statistics for the optimal nodal prices within 

each price zone.  

We see that when moving from the simplified zonal prices to optimal zonal or nodal prices, prices 

change a lot. In the simplified zonal price solution all prices except Estonia are equal. Moving to nodal 

prices or optimal zonal prices introduces much more variation. 
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Table 6-5 Prices 1/8-2010, hour 6 

Bidding 

area 

Actual 

NPS 

Zonal prices Optimal nodal prices 

Simplified Optimal Average Min Max 

NO1 7,29 7,00 7,16 34,54 32,14 35,21 

NO2 7,29 7,00 2,50 34,81 34,75 34,87 

NO3 7,29 7,00 2,50 27,52 2,50 52,74 

NO4 7,29 7,00 6,63 28,14 26,97 29,94 

NO5 7,29 7,00 12,60 34,75 34,70 34,79 

DK1 7,29 7,00 0,00 10,53 10,53 10,53 

DK2 7,29 7,00 0,40 10,53 10,53 10,53 

SE 7,29 7,00 6,75 19,54 4,00 36,63 

FI 7,29 7,00 6,39 26,82 26,82 26,82 

EE 30,63 30,63 0,10 26,82 26,82 26,82 

 

 

 

Figure 6-3 Nodal prices and load quantities, 1/8-2010, hour 6 

 

Figure 6-4 Nodal prices and production quantities, 1/8-2010, hour 6 
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Figure 6-3 and Figure 6-4 show the optimal nodal prices for consumption and production respectively, 

where prices are sorted from the lowest to the highest, and column widths represent volumes. The 

nodal prices are compared to the sorted simplified zonal prices, and we notice that for this hourly case, 

the nodal prices are for the most part higher than the simplified zonal prices, and in many nodes 

considerably higher. The reason for this is that the nodal prices include shadow prices for all 

transmission constraints, whereas the simplified zonal prices do not (we will come back to this in the 

next section).  

Figure 6-5 and Figure 6-6 illustrate the geographical variation in the optimal nodal prices. The lowest 

prices are in the southern part of the Nord Pool area and the highest prices are in southern and mid 

Norway and on the west coast of Sweden. The figures also show that for the present hour there are 

imports to the Nord Pool area from most of the adjacent areas (Figure 6-3), except Lithuania (Figure 

6-4).  
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Figure 6-5 Nodal prices weighted by consumption, 1/8-2010, hour 6 
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Figure 6-6 Nodal prices weighted by production, 1/8-2010, hour 6 
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In Figure 6-7 and Figure 6-8 we compare the simplified and optimal zonal prices. Like Table 6-5 the 

figures show that some zonal prices increase while others decrease.  

 

Figure 6-7 Optimal zonal prices and load quantities, 1/8-2010, hour 6 

 

Figure 6-8 Optimal zonal prices and production quantities, 1/8-2010, hour 6 
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Figure 6-9 Nodal prices and load quantities, 1/8-2010, hour 6 
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Figure 6-10 Line flows and thermal bottlenecks for optimal nodal price solution, 1/8-2010, hour 6 
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The shadow prices show the value of increasing the corresponding thermal capacity limits, i.e. the 

increase in social surplus. For the present case, there are three links with relatively high shadow prices, 

and two of them are intrazonal links, i.e. Ranes – Trollheim and Ringhals – Göteborg. These links are 

not easily represented in the simplified zonal model. 

 

Table 6-6 Shadow prices for binding capacity constraints with nodal pricing, 1/8-2010, hour 6 

From To Max Shadow price 

DK1 Kristiansand 1000 24,30 

Ranes Aura 96,02 7,73 

Ranes Trollheim 96,02 56,27 

Ringhals Göteborg 2099,45 37,80 

Ringhals DK1 680 6,53 

Forsmark FI 550 4,59 

 

The histograms in Figure 6-11 – Figure 6-13 describe the utilization of the lines’ thermal capacity 

limits. The figures show the number of lines operating within different intervals of capacity utilization. 

We distinguish between inter-zonal lines (red color) and intra-zonal lines (blue color). Also for the 

present case, most of the lines are operated well below their thermal capacity limits. However, from 

Figure 6-13 we notice that the simplified zonal approach results in considerable overload on the two 

intrazonal links mentioned above, Ranes – Trollheim and Ringhals – Göteborg. 

 

 

Figure 6-11 Line capacity utilization with nodal pricing, 1/8-2010, hour 6 
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Figure 6-12 Line capacity utilization with optimal zonal pricing, 1/8-2010, hour 6 

 

 

Figure 6-13 Line capacity utilization with simplified zonal pricing, 1/8-2010, hour 6 
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Figure 6-14 – Figure 6-16 show the utilization of the cut constraints. In the nodal price solution, there 

is one cut constraint that is operated on its capacity limit. The shadow price for this, Midt-Norge 2, is 

given in Table 6-7. The shadow price is close to 0. 

 

Figure 6-14 Cut capacity utilization with nodal pricing, 1/8-2010, hour 6 

 

Table 6-7 Shadow prices for cut capacity constraints with nodal pricing, 1/8-2010, hour 6 

Cut name Capacity From To 
Share of flow  

included 
Shadow price 

Midt-Norge 2 415 Nea Klæbu 1 0,00 

    Ajaure Nedre Røssåga 1   

 

While all the cut constraints are fulfilled in the optimal nodal and optimal zonal price solutions, we 

notice from Figure 6-16 that the Midt-Norge 2 cut is not satisfied in the simplified zonal solution. 
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Figure 6-15 Cut capacity utilization with optimal zonal pricing, 1/8-2010, hour 6 

 

 

Figure 6-16 Cut capacity utilization with simplified zonal pricing, 1/8-2010, hour 6 
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6.4 Load and generation quantities 

Figure 6-17 shows the differences between the quantities consumed in the simplified zonal solution 

and the quantities consumed in the optimal nodal and the optimal zonal solutions. In this case some of 

the differences are large, especially between the optimal zonal solution and the other solutions.  

 

Figure 6-17 Differences in load between simplified zonal and the other two pricing approaches, 1/8-2010, hour 6 

In Figure 6-18 we show the bid curves for Rød, one of the nodes where the optimal zonal load differs 

most from the load at the simplified zonal price / optimal nodal price. From the upper part of the figure 

we see that both the simplified zonal price and the optimal nodal price, even if they are quite different, 

are on the almost vertical part of the demand curve on the right hand side of the figure. Thus, the 

quantities in the simplified zonal and optimal nodal solutions are quite similar. The optimal zonal price 
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Figure 6-18 Differences in generation, Rød 

Figure 6-19 shows the quantity differences for generation. In this case, generation quantities are quite 

similar, except for Ringhals, Ranes, and to some extent Mongstad.  

In Figure 6-20 we show the bid curves for Ringhals. We notice that the supply bid is at a constant 

marginal cost up to the capacity limit that is close to 4000 MW. The simplified zonal price is well over 

the marginal cost, and the generation is at the capacity limit. The nodal price is equal to the marginal 

cost, and the producer will be indifferent to which quantity is produced. However, due to the thermal 

constraints on the links connecting Ringhals to Göteborg and DK1, the optimal nodal solution reduces 

the quantity produced in Ringhals compared to the simplified zonal solution. Since we allow prices to 

be strictly greater than marginal cost, even if the production is not on the capacity limit in the optimal 

zonal solution (cf. appendix A5), and the optimal zonal solution takes into account all constraints, the 

optimal zonal solution is also at a quantity lower than the generation in the simplified zonal solution. 
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Figure 6-19 Differences in generation between simplified zonal and the other two pricing approaches, 1/8-2010, hour 6 

 

Figure 6-20 Differences in generation, Ringhals 
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6.5 Surpluses 

Table 6-8 shows the changes in surplus compared to the unconstrained market solution. For the 

present case, we see that moving from simplified zonal prices to optimal zonal or nodal prices leads to 

a reduction in consumer surplus, and an increase in grid revenue, especially for the nodal price 

solution. The change in producer surplus is ambiguous, in the nodal pricing case we see a rather large 

increase, while the optimal zonal solution leads to a reduction in producer surplus compared to the 

simplified zonal solution. Note again that the surpluses are not comparable since the simplified zonal 

solution is not feasible. 

 

Table 6-8 Unconstrained surplus and surplus differences (1000 Euros), 1/8-2010, hour 6 

 
Un- 

constrained 

Simplified 

zonal 

Optimal 

zonal 
Nodal 

Producers 1382,6 -6,5  -37,3  293,1 

Consumers 39286,0 -0,1  4,3  -424,8 

Grid 0,0 6,0  1,4  116,8 

Total 40668,6 -0,6  -31,5  -15,0 

Infeasibilities 
2 lines 

1 cut 

2 lines 

1 cut 
None None 
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7. Results for 6-1-2010 hour 10 

7.1 Calibration of bid curves 

 

 

Figure 7-1 Nord Pool Spot bid curves and aggregate OptFlow bid curves for Norway and Sweden, 6/1-2010, hour 10 

Figure 7-1 compares the constructed disaggregated bid curves to the actual Nord Pool bid curves, by 

aggregating the disaggregated curves of the OptFlow model for the different price areas. For this case, 

there are only three bidding areas in Norway. The figure shows that in aggregate the nodal supply and 

demand curves fit rather well with the Nord Pool bid curves. The volume differences between the 

Nord Pool curves and the constructed disaggregate bid curves are due to the need for all production 

and consumption being represented in order to evaluate the effect of different congestion management 

methods on the disaggregated power system. The supply and demand curves for the Elspot price areas 

that are modeled as single nodes in the disaggregated OptFlow model, and where we have used the 

actual Nord Pool bid curves for hour 6 on 1/8-2010 are shown in Figure 7-2.  
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Figure 7-2 OptFlow bid curves = Nord Pool Spot for other Elspot areas, 6/1-2010, hour 10 

Table 7-1 shows that the prices in model variants I, II, and III are identical except for a very small 

difference between II and III for NO1. Table 7-2 – Table 7-4 show the same pattern for the quantity 

differences as in previous cases, except that the production and load differences between II and III in 

NO1 are rather large. The differences between I and II are as before due to imports and exports. The 

differences between production and consumption in II and III are due to the production and load that is 

not traded at Nord Pool Spot. The exchange quantities are however very similar in II and III. We use 

III as the starting point for analyzing the effects of different congestion management methods in the 

following sections. 
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Table 7-1 Comparison of prices for three model variants, 6/1-2010, hour 10 

Bidding 

area 

(I) 

NPS actual area 

prices 

(II) 

OptFlow prices with 

NPS bid curves 

(III) 

OptFlow prices with 

calibrated bid curves 

NO1 47,54 47,54 47,95 

NO2 48,45 48,45 48,45 

NO3 48,20 48,20 48,20 

DK1 42,65 42,65 42,65 

DK2 48,20 48,20 48,14 

SE 48,20 48,20 48,14 

FI 48,20 48,20 48,14 

 

Table 7-2 Comparison of production quantities for three model variants, 6/1-2010, hour 10 

Bidding 

area 

(I) 

NPS 

production 

(II) 

OptFlow production 

with NPS bid curves 

(III) 

OptFlow production 

with calibrated bid 

curves 

NO1 11185 11185 15118 

NO2 959 959 1321 

NO3 2712 2689 3074 

DK1 3621 2597 2597 

DK2 2576 2026 2026 

SE 17983 17983 19587 

FI 7017 5641 5640 

 

Table 7-3 Comparison of load quantities for three model variants, 6/1-2010, hour 10 

Bidding 

area 

(I) 

NPS 

load 

(II) 

OptFlow load with 

NPS bid curves 

(III) 

OptFlow load with 

calibrated bid curves 

NO1 11585 11349 15282 

NO2 2159 2159 2521 

NO3 1813 1813 2188 

DK1 2751 2751 2751 

DK2 2135 2135 2135 

SE 19404 19404 21015 

FI 6207 6207 6207 

 

Table 7-4 Comparison of exchange quantities for three model variants, 6/1-2010, hour 10 

Bidding 

area 

(I) 

NPS 

net exchange 

(II) 

OptFlow net 

exchange with NPS 

bid curves 

(III) 

OptFlow net 

exchange with 

calibrated bid curves 

NO1 -400 -164 -164 

NO2 -1200 -1200 -1200 

NO3 899 876 886 

DK1 870 -154 -154 

DK2 442 -109 -109 

SE -1421 -1421 -1428 

FI 810 -566 -567 
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7.2 Prices 

This case is similar to the one in chapter 4, since the Bergen 1 and Bergen 2 cuts are infeasible in the 

nodal price solution. As in the previous case, we choose to relax these cut constraints in the following 

analyses. 

Table 7-5 compares the four sets of prices for hour 10 on 6/1-2010. Actual Nord Pool Spot prices are 

given in the first price column (corresponding to (I) / (II) in Table 7-1), while the second and third 

columns show, respectively, the simplified and optimal zonal prices calculated by the OptFlow model. 

The simplified zonal prices correspond to (III) in Table 7-1, while optimal zonal prices take into 

account the specific location of all bids on the nodes and all constraints of the disaggregated power 

system. The three rightmost columns show descriptive statistics for the optimal nodal prices within 

each price zone. 

When moving from simplified zonal prices to optimal nodal prices, there are some significant prices 

changes, especially for the Norwegian areas. The nodal prices for an area with several nodes vary 

typically around the simplified zonal price. Comparing the prices under simplified and optimal zonal 

prices, we notice that the price changes considerably for DK2, but also for NO3 and SE. 

 

Table 7-5 Prices 6/1-2010, hour 10 

Bidding 

area 

Actual 

NPS 

Zonal prices Optimal nodal prices 

Simplified Optimal Average Min Max 

NO1 47,54 47,95 47,22 49,95 41,02 62,92 

NO2 48,45 48,45 48,02 49,38 33,88 53,25 

NO3 48,20 48,14 66,08 49,93 49,21 50,50 

DK1 42,65 42,65 42,74 47,56 47,56 47,56 

DK2 48,20 48,14 120,14 48,09 48,09 48,09 

SE 48,20 48,14 56,31 48,99 45,09 54,45 

FI 48,20 48,14 49,39 49,09 49,09 49,09 

 

Figure 7-3 and Figure 7-4 show the optimal nodal prices for consumption and production respectively, 

where prices are sorted from lowest to highest, and column widths represent volumes. The nodal 

prices are compared to the simplified zonal prices. We notice that on average the nodal prices are a 

little higher than the simplified zonal prices. The variation in the optimal nodal prices is not very large, 

but larger than for the simplified zonal prices. The highest prices, but also some of the lowest, are in 

NO1. 
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Figure 7-3 Nodal prices and load quantities, 6/1-2010, hour 10 

 

Figure 7-4 Nodal prices and production quantities, 6/1-2010, hour 10 

Figure 7-5 and Figure 7-6 illustrate the geographical variation in the optimal nodal prices. They also 

show that the Nord Pool area is in a net import situation in the present case. 

 

0

10

20

30

40

50

60

70

0 10000 20000 30000 40000 50000

E
u

ro
s/

M
W

h

Consumption (MWh/h)

0

10

20

30

40

50

60

70

0 10000 20000 30000 40000

E
u

ro
s/

M
W

h

Production (MWh/h)

NO1

NO2

NO3

DK1

DK2

SE

FI

Simplified zonal

NO1

NO2

NO3

DK1

DK2

SE

FI

Simplified zonal



 SNF Report No 15/12 

 

113 

 

 

Figure 7-5 Nodal prices weighted by consumption, 6/1-2010, hour 10 
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Figure 7-6 Nodal prices weighted by production, 6/1-2010, hour 10 
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Figure 7-7 and Figure 7-8 compare the simplified and optimal zonal prices. They show that on average 

the optimal zonal prices are higher than the simplified zonal prices, and that the increase is largest in 

DK2.  

 

Figure 7-7 Optimal zonal prices and load quantities, 6/1-2010, hour 10 

 

Figure 7-8 Optimal zonal prices and production quantities, 6/1-2010, hour 10 

7.3 Power flows and bottlenecks 

Figure 7-9 shows the power flow of the nodal price solution. The links are weighted by the flow sizes, 

HVDC links are shown by dotted lines, and the binding thermal capacity constraints are shown in red 

colors. We notice that there are seven links that are operated on their thermal capacity limits. The 

capacities and the shadow prices on these constraints are shown in Table 7-6. For the present case, the 

shadow prices are highest on the intrazonal links Hamang-Bærum and Ranes-Aura. 
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Figure 7-9 Line flows and thermal bottlenecks for optimal nodal price solution, 6/1-2010, hour 10 
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Table 7-6 Shadow prices for binding capacity constraints with nodal pricing, 6/1-2010, hour 10 

From To Max 
Shadow 

price 

Hamang Bærum 1258,51 24,08 

Ranes Aura 96,02 25,24 

Ranes Trollheim 96,02 7,41 

Tornehamn Sildvik 166,21 4,71 

Ringhals Göteborg 2099,45 2,72 

FI Porjus 1500,00 0,51 

DK1 DK2 590,00 0,53 

 

The histograms in Figure 7-10 – Figure 7-12 describe the utilization of the lines’ thermal capacity. We 

notice for the present case that in the optimal nodal and optimal zonal price solutions 8 links are 

utilized between 90 and 100 %, and of these are 5 intrazonal links. From Figure 7-12 we notice that 

the simplified zonal approach results in 4 overloaded lines, 3 of them being intrazonal links. 

 

Figure 7-10 Line capacity utilization with nodal pricing, 6/1-2010, hour 10 
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Figure 7-11 Line capacity utilization with optimal zonal pricing, 6/1-2010, hour 10 

 

Figure 7-12 Line capacity utilization with simplified zonal pricing, 6/1-2010, hour 10 
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Figure 7-13 – Figure 7-15 show the utilization of the cut constraints, including the relaxed Bergen 

cuts. The figures show that Bergen 1 and Bergen 2 are infeasible in all the three solutions. Looking 

more closely at the nodal price solution, there are two more cut constraints that are operated on their 

capacity limits. The shadow prices for these two, Fardal overskudd 1 and BKK, are given in Table 7-7.  

 

Figure 7-13 Cut capacity utilization with nodal pricing, 6/1-2010, hour 10 

Table 7-7 Shadow prices for cut capacity constraints with nodal pricing, 6/1-2010, hour 10 

Cut name Capacity From To 

Share of 

flow  Shadow 

price 
included 

Fardal overskudd 

1 
750 Modalen Evanger 1 5,01 

 
  Fardal Aurland1 1 

 
BKK 670 Modalen Evanger 1 4,28 

    Mauranger Samnanger 1   

 

In the optimal nodal and optimal zonal price solutions all cut constraints except the infeasible Bergen 

cuts are fulfilled. We see from Figure 7-15 that in the simplified zonal solution the Fardal overskudd 1 

and the BKK cuts are overloaded as well. I.e. in addition to 4 thermal constraints, 2 cut constraints 

(plus Bergen 1 and Bergen 2) are violated in the simplified zonal solution. 
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Figure 7-14 Cut capacity utilization with optimal zonal pricing, 6/1-2010, hour 10 

 

Figure 7-15 Cut capacity utilization with simplified zonal pricing, 6/1-2010, hour 10 
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7.4 Load and generation quantities 

Figure 7-16 shows the differences in load for each node between the quantities consumed in the 

simplified zonal solution and the quantities consumed in the optimal nodal and the optimal zonal 

solutions. The differences are mostly small, with some exceptions located in the right hand side of the 

figure.  

 

Figure 7-16 Differences in load between simplified zonal and the other two pricing approaches, 6/1-2010, hour 10 

Figure 7-17 shows the same differences for the generation quantities. The quantity differences are 

larger for generation than for consumption, especially between the simplified zonal solution and the 

other two solutions. Optimal nodal and optimal zonal quantities are here quite similar.  

Håvik

Fortun

Høyanger

Trollheim

Fortun

-20

-10

0

10

20

30

40

50

60

70

D
if

f.
 r

el
a

ti
v

e 
to

 s
im

p
li

fi
ed

 z
o

n
a

l 
(M

W
h

/h
)

Nodes

Optimal zonal

Nodal



 SNF Report No 15/12 

 

122 

 

 

Figure 7-17 Differences in generation between simplified zonal and the other two pricing approaches, 6/1-2010,  

hour 10 

 

In Figure 7-18 we show the bid curves for Fortun. For Fortun both consumption and generation 

quantities vary a lot between the simplified zonal solution and the other solutions. The nodal price is 

lower than the simplified zonal price, thus consumption increases and production decreases. The 

optimal zonal price is at the same level as the simplified zonal price, the demand is approximately the 

same while the generation is reduced, taking advantage of the fact that we allow the price to be strictly 

greater than the marginal cost in the optimal zonal price solution. 

Figure 7-19 shows the bid for DK1. This is the node with the largest generation difference between the 

simplified zonal solution and the other two solutions. The optimal nodal and optimal zonal solutions 

are equal. From the figure we see that the large quantity difference is due to the step wise supply 

function. 
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Figure 7-18 Differences in generation and consumption, Fortun, 6/1-2010, hour 10 
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Figure 7-19 Differences in generation, DK1, 6/1-2010, hour 10 

7.5 Surpluses 

In Table 7-8 we show the changes in surplus compared to the unconstrained market solution. In this 

case, we see that moving from simplified zonal prices to optimal zonal or nodal prices leads to an 

increase in consumer surplus, producer surplus and grid revenue. In this case the total social surplus is 

and an increase in producer surplus and grid revenue, especially for the optimal zonal solution. 
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Table 7-8 Unconstrained surplus and surplus differences (1000 Euros), 6/1-2010, hour 10 

  Unconstrained 
Simplified 

zonal 

Optimal 

zonal 
Nodal 

Producers 3510,4 -11,8 387,2 43,1 

Consumers 101332,0 6,2 -354,2 -92,4 

Grid 0,0 5,1 -35,3 47,4 

Total 104842,4 -0,6 -2,3 -1,8 

Infeasibilities 
7 lines 5 lines 

None None 
2 cuts 2 cuts 

(Bergen 1 and Bergen 2 are overloaded in all solutions.) 
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8. Conclusions and recommendations 
We have simulated the effect that different congestion management methods have on the market 

outcomes for a few specific hours with given bid curves, i.e. we assume that bids do not change even 

if the congestion management method does. The bid curves are related to specific hours during 2009-

2010. The results that we report are for 4 calibrated bid scenarios for 2010 with varying prices, load 

and import and export levels. We have calibrated hourly supply and demand curves based on Nord 

Pool Spot sales and purchase bids, Statnett data on nodal production and exchange, information on 

generation technologies and capacities, information on the location of energy-intensive industries, and 

imports and exports with adjacent power markets given at Nord Pool Spot’s web page.  

The calibrated nodal bid curves match relatively well with the aggregated Nord Pool Spot bid curves. 

However, the disaggregation depends on a many assumptions, and may not reflect the actual nodal bid 

curves lying behind the actual Nord Pool Spot bid curves. Thus, the simulation performed must be 

evaluated not with respect to the actual power flows in the specific hours that we have considered, but 

with the calibrated nodal bid curves as the starting point. 

The findings of the analyses indicate that in many cases the price changes with nodal pricing are not 

dramatic and the price variation is related to small volumes of production and consumption. When 

intrazonal constraints are badly represented by the aggregated transfer capacities in the simplified 

zonal model, the nodal prices tend to become higher on average than the simplified zonal prices. We 

have also found instances where the nodal prices are lower than the simplified zonal prices, and where 

the price variation is smaller. This may be the result of badly (too tight) set aggregate transfer 

capacities. In these cases surpluses may be higher and infeasibilities removed when introducing nodal 

prices. In some cases the simplified zonal prices lead to the “wrong constraints” being violated 

compared to the nodal price solution, i.e. even if a constraint is not binding in the optimal nodal price 

solution, it may be overloaded in the simplified zonal price solution. Moreover, it is very visible if the 

security constraints cannot be fulfilled. The result is very high prices and curtailment of load if the 

security requirements are not possible to accommodate. This happened in two of the cases analyzed 

for the Bergen 1 and Bergen 2 cuts. In order to resolve this problem, we have relaxed the cut 

constraints. 

For one of the cases we have performed a sensitivity analysis, where we consider the effects on prices 

and flows from changing the aggregate transfer capacities. We have investigated what happens if we 

increase the number of bidding areas in various ways. We have tested another heuristic for 

implementing the N-1 criterion, i.e. using a fraction of the thermal capacity constraints instead of the 

cut constraints that Statnett uses. Finally we have looked at how prices, quantities and surpluses 

change when the demand elasticity changes. All of these choices have a profound effect on the market 

outcomes that are computed. The number of bidding area is important for how well the simplified 

zonal price model works. How to split the market into more areas is case dependent, so if one wants to 

have fixed bidding areas, this may be of little help. Different implementations of security constraints 

lead to different price structures. Increasing the responsiveness of the demand reduces the problems of 

congestion and leads to increases in surplus, especially for consumers, by shifting the burden of 

bottlenecks from consumers to producers.  

For further analyses of a nodal pricing model, we recommend establishing better data sets. In the 

present project, we have had only data for individual hours, and we have had to collect information 
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from many different sources, the data not being established for this purpose and thus not really fitting 

together. We recommend establishing data sets for longer periods, for instance a whole week or a 

whole month. Then it would also be possible to take into account intertemporal considerations, like 

block bids, ramping constraints and water values. 

A topic for future research is to model counter trading. One has to take into account the cost of real 

time adjustment compared to day ahead scheduling. In general, we would like to find ways to compare 

solutions that are infeasible to those that are not. 
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Appendices 

A.1 Power flow approximations 

AC power flow model 

 

We consider a three-phase power network operating in sinusoidal steady-state. Let I be the vector of 

complex currents, V the vector of complex voltages and  ikYY   the admittance matrix. In an AC 

model the admittance matrix is constructed of complex impedances of the transmission lines. The 

impedance of the line is ikZ  and given by 

kiikikik ZjXRZ 
 

where ikR  is the resistance and ikX  is the reactance and 1j . The admittance of the line between 

two nodes is the inverse of its impedance. Admittance is composed of real and imaginary parts as 

following 

ikik
ki

ik jBGY 


 

where ikG  is the conductance and ikB  the susceptance of the line ik. Conductance and susceptance are 

functions of resistance and reactance as below. 
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The power flow can be divided into real and reactive power. Real power is the power that is useful, 

i.e., provides energy and is the commodity traded in the market. At the same time reactive power is 

usually considered as an ancillary service that has to be provided by the system operator (SO), stored 

and returned to the circuit as electric and magnetic fields, and its costs are divided among all users of 

the system. While reactive power is important for maintaining voltage stability in the network, its 

economic effects can be considered unimportant in the short run. If iP and iQ are the real and reactive 

power then the apparent power is given by 

       iii jQPS      (1-1) 

From Kirchhoff’s laws, the real and reactive power equations can be written as (see Chao, Peck 

(1996), Bjørndal (2000))  

      kikiikkikiikiikik VVBVVGVGP   sincos2

 (1-2) 
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       kikiikkikiikiikik VVBVVGVGQ   cossin2

  (1-3)  

where real and reactive power are functions of phase angles i  and voltages magnitudes iV given in 

rms (root-mean-square) values. Terms involving conductance G represent series branch losses. For a 

rigorous derivation of the above equations from Ohm’s law, see Sun and Tesfatsion (2010).  

DC approximations and assumptions 

The DC power flow problem simplifies the AC power flow by making it linear under certain 

assumptions. A large number of applications like Hogan (1992), Varaiya & Wu (1999), Hogan et al. 

(1996), Chao & Peck (1996), Hogan (1997), Christie et al (2000), Overbye et al. (2004), Van Hertem 

et al. (2006), and Delarue et al. (2007), follow the development of a DC power flow in Schweppe et al. 

(1988). This can be called a PB   or a pseudo DC, or a DC model. 

The assumptions applied in the DC model are 1) only real power balance is considered; 2) the 

resistance of a line is negligible compared to the line’s reactance and is thus set to 0, then the 

conductance becomes zero as well, i.e. lossless model; 3) voltage magnitudes are equal to 1 in a per-

unit system; 4) voltage angle differences across any line are small so that the cosine of the difference 

is equal to 1 and the sine to its argument (flat voltage profile). Applying these assumptions one at a 

time we can derive the DC power flow approximation from equations (1-2) and (1-3). Given 

assumption 1) it follows that only equation (1-2) is considered. From assumption 2) in a lossless 

model 0ikG  and XBik /1 , where X is reactance for line i-k, thus active power transported over 

a transmission line between node k  and l  is 

     )sin( ik

ik

ki

ik
X

VV
P  .    (1-4) 

Assumption 3) implies ..1 upVV ki  , and therefore 

     
ik

ik
ik

X
P

)sin(
 .     (1-5) 

Finally, by assumption 4) 0ik then ikik  )sin( and our power flow equation is transformed 

into  

     klik

ik

kl
ik B

X
P 


 ,    (1-6) 

where ikB  is line susceptance. This is also called the classical DC power flow model (see Stott et al 

(2009)). 
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A.2 Mathematical description of OptFlow models 

The models and the optimal prices 

The optimal nodal pricing model is defined by (2-1)-(2-6) below. The optimal zonal pricing model has 

the same objective function and constraints as the optimal nodal model, and in addition the prices are 

restricted by (2-7)-(2-9). The simplified model is defined by (2-1), (2-2) and (2-10). 

The nodal prices in the optimal nodal model are given by the shadow prices of constraint (2-2). In the 

optimal zonal pricing model, the price in zone Zz  is given by the optimal value of the variable pz. 

The zonal prices in the simplified model are given by the shadow prices of constraint (2-2). In the 

simplified model we have removed the line capacity constraints between any two nodes that are 

located in the same zone. This fact, and the fact that the simplified model does not take into account 

Kirchhoff’s 2
nd

 law as stated in (2-3) and (2-4), or the security cut constraints as stated in (2-6), makes 

the nodal prices uniform within any price zone.  

List of symbols 

N Set of nodes. 

L Set of lines. 

L
DC

 Set of HVDC lines. 

Hij “Admittance” of the line between the nodes i and j. This number is calculated using 

the formula 
222)( ijij RXV ij  , i.e., using the voltage level, reactance and resistance 

of the line. 

CAPij Thermal capacity limit of the line from i to j . This number is calculated using the 

formula 
MAX

ij ijIV3 , i.e., using the voltage level and the maximal current of the line. 

s

iq  Generation quantity (MWh/h) in node i. 

d

iq  Load quantity (MWh/h) in node i. 

)(s

ip  Function that represents the supply bid curve in node i. See Appendix A.4. 

)(d

ip  Function that represents the demand bid curve in node i. See Appendix A.4. 

fij Load flow from node i to node j. 

i  Phase angle variable for node i. 

CUTS Set of security cuts. 

kCCAP  Upper limit for the flow over a cut CUTSk . 

k

ij  A constant between 0 and 1 that represents the share of the flow over line (i,j) that is 

included in the cut constraint CUTSk . 
k

i  A constant that represents the share of the generation in node i that is deducted from 

the upper limit of the cut constraint CUTSk . 
k

i  A constant that represents the share of the load in node i that is deducted from the 

upper limit of the cut constraint CUTSk . 

Z Set of price areas (zones) in the simplified/optimal zonal pricing models. 

N
z
 Subset of nodes that are included in the price area Zz . 
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pi Variable that represents the price in node i. This variable is only used in the optimal 

zonal pricing model. 

pz Variable that represents the price in zone z. This variable is only used in the optimal 

zonal pricing model. 

CAPxz Upper limit on the flow from zone Zx  to zone Zz  in the simplified model. 

 

Objective function 
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Price constraints in the optimal zonal pricing model 

ZzNipp z

zi  ,  (2-7) 

  Niqpp d

i

d

ii   (2-8) 

  Niqpp s

i

s

ii   (2-9) 

Flow capacity constraints in the simplified model 
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A.3 Cut constraints 

A cut k is defined by a set of transmission lines for which the total flow must not exceed the number 

     , i.e., the inequality constraint (2-6) must be satisfied. The relationship between the 

transmission line       and the cut k is given by the parameter    
 . If    

   , the power flow from i to 
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j is included in the cut k, whereas    
    means that the flow is not included. Note that    

  may also 

take on a value between 0 and 1, meaning that some, but not all, of the flow from i to j is included in 

the cut constraint. Cut capacities are sometimes adjusted based on observed production quantities in 

the nodes (PFK). For the production node i and the cut k this adjustment is modeled using the constant 

  
 . Similarly, the capacity of a cut can be adjusted based on consumption in one or more nodes 

(BFK). For the consumption node i and the cut k this adjustment is modeled using the constant   
 . 

 

Table A-1 Capacity limits of cut constraints at 10ºC. From Statnett (2010) 

Cut (k) CCAPk 

Hasle import 1 2150 

Hasle import 2 840 

Hasle eksport 1600 

Flesaker1 3000 

Flesaker2 3100 

Flesaker3 1170 

Flesaker4 1170 

Flesaker5 695 

Flesaker6 695 

Hallingdal 2800 

Tokke-Vinje 710 

Tonstad-Feda1 855 

Tonstad-Feda2 1005 

Sauda 1 1000 

Sauda 2 1200 

Sauda 3 950 

Midt-Norge 1 415 

Midt-Norge 2 415 

Midt-Norge 3 1350 

Midt-Norge 4 700 

Midt-Norge 5 855 

Midt-Norge 6 925 

Midt-Norge 7 925 

Tunnsjødal/Kobbelv 1200 

Nordland 1000 

Ofoten 375 

Narvik 315 

Straumsmo 395 

Guolasjokka 135 

Fardal overskudd 1 750 

Fardal overskudd 2 750 

Fardal underskudd 750 

Vestland1 950 

Vestland2 940 

Vestland3 1600 

BKK 670 

Bergen1 670 

Bergen2 670 

 

Table A-2 Description of cut constraints from Statnett (2010) 

Cut (k) From (i) To (j)    
  

Hasle import 1 Borgvik Hasle 1 

Hasle import 1 Skogssäter Halden 1 

Hasle import 2 Hasle Tegneby 0,42 
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Cut (k) From (i) To (j)    
  

Hasle eksport Hasle Borgvik 1 

Hasle eksport Halden Skogssäter 1 

Flesaker1 Rjukan Sylling 1 

Flesaker1 Rød Hasle 1 

Flesaker1 Flesaker Sylling 1 

Flesaker1 Flesaker Tegneby 1 

Flesaker2 Rjukan Sylling 1 

Flesaker2 Rød Hasle 1 

Flesaker2 Flesaker Sylling 1 

Flesaker2 Flesaker Tegneby 1 

Flesaker3 Sylling Tegneby 0,25 

Flesaker3 Rød Hasle 1 

Flesaker4 Rjukan Sylling 0,45 

Flesaker4 Rød Hasle 1 

Flesaker5 Flesaker Sylling 0,45 

Flesaker5 Flesaker Tegneby 1 

Flesaker6 Flesaker Tegneby 0,8 

Flesaker6 Flesaker Sylling 1 

Hallingdal Usta Ådal 1 

Hallingdal Dagali Ringerike 1 

Hallingdal Nore Sylling 1 

Tokke-Vinje Vemork Flesaker 0,35 

Tokke-Vinje Tokke Flesaker 1 

Tonstad-Feda1 Tonstad Feda 0,6 

Tonstad-Feda1 Tonstad Feda 1 

Tonstad-Feda2 Tonstad Feda 0,6 

Tonstad-Feda2 Tonstad Feda 1 

Sauda 1 Sauda Nesflaten 0,85 

Sauda 1 Sauda Hylen 1 

Sauda 2 Sauda Nesflaten 0,85 

Sauda 2 Sauda Hylen 1 

Sauda 3 Liastøl Hylen 0,85 

Sauda 3 Songa Kjela 1 

Midt-Norge 1 Rana Nedre Røssåga 0,35 

Midt-Norge 1 Ajaure Nedre Røssåga 1 

Midt-Norge 2 Nea Klæbu 1 

Midt-Norge 2 Ajaure Nedre Røssåga 1 

Midt-Norge 3 Nea Klæbu 0,5 

Midt-Norge 3 Tunnsjødal Verdal 1 

Midt-Norge 3 Tunnsjødal Namsos 1 

Midt-Norge 4 Nea Klæbu 0,5 

Midt-Norge 4 Vågåmo Aura 1 

Midt-Norge 5 Tunnsjødal Namsos 0,7 

Midt-Norge 5 Tunnsjødal Verdal 1 

Midt-Norge 6 Klæbu Viklandet 0,85 

Midt-Norge 6 Klæbu Orkdal 1 

Midt-Norge 7 Klæbu Viklandet 0,85 

Midt-Norge 7 Orkdal Trollheim 1 

Tunnsjødal/Kobbelv Tunnsjødal Verdal 1 

Tunnsjødal/Kobbelv Tunnsjødal Namsos 1 

Tunnsjødal/Kobbelv Nedre Røssåga Ajaure 1 

Tunnsjødal/Kobbelv Kobbelv Ofoten 1 

Nordland Ofoten Ritsem 1 

Nordland Nedre Røssåga Ajaure 1 

Nordland Tunnsjødal Verdal 1 

Nordland Tunnsjødal Namsos 1 

Nordland Sildvik Tornehamn 1 

Ofoten Ofoten Kvandal 0,8 

Ofoten Ofoten Skjomen 1 

Narvik Ofoten Kvandal 0,65 
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Cut (k) From (i) To (j)    
  

Narvik Skjomen Narvik 1 

Straumsmo Kvandal Bardufoss 1 

Straumsmo Straumsmo Bardufoss 1 

Straumsmo Straumsmo Krogstad 1 

Guolasjokka Skibotn Balsfjord 1 

Guolasjokka Guolasjokka Lyngen 1 

Fardal overskudd 1 Modalen Evanger 1 

Fardal overskudd 1 Fardal Aurland1 1 

Fardal overskudd 2 Mauranger Blåfalli 1 

Fardal overskudd 2 Fardal Aurland1 1 

Fardal underskudd Mauranger Samnanger 1 

Fardal underskudd Aurland1 Fardal 1 

Vestland1 Modalen Evanger 0,7 

Vestland1 Hylen Sauda 1 

Vestland2 Modalen Evanger 0,3 

Vestland2 Nesflaten Sauda 1 

Vestland3 Nesflaten Sauda 1 

Vestland3 Modalen Evanger 1 

Vestland3 Hylen Sauda 1 

BKK Modalen Evanger 1 

BKK Mauranger Samnanger 1 

Bergen1 Samnanger Fana 1 

Bergen1 Evanger Dale 1 

Bergen2 Samnanger Fana 1 

Bergen2 Dale Arna 1 
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Table A-3 Cut capacity adjustment based on nodal quantities. From Statnett (2010) 

Cut (k) Node (i)   
    

  

Flesaker2 Kvilldal -1   

Flesaker2 Tokke -1   

Flesaker3 Tonstad -0,35   

Flesaker3 Kvilldal -0,3   

Flesaker3 Vinje -0,3   

Flesaker3 Tokke -0,3   

Flesaker3 Sima -0,1   

Flesaker3 Aurland1 -0,1   

Flesaker4 Kvilldal -0,4   

Flesaker5 Tokke -0,3   

Flesaker5 Vinje -0,3   

Flesaker5 Kvilldal -0,2   

Flesaker5 Tonstad -0,2   

Flesaker6 Tokke -0,3   

Flesaker6 Vinje -0,3   

Flesaker6 Kvilldal -0,15   

Flesaker6 Tonstad -0,15   

Midt-Norge 2 Aura   -0,15 

Midt-Norge 3 Aura   -0,6 

Midt-Norge 4 Aura   -0,6 

Midt-Norge 6 Aura   -0,4 

Midt-Norge 7 Aura   -0,6 

Tunnsjødal/Kobbelv Kobbelv -1   

Tunnsjødal/Kobbelv Svartisen -0,5   

 

A.4 Formulation of bid curves 

The bid curves are piece-wise linear, and they can have horizontal as well as vertical segments. The 

integrals below the demand bid curve and the supply bid curve, for each node, are calculated as a sum 

of a number of rectangles and triangles, as illustrated by Figure A-2 and Figure A-2 below. 

In each node the supply bid curve consists of R segments. Each segment r has a production capacity of  

 ̅ 
 . Hence, the production   

  for segment r must satisfy the constraint 

 s

r

s

r qq 0  (4-1) 

Each segment has, in addition to its capacity, two non-negative parameters: cr and er. The parameter cr 

gives the slope of the segment, and er is used to allow for a vertical jump in front of segment r, as 

illustrated in the example in Figure A-1.  

In the example shown in Figure A-1, the total production quantity is given by the sum   
    

    
 . 

The production in the first two segments are at the respective capacity limits, whereas production in 

the third segment is strictly below the capacity limit. The area under the supply bid curve to the left of 

the total production quantity is given by the expression  
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The red part of (4-2) gives the area of the red rectangles in Figure A-1. The green part of the 

expression corresponds to the green triangles, and the blue part of the expression gives the area of the 

blue rectangles. 

 

 

Figure A-1 Supply bid curve with 3 segments 

Likewise, in each node the demand bid curve consists of T segments. Each segment t has a maximal 

demand of   ̅ 
 . Hence, the demand   

  in segment t must satisfy the constraint 

 
s

t

d

t qq 0 . (4-3) 

Each segment has, in addition to its capacity, two non-negative parameters: bt and at. The parameter bt 

gives the (negative) slope of the segment, and at is used to allow for a vertical drop/jump in front of 

segment t, as illustrated in the example in Figure A-2. Note that a1 indicates the intersection of the 

demand curve with the vertical axis, while at for t > 1 indicate vertical drops in the demand curve. 

In the example shown in Figure A-2, the total consumption quantity is given by   
    

    
 . The 

consumption in the first two segments are at the respective upper limits, whereas consumption in the 

third segment is strictly below the upper limit. The area under the demand bid curve to the left of the 

total consumption quantity is given by the expression  
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The first part of (4-4) gives the area of the rectangle containing the solid grey and the hatched areas in 

Figure A-2. In order to get the area under the demand curve, we must deduct the areas of the colored 

triangles and rectangles. The red part of (4-4) gives the area of the red hatched rectangle in the figure, 

while the green part of (4-4) gives the area of the green hatched triangles. Finally, the blue part of (4-

4) gives the area of the blue hatched rectangles in the figure. 
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Figure A-2 Demand bid curve with 3 segments 

Note that, in the case of the nodal pricing model and the simplified model, the fact that the supply bid 

curves are non-decreasing implies that we will always have 

 rrqqq s

r

s

r

s

r  '0 ''
 (4-5)

  

i.e., lower bid curve segments will be “filled up” before the higher segments are used. Similarly, for 

the demand bid curves we will have 

 ttqqq d

t

d

t

d

t  '0 '' . (4-6) 

For the optimal zonal model, where the nodal prices are modeled explicitly via (2-7)-(2-9), the 

properties (4-5) and (4-6) must be modeled explicitly. This requires the use of binary variables and 

extra constraints in the optimal zonal model.  

 

A.5 Some characteristics of the optimal zonal solutions 

The optimal zonal pricing model differs from the optimal nodal pricing model and the simplified 

model in that the prices are modeled explicitly via (2-7)-(2-9). Since the prices are not “true” shadow 

prices some peculiarities may arise, and we will describe these peculiarities. 

Vertical bid curve segments 

Figure A-3 illustrates the situation in a node where both the supply bid curve and the demand bid 

curve have vertical segments. Such a situation can lead to non-uniqueness with respect to the price. 

This will happen, e.g., if the node is alone in its zone. Any solution with a price between p’ and p will 

satisfy constraints (2-7) and (2-8). All the possible values will give the same social surplus, but will 

differ with respect to the distribution of the surplus between producers, consumers and the grid. We 

a1 

b1 

b2 

b3 

a2 

  
   ̅ 

 
   

   ̅ 
 

   
   ̅ 

 
 

 ̅ 
   ̅ 

   ̅ 
 

 

    
 

 

    
 

 

    
 

 

a3 



 SNF Report No 15/12 

 

141 

 

handle such non-uniqueness by choosing the lowest one of the equivalent prices, i.e., p’ in the 

example. 

 

Figure A-3 Non-unique price 

Insufficient price signals 

Optimal zonal prices are not true marginal costs, since they are not based on shadow prices of model 

constraints. The resulting prices may not give correct incentives for individual generators or 

consumers. A typical example is illustrated in Figure A-4. The optimal zonal price is p
*
, with the 

corresponding optimal generation quantity q
*
. The marginal cost of increasing production at the 

quantity q
*
 is given by MC(q

*
). Since p

*
 > MC(q

*
), it would be profitable to increase production in this 

node. The generator(s) would prefer to increase their production until the price is equal to the marginal 

cost, i.e., they would prefer the quantity q’. 

 

Figure A-4 Insufficient price signal for generation 
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The fact that the producers have incentive to deviate from the optimal quantities makes it necessary for 

the system operator to restrict the production quantity. Hence, it is not sufficient to specify the area 

prices; the system operator also has to specify the individual production quantities. With multiple 

producers in each node, it is not obvious how the necessary “curtailment” should be allocated among 

the producers.
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In the Nordic day-ahead electricity market zonal pricing or market splitting is used 

for relieving congestion between a predetermined set of price areas. This congestion 

management method represents an aggregation of individual connection points into 

price areas, and flows in the actual electricity network are only partially represented 

in the market clearing. Because of several strained situations in the power system 

during 2009 and 2010, changes in the congestion management method are under 

consideration by the Norwegian regulator NVE. We discuss three different congestion 

management methods – nodal pricing, and optimal and simplified zonal pricing. Four 

hourly cases from 2010 are used to illustrate the effects of different congestion man-

agement methods on prices, surpluses and network utilization.


