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Understanding the Stochastics of Nodal Prices:

Price Processes in a Constrained Network

Arne-Christian Lund and Linda Rud∗

Abstract

Network congestion in competitive electricity markets may
be managed by geographically differentiated nodal prices. The
stochastics of an unconstrained equilibrium price reflect the un-
derlying fundamentals of demand and supply. The stochastics
of nodal prices in addition reflect the consequences of grid con-
gestion. This paper demonstrates how a static three-node model
may be combined with dynamic modelling of fundamental pa-
rameters, giving stochastic nodal price processes consistent with
the underlying grid. These price processes may be employed in
analysing production, hedging, and investment decisions under
uncertainty.

1 Introduction

Electricity prices in competitive markets have proven to be highly volatile.
A thorough understanding of the stochastic price processes is important in
e.g. production planning, risk management and investment planning. The
stochastics of equilibrium commodity prices in general reflect the stochastic
nature of the underlying fundamentals of demand and supply. For electric-
ity, however, a special factor is the effect of the constraints in the underlying
grid. By simply clearing the market on a common equilibrium price, often
denoted the system price, the resulting allocation of production and con-
sumption may be infeasible due to grid congestion. In the case of congestion
a feasible market solution may be obtained by clearing the market on dif-
ferentiated nodal prices1. Optimal nodal prices may be characterized as the

∗The authors would like to thank Mette Bjørndal for important contributions.
1The concept of nodal electricity prices is first discussed in Schweppe et al. [7].
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prices that optimize the aggregate social surplus implied by the bid curves,
within the capacity constraints of the grid. For the individual consumers and
producers, the relevant prices processes are the area/nodal specific prices,
not the system price process. The objective of our paper is to gain insight
into the impact of grid limitations on the stochastic nodal price processes.

In literature, there have been two main approaches to modelling elec-
tricity prices. Firstly, there are several contributions which focus on finding
appropriate stochastic processes to model a given time series of electricity
prices. The processes are in turn applied to e.g. valuing contingent claims.
For example, Lucia and Schwartz [4] study the use of different one and two
factor models in modelling the system spot price on NordPool spot exchange.
These processes are fitted to data, and then used to value futures and for-
ward contracts. Weron et al. [8] formulates a jump diffusion model, and a
regime switching model for the spot price process. The parameters in their
models are fitted to NordPool price data. Johnson and Barz [3] discuss 8
diffusion and jump diffusion models. By maximum likelihood methods these
models are calibrated to the spot prices at four different energy markets.

The focus of all these models is to find appropriate stochastic processes
to describe the spot price. An advantage of this approach is related to the
abundance of price data, allowing the processes to be fitted directly to the
observed prices series. It does not, however, take into account that the
market in periods may be separated due to transmission constraints arising
from the specific geographical distribution of supply and demand. Nor does
it model the relation between the prices of the separated markets. Thus, the
resulting price processes are not directly relevant for the individual market
participants for which the nodal price differences are important.

Secondly, there are partial equilibrium models based on models of the
underlying market and its transmission constraints, where market clearing
nodal/area prices are found, given the geographical dispersion of supply
and demand2. The main contribution is related to understanding the ef-
fect of nodal prices, as well as different methods for handling congestion.
These models have however been inherently static, or two-periodic at most.
Though congestion issues are well described, these models do not capture
the underlying dynamics of the stochastic price processes, and can at most
be regarded as giving a “snap shot” of the real world. In evaluating in-
vestments, production plans, etc. under uncertainty, these models do not
provide a sufficient input to handle the challenges of future uncertainty.

In this paper, we seek to combine features of both these traditions, by
introducing dynamics and stochastics into the static nodal price models,
thus obtaining nodal price processes consistent with the physical rules of
the transmission net. Demand and supply are represented by given price-
elastic functions. Uncertainty is introduced by specifying demand or supply

2See for example, Bjørndal [2] and the references therein.
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parameters as stochastic processes. A related idea is represented in Barlow
[1], where the market price process is characterized on the basis of an in-
elastic demand market with a static functional form of the supply functions.
We have in addition modelled an underlying three-node network, where the
market is cleared by nodal prices. These nodal and system price processes
may further be employed in analysing e.g. strategies of production or invest-
ments in net and production capacity when the nodal price is the relevant
price.

The paper is organized as follows: Section 2 presents our model. Equi-
librium prices are derived both in the presence and the absence of binding
capacity constraints, and the system price and nodal prices are character-
ized. In section 3 we assume that the above market situation occurs repet-
itively with consecutive and independent market equilibria. We introduce
uncertainty by characterizing demand as a stochastic function. Different
choices of stochastic functions may represent different assumptions as to
e.g. daily and seasonal variations. Based on the choice of stochastic process
for demand in section 3, section 4 looks at the characteristics of the resulting
stochastic nodal price processes, as well as discussing other applications of
the model. Section 5 discusses different choices of model specification, while
section 6 concludes the paper.

2 Price Formation in a Three-Node Electricity Mar-
ket

Consider a simple three-node electricity market, with generation in node 1
and 2, and demand in node 3. The Generators in node 1 and 2 have the
quadratic profit functions

πs
i = piq

s
i −

1
2
ciq

s
i
2. (1)

Here pi is the price, qs
i is the quantity supplied, and ci is the cost factor in

node i = 1, 2. This gives the linear supply functions

pi = ciq
s
i (2)

where production in each node, qs
i = 1

ci
pi, follows directly from (2). All

demand is consumed in node 3, i.e. QD ≡ qd
3 . Assuming no losses, in

equilibrium aggregate supply QS ≡ qs
1 + qs

2 equals aggregate demand, QS =
QD. The implicit benefit of demand, πd

3 , for a given point of time is assumed
to be of the form

πd
3 = (a− p3)QD − 1

2
bQD

2, (3)

giving the linear demand function

p3 = a− bQD, (4)
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Figure 1: The network.

where a, b > 0. The consumed quantity in node 3 is therefore QD = 1
b (a−p3)

when the nodal price is p3.
The three nodes are interconnected by a simple three-line “DC” network,

as illustrated in figure 1. Each line is assumed to have identical technical
characteristics and impedances equal to 1. The flows over each line are solely
determined by physical laws. In our simple network the line flow over line
ij in the direction from i to j resulting from production in node 1 and 2 are
given by the equations3

q12 =
1
3
qs
1 −

1
3
qs
2

q13 =
2
3
qs
1 +

1
3
qs
2 (5)

q23 =
1
3
qs
1 +

2
3
qs
2.

For flows in the opposite direction we have qji = −qij .

2.1 No capacity limits

Let us first assume that there are no capacity limits in the network. The
challenge of the market is then to match supply and demand. In this case
the market will be cleared at a common price ps = p1 = p2 = p3. This
equilibrium price of a non-capacitated market is also termed the system

3These equations follow from three physical rules: Kirchhoff’s Junction Rule, qi =∑
i6=j qij for i = 1, 2, states that the current flowing into any node is equal to the current

flowing out of it. Following from Kirchhoff’s Loop Rule we have q13 = q12 + q23 which in
the absence of losses states that the algebraic sum of flows over any path in a loop is equal.
The Law of Conservation of Energy states that total generation equals total consumption,
qd
3 = qs

1 + qs
2.
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price. The aggregate supply curve as a function of the market price ps is

QS =
1
c
ps (6)

where c ≡ c1c2
c1+c2

is the resulting cost factor of aggregate supply. The propor-

tion of total generation generated in node i is now αi ≡ qs
i

qs
1+qs

2
. By inserting

(2) we have the production weights

αi =
c(3−i)

c1 + c2
for i = 1, 2. (7)

The market is cleared at the price which matches supply and demand, i.e.
for QS = QD, where QD is given by (4) and QS by (6). The equilibrium
price, the system price, is thus given by ps = ac

b+c , giving

ps =
ac1c2

bc1 + bc2 + c1c2
. (8)

The corresponding total equilibrium quantity is given by QS = QD = a
b+c ,

i.e.
QS = QD =

a(c1 + c2)
bc1 + bc2 + c1c2

. (9)

In this unrestrained solution the proportions of the total production pro-
duced in node 1 and 2 are given by the least-cost production mix α1 and α2

of (7). Thus, nodal production is qs
i = αia

b+c , giving

qs
i =

ac3−i

bc1 + bc2 + c1c2
for i = 1, 2 (10)

By inserting the above flow quantities into the line flow equations (5),
we find the line flows in an unrestricted market clearing:

q12 =
a(c2 − c1)

3(bc1 + bc2 + c1c2)

q13 =
a(c1 + 2c2)

3(bc1 + bc2 + c1c2)
(11)

q23 =
a(2c1 + c2)

3(bc1 + bc2 + c1c2)
.

2.2 Capacity limit on line 12

In the case of capacity limits in the network, the optimal market equilib-
rium is defined as the allocation that maximizes social surplus, given the
constraints of the network. Now let us assume that the capacity of line 12 is
restricted to Ĉ for flows in either direction, while the capacity of the other
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lines will not be binding. The capacity of line 12 will thus be binding for
any combination of parameters that satisfy the inequality |q12| > Ĉ, i.e.

∣∣∣∣
a(c2 − c1)

3(bc1 + bc2 + c1c2)

∣∣∣∣ > Ĉ. (12)

In section 3 we will assume a repetitive market where the intersect a of
the demand curve is stochastic. The slope of demand and supply curves,
b, c1, and c2, are for simplicity chosen to be constants. In this setting it is
therefore the level of a that determines whether the capacity limit of line
12 will be binding. To simplify, let us define the producer in node 1 as the
least cost producer assuming that c1 < c2. This implies that qs

1 > qs
2 with

a constant direction of the line flow on line 12, i.e. q12 ≥ 0. Clearing the
market at a uniform price the constraint on line 12 becomes binding when
the demand reaches the level which solves q12(â) = Ĉ. This critical demand
intersect level is

â = 3Ĉ
bc1 + bc2 + c1c2

c2 − c1
. (13)

By inserting â from (13) into (9) and (10) we find the corresponding levels
of production in node 1 and 2, q̂S

1 and q̂S
2 , and consumption, Q̂D;

q̂S
i = 3Ĉ

c3−i

c2 − c1
for i = 1, 2 (14)

Q̂D = 3Ĉ
c1 + c2

c2 − c1
. (15)

For a realization of a ≤ â the unrestrained solution resulting from a
common market price ps is feasible. At a = â the line q12 is fully utilized,
and the unrestrained market solution with the above quantities of (14) and
(15) is feasible. This quantity, Q̂D = Q̂S is the maximum feasible aggregate
production given the production mix α1 and α2 of the unrestrained solution,
which also is the minimum-cost production mix.

A demand realization a > â calls for a higher total production and
consumption. The unrestrained solution based on a uniform market price
ps is however now not feasible. Still, it is in fact possible to achieve higher
production levels, i.e. QS > Q̂S without violating the capacity constraints
of line 12. The clue is to define differentiated nodal prices and change the
production mix. This can be seen by studying the line flows resulting from
Kirchhoff’s law. For each extra unit produced in node 1, equation (5) states
that 1

3 of the quantity will flow on line 12 from node 1 to node 2. This action
alone is not possible if the line is already congested. We however find that
equation (5) also states that for each extra unit produced in node 2, 1

3 of this
quantity will flow on line 12 from node 2 to node 1. Additional quantities
(QS − Q̂S) are thus feasible by producing equal additional amounts in each
node, i.e. with the production mix α̂1 = α̂2 = 1

2 .
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We have a new kinked aggregate supply curve, which for quantities above
Q̂S reflects the marginal cost of additional production using the new produc-
tion mix. For any aggregate production QS > Q̂S (occurring when a > â),
the production in node i is given by qs

i = αiQ̂S + α̂i(QS − Q̂S), i.e. with the
least cost mix αi for the critical level of non-congested quantity, and a mix
of âi = 1

2 for any additional quantity. By substituting for Q̂S , αi, and α̂i,
the feasible nodal production as a function of any total production QS > Q̂S

is
qi =

1
2
QS + (3− 2i)

3
2
Ĉ for i = 1, 2. (16)

For QS > Q̂S , the aggregate cost of production, ΠC = 1
2

∑
i=1,2 ciq

s
i
2 is

ΠC =
1
2

∑

i=1,2

ci

[
αiQ̂S + α̂i(QS − Q̂S)

]2
(17)

giving the marginal cost of

∂ΠC

∂QS
=

1
4
(c1 + c2)QS +

3
4
(c1 − c2)Ĉ12. (18)

The aggregate benefit of consumption, ΠB, is given by omitting the pay-
ments in (3), i.e. ΠB = aQD − 1

2bQD
2, giving the marginal benefit of

consumption
∂ΠB

∂QD
= a− bQD.

By equating the marginal cost of aggregate production and the marginal
benefit of consumption, we find the equilibrium amount Q∗ = QS = QD for
a > â to be

Q∗ =
4a− 3Ĉ(c1 − c2)

4b + c1 + c2
. (19)

Given the equilibrium amount Q∗ the quantities in each node are found by
(4) and (16).

To achieve these quantities and balance the resulting regional markets,
it is necessary to operate with nodal prices tailored to induce the required
quantities. Prices in node 1 and 2 are given by the individual supply curves
of (2), pi = ciq

s
i . For a > â prices as a function of the total quantity supplied

are

p1 = c1(
1
2
QS +

3
2
Ĉ) (20)

p2 = c2(
1
2
QS − 3

2
Ĉ). (21)

The nodal price in node 3 is given by (4).

7



2.3 Nodal prices as a function of the demand parameter a

To sum up, the market price is dependent on the realization of the demand
parameter a. The market price in a non-capacitated market, i.e. when
a ≤ â, is given by (8); ps = ac1c2

b(c1+c2)+c1c2
. By inserting Q∗ into (4), (20) and

(21), we obtain the nodal prices of the capacitated market when a > â. The
nodal prices as a function of the demand parameter a can be summarized
by

p1 =

{
ps for a ≤ â
c1(2a+3Ĉ(2b+c2))

4b+c1+c2
for a > â

(22)

p2 =

{
ps for a ≤ â
c2(2a−3Ĉ(2b+c1))

4b+c1+c2
for a > â

(23)

p3 =

{
ps for a ≤ â
a(c1+c2)+3Ĉb(c1−c2)

4b+c1+c2
for a > â

(24)

where â is given by equation (13). The corresponding production and con-
sumption in the three nodes are given by inserting prices into the individ-
ual supply and demand functions, i.e. qs

1 = 1
c1

p1(a), qs
2 = 1

c2
p2(a), and

QD = 1
b (a− p3(a)).

In figure 2 the prices are plotted for different levels of a for a model where
b = 0.05, c1 = 0.2, c2 = 0.8, and Ĉ = 120, implying that â = 126. Due
to the simple model setup the functions are all piecewise linear in a. When
the line capacity is not fully utilized, the market is cleared at the common
market price, ps. For higher demand levels, a > â, prices in node 1 are set
lower than the system price to curb production and reduce the flow in the
direction from 1 to 2, while prices in node 2 are set higher than ps to relieve
capacity problems by inducing a greater counterflow on line 12.

3 Introducing dynamics and uncertainty

Our aim is now to analyse the effect of limited grid capacity on nodal price
processes. Prices at a given point of time are given by (22)-(24) above4.
Basically, uncertainty in prices is driven by the uncertainty of underlying
fundamentals related to demand and/or supply. To focus on the basic effect
of grid constraints, we have introduced uncertainty in the demand function
(4) only, keeping a transparent and controllable model. Uncertainty is im-
plemented by defining a as a stochastic function. From the definition of the
demand function it is clear that shifts in a represent parallel shifts in the

4Note that the allocation of production and consumption at each instant is as in the
static model described above, implying that none of the market participants in this model
act strategically over time.
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Figure 2: Plot of prices as a function of the a-parameter.

demand function. In a market with electrical household heating, the most
natural example could be the temperature. By defining a stochastic process
for a, and assuming that the process a takes only admissible values (e.g.
a > 0), equations (22)-(24) will define the stochastic processes for p1, p2,
and p3.

In order to derive the nodal price processes, we must first define a
stochastic process for our fundamentals, in this case the parameter at. Find-
ing a good representation of the real-world stochastic process is not a simple
task. It is important to have a clear understanding of the effects we want
the model to capture, and also how a reasonable process should evolve. Sev-
eral questions arise in this context, for example; - Is the real world process
explicitly time dependent? - What is the level of the process expected to
be at a given point of time? - How volatile is the process? - Is the noise
constant, or is it dependent on time and/or the level of the process? - Does
the driving process display periodic patterns? - Is the driving process mean
reverting, and if so, how fast on average?

In our paper we do not, however, aim for ultimate realism in any partic-
ular market. For computational tractability we employ a continuous time
framework. We have chosen to model the parameter at by a particular
continuous time Itô diffusion, namely a time dependent mean reverting
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(Ornstein-Uhlenbeck) process of the form

dat = γt(ηt +
η′t
γt
− at)dt + σtdWt. (25)

Here Wt is a Brownian motion, γt is related to the speed of mean reversion
and ηt is the “on average” seasonal process level. Variants of this process are
used extensively in the literature, see e.g. Lucia and Schwartz [4] or Johnson
and Barz [3], while the above formulation is based on Lund and Ollmar
[5]. This process captures several important properties of a demand curve
for electricity. The process is mean reverting, giving demand a tendency to
normalize after some time, an attribute which is characteristic of demand.
By choosing a rather high γt, the process would relatively rapidly be driven
towards the average seasonal process level, a lower γt causes a slow drive
towards the average level. As we will see below, this process formulation also
opens for specifying cyclical patterns of demand. Note that the Ornstein-
Uhlenbeck formulation above implies that volatility represented by σtdWt is
independent of at. Though this process captures many important aspects of
demand, it may attain negative values, requiring caution as to applications
where this may be problematic.

For s < t the explicit solution of equation (25) is

at = (as − ηs)e−
∫ t

s γudu + ηt +
∫ t

s
σue−

∫ t
u γrdrdWu (26)

We now simplify by letting γt ≡ γ and σt ≡ σ, that is, constant volatility
and a constant speed of mean reversion. Since σ is deterministic, the Itô
integral is normally distributed and we can write at as

at = (as − ηs)e−γ(t−s) + ηt + σ(
1− e−2γ(t−s)

2γ
)1/2ε (27)

where ε is a standard normal distributed random variable. For a given as,
the Gaussian process at has an conditional mean and variance5 at time t > s
equal to

µt = (as − ηs)e−γ(t−s) + ηt (28)

ρt = σ2 · (1− e−2γ(t−s)

2γ
). (29)

Since the expected value of at is equal to ηt when t →∞, we can interpret
this as the long run mean level for the process.

Demand clearly follows several cyclical patterns over time, reflecting pat-
terns of nature as well as human activity that vary over the day, the week

5To simplify notation we suppress the s, as dependence in µ, ρ. Still they must always
be seen as functions of these variables.
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and across the year. In our model, price variations are induced by these vari-
ations in demand. These fluctuations may be modelled by including several
trigonometric functions with different parameters. We have specified the
average seasonal process level, ηt, as

ηt = A0 +
k∑

j=1

{Aj cos(ωjt) + Bj sin(ωjt)}.

where the parameters of Aj , Bj and the frequencies ωj are chosen to specify
the k different patterns we wish to model.

In the paper Lund and Ollmar [5] the process is calibrated to the spot
price at the Nordic electricity marked. Here one unit of time corresponds to
one hour, and the frequencies are set to

ω1 = 2π/8760 ω2 = 2ω1 (year)
ω3 = 2π/168 ω4 = 2ω3 (week)
ω5 = 2π/24 ω6 = 2ω5 (day)

to model yearly, weekly and daily variations in the spot price. Demand
variation highly matches that of the spot prices. To illustrate how our
model may be applied, we therefore use approximately the same parameters
as Lund and Ollmar, this time to model the demand process a6.

The two lower panels of figure 3 show the resulting (time varying) long
term mean level of the demand parameter at. In the first of these panels,
covering five weeks, we are able to see the resulting daily and weekly vari-
ations in the mean, while in the second covering fifty weeks, we are able
to see yearly variations in at. In the two upper panels of figure 3 we have
plotted a realization of the process for a0 = 80.0, σ = 2.0.

4 The stochastics of nodal prices - Characteristics
and applications

The price process of our model is driven by the variations in the demand
parameter a. The nodal price processes are thus completely defined by the
price equations (22)-(24) together with the stochastic process of at given by
equation (27). Based on this characterization of the nodal price processes,
we have a tool useful for several purposes. Within a given model, we are
able to study the stochastic properties of nodal prices, as well as performing
numerical and analytical analyses of different issues in the market. The

6The parameters chosen for A and B are calibrated to reflect the level estimated in
[5]: A1 = 32.2, A2 = −8.4, A3 = −3.1, A4 = −0.2, A5 = −5.3, A6 = 1.6, B1 = −3.7,
B2 = 12.3, B3 = 4.1, B4 = 2.8, B5 = −4.8, and B6 = −4.2. Apart from this, the
remaining parameters are chosen to fit our example, with the reversion parameter γ set
to 0.01 and A0 = 100.0.
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Figure 3: Plot of one replicate of the a-process, together with its long term
mean level.

purpose of this paper has been to gain insight into how grid limitations
influence the underlying stochastic nodal price processes. In this section we
will briefly sketch some applications.

• In figure 4 we have illustrated the realization of the price process for
the above realization of at. This is but one possible replicate of the
price processes. More interestingly, our characterization of the price
processes allows us to calculate e.g. expected levels of nodal prices, as
well as the estimated volatility of prices. This is information which is
important input in evaluating power contracts, investment decisions
or other applications for which future prices are important.

As an illustration, assume that we want to find the expected price
levels in this model, given the current level of demand as. With the
notation introduced in the appendix we can write price expectations

12
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as

E[PS(t)|as] =
c1c2

Ψ
µt

E[P1(t)|as] = E[PS(t)I{at≤â}|as] +
2c1

Φ
E[atI{at>â}|as]

+3
c1

Φ
Ĉ(2b + c2)E[I{at>â}|as]

=
c1c2

Ψ
Āt +

2c1

Φ
(µt − Āt) + 3

c1

Φ
Ĉ(2b + c2)(1− G(

â− µt√
ρt

))

E[P2(t)|as] =
c1c2

Ψ
Āt +

2c2

Φ
(µt − Āt)− 3

c2

Φ
Ĉ(2b + c1)(1− G(

â− µt√
ρt

))

E[P3(t)|as] =
c1c2

Ψ
Āt +

c1 + c2

Φ
(µt − Āt) + 3

Ĉb(c1 − c2)
Φ

(1− G(
â− µt√

ρt
)),

where Φ = b(c1 + c2)+ c1c2, Ψ = 4b+ c1 + c2 and G denotes the cumu-
lative standard normal distribution function. The price expectation
functions are plotted in figure 5.

Likewise, the volatility of the price processes may be calculated in a
similar manner. For example, again with notation from appendix A,
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Figure 5: The expected nodal prices.

we have that

Var [PS(t)] =
(c1c2)2

Ψ2
Var [a(t)] =

(c1c2)2

Ψ2
ρt

Var [P1(t)] = E
[
(PS(t)−E[PS(t)])2I{at≤â}

]

+
(2c1)2

Φ2
E

[
(at − E[at])2I{at>â}

]

=
(c1c2)2

Ψ2
(C̄t − 2Ātµt + F̄tµ

2
t )

+4
c2
1

Φ2
(D̄t − 2B̄tµt + (1− F̄t)µ2

t ),

given the state as at time s.

• Price differences are highly important for producers operating in sev-
eral regions, as well as producers and consumers hedging their posi-
tions for example by derivative contracts written on the system price.
Figure 6 shows the price differences between the nodal prices and the
non-constrained system price. In this realization, we find an initial
period where the demand has not led to binding network constraints,
while the following time periods show differentiated nodal prices. Our
model allows the price difference processes to be explicitly analysed,
for example by calculating expectation and variance functions, and
applying these in evaluating contracts and market positions.

• Another useful application is to estimate the degree to which the grid
will be congested in a given time period. Let Fâ([Ŝ, T ]) be the expected

14



-20

-15

-10

-5

 0

 5

 10

 15

 20

 25

 30

 0  100  200  300  400  500  600  700  800

P
ri
ce

 p
ro

ce
ss

 le
ve

ls

Five weeks, price differences
P2-Ps
P3-Ps
P1-Ps

Figure 6: Evolution of price differences.

fraction of hours with nodal prices in the future period [Ŝ, T ], Ŝ > s.
Within our setup this can be calculated as follows:

Fâ([Ŝ, T ]) =
1

T − Ŝ
E[

∫ T

Ŝ
I{at>â}dt|as]

Fubini=
1

T − Ŝ

∫ T

Ŝ
EI{at>â}|as]dt

=
1

T − Ŝ

∫ T

Ŝ
(1− G(

â− µt√
ρt

))dt

= 1− 1
T − Ŝ

{[
tG(

â− µt√
ρt

)
]T

Ŝ

−
∫ T

Ŝ
t (

â− µt√
ρt

)′
1√
2πρt

e
− (â−µt)

2

2ρt dt

}

where µt, ρt are seen as functions of the initial process level as as in
(28) and (29). With the parameter values from the previous example,
we find that

F126([0, 336]) = 0.29

by numerical integration. That is, we would expect nodal prices in
29%̃ of the hours the first two weeks when Ĉ = 120 (or alternatively,
â = 126).

• Other applications of the model involve analysing the sensitivity of
changes in model parameters on price expectations, volatility etc. This
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weeks, as a function of the capacity.

may be done by analytic or numerical studies of the consequences of
changing the model parameters, as for example related to the demand
slope or cost parameters, or changing the capacity of the grid. For
example, in figure 7 we show how the expected fraction of nodal prices
varies by varying the capacity Ĉ of the congested line7.

5 Other model specifications

Above we have illustrated some of the main issues in modelling stochastic
nodal prices. The model may be extended in several directions, for example
with respect to the network, the representation of supply and demand, as
well as the choice and modelling of stochastic parameters. In applying the
principles of the model to analyse more complex real world problems, the
challenge is to simplify, but yet capture the key features of the problem. It
is then important to have a clear idea of which effects we want to analyse.
Also, note that several extensions of the model will necessitate numerical
simulation rather than analytical characteristics of the nodal price processes.
Below we will shortly discuss possible model extensions.

Network: The 3-node network is simple. Still it may for example be seen
as an approximation to the Norwegian/Swedish part of the Nordic market,
where zonal aggregation often has been applied with two Norwegian zones,
and one Swedish zone. By applying slightly more complex networks, we may
similarly be able to pinpoint key features of the networks in other countries.

7See Lund and Rud [6] for an analysis within this framework related to investments in
grid capacity.
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Demand and Supply Functions: By modelling demand and supply in
the same node, problems of negative quantities will be avoided, as a negative
net demand simply indicates net production. Further, other demand and
supply functions may be implemented, though linear demand and supply
functions facilitate a clear and simple model.

Stochastic processes: For the demand process at above, we have chosen
a simple process. Clearly more complex process could be applied. at could
also be a process defined by combinations of other (possibly correlated)
processes. As an illustration suppose that demand consists of household
and industrial consumption. Let us assume that the industrial consump-
tion varies slowly due to changing market conditions, and this is modelled
by a reverting process X. Household consumption, on the other hand, is
exposed to temperature variations, and this could be modelled by a more
volatile stochastic process Y , normalizing relatively quickly. It may then be
appropriate to use a process e.g. of the form at = β1Xt +β2Yt. Clearly these
processes could also incorporate long-term trends.

In another model we could be particularly interested in the effects of de-
mand variations throughout the day. We know that day and night variation
in demand may be large in some periods and smaller in others. It is also
often the case that the consumption during the night has low variance, while
the peak consumption varies much more. This could be captured by intro-
ducing stochastic amplitudes in demand. As a simple illustration consider
Yt = 50 + Xt(1.2 + sin(2π t

24)), where Xt > 0 is a process reverting at 50.
This leads to periods with high prices at day time, with low fluctuations in
the night as seen in figure 8.

In section 2.3 we focused on the nodal prices as functions of the param-
eter a. Clearly we could have considered the prices as functions of the other
parameters, as for example the demand slope, or production parameters.

6 Conclusions

In this paper we have demonstrated how capacity limits in the grid influence
the stochastic price processes. Based on an intuitive model for the demand
dynamics, we have shown how our framework can help analyse the charac-
teristics of the price processes. We have also indicated possible applications
of the model.

This paper can be seen as a “primer” for introduction of dynamics and
uncertainty in a nodal network. In the paper we focused on examples to
illustrate how the model could be applied. The main focus has been on
simplicity, rather than realism. Still we have given indications of possible
generalisations that could be important when real world problems are stud-
ied.
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Figure 8: Plot of a process with large volatility in daytime.

As the fundamental processes can be unobservable in practise, it may be
difficult to calibrate our model to fit observed nodal prices. Compared to
models based on observed nodal prices, our approach may be advantageous
in several cases. As an illustration we point out that our model may give
insight in problems where there are no observations, for instance for other
potential grid specifications. It is also simple to include subjective beliefs
about the future market situation. Clearly this is highly relevant for invest-
ment decisions. In addition note that a näıve calibration of the price process
directly from data may give strange results, for instance price movements
in neighbouring nodes that are physically impossible. In our model, the
dynamics will always be consistent with the underlying physical grid.

Appendix

In this section we compute some useful expectations. An important function
is I{at≤â} which is 1 when at ≤ â, i.e. when there is no congestion and
non-differentiated nodal prices, and 0 otherwise indicating a congested net.
Assume t > s, and that we know as. When a is modelled by the Ornstein-
Uhlenbeck process, we know that it is Gaussian with mean and variance
given by equations (28) and (29). Therefore the probability that the net is
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un-congested at time t, given present state as, can be written as

F̄t ≡ E[I{at≤â}|as] =
∫ â

−∞

1√
2πρt

e
− (x−µt)

2

2ρt dx

= Gµt,ρt(â)

= G(
â− µt√

ρt
),

where G denotes the cumulative standard normal distribution function.
For calculating price expectations etc., we need several calculations. Re-

call that â is defined by (13), and that ρt and µt depend on s and as. We
further calculate E[at|as, at ≤ â] ≡ E[at · I{at≤â}|as]:

Āt ≡ E[at · I{at≤â}|as] =
1√
2πρt

∫ â

−∞
xe
− (x−µt)

2

2ρt dx

=
1√
2πρt

∫ â

−∞
(x− µt)e

− (x−µt)
2

2ρt dx

+µt

∫ â

−∞

1√
2πρt

e
− (x−µt)

2

2ρt dx

= −
√

ρt√
2π

e
− (â−µt)

2

2ρt + µtG(
â− µt√

ρt
).

Clearly B̄t ≡ E[at · I{at>â}|as] = E[at|as]− Āt = µt − Āt.
In addition

E[a2
t |as] = ρt + µ2

t ,

and

C̄t ≡ E[a2
t · I{at≤â}|as] =

1√
2πρt

∫ â

−∞
(x− µt)2e

− (x−µt)
2

2ρt dx

+2
µt√
2πρt

∫ â

−∞
(x− µt)e

− (x−µt)
2

2ρt dx

+µ2
t

∫ â

−∞

1√
2πρt

e
− (x−µt)

2

2ρt dx

= −
√

ρt√
2π

(â− µt)e
− (â−µt)

2

2ρt + ρtG(
â− µt√

ρt
)

−2µt
√

ρt√
2π

e
− (â−µt)

2

2ρt + µ2
tG(

â− µt√
ρt

)

= −
√

ρt√
2π

(â + µt)e
− (â−µt)

2

2ρt + (µ2
t + ρt)G(

â− µt√
ρt

).

Also observe that

D̄t ≡ E[a2
t · I{at>â}|as] = E[a2

t |as]− E[a2
t · I{at≤â}|as].
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