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Abstract: The purpose of this working paper is to study the implica-
tions of market power in a hydropower based electricity market within the
framework of the Supply Function Equilibria (SFE) model. We start by
developing the standard SFE model with two symmetric players. We then
develop a simple numerical example to illustrate the effects of production
constraints both related to installed effect capacity and to energy capac-
ity. We illustrate that binding constraints on energy production reduce the
number of allowable supply functions.



1 Introduction

The purpose of this working paper is to study the implications of market
power in a hydropower based electricity market within the framework of the
Supply Function Equilibria (SFE) model. In addition to the usual problems
related to models of this type we face the problem of modelling hydro-power
production. Not taking this aspect into account would be wrong in a market
dominated by this kind of production.

The idea of competition in supply functions origins from the debate
on whether firms choose prices or quantities as strategic variables. The
idea first outlined by Grossman (1981) was that firms may not be able
to set a price or a given quantity for every possible state of the market
in advance of trade taking place. Instead, firms may resort to specifying
supply functions relating quantity to price. Grossman (1981) studied supply
function equilibria in abscence of uncertainty. According to Klemperer and
Meyer (1989), this approach led to a vast number of possible Nash equilibria
in supply functions. In addition, without uncertainty, there is no reason to
choose a more general supply function because firms can maximize profits
either by fixing price or quantity.

Klemperer and Meyer (1989) introduced exogenous uncertainty into the
supply function framework. They prove that under these conditions it is
more profitable for firms to rely on supply functions rather than fixing price
or quantity. With uncertainty, a supply function provides valuable flexibility
to the firm. Furthermore, they also show that with uncertainty in demand,
the number of possible Nash equilibria is dramatically reduced.

The supply function equilibria (SFE) concept developed by Klemperer
and Meyer seems to fit quite closely to competition in several market where
firms must commit to bids in advance, including electricity spot markets.
Thus, not surprisingly, several papers' used this approach in order to analyze
electricity market competition. These papers typically focus on competition
in a thermal based electricity market. In such a market the focus is on
production constraints at a particular time, not on constraints on energy
produced over a time period.

This working paper is divided in three parts. In the first part we set
up the Supply Function Equilibria (SFE) model based on the analysis by
Baldick and Hogan (2001) and Green and Newbery (1992). On the basis
of this model we develop a simple numerical example. In the second part

! This includes Green and Newbery (1992), Green (1996), Newbery (1998), Baldick et
al (2000) and Baldick and Hogan (2001).



of the paper we use this example to illustrate how competition in supply
functions may be affected both by constraints in effect capacity (referred to
as constraints on power produced) and constraints related to energy capacity.

2 The SFE model

In order to describe the SFE model we use a standard development closely
related to the presentation made by Baldick and Hogan (2001). First we
discuss demand, generation costs and capacities. In our discussion on gen-
eration costs and capacities we will also address the problem of defining
costs in the presents of hydropower production. Then we discuss price, the
assumptions on the form of the supply functions, profit and equilibrium
conditions.

2.1 Demand

Baldick and Hogan (2001) use the following definition of the demand func-
tion Q:

Vp € R—H vt e [O: 1]7 Q(p7 t) = a’(t) - bp' (1)
Where,

e p is the price,
e t is the (normalized) time,
e a:[0,1] — R, is the load-duration characteristic and

e b e R, is the slope of the demand curve.

This definition implies that demand is additively separable in its two
variables price and time. Furthermore, the time variable is normalized to be
between 0 and 1. The time variable describes the share of clearing periods
or hours below the peak demand period. The load-duration characteristic
is assumed to be non-increasing so that ¢ = 0 correspond to peak demand
while ¢t = 1 correspond to minimum demand. The load-duration curve gives
the time (number of hours) that demand exceeds a given level, so at t = 0
we would only have the highest demand period left.

This approach resemble the approach made by Klemperer and Meyer
(1989) where they let demand at a particular time be subject to an exoge-
nous shock. Here, instead of a shock to demand at a particular time we look



at the variations in demand facing a supplier of electricity in the spot mar-
ket. Producers are assumed to know the shape of the load duration curve.
However, they face uncertainty with regard to the actual level of demand
realized at a particular time.

2.2 Generation costs and capacities

A standard assumption is to let the total variable cost function be repre-
sented by a quadratic function of the form:

) 1
Vi, Ci(gi) = §ciq1;2 + viq;. (2)

The firms are labeled i = 1..n, with n > 2. ¢; represents power produced
by firm ¢ and ¢; and v; are positive constants. ¢; > 0 satisfy Klemperer and
Meyer’s condition that costs be non-decreasing. If we differentiate the cost
function we get the firms marginal cost?.

Vi, Ci(@:) = cigi + vi- (3)

Furthermore, we assume that all the firms are able to produce down to

0 output. Thus, the minimum capacity constraint is 0 for all firms. Baldick

and Hogan (2001) note that firms may also face a maximum production
capacity constraint, g;. The capacity constraint then becomes

Vi, 0 < g < @ (4)

With hydropower production there is an additional constraint related to
the amount of energy produced over time and the capacity constraint related
to production of electricity at one point in time may not be as relevant as
it is to thermal production. In the following we shall refer to the first type
of constraint as the power constraint, while the second type of constraint is
referred to as the energy constraint. We let k¥ = 1..n represent the number
of load duration periods associated with the producer’s planning horizon.
Furthermore, we let W, be the amount of energy available for hydropower
firm 4 over all k load duration periods. This implies that the following
constraint must hold.

1
> / Gikedt < W, (5)
& t=0

*The trick used by Klemperer and Meyer here was to let C{(0) = 0, so if C! 0)=v;>0
then the supply functions would be expressed in terms of p = p + v;. The marginal cost
curve for symmetric producers where normalized to start at 0.




Using this constraint we implicitly assume there is a fixed amount of energy
(water) available for production over all load duration periods.

2.3 Feasible and allowable supply functions

Following Green and Newbery (1992) and Baldick and Hogan (2001) we
assume that each firm bid a supply function into the market. The supply
function represents the amount of power the firm is willing to produce at a
specified price per unit electricity.

Formally, a supply function S; is a function that maps the level of prices
into levels of output. In Klemperer and Meyer (1989) the functions are
required to be defined for every price in the interval [0,00]. This implies
that all firms will produce at prices in this interval. Furthermore, in order
for a supply function to be feasible they only require that the function
is contained in the quantity interval [—oco,+00]. The lower boundary on
quantities implying negative production has no meaning in real markets.
Nor has it any implications for the result, so following Newbery (1998) we
let this interval range from 0 to +oo. The supply function in this case
would be S; : [0,00] — [0, 00]. Also, we shall require that the bid curves are
monotonically increasing or as Baldick and Hogan (2001) puts it, that the
supply functions must be non-decreasing.

If there are capacity constraints related to power production at a par-
ticular time, only supply functions mapping prices into the interval [0, ;]
would be feasible. Furthermore, following Baldick and Hogan (2001) (if the
marginal costs are not normalized to 0) no firm would be willing to submit
any bids at prices below operating costs corresponding to 0 output. A good
candidate for the price minimum would be p = v;. In addition, with linear
demand we would have a price P corresponding to D(p,t) =0att=0. With
our definition of demand this price is 5 = N(0)/b, called the ”choke price”.
The supply function does not have to be defined for higher prices. Baldick
and Hogan (2001) also discuss price caps and bid caps. This problem will
be omitted here.

p = v; may be a good candidate for the minimum price in a thermal
system, but will a Hydro-producer be satisfied with this price? If the energy
constraint is not effective then the producer might want to produce at this
price, but if the energy constraint is binding then receiving v; would not make
the firm produce. The reason is that production has a positive alternative
value in production at other times. This might be seen as lost income or
cost at the time in question. If the number of load duration periods are
large, then production within one particular load duration period have a



small effect on this alternative value. We assume we can neglect this effect
and let A denote the alternative value which is exogenous when looking at
a particular load duration period. The relevant minimum price to a hydro-
producer would have to cover operating cost corresponding to 0 output and
the opportunity cost of producing in other periods, p = v; + ;.

Following these requirements, a feasible and allowable supply function
for firm ¢ is a function S; : [p,?] — [0, ).

2.4 Price, profit and equilibrium conditions

We need a market clearing condition. We assume that at each time ¢ € [0, 1],
the dispatcher chooses the lowest price p(t) that clears the market. That is
the price determined by

a(t)~tp =3 Si), ©

provided that such a price exist. This is a uniform price auction where all
firms receive the marginal clearing price for their supply. We assume that
the solution to our market clearing condition corresponds to prices within
the range [p,p] and do not consider prices outside this range.

The prc?ﬁt at time ¢ for firm i is

mie = Si(p(8))p(t) — Ci(Si(p(t)). (7)

The profit over the whole load duration period is

1
7i(Si, S_5) = / Si(p(1)p(t) — Ci(Si(p(t)) dt, (8)

where S_; = Sj4.

Green and Newbery (1992) maximizes the contributed profit per unit
time as defined in (7) and use the assumption® made by Klemperer and
Meyer (1989) to justify that the resulting first order condition (13) would
also maximize profit over the whole time horizon. To see how this is possible
we follow the argumentation laid out by Baldick and Hogan (2001).

The first point is to note that for each firm ¢ we consider that all the
other j firms have commited to differentiable supply functions, S;. This
ensures a solution. Now, if we say that firm i is committed to supply the
residual demand at any given price then we have that

#The assumption is that firm 4’s residual demand at any price is the difference between
demand and the quantity that other producers are willing to supply at that price.



vt € [0,1), g1 = Qp(t),t) = > Si(p! (9)
J#i

We can now rearrange equation (7) as follows:

mie = p(O[Qp(), 1) = Y S;(p1)] - Ci(QP(®),8) = Y S;(p(t))).  (10)
J#i J#i

Since the supply functions S; are assumed to be differentiable, we can
derive the necessary conditions for maximizing the profit per unit time
at each time ¢ over choices of p(t).

Omy 29,2 o)
Fp() = Q00 =D Sie®)] + [p(t) - ClI=5 155 2% )

J# J#i

(11)
Since we know that firm ¢ will produce the difference between supply by
other firms and total demand, we can find the price output pair optimizing
firm 4’s production at time ¢ by solving the first order condition with respect
to git. Now, we assume that the relationship between price and quantity is
monotonically non-decreasing over the time period. That is, a higher price
means higher quantity and this quantity is unique. Then we can define a

non-decreasing supply function for firm ¢ that is infinitely differentiable.

Si(p(t)) = qus. (12)
This function? also maximizes the integrated profit over the time horizon
and can be calculated without reference to the load-duration characteristic.

Si(p) = p — CillQy = Y Sj(p)), (13)
Ji
0Q(p(t) t 855 (p(t))
where Qp = —-Jaz;ﬂ—)Ll and S}(p) = Bpft) .
In the next subsection we develop a simple numerical example to be used
as a benchmark throughout our analysis.

“The solution to this first order differential equation is shown in Appendix A.



2.5 Numerical example: Two firms with marginal cost nor-
malized to 0

Let us consider the solution to the SFE model in a situation with two sym-
metric firms, linear demand and constant marginal cost normalized to 0.
This gives us the following coefficient and term related to the differential
equation derived in Appendix A, equation (26):

1
= — - frd —b
u(p) PO
The supply function is
q(p) = e_f(*%) o [A—I— f—bef(ffl“) dpdp] ) (14)

Rearranging (14) by [ 1dz =Inz +c and [ —f(z)de = — [ f(z)dz we
get:
q(p) — e1np+c [A _ bfe_lnp+cdp] .

Furthermore, by e~ 2% = %, %dx = Inz+c and including the constants
c in the term A the supply function becomes

q(p) = pA —pblnp. (15)

According to Klemperer and Meyer (1989) any SFE where the firms do
not know the uncertainty is intermediate between Cournot and Bertrand
equilibrium levels. Thus, we know that the intersection between the supply
curve and the demand curve would have to lie below the Cournot level and
above the Bertrand level. However, in order to define the SFE we need a
boundary solution. Here, we follow Green and Newbery (1992) and use the
Cournot equilibrium as the boundary solution in order to define the SFE.
The resulting supply schedule is called the Cournot supply schedule.

With linear demand, @ = a(t) — bp, we then write the first order Nash-
Cournot solution for two symmetric players i = 1,2 where the marginal cost
have been normalized to 0. For maximum demand this solution will form
an upper boundary on the supply function.

a a
%=3 and p = 3 (16)

We use this result to calculate the value of A by inserting the solution
into the supply function (16).



a a

(3) = (55)A4— (5;)bIn(55),

rearranging,
furthermore, by In($) = — ln(g),

and replacing A in the supply function (16) we get

alp) = pbl1 = n(2)] — phny.

(17)

(18)

We let a = 56 at peak demand when ¢t =0, b = 0.3 and Q = 2q, where
q1 = q2°. We can now calculate the (Nash-Cournot) upper boundary for
the symmetric duopoly, (Q,p) = (37,62). We observe that the aggregated
supply function should pass through the origo (p = 0) and that %1% =0
at the boundary solution. The solution is shown in figure 1 along with
the downwards sloping linear demand curve corresponding to the hour with

highest demand (¢ = 0).

®The numerical values chosen here compares to the values used in an example in New-

bery (1998).
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Figure 1: The figure shows the aggregated supply curve resulting from an
SFE equilibrium with two symmetric firms, zero marginal cost and assuming
a Cournot solution at the period of highest demand.



3 Constraints on power and energy produced

In this section we look at how constraints on power and energy produced,
limit the number of possible SFE. The first issue is described in Newbery
(1998) and in Baldick and Hogan (2001). The second issue mentioned above,
is more relevant to a hydropower based electricity system. First, we briefly
restate the model used by Newbery (1998). In subsection 3.2 we discuss
constraints on energy produced.

3.1 Power constraints

We look at the symmetric duopoly case. Now, however we introduce the
power constraint from equation (4) above. Neither firm can supply more
than a specific capacity ¢ = 1.

With linear demand @ = a(t) — bp and constant marginal cost ¢, the
maximization problem becomes:

mi = (p—C(@:))a + 1T — @)-

We then find the Nash-Cournot solution for two symmetric players as-
suming positive output values. For maximum demand this solution will form
an upper boundary on the supply function.

a—b(c+ a+ 2b(c+
C+0) _ o g XD )

If we assume a positive shadow value on the constraint, then we have
that g1 = g2 = g and the price p = (a —27)/b. We use this result to calculate
the value of A.

__,a—2g a—2q a—2q
q _( b - C)A ( b - c)bln( b C),

rearranging,

7
A=
g e T

a—2q—bc
=2 (19)

By replacing A from (20) in the supply function (16) we get that

q a—2q—bc

a(p) = (0 = g + ()] = (o= )blap ~ ). (20)

If we let a = 56, b = 0.3, ¢ = 19 and § = 20, we can calculate the upper
boundary (Q,p) = (40, 53.3) corresponding to the intersection between the

10
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Figure 2: Here we compare the Cournot supply schedule to the supply sched-
ule where producers are facing a binding production constraint. Any supply
schedule below the supply schedule at § = 20 would violate the production
constraint and are thus not feasible.

capacity limit and the demand curve. The solution is shown in figure 2 along
with the downwards sloping linear demand curves for the lower and upper
support and together with the supply function where the upper boundary
is set to the Nash-Cournot solution.

The example shown in figure 2 is similar to the one shown in figure 4 in
Newbery (1998). Newbery finds that the effect of a capacity constraint on
power is to reduce the number of feasible supply function equilibria. The
allowable supply functions have to lie between the Cournot supply schedule
and the supply scheduele which intersect the capacity constraint on power
in the hour of highest demand. Thus, more competitive bidding strategies
are ruled out.

11



3.2 Constraints on energy produced

In this subsection we shall look at the competition between two symmetric
hydropower producers.

The problem for each of the two hydro-producing firms is almost identical
to the symmetric two-firm problem described in subsection 2.1. The only
difference is that marginal cost now is represented by the firms water value,
A. For now we shall assume this value to be fixed.

g(p)=@—-ANA-(p—Nbln(p— ). (21)

Let us use the same numerical values as in the example of the previous
section, namely a(t;t = 0) = ap = 56, b = 0.3 and A\ = 19 and calculate
the (Nash-Cournot) upper boundary, (Q, p)=(33.53,74.8). The aggregated
supply function for the hydro-producing firms would be identical to the one
described in figure 2.

Using a simple example we can measure exactly how much energy is
produced. We simplify to three periods where ag = 56, ags = 46 and
a1 = 36 and each of the three periods have a duration of one hour. If the
producers submit Cournot supply schedules we have already seen that the
total production of energy in period 0 is 33.5 GWh. In the next period
we find the price simply by setting the aggregated supply function equal to
demand in this period:

aozf)b)\)] = (p—Abln(p—A) =a1 —bp (22)

This gives us the values of price and total energy in period t = 0.5, (Q, p)
= (30.31, 52.3). For the last period with the lowest demand, the quantity
price pair would be (Q,p)=(24.3,39). In total, the amount of energy pro-
duced during the load duration period under this strategy is approximately
88 GWh. Now, we let each of the producers have k times 44 GWh avail-
able for production during all k load duration periods. Furthermore, we
assume all load duration periods to be identical. Then if they choose to
submit Cournot supply schedules, we see that the existing energy capacity
and corresponding water value do not constrain their bids.

However, more competitive supply schedules would violate the energy
capacity constraint. Assuming a fixed alternative value of water (A = 19)
and that the energy constraint is just binding in the case of two symmetric
hydro power producers submitting Cournot supply schedules, then any pair
of symmetric supply schedules below the Cournot schedules (more compet-
itive) would violate the energy constraint and would thus not be feasible.

(b — Nb[1 - In(

12



More competitive supply schedules would imply that the realized price
corresponding to realized demand would lie below the price resulting from
Cournot supply schedules. Since demand is downwards sloping this implies
that quantity is higher for all realizations of demand. Thus, with more power
produced throughout the load duration period, more energy is produced as
well and the energy constraint is violated.

3.3 Introducing a competitive supply schedule

With a a fixed alternative value of water, we saw in the previous subsection
that any supply schedule based on a more competitive solution than the
Cournot equilibrium at the period of highest demand would violate the
energy constraint. This does not mean that a more competitive strategy is
ruled out, just that the producer’s water is to low. With reference to the
numerical example in the previous subsection, if a more competitive strategy
is followed, then there would not be enough water for production in all k
load duration periods. The combination of lower prices and higher supply
compared to the Cournot supply schedule would leave water for production
in only some of the k periods in question. Thus, when firms bid more
competitive supply schedules, they would take this into account and place
a higher alternative value on the use of water resources.

We use the same numerical example as in the previous subsection and
compare the Cournot supply schedule to the most competitive schedule pos-
sible where price equals marginal cost. This is shown in figure 3.

As can be seen from figure 3, the water value or marginal cost in the
case of a competitive supply schedule would have to be as high as 55.5 if the
energy constraint is not to be violated. This implies that prices are higher
and supply is lower at periods of low demand while prices are lower and
supply is higher at periods of high demand compared to the Cournot supply
schedule.

Recognising that all possible SFE are intermediate between the Cournot
supply schedule and a supply schedule corresponding to Bertrand competi-
tion at the boundary solution, we see that an energy constraint will reduce
the number of possible SFE.

4 Concluding remarks

The idea that firms compete in supply functions and the SFE model devel-
oped by Klemperer and Meyer (1989) fits quite closely to how firms compete
in electricity markets. Firms face uncertainty with regard to demand at the

13
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Figure 3: Here we compare the Cournot supply schedule to a competitive
schedule. In both cases the total amount of energy produced is 88 GWh
throughout the load duration period.
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time of trade, but are nevertheless required to deliver binding supply sched-
ules before trading actually takes place.

Thus, in spite of the technical difficulties associated with the SFE frame-
work, several authors have tried to use this model as a basis for analyzing
strategic behavior in electricity markets. In several papers R. J. Green and
D. M. Newbery have used the SFE model in order to analyze electricity
market competition in England and Wales. The success of their application
of the SFE model relates to a large extent to the market structure of the
England and Wales electricity market. Following deregulation, this market
consisted for a significant period of time of only two rather symmetric firms.
In this setting the SFE model is relatively easy to apply.

One central problem associated with the SFE model is that the model
only predicts a range possible equilibria depending on the boundary solution.
Following the argumentation of Klemperer and Meyer (1989) and Green and
Newbery (1992) we define an upper boundary where Cournot quantities
and prices are realized at the period of highest demand. The lower bound
corresponds to Bertrand price and quantities at the same period. This leaves
a rather wide range of possible SFE equilibria.

However, as shown by Newbery (1998) the number of possible SFE equi-
libria is reduced when we take into account that firms face production con-
straints. In addition it was shown that the existence of forward contracts
could also contribute to a reduction in the number of possible SFE equi-
libria. Constraints on energy produced however has not been considered as
this is a special feature of hydropower production.

In this working paper we have, by the use of a simple numerical ex-
ample, illustrated that constraints on energy produced may contribute to a
further reduction in the number of possible SFE equilibria. In particular, we
looked at a case where the energy constraint was just binding when the SFE
equilibrium was characterized by Cournot quantities and price at the upper
boundary. Furthermore, we illustrated that a more competitive schedule
would imply higher water values with more energy produced during periods
of high demand and less during periods of low demand.

15



A Solving the differential equation

Here we look at how to solve the first order conditions for a SFE when
having two and n symmetric firms in the market. We start with the case of
two symmetric firms. Firm 4’s (the same for firm j) profit is

mi(p) = plQ(p,t) — ¢;(p)] — C{Q(p, ) — ¢;(p)},

where i # j and we assume that there are constant marginal costs in pro-
duction (¢). The residual demand facing producer i is

g = Q(p,t) — g;(p).

The first order condition is

on; Jq;
— =¢ - {[0Q/op — ).
% g+ [p— cJ[6Q/9p 8p]
Knowing that ¢; = g; we only need to solve one equation,
dg ¢
— — ’ =0.
dp p—c +Qp

This is a differential equation. The equation may be written in the following
form:

ﬂ%}) —u(p)g = w(p).

where u(p) is the coefficient and w(p) is the term of the differential
equation. The equation may be described as a first order linear differential
equation with variable coefficient,

1
u(p) = P
and constant term where we assume that Qp: = 0,
dq
w(p) = d_p

In order to solve this equation we need first to find out if the equation
is exact, we form a new equation

dg + dp(ug — w) = 0.

16



If we let M = df /dg and N = df /dp we can see that the equation is not
exact. That is

oM , ON
o " dg
Thus, we need to multiply the equation with a factor that makes the
equation exact. The factor is

ef udp,
resulting in
el wdpgq 4 ef”dp(uq —w)dp = 0. (23)
Now the equation is exact
oM = uel v, ON _ uel P,
Op 0q

In order to solve the equation (24) we integrate the first part and add
on a second element representing the other part.

F(q,p) = [ el “¥dg + y(p).

(by [ kdx = k(z + d) where we omit the constant of integration d). We can
rewrite this as

F(q,p) = gel “¥ + y(p). (24)

In order to find the value of the second term, we differentiate the function
above (25) with respect to the variable p

oF
— Judp /
oy = vae’ T ¥'(p)

Since we know the value of N = e/ %% (ugq — w) and that this equals the
partial differentiate of F' with respect to p, we can write the equation as
follows:

el “®(ug — w) = uge/ “ ¥ 1/ (p).
and we can find ¢’ (p)

V(p) = —wel v,

17



Now the solution to F'(¢,p) = d becomes

ugel v — fwef“dpdp = A.

And if we solve for ¢ we get (here d = A)

q(p) = e~ Judp [A + fwef“dpdp] . (25)

This is the general solution to a first order differential equation of the first
degree.

Next, we look at how to reach the general solution in the case of n
symmetric firms. Each of the n firms face the same problem

w@ﬁwmmw—;mm—cwmw—;%@h

where i # j and as before we assume that there are constant marginal costs
in production (c). The residual demand facing producer ¢ is:

% =Q(p,t) — > 4i(p)

Knowing that the firms are symmetric we have that 5, % — (n—1)%,
g j Op Op

The first order condition then becomes

87‘@ GQ'
I _ g+ [p— d[0q/3p — (n — 1) 2%,
5 =+ = dlloa/op — (n— 1) 3]
Rearranging for the symmetric case, we have that
9¢ 1 q
5= )+ Q).

We see that this is a differential equation similar to the one discussed
above for the symmetric two-firm case

9%?—u@m=w@»

where the coefficient u(p) and the term w(p) in this case is

1 1

u(p) = T 9m=1) and w(p) = Dp—r.

18
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