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Abstract 

 

 This paper has two main objectives. The first is to develop a dynamic model of commercial 

fisheries different from most existing models that assume optimizing behavior. The industry is 

assumed to have a well-defined index of performance based upon which the decision to invest or 

not is made. We do not, however, assume that the industry or firm is efficient or optimal in its 

operations. The second is that a new approach of fitting model dynamics to time series data is 

employed to simultaneously estimate the poorly known initial conditions and parameters of 

nonlinear fisheries dynamics. The approach is a data assimilation technique known as the 

variational adjoint method. Estimation of the poorly known initial conditions is one of the attractive 

features of the variational adjoint method.  

Keywords: Data assimilation, index of performance, nonlinear dynamics, open access, variational 

adjoint method 

JEL classification: Q22, C51 
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Introduction 

 

The most common approaches of modeling the dynamics of a natural resource system are the 

routine application of the sophisticated techniques of the calculus of variations or optimal control 

theory and dynamic programming (Kamien and Schwartz 1984; Clark 1990). The economic theory 

of an optimally managed fishery has been advanced by several researchers. For example, Clark 

(1990) discussed various models in some detail. Sandal and Steinshamn (1997a,b,c) made some of 

the most recent contributions in this area. This framework explicitly assumes that agents are 

optimal and efficient. However, most real-world fisheries have historically not been optimally 

managed. 

Commercial models of fisheries have previously been discussed by Crutchfield and Zellner 

(1962) and Smith (1969). The latter provided a model of theoretical nature, which transforms 

specific patterns of assumptions about cost conditions, demand externalities, and biomass growth 

technology into a pattern of exploitation of the stock. Smith also discussed the three main features 

of commercial fishing and mentioned the various types of external effects representing external 

diseconomies to the industry. In two earlier papers, Gordon (1954) and Scott (1955) noted that all 

of these externalities arise fundamentally because of the unappropriated “common property” 

character of most ocean fisheries (Smith 1969).  

In this paper, we develop a commercial fishing model that does not necessarily assume 

optimal behavior of fishers. The goal is to develop a model that is quite general and has potentially 

broader applications.  

This paper also focuses on a very important aspect of fisheries management that has largely 

been ignored. Deacon et al. (1998) noted that much of the information managers need is empirical, 
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i.e., measurements of vital relationships and judgments about various impacts. This area of the 

economics of fishing has not been adequately explored by economists, probably due to lack of data 

and computational power in the past.  Much of the research effort was used in search of qualitative 

answers to management problems. This paper employs an efficient method of advanced data 

assimilation known as the variational adjoint technique to analyze real fisheries data (Smedstad and 

O'Brien 1991). In data assimilation, mathematical or numerical models are merged with 

observational data in order to improve the model or its predictions. The former application is 

known as model fitting. Using the variational adjoint technique, appropriate initial conditions and 

parameters of the nonlinear fisheries dynamics are estimated. Nonlinear fisheries dynamics are 

highly sensitive to the initial conditions and the parameters, which are often exogenously given 

inputs to the system. These inputs are very crucial in simulation studies. Researchers who conduct 

simulation analysis often rely on previous estimates for most of their input parameters. This work 

will provide some of these estimates for the North East Arctic cod, which may enhance future 

simulation results.   

Data assimilation problems are often ill-posed; i.e., they are characterized by nonuniqueness 

and instability of the identified parameters (Yeh 1986). Thus, it may be worthwhile to search for 

best initial and/or boundary conditions when using these models in analysis. The reader may have 

noticed that this approach has major advantages compared to conventional methods. It allows us to 

estimate initial conditions of the model dynamics as additional control variables on equal footing as 

the model parameters. Thus, treating the initial biomass level and the initial harvest rate as 

uncertain inputs in the system. Most recent models and traditional approaches consider the initial 

biomass and harvest amounts as known and deterministic. It also provides a more efficient way of 

calculating the gradients of the cost or loss function with respect to the control variables compared 
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with the finite difference approach. To enhance the results of the data assimilation, we provide 

bootstrap estimates of the standard errors (Efron and Tibshirani 1993). The bootstrap is a computer-

based method for estimating standard errors. 

The structure of the remainder of the paper is as follows. The next section is a detailed 

discussion of the dynamics of the commercial fishing model. It presents a more general model 

without assuming any optimizing behavior. In the following section, we briefly discuss data 

assimilation and some basic concepts of the techniques are defined. All technical details appear in 

the Appendix. The final section is an application to the North East Arctic cod stock (NEACS). It 

discusses the results and summarizes the work: 

 

Dynamics of Commercial Fishing 

 

The dynamics of the fishing industry are developed and discussed in detail in this section. The 

population dynamics are described by: 

 

yxf
dt

dx −= )(         (1) 

 

where x  is the biomass and y  is the harvest in weight1. The growth of the stock is represented by 

(.)f . Several forms of the growth model exist. For some species, the empirical law of growth is 

asymmetric. In this paper, however, we will use the logistic growth law. The Schaefer logistic 

function takes the form )/1( Kxrxf −= , where r  is the intrinsic growth rate and K  is the carrying 

capacity of the biological species if the population is not exploited. It is symmetric about K/2 and 

has the following properties, 0)()0( == Kff , fkf max)2/( = (Schaefer 1967).        
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To model the fishing industry, we define the following relationship between the rate of 

increase or decrease of the exploitation of the fish biomass, y, and a function, ),( yxΦ , such that:  

 

),( yxy
dt

dy Φ=γ         (2) 

 

whereγ  is an adjustment parameter, and Φ  is a certain well-defined value function to be discussed 

shortly. The constant of proportionality reflects the rate at which capital is being put in or removed 

from the industry or firm. The adjustment parameter has been discussed in detail in Smith (1969). 

For instance, if Φ  is positive one may expect an increase in capital investment in the fishery and a 

decrease otherwise. The function defined by Φ  can take different parametric forms reflecting our 

hypotheses about the operation of the industry. It may represent short- or long-run average costs of 

fishing vessels, the marginal or average net revenues of a firm, etc.       

 Let p be the unit price of fish and c  be a proportionality constant (see Clark 1990). 

Assume that costs of fishing are linear in the harvest and inversely related to the stock. Then, the 

average net revenue is given by:  

      

xcpyx /),( −=Φ . (3) 

     

The average cost of harvesting is assumed to depend explicitly on the size of the stock. This takes 

into account the stock externalities; i.e., fishing costs decrease as the fish population increases. 

Note that the total costs are given by the function
x

yc
, which is nonlinear in stock and linear in 
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harvest and reflects the fact the cod is a dermersal species. Given a set of observations on the costs 

of harvest, it is possible to estimate c  for this specification. An implicit assumption made in this 

model is that the fishery is one of many sources in the market that characterizes an open-access 

regime consistent with the period of interest (1946 through 1977). In other words, the market is 

competitive. Otherwise, price should depend on yield; that is, )(ypp = where (.)p is the inverse 

demand function.   

From the previous definitions ofΦ  and the industry model, equation (2), it is obvious that 

the rate of harvesting from the stock for the industry is perceived to vary in proportion to the net 

revenue; that is the difference between total revenues and total costs. Put another way, the output 

growth rate yy /� of the industry is proportional to the average or marginal net revenues. Thus, it 

may be perceived that once the stock is increasing, profit margins will also increase, inducing firms 

to increase production. Substituting equation (3) in equation (2) and combining with the population 

dynamics model, equation (3), the industry dynamics model is derived. This system of equations: 

(1)-(2) constitutes a coupled nonlinear Ordinary differential equations (ODEs)  

 

yxcp
dt

dy

yKyxf
dt

dx

)/(

),,(

−=

−=

γ
      (4) 

The term yxcp )/( −  is the annual total profit (total revenues minus total costs). Owing to the 

linearity of the net revenue in the harvest, the average net revenue is equal to the marginal net 

revenue.  

  Incorporated in the model are the hypotheses about the costs and revenues. If the firms are 

optimizers, they should at least operate at a level where average or marginal profits are positive. In 
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the construction of such a behavioral model, an implicit assumption about the harvest rate being 

proportional to the number of firms or fishing vessels is made (Smith 1969).  

The system of equations contains these input parameters ),,,,( cpKr γ . By redefining the 

parameters, i.e. pγθ =  and cγτ = , we now have these parameters ),,,( τθKr to estimate. Note that 

a more parsimonious model is achieved, thus reducing the chances of overfitting the model. Also, 

no data on costs and prices are necessary in order to fit the model. 

Notice that Gordon (1954) assumed that harvest depends on stock and efforts, while Smith 

(1969) assumed that harvest is a function of the number of identical firms and the stock. Here no 

such disaggregation has been made. The reason being, data on catch are more readily available than 

that on number of firms and may be more suitable in this analysis. In following section, we shall 

focus on the main goal of this paper, which is the introduction and application of data assimilation 

in bioeconomics. The technique will be presented and an application to a real-world fishery 

example will also be demonstrated. 

 

Data Assimilation Methods 

 

Data assimilation methods have been used extensively in meteorology and oceanography to 

estimate the variables of model dynamics and/or the initial and boundary conditions. These 

methods include the sequential techniques of Kalman filtering (Kalman 1960) and the variational 

approach (Bennett 1992). The variational adjoint method has been proposed as a tool for estimation 

of model parameters. It has since proven to be a powerful tool for fitting dynamic models to data 

(Smedstad and O'Brien 1991). The methods have recently been used to estimate parameters of the 

predator-prey equation (Lawson et al. 1995) and also some high dimensional ecosystem models 
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(Spitz et al. 1998; Matear 1995).  The basic idea is that, given a set of observations, a solution of 

the model that is as close as possible to the data is sought by adjusting the model parameters, such 

as the initial conditions. The variational method is an automation of the brute force approach, 

where the model is manually tuned to fit the data. This becomes tedious very quickly even with a 

single parameter.   

The variational adjoint method has three parts the forward model, the backward model 

derived via the Lagrange multipliers, and an optimization procedure2. These components and all of 

the mathematical derivations are discussed in the Appendix. An outline of the technique is also 

presented for those who may be interested in learning the advanced and efficient method of data 

analysis. 

 

An Application to the North East Arctic Cod Stock (NEACS) 

  

The commercial fishing model developed in this paper is applied to the NEACS. The fishery has a 

long history of supporting a large portion of the Norwegian and Russian coastal populations.  Data 

on catches and estimated stock biomass have been collected since immediately after World War II 

and are published by the International Council for the Exploration of the Sea (ICES) (Anon; 1998).  

Different techniques for stock assessments exist in fisheries management. The stock size for the 

NEACS is measured using the statistical Virtual Population Analysis (VPA) method (Anon. 1998). 

As a result, the catch data and biomass estimates obtained by the VPA runs may be somewhat 

correlated. This issue will not be dealt with in this paper. From this point forward, actual or real 

data will refer to the measurements from the ICES 1998 report (See, Anon. (1998)) for details of 

the data. The data used in this work are aggregates of total catch and total estimated biomass). 
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Time Trends- Estimated Stock and Actual 
Harvest

0
500

1000
1500
2000
2500
3000
3500
4000
4500

1940 1950 1960 1970 1980

Time (Years)

S
to

ck
 (

K
ilo

to
n

s)

0

200

400

600

800

1000

1200

1400

1600

H
ar

ve
st

 (
K

ilo
to

n
s)

Stock

Harvest

 

 

Figure 1. Graph showing the time trends in estimated stock and actual harvest for the North East 

Arctic Cod Stock. This data are aggregates of stock and harvest and are taken from International 

Council for the Exploration of the Sea (see Anon. 1998). 

 

The history of this fishery is similar to other commercial fisheries around the world. It has 

been managed based on the common policy of maximum sustainable yield (MSY), which is the 

most commonly employed method over the majority of the last century. The historical data show a 

decreasing trend for both the stock biomass and the yield (Figure 1). Note that the vertical scales 

are different in figure 1 for the stock and harvest. It is also observed that the data fluctuate a great 

deal, which depicts the inherent stochastic feature of a fishery resource. The data available on 

NEACS date back to 1946 (Anon. 1998). It is, however, intuitive to divide the period into the pre-

quota (1946-1977) and the quota (1978-1996) periods, which represent different management 

regimes. The first period may be dubbed the open-access period, and the second the regulated 
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open-access (total allowable catch [TAC]) period. We will apply our model to analyze the data for 

the first period. To analyze the second period, additional constraints, such as quota restrictions and 

minimum safe biomass levels, which reflect the regulations imposed by the management authorities 

are required (Homans and Wilen 1997). We shall, however, concern ourselves with the first period.      

In this study, we combine the nonlinear dynamics model developed in the preceding section 

and the time series of observations to analyze the NEACS. The technique provides a novel and 

highly efficient procedure for data analysis. Model initial conditions, as well as parameters of the 

dynamics, are estimated using the variational adjoint method. First, artificial data generated from 

the model itself using known initial conditions and known parameters were used to test the 

performance of the adjoint code.  

All the parameters were recovered to within the accuracy of machine precision. Both clean 

and noisy data were used to first study the model. The results are not shown in this paper.       

To enhance the results of the data assimilation method, we provide standard errors of the estimates 

using the bootstrap technique. The bootstrap is a computer-based method for estimating standard 

errors (Efron and Tibshirani 1993). The algorithm is described below. 

 

Let: 

 ttt exgx += ),(ˆ β  

     

1. Estimate β using the variational method and calculate the residuals tê . 

2. Draw seN
b

t '  from { }Nee .......,,1 with replacement and compute .);(ˆ t
b

t
b

t exgx += β   

3. Estimate bβ  using the bootstrap sample data b
tx .  

4. Repeat steps 2 and 3, B times and calculate the standard errors. 
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where, bx  is the bootstrap sample, bβ is the bootstrap replication, and B is the number of 

replications. For this paper, 3, 000 replicates )000,3( =B were estimated. 

Next, real data were used to estimate the initial conditions and all the parameters of the 

model dynamics. Starting from the best guesses of the parameters, the optimization procedure uses 

the gradient information to find the optimal initial conditions and the model parameters that 

minimize the penalty function. Note that the observed initial values were taken as the best guesses, 

and the weights were all set equal to unity.  

Estimates of initial conditions, the parameters, and the bootstrap standard errors are 

tabulated below (table 1).  The units are r  per year, 00 , yx , and K  in kilotons.     

 

Table 1: Model parameter estimates and the bootstrap standard errors. The weights are all set to 

unity. 

 

Parameters    Estimates (standard error) 

 

r       0.4410 (0.2040) 

K       5150.40 (222.43) 

θ       0.1863 (0.0984) 

τ       738.80 (108.12) 

0x       3687.11 (573.39) 

0y       902.83 (209.78) 
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All the estimated parameters are reasonable and as expected. This is because they all have 

the right signs; i.e., they are positive. The intrinsic growth rate and the carrying capacity are both 

within an acceptable range. Note that the carrying capacity is about 20% above the initial stock 

estimate available to us; i.e., the 1946 estimate (4.2 million tons). Also, statistical tests of 

significance at the 5% level on all parameters indicate that they are different from zero. These 

estimates should provide prior guesses for the important parameters ),( Kr  in the growth model for 

future research. They may be used as inputs by researchers who develop simulation based models 

for the NEACS. Since the focus of this paper is the application of the dynamic parameter 

estimation we will leave that issue to future research.       

 

Summary and Conclusion 

 

This paper has addressed two major questions in bioeconomic analysis and fisheries management. 

It developed a dynamic fisheries model in a way that is rare in the literature and employs a 

powerful approach of efficiently combining the model with available observations collected over a 

given time domain. The variational adjoint method is used to simultaneously estimate the initial 

conditions and input parameters of the commercial fishing model.   

It is observed that the technique used in this paper has an added virtue compared to the 

conventional ones used in the literature. Initial conditions of the model dynamics are estimated on 

equal footing as the model parameters. It is highly versatile in that it enables researchers to include 

as much information as is available.  

The estimates were all reasonable and as expected for the NEACS. Estimates of the intrinsic 

growth and carrying capacity are both within acceptable ranges and statistically significant. 
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However, caution must be exercised when interpreting the results due to the deterministic nature of 

the model and the large measurement errors in the data. It has been demonstrated here that dynamic 

resource models can be combined with real data in order to obtain useful insights about real 

fisheries. Biological parameters, such as the carrying capacity and economic parameters entering 

the objective functions of the industry, are identified. These, again, can be used for dynamic 

optimization in order to improve the economic performance of the fishery. The variational adjoint 

method has proven to be very promising and deserves further research efforts not only in resource 

economics, but economics in general.    
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APPENDIX 

 

Data Assimilation-Background 

 

This section formulates the parameter estimation problem and presents the mathematical aspects of 

the variational adjoint technique. Numerical issues have also been briefly discussed. 

 

The Model and the Data 

 

For the sake of mathematical convenience, we use compact notation  to represent the model 

dynamics as: 

 

),( QXF
dt

dX
=          (A1) 

00
ˆ)0( XXX +=           (A2) 

     QQQ ˆ
0 +=                         (A3) 

ε+= XX̂          (A4) 

where ),( yxX =  is the state vector, 0X  is the best guess initial condition vector, X̂  is the 

measurement vector, 0X  is the vector of initial misfits, Q  is a vector of parameters, and Q̂  is the 

vector of parameter misfits. The dynamics are assumed to exactly satisfy the constraints, while the 

inputs (the initial conditions and the parameters are poorly known).       
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 The Loss or Penalty Function 

 

In variational adjoint parameter estimation, a loss function which measures the difference 

between the data and the model equivalent of the data is minimized by tuning the control variables 

of the dynamical system. The goal is to find the parameters of the model that lead to model 

predictions that are as close as possible to the data. A typical penalty function takes the more 

general form: 

 

∫∫

∫

−−+−−

+−−=

ff

f

T

TT

T

f

Q

T

T

f

dtXXWXXdtXXWXX
T

dtQQWQQTQXJ

0

0

0

0

0

0

0

)ˆ()ˆ(
2

1
))0(())0((

2

1

)()(2
1],[

(A5) 

 

where the period of assimilation is denoted by fT  and T  is the matrix transpose operator. 

The W 's are the weight matrices, which are optimally the inverses of the error covariances 

of the observations. They are assumed to be positive, definite, and symmetric. The first and second 

terms in the penalty function represent our prior knowledge of the parameters and the initial 

conditions, and ensure that the estimated values are not too far away from the first guesses. They 

may also enhance the curvature of the loss function by contributing positive terms to the Hessian of 

J  (Smedstad and O'Brien 1991). The variational adjoint technique determines an optimal solution 

by minimizing the loss function J , which measures the discrepancy between the model predictions 

and the observations. Note that the loss is defined in a more general form. However, for this 

application, we will assume that all the weighting matrices are identity matrices. This formulation 
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is the ordinary least squares and conforms to the assumption that the errors are white noise. Hence, 

our estimates are equivalent to the maximum likelihood estimates.  

The constrained problem can efficiently be solved by transforming it into an unconstrained 

optimization problem (Luenberger 1984). Several algorithms for solving the unconstrained 

nonlinear programming problem are available (Smedstad and O'Brien 1991). Statistical methods, 

such as the simulated annealing (Matear 1995) and the Markov Chain Monte Carlo (MCMC) 

(Harmon and Challenor 1997), have recently been proposed as tools for parameter estimation. The 

most widely used methods are the classical iterative methods, such as, the gradient descent and the 

Newton's methods (see Luenberger 1984).      

 

The Variational Adjoint Method 

 

Construction of the adjoint code is identified as the most difficult aspect of the data 

assimilation technique (Spitz et al. 1998). One approach consists of deriving the continuous adjoint 

equations and then discretizing them (Smedstad and O'Brien 1991). Another approach is to derive 

the adjoint code directly from the model code (Lawson et al. 1995; Spitz et al. 1998). 

To illustrate the mathematical derivation, we use the first approach. Formulating the 

Lagrange function, L , by appending the model dynamics as strong constraints, we have: 

     

∫+=
fT

dt
dX

dF
MJQXL

0
2

1],[        (A6) 
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where M is a vector of Lagrange multipliers, which is computed in determining the best fit. The 

original, constrained problem is thus reformulated as an unconstrained problem. At the 

unconstrained minimum, the first order conditions are: 

 

0=
dX

dL
         (A7) 

0=
dM

dL
         (A8) 

0=
dQ

dL
.         (A9) 

 

It is observed that equation (A7) results in the adjoint or backward model, equation (A8) recovers 

the model equations, while (A9) gives the gradients with respect to the control variables. Using 

calculus of variations or optimal control theory, the adjoint equation is derived by forming the 

Lagrange function via the undetermined multipliers )(tM . The Lagrange function is: 

  

∫ −
∂
∂+=

fT

dtQXF
t

X
MJL

0

)),((       (A10) 

 

perturbing the function L (A11): 

 

∫ +−
∂
+∂+=∂+

fT

dtQXXF
t

XX
MJQXXL

0

)),(
)(

(
2

1
],[ δδ

   (A11) 

which implies: 
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)()(2

)),((],[

2

0

0

XOdtX
X

F

t

X
M

dtQXF
t

X
MXJJQXXL

f

f

T

T

T

T
X

δδδ

δδ

+
∂
∂−

∂
∂−

−
∂
∂+∆+=+

∫

∫
.   (A12) 

 

Taking the difference ]),[],[( QXLQXXL −+ δ : 

  

∫ +
∂
∂−

∂
∂−∆=∂

fT

TT
X XOdtX

X

F

t

X
MXJL

0

2 )()(2 δδδδ     (A13) 

Requiring that L∆ be of order )( 2XO δ  implies: 

∫ =
∂
∂−

∂
∂−∆

fT

TT
X dtX

X

F

t

X
MXJ

0

0)( δδδ      (A14) 

By integrating the second term of the LHS by parts and rearranging, we have: 

 

0)(

)ˆ(

=

−=




∂
∂+

∂
∂

f

T

TM

XXWM
X

F

t

M

       (A15) 

Which is the adjoint equation together with the boundary conditions and from equations (A8) the 

gradient relation is: 

)( 0

0

0

QQWdt
dQ

dF
MJ Q

T

Q −+−=∆ ∫ .          (A16) 

The term on the RHS in equation (A15) is the weighted misfit, which acts as a forcing term for the 

adjoint equation. It is worth noting here that we have implicitly assumed that data is continuously 



18

available throughout the integration interval. Equations (A7) and (A8), above, constitute the Euler-

Lagrange (E-L) system and form a two-point boundary value problem. 

 

The algorithm is outlined below: 

 

• Choose the first guess for the control parameters. 

• Integrate the forward model over the assimilation interval. 

• Calculate the misfits and, hence, the loss function. 

• Integrate the adjoint equation backward in time forced by the data misfits. 

• Calculate the gradient of L with respect to the control variables. 

• Use the gradient in a descent algorithm to find an improved estimate of the control parameters 

which makes the loss function move towards a minimum. 

•  Check if the solution is found based on a certain criterion (for example, δδ ≤∆≤ JJ ,  may be 

appropriate convergence criteria). 

• If the criterion is not met, repeat the procedure until a satisfactory solution is found. 

 

The optimization step is performed using standard optimization procedures. In this paper, a limited 

memory quasi-Newton procedure is used (Gilbert and Lemarechal 1991). 

The success of the optimization depends crucially on the accuracy of the computed 

gradients. Any errors introduced while calculating the gradients can be detrimental and the results 

misleading. To avoid this, it is always advisable to verify the correctness of the gradients 

(Smedstad and O'Brien 1991; Spitz et al. 1998).      
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Notes 

                                                             
1 Gordon (1954) assumed that harvest depends on stock and efforts, while Smith (1969) assumed 

that harvest is a function of the number of identical firms and the stock. Here, no such 

disaggregation has been made. 

 
2 See Lawson et al. (1995) for a straightforward derivation of the adjoint system. 


