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Noncooperative models of permit markets�

Odd Godaly

July 5, 2011

Abstract

The applicability of some popular and basic permit market theories has
been questioned. Drawing on noncooperative equilibrium theory for pure
exchange economies, this article adapts several well-established alternative
models to permit exchange. Some qualitative properties of the associated
equilibria are provided, including two games with equilibria that in a sense
coincide. Nevertheless, as there exist quite a few models potentially applica-
ble to emissions trading, with equilibria that range from autarky to Pareto
optimality, it seems that economics lacks a broadly accepted basic theory for
permit markets.

Keywords: Permit markets, market power, multilateral oligopoly, strate-
gic exchange.

JEL classi�cation: C72, D43, D51, Q58.

1 Introduction

Environmental economics has modeled permit markets for some time. Most studies
either rely on Montgomery�s [22] assumption that all agents are price takers, or
follow Hahn [14] and Westskog [30] in allowing some participants to take dominant
positions, as long as they are accompanied by a competitive fringe.
While criticism of perfect competition is longstanding and well known, the �dom-

inant agent competitive fringe�formulation has more recently been questioned in
the context of permit markets, e.g. Godal [11], Malueg and Yates [18] and Wirl [31].
One problem arises because the fringe must be nonempty, yet there is no established

�Financial support from the NORKLIMA program of the Norwegian Research Council is ap-
preciated.

yInstitute for Research in Economics and Business Administration, Bergen, Norway. Ad-
dress: SNF, Breiviksveien 40, N-5045 Bergen, Norway. E-mail: odd.godal@gmail.com. Tel.:
+47 55959500. Fax: +47 55959439.
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and operational guide as to which agents should belong to it.1 Because that choice
may have substantial implications, the model appears in some sense incomplete.
Before embarking on research programs dedicated to formulating alternative

theories of emissions exchange, it may be recalled that permit markets may be seen
as a special case of standard exchange economies with only two �goods�, permits
and money, and where utility is concave in the �rst good and linear in the second,
i.e. quasilinear.2 Therefore, most theories of pure exchange in principle apply
directly to permit exchange. At �rst sight, this is encouraging, because much e¤ort
has been spent on modeling exchange economies, and there exists a large body of
literature, most of which has had relatively little apparent impact on environmental
and resource economics.
This article selects some models from the general literature on exchange economies

modeled as noncooperative games and adapts them to emissions markets.3 The
models considered are all well established, most originating from the 1970s. Several
of them are still active research programs in the general theory of pure exchange,
and with one exception, all games discussed below have �quantity�as the strategic
variable.
In addition to de�ning the games, some qualitative properties of the associated

equilibria are provided. These properties primarily relate to the comparison of mar-
ginal payo¤s (i.e. marginal abatement costs) in equilibrium with the clearing price.
It is demonstrated that in two games, all agents end up with identical marginal
payo¤s equal to the equilibrium price. In two other games, all agents will have
a marginal payo¤ below or equal to the equilibrium price. In the remaining four
games, marginal payo¤s are below the equilibrium price for strategic sellers, and
above it for strategic buyers. These results may perhaps suggest the models that
could be eliminated via empirical observations� possibly generated in the lab.
We also show that one endowment-withholding game gives the same outcome

as a technology misrepresentation game should technologies be quadratic. Also
presented are some conditions under which autarky becomes the only equilibrium
in a Shapley- and Shubik-type strategic market game. A simple, tractable example,
which has been construed in view of studies of the carbon market as laid down by
the Kyoto Protocol, illustrates the latter results.
Some items not discussed below may be noted right away. No extensions to,

1Misiolek and Elder [20, p. 159] suggest that if �rms, when modeled as price takers end up
with a large market share, then �it is interpreted as evidence that the market may be susceptible
to manipulation�. While this seems intuitive, one wonders where for practical purposes the line
between �large� and �not large� should be drawn. Montero [21, Section 3.1] suggests that �the
fringe must be rather large for the model to work well�. Nevertheless, the de�nition of �large�
remains unspeci�ed.

2More generally, this setting �ts under the �market game with transferrable payo¤�umbrella,
as for example in Osborne and Rubinstein [23, Section 13.4] and references therein. The solution
concept discussed there, however, is the core.

3This application serves as motivation for this paper. Other applications for environmental
and resource economics include the exchange of user rights to water and catch quotas for �sh.
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say, dynamics, uncertainty or interactions with other markets are considered.4 In
contrast, the focus of this study is deliberately and exclusively on a rather simple
and arguably basic setting. Further, queries concerning the existence of equilibria,
uniqueness, and possible convergence to perfect competition are left out, as are such
issues as perspectives inspired by Bertrand-type competition, bargaining theory,
auction theory, cooperative game theory, and out-of-equilibrium theory.
The article is organized as follows. Some preliminaries are detailed in Section

2. Section 3 de�nes eight distinct models of strategic exchange and presents some
properties associated with their outcomes. Section 4 o¤ers some special results on
selected models and Section 5 summarizes and concludes.

2 Preliminaries

There is a �xed and �nite set I of agents. Each i 2 I is already endowed with
ei � 0 units of permits, satisfying

P
i2I ei > 0. When agent i has xi available for

himself, he incurs payo¤�i (xi). We shall not restrict �i to any particular functional
format before Section 4. Until then, we assume that �0i (�) > 0 and �00i (�) < 0 with
�0i (xi) ! 1 as xi ! 0. The latter condition is merely included to avoid repeated
assumptions on interior solutions.
Even though most of the theories discussed do not require agents to be price

takers, all models can accommodate such behavior. Hence, for comparisons with
the �dominant agent competitive fringe�model we shall consider both strategists
and price takers. More precisely, we say that an agent is a price taker if he consis-
tently regards prices as parameters. Such agents, if any, are collected in a set F .
Strategists, on the other hand, fully understand how their own actions a¤ect prices,
and belong to a complementary set S := I n F:
In most models, each agent may act positively in both supply of and demand for

permits. To avoid ambiguity, we therefore declare an agent to be a seller (buyer)
if he ends up holding less (more) than his initial endowment, ei.
We complete this section by introducing a problem for which we shall derive a

comparative static result to be applied frequently. We denote a nonempty subset
of I as I and consider the following problem

max
(xi)i2I

(X
i2I
�i (xi) :

X
i2I
xi = Q

)
: (1)

As is well known, when Q =
P

i2I ei, and I = I; with the shadow (clearing) price
p associated with the resource balance constraint, the solution to this problem
coincides with that of a perfectly competitive permit market, being a vector (xi)i2I
and clearing price p where xi maximizes �i (xi)+p �(ei � xi) for each i 2 I satisfyingP

i2I xi =
P

i2I ei.

4For a discussion of some of these extensions, see Montero [21].
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It is convenient to introduce problem (1) even when modeling imperfect com-
petition. This is because noncooperative models of exchange typically include a
competitive element at a second game stage, on a subset of either agents or decision
variables. Moreover, for all but one of the models, prices emerge as Lagrangian mul-
tipliers. Modi�ed versions of problem (1) will therefore appear throughout, instead
of listing all individuals�maximization problems together with the market clearing
condition.
Concerning problem (1), we note �rst that under the assumed conditions, the

optimal allocation of permits is interior and unique, as is the clearing price. More-
over, it is of particular interest how resulting demand xi of individual i as well as
clearing price p will be a¤ected when supply Q is perturbed. With apologies for
abusing notation, I denote these derivatives as @p

@Q
and @xi

@Q
.

Lemma 2.0 In problem (1) and with the assumed properties on �i (�), we have
that @p

@Q
and @xi

@Q
exist and are characterized by

@p

@Q
=

1P
i2I

1
�00i (xi)

< 0 and
@xi
@Q

=
1

�00i (xi)

@p

@Q
2 (0; 1) for each i 2 I: (2)

These results con�rm the intuition and established results.5 Prices fall with increas-
ing supply and if one extra unit is made available at the market, agent i will take
part of it home.

3 Eight models of permit exchange

3.1 Dominant agents with a competitive fringe

We start with the most commonly applied model for strategic permit exchange,
for which Hahn [14] and Westskog [30] are standard references. Interaction has a
two-stage nature whereby each strategist i 2 S �rst chooses the amount xi he wants
to retain for himself by solving

max
xi
f�i (xi) + p � (ei � xi)g

recognizing that p will depend on his own xi. For ease of exposition, this depen-
dence is tacitly understood and will notationally be suppressed� here and in similar
instances. At the second stage of the game the nonempty fringe F allocates

Q :=
X
i2I
ei �

X
i2S
xi

via perfect competition. Hence, as in (1), the fringe acts as if it solves

max
(xi)i2F

(X
i2F

�i (xi) :
X
i2F

xi = Q

)
5Those readers interested in more general comparative statics results may consult [7].
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with p as the associated price. Thus, overall equilibrium, granted it exists, is char-
acterized by

�0i(xi) = p for all i 2 F;
P

i2F xi = Q; and
�0i(xi) +

@p
@xi
� (ei � xi) = p for all i 2 S

�
(3)

where by the same argument as in Lemma 2.0, it follows that

@p

@xi
=

�1P
i2F

1
�00i (xi)

> 0 (4)

for each i 2 S. (4) says that the more permits a strategic agent keeps for himself,
the fewer become available for the fringe, and the higher is the equilibrium price.
Conditions (3)�(4) demonstrate the following directly.

Proposition 3.1
� A price taker has a marginal payo¤ that equals the equilibrium price.
� A strategic seller (buyer) has a marginal payo¤ that is below (above) the equilib-
rium price.

Whereas these statements seem reasonable and in line with commonplace economic
jargon, the model is silent concerning how agents should be classi�ed as strategists
and price takers. Because the fringe must be nonempty for the game to be well
de�ned, that choice cannot be avoided, and� as alluded to in the Introduction� it
may have important and somewhat discouraging implications, see e.g. Godal [11],
Montero [21] and Wirl [31].

3.2 Endowment destruction

One way of gaming an exchange market is to destroy some endowment before en-
gaging in trade, e.g. Aumann and Peleg [1], Guesnerie and La¤ont [13], Mas-Colell
[19] and Postlewaite [25, D-manipulation]. That is, each agent i 2 I decides to keep
amount qi 2 [0; ei] intact. The chosen qi is brought to the market, and derives from
the �rst-stage problem

max
qi
f�i (xi) + p � (qi � xi)g . (5)

In (5), demand xi and price p, which both depend on
P

i2I qi, are settled by

max
(xi)i2I

(X
i2I
�i (xi) :

X
i2I
xi =

X
i2I
qi

)
,

where, at this second stage, supply
P

i2I qi is taken as given and p is the associated
shadow price. The di¤erence ei � qi for each i 2 I is understood to be destroyed.
Any Nash equilibrium in the overall game is characterized by

�0i(xi) = p for all i 2 I;
P

i2I xi =
P

i2I qi, and
�0i (xi) � @xi@qi

+ p � (1� @xi
@qi
) + @p

@qi
� (qi � xi)� �i + �i = 0 for all i 2 I,

�
(6)
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where �i � 0 is associated with qi � ei and �i � 0 with qi � 0.
In (6), a strategist i 2 S foresees, by Lemma 2.0, that

@p

@qi
=

1P
j2I

1
�00j (xj)

< 0 and
@xi
@qi

=
1

�00i (xi)

@p

@qi
2 (0; 1) ;

whereas a price taker i 2 F , if any, behaves as if these derivatives are nil. Two
properties of this model follow.

Proposition 3.2
� All agents have a �nal marginal payo¤ that equals the equilibrium price.
� All price takers and strategic buyers will always keep endowments intact.

Whereas it is intuitive that someone who ends up being a buyer will never de-
stroy any endowment, we see that for a given total supply the equilibrium will be
e¢ cient. Whether overall e¢ ciency will result in no endowments being destroyed
becomes dependent on parameters. For permit markets such as the one under the
Kyoto agreement, where a substantial body of literature has predicted a competi-
tive permit price close to zero, destruction may well take place in an equilibrium of
this game.

3.3 Endowment withholding (I) with constrained supply

If what is kept away from the market may be used constructively, as opposed to
destroyed, then we may discuss manipulation via withholding. Several versions will
be discussed, beginning with Postlewaite�s [25, W-manipulation]. Here, each i 2 I
decides �rst how much qi 2 [0; ei] to bring to the market by solving

max
qi
f�i (ei � qi + xi) + p � (qi � xi)g . (7)

At the second market stage, demand xi and shadow/clearing price p come about
from problem

max
(xi)i2I

(X
i2I
�i (xi) :

X
i2I
xi =

X
i2I
qi

)
. (8)

so that xi and p will depend on
P

i2I qi.
An overall Nash equilibrium is characterized by

�0i (xi) = p for all i 2 I;
P

i2I xi =
P

i2I qi; and

�0i (ei � qi + xi) �
�
�1 + @xi

@qi

�
+ p � (1� @xi

@qi
) + @p

@qi
� (qi � xi)� �i + �i = 0

)
(9)

for all i 2 I; where �i; �i � 0 are the shadow prices associated with qi � ei and
qi � 0, respectively. Once again, when solving problem (7), a strategist i 2 S
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behaves as though

@p

@qi
=

1P
j2I

1
�00j (xj)

< 0 and
@xi
@qi

=
1

�00i (xi)

@p

@qi
2 (0; 1) (10)

confer Lemma 2.0, whereas a price taker i 2 F treats both these objects as equal
to zero.
The overall game will yield an ine¢ cient outcome, as strategic sellers will with-

hold supply.

Proposition 3.3
� Price takers and strategic buyers supply precisely their endowment to the market-
place and have a marginal payo¤ that equals the equilibrium price.
� A strategic seller supplies strictly less than his endowment, and has a �nal mar-
ginal payo¤ below the equilibrium price.

Hence, and as with the endowment destruction model, a strategic agent who ends
up being a buyer cannot do better than acting as a price taker. That changes in
the next game considered.

3.4 Endowment withholding (I) with free supply

Safra [26] examines the last-mentioned model with one minor, yet important dif-
ference, in admitting qi > ei as a feasible choice. Everything else is as in the
previous model of endowment withholding, and equilibrium is characterized by (9)
with �i = 0 for all i 2 I. This modi�cation opens the way for strategic buyers to
act di¤erently from price takers:

Proposition 3.4
� A price taker brings precisely his endowment to the marketplace and has a �nal
marginal payo¤ that equals the equilibrium price.
� A strategic seller (buyer) supplies less (more) than his endowment to the market-
place, and has a �nal marginal payo¤ that is below (above) the equilibrium price.

The intuition this time is that a strategist who comes forward as a buyer attempts
to �push�prices down as if ��ooding�the market. Of course, in �nal consumption
this upward misrepresentation of endowments must be accounted for, so that his
�nal marginal payo¤ will be higher than the equilibrium price. On the other side
of the market, strategic sellers hold back on supply to induce the opposite e¤ect on
prices.
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3.5 Endowment withholding (II) with constrained demand

The model discussed here appears to originate from Codognato and Gabszewicz
[3] and has been baptized �exchange à la Cournot-Walras�. While further devel-
oped and examined in Bonnisseau and Florig [2], Gabszewicz and Michel [9] and
Lahmandi-Ayed [17] among others, the exposition in this study follows the one
given by Gabszewicz [8, Section 4.4].
Again, the game comes from a situation where each i 2 I �rst decides on how

much qi 2 [0; ei] to bring to the market. As in the previous two models, this decision
solves

max
qi
f�i (ei � qi + xi) + p � (qi � xi)g (11)

where xi is demand in the marketplace. At the second market stage, agents be-
have consistently with possibly having some remaining endowment at home. Their
demand and the clearing price solve

max
(xi)i2I

(X
i2I
�i (ei � qi + xi) :

X
i2I
xi =

X
i2I
qi

)
(12)

where again supply
P

i2I qi is taken as a datum and p is the associated shadow
price.
Note that the assumption �0i (yi) ! 1 as yi ! 0 does not make the constraint

xi � 0 super�uous, because xi is not the only argument of the payo¤ function in
(12). Although constraints on decision variables at the �rst stage of the game are
easily handled, it complicates matters when they may come into e¤ect in the second
stage. This makes the overall game less easily characterized than the previous
ones. Nevertheless, because every agent has an objective function at the second
stage of the game that is identical to that at the �rst stage, it is possible to make
some statements about an overall Nash equilibrium even when characterizing the
necessary conditions at the second stage only. There, it must hold that

�0i(ei � qi + xi)� �i = p; and
xi � 0, �i � 0, xi�i = 0 for all i 2 I; together withP

i2I xi =
P

i2I qi.

9=; (13)

Proposition 3.5 Suppose xi must be nonnegative. Then, every permit buyer has
a marginal payo¤ that equals the equilibrium price, and no agent has a marginal
payo¤ above the equilibrium price.

This game therefore has some of the same qualitative properties as the endowment
withholding game with constrained supply� see Proposition 3.3.

3.6 Endowment withholding (II) with free demand

The above game is next modi�ed by allowing qi to be negative, as d�Aspremont et
al. [5, p. 203] do. To guarantee market clearing, we therefore also allow for demand
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xi < 0. Although negative supply and demand may not be appealing in reality,
one may perhaps think of these items as messages rather than physical quantities.
However they are interpreted, we obtain the following result.

Proposition 3.6 Suppose xi < 0 is an admissible choice. Then, all agents have the
same �nal marginal payo¤, which equals the equilibrium price. That is the unique
competitive price.

Therefore, this game has the notable property that Nash equilibria are Pareto ef-
�cient. The explanation is simple. Whatever is supplied at the �rst stage of the
game, permits �ow freely among parties at the second stage until all agents have
the same margin. Moreover, and as with the endowment destruction model above,
the allocation at the second stage is the same as at the �rst. However, because all
resources are intact in this game, Nash equilibria become perfectly competitive.

3.7 Manipulation via technologies

Here we present a game that, in the context of pure exchange, dates back at least to
Hurwicz [16, Footnote 10]. Shin and Suh [28], Malueg and Yates [18], Wirl [31], and
Godal and Meland [12] have applied it to permit markets. It also seems to �t the
�supply function equilibrium�terminology, as discussed by Hendricks and McAfee
[15], for example. As we shall compare this model with another later on, some new
notations are introduced.
Here, each agent i 2 I �rst selects a payo¤ function, say �̂i : R+! R, which

solves
maxf�i (yi) + r � (ei � yi)g.

where r is the permit price. At the second stage, endowments are traded com-
petitively with respect to the chosen technologies, generating an allocation (yi)i2I
that

maximizes

(X
i2I
�̂i (yi) :

X
i2I
yi =

X
i2I
ei

)
with r clearing the market. To obtain some qualitative results for this game, we
next consider the format where the choice �̂i is constrained to the �quadratic�case,
i.e. that �̂0i (yi) := maxfai � biyi; 0g where ai; bi > 0.
Suppose there exists an equilibrium in this game satisfying

P
i2I

ai
bi
>
P

i2I ei,
therefore characterized by

(�0i (yi)� r)
@yi
@ai

+
@r

@ai
(ei � yi) = 0 (14)

and

(�0i (yi)� r)
@yi
@bi

+
@r

@bi
(ei � yi) = 0 (15)
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together with the second-stage conditions, which may be written as

yi = (ai � r)=bi for all i 2 I, and r =
P

i2I
ai
bi
�
P

i2I eiP
i2I

1
bi

. (16)

What remains to spell out is precisely how yi and r are a¤ected by changes in
ai and bi. By di¤erentiating the two equalities in (16), one obtains, with some
rearrangements, that

@r

@ai
=

1
biP
j2I

1
bj

2 (0; 1) , @yi
@ai

=
1

bi

�
1� @r

@ai

�
> 0, (17)

@r

@bi
= �yi

1
biP
j2I

1
bj

< 0 and
@yi
@bi

= � 1
bi

�
yi +

@r

@bi

�
< 0 (18)

for every strategist i 2 S. Because a price taker by de�nition believes that @r
@ai

=
@r
@bi
= 0, it follows from (17)�(18) that

@yi
@ai

=
1

bi
> 0 and

@yi
@bi

= �yi
bi
< 0 (19)

for each i 2 F , if any. The next result follows directly by applying the signs of the
various objects in (17)�(19) into (14)�(15).

Proposition 3.7 Suppose there exists an equilibrium where ai; bi > 0 for all i 2 I
and

P
i2I

ai
bi
>
P

i2I ei. Then,
� a price taker has a marginal payo¤ that equals the equilibrium price;
� a strategic seller (buyer) has a marginal payo¤ that is below (above) the equilib-
rium price.

It is worth noting by (18), that (15) equals (14) multiplied by �yi throughout.
Hence, if a pair (ai; bi) satisfy (14), then (15) is automatically granted.
Some special cases of this game have been applied in various ways to emissions

exchange, all assuming that the true bene�t function is quadratic with margin
�0i (yi) = maxf�i � �iyi; 0g, where �i; �i > 0. Speci�cally, Malueg and Yates [18]
study a situation where �i is the same for all, and where only �i is gamed. Godal and
Meland [12] consider the same case, although allowing for �i to vary across i. Wirl
[31] supposes that marginal bene�t function given by �0i (yi) = maxf�i
 � �iyi; 0g,
where 
 > 0. In his game, �i may be misrepresented.

3.8 The trading post model

Finally, we shall consider the trading post model of Shapley and Shubik [27] for
which the term �strategic market game�has been reserved.6 This model appears to

6See Giraud [10] for an introduction to a special issue on this game.
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be the most popular one for more general pure exchange economies and there exist
many versions of it. The one adopted here goes as follows. Each agent i 2 I places
qi 2 [0; ei] units of permits and bi � 0 units of money on a �trading post�. Suppose
each agent has enough money so that no upper bounds on bi come into e¤ect. That
is, money is in what is known as �su¢ cient supply�.7 Name aggregate supply and
bid

Q :=
X
i2I
qi and B :=

X
i2I
bi;

respectively, and consider �rst the case B;Q > 0. Then, trade occurs at the unit
price

p :=
B

Q
(20)

and agent i 2 I is paid pqi for his permit supply and takes home bi
p
permits from

the post. Should B = 0; then we assume that whatever that has been supplied, if
anything, is lost, and similarly for any positive bids should Q = 0.
Whenever B;Q > 0, each agent i 2 I selects a pair (qi; bi) that

maximizesf�i(ei � qi +
bi
p
) + pqi � big. (21)

Write �i (�) for the objective function in (21), so that

@�i
@bi

= �0i(ei � qi +
bi
p
)
p� bi @p@bi
p2

+
@p

@bi
qi � 1 (22)

and
@�i
@qi

= �0i(ei � qi +
bi
p
)

 
�1�

bi
@p
@qi

p2

!
+ p+

@p

@qi
qi � �i: (23)

where �i is the shadow price associated with qi � ei. The necessary �rst-order
optimality conditions therefore read

@�i
@bi

� 0, bi � 0 and
@�i
@bi

bi = 0; (24)

@�i
@qi

� 0, qi � 0 and
@�i
@qi

qi = 0; (25)

�i � 0, qi � ei and (qi � ei)�i = 0 (26)

for all i 2 I. Every strategist i 2 S behaves consistently with setting

@p

@bi
=
1

Q
and

@p

@qi
= � p

Q
(27)

7In some sense, one may say that this is an underlying assumption in the other models discussed
in this paper as well.
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whereas these objects vanish for a price taker i 2 F .

Proposition 3.8 Suppose there exists an equilibrium with at least two suppliers
and two bidders, i.e. that bi < B and qi < Q for all i 2 I. Then,
� a price taker has a marginal payo¤ that equals the equilibrium price;
� a strategic seller (buyer) has a marginal payo¤ that is below (above) the equilib-
rium price.

As is clear and well known, the pro�le (qi; bi) = (0; 0) for all i 2 I, is one equi-
librium in this game.

4 Selected models and special results

This section presents two results for special environments, under the assumption
that all agents act strategically. We start by demonstrating that if payo¤s are
quadratic, then the endowment withholding game, as detailed in Section 3.4 above,
produces the same equilibrium as a special version of the payo¤manipulation game
in Section 3.7 up to �rst-order optimality conditions. Next, if there is plenty of �hot
air�(to be de�ned) in the economy, then the trading post model in Section 3.8 has
no equilibrium with trade. The section concludes with an illustrative example.

4.1 A �rst-order equivalency result

Our �rst result considers the following setting.

Assumption 4.1
� Marginal payo¤ functions are given by �0i (xi) = maxf�i � �ixi; 0g for all i 2 I.
� In the manipulation via technology game of Section 3.7, all agents may misrepre-
sent �i by ai, whereas bi is �xed to the true �i. Further, there exists an equilibrium
in that game satisfying ai > 0 for all i 2 I and

P
i2I

ai
�i
>
P

i2I ei.
� There exists a Nash equilibrium pro�le (qi)i2I in the endowment withholding game
(I) with free supply (as de�ned in Section 3.4) satisfying

P
i2I qi <

P
i2I �i=�i, with

a resulting demand pro�le (xi)i2I and clearing price p generating the �nal allocation
(ei � qi + xi)i2I .

Proposition 4.1 Given Assumption 4.1, then the strategy ai := �i+�i (ei � qi) for
all i 2 I satis�es all necessary �rst-order optimality conditions in the technology
manipulation game. This pro�le of choices generates the �nal allocation of permits,
yi = ei � qi + xi for all i 2 I, as well as the clearing price r = p.

To have a genuine equivalency result, it appears that one would need to deal with
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the existence and uniqueness of equilibria in the two games. Although that is not
addressed here, it seems that �i (xi), being quadratic, will promote such properties.
One may wonder whether the above result generalizes to environments where

�i (xi) is not quadratic. The answer to this question appears somewhat negative,
because the formulas for @p

@qi
and @xi

@qi
as given in (10) depend on the second derivative

of the payo¤ functions evaluated at the interim allocation xi for all i 2 I; by
contrast, in the technology manipulation game, they are evaluated at the �nal
allocation yi for all i 2 I. Because xi will typically di¤er from yi and as the proof
depends critically on the property that �00i (xi) = �

00
i (yi), there is a certain �necessity�

to the �quadratic�restriction.

4.2 A no-trade result for trading posts

For the next result, some terminology needs to be clari�ed.

De�nition 4.2
� Business-as-usual emissions x̂i; is a strictly positive �nite number for which
�i (xi) < �i (x̂i) when xi 2 [0; x̂i) and �i (xi) = �i (x̂i) when xi � x̂i.
� An agent has hot air if ei > x̂i, whereas an agent is short if ei < x̂i.
� The economy has hot air in aggregate if

P
i2I ei >

P
i2I x̂i.

For instance, the payo¤ functions considered in the previous subsection exhibit
business-as-usual emissions x̂i = �i=�i. Nevertheless, in what follows we shall not
restrict our attention to that particular functional format.

Assumption 4.2
� �i (�) is nondecreasing, concave and continuously di¤erentiable for each i 2 I;
� there exist business-as-usual emissions x̂i > 0 for all i 2 I;
� there is at least one agent who is short and at least two agents with hot air ; and
� there is hot air in aggregate.

The �rst part of the third bullet point only serves to provide an interesting econ-
omy where autarky is Pareto ine¢ cient. The concavity assumption in the �rst
bullet point is never explicitly used, but guarantees the existence of a competitive
equilibrium. Note that under the stated conditions, such an equilibrium entails
trade at a vanishing price.

Proposition 4.2 Given Assumption 4.2, then a Nash equilibrium with trade does
not exist in the Shapley�Shubik strategic market game (Section 3.8).

Roughly speaking, the main mechanism at work for the result is the following.
Suppose in contrast that several agents have o¤ered strictly positive supplies, qi;
and bids, bi, generating trade. Then there will be at least one agent that has an
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incentive to reduce his bid. This holds no matter how little he bids. Therefore, he
will not bid. A consequence of this is that there will be some other agent with an
incentive to reduce his bid, and so forth. In the spirit of induction, this will spread
throughout the economy so that all bids vanish, and with them, trade.
It must be emphasized that satiation in payo¤s� i.e. that business-as-usual

emissions are �nite� represents a violation of standard assumptions in general equi-
librium theory, including those adopted by Peck et al. [24], where su¢ cient condi-
tions for equilibria with trade to exist are provided. Other conditions for autarky
to become the only equilibrium than those speci�ed above, are given in Cordella
and Gabszewicz [4].8 These issues have more recently been discussed in Dickson
and Hartley [6].

4.3 An example

Here is an example that illustrates the results in this section in a tractable manner.
A more interesting one, which generates the same qualitative results for carbon
trading under the Kyoto agreement, may be found in Godal and Meland [12, Table
1].9 There are four strategic agents, i = 1; 2; 3; 4, all with �0i (xi) = maxf100�xi; 0g,
and where the initial allocation (ei)i2I = (90; 90; 120; 120).
Starting with the endowment withholding game (I) with free supply in Section

3.4, a pro�le (qi; xi)i2I with a clearing price p = 2 that satis�es all the necessary
�rst-order optimality conditions for the example is listed next.

Agent, i 1; 2; 3; 4 Total
Supply, qi 92; 92; 104; 104 392
Demand, xi 98; 98; 98; 98 392
Final allocation, ei � qi + xi 96; 96; 114; 114 420
Marg. payo¤, �0i (ei � qi + xi) 4; 4; 0; 0

Thus, the second part of Proposition 3.4 is illustrated.
Consider next the technology misrepresentation game in Section 3.7, where we

�x bi = �i(= 1) for all agents. A pro�le (ai; yi)i2I with the clearing price r = 2 that
satis�es the associated �rst-order optimality conditions is given as follows.

8Their result is based on an economy where preferences are linear. Further, if their economy
is replicated su¢ ciently many times, equilibria with trade will eventually exist. In our economy,
autarky prevails as the only equilibrium, no matter how many times the economy is replicated.

9When it comes to emissions trading under the Kyoto agreement, on which there is a large
body of literature dealing with numerical simulations, it is well known that hot air is present in
Russia and the Ukraine, among others. In addition, several studies have suggested that without
US participation, there is hot air in aggregate (i.e. a competitive price that vanishes), see, for
example, Springer [29] for an overview. Therefore, the no-trade result in Proposition 4.2 will also
apply to other parameterizations of the Kyoto setting.

14

Working Paper No. 18/11



Agent, i 1; 2; 3; 4 Total
Technology, ai 98; 98; 116; 116
Final allocation, yi 96; 96; 114; 114 420
Marg. payo¤, �0i (yi) 4; 4; 0; 0

This illustrates the second statement in Proposition 3.7 as well as Proposition 4.1.
Finally, business-as-usual emissions for each agent in the example equal 100

units. Therefore, agents 3 and 4 have so much hot air that this also applies in
aggregate. Hence, the example satis�es Assumption 4.2, yielding the no-trade result
in Proposition 4.2 for the trading post model.

5 Summary and concluding remarks

Revisited above were several well-established models of noncooperative exchange
that could possibly apply to emissions exchange. In terms of the qualitative prop-
erties of the associated equilibria, they may be grouped into three: �rst, models
where all agents have the same marginal payo¤ equal to the equilibrium price (Sec-
tions 3.2 and 3.6); second, models where all agents have a marginal payo¤ below
or equal to the equilibrium price (Sections 3.3 and 3.5); and third, those that are
compatible with marginal payo¤s in equilibrium below the equilibrium price for
strategic sellers and above the price for strategic buyers, as in Sections 3.1, 3.4,
3.7 and 3.8. Moreover, su¢ cient conditions have been provided for the games in
Sections 3.4 and 3.7 to yield the same outcomes, and for the strategic market game
in Section 3.8 to have no equilibrium with trade.
Any reader seeking published criticism or appraisal of a particular model is

likely to �nd it; see, for example, Godal and Meland [12, Section 6] for a collection
of passages. Given all the models and the diversity in the outcomes they produce,
it seems to me that whether one is interested in consumers exchanging apples for
oranges, or producers trading permits for money, economics has not yet come up
with a broadly accepted theory for exchange economies.
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APPENDIX: Proofs

Proof of Lemma 2.0. As �0i (xi) = p, and �
00
i (xi) < 0, there exist a continuously

di¤erentiable demand function fi := (�0i)
�1 such that xi = fi (p) for each i 2 I.

By making use if the Inverse Function Theorem, we get f 0i =
1
�00i
. Market clearing

requires
P

i2I fi (p) = Q. It therefore follows by di¤erentiating the last equality
with respect to Q that @p

@Q

P
i2I

1
�00i (xi)

= 1; which gives the �rst part of (2). The
second statement follows by di¤erentiating xi = fi (p) with respect to Q: �

Proof of Proposition 3.2. Because �nal consumption equals demand, the �rst
statement follows directly from (6). We obtain the second statement by combining
the two lines in (6) that

�0i (xi) +
@p

@qi
� (qi � xi)� �i + �i = 0 (28)

for all i 2 I. If �i > 0, so that qi = 0 and �i = 0, then (28) reads �0i (xi)� @p
@qi
xi+�i =

0, which is impossible as �0i (xi) > 0,
@p
@qi
< 0 and xi � 0. Hence, �i = 0. Now, if

agent i is a price taker, it follows immediately from (28) that �i > 0 because
@p
@qi
is

seen as zero, and �0i (xi) > 0. Thus qi = ei: The same result follows for a strategic
agent with (qi � xi) < 0 (i.e. a buyer), as @p

@qi
< 0. �

Proof of Proposition 3.3. We start by showing that �i must = 0. Suppose
conversely that �i > 0, yielding qi = 0 and �i = 0. Then, by using the �rst equality
in (9), the second line in the same statement reads

(�0i (ei + xi)� �0i (xi)) �
�
�1 + @xi

@qi

�
� @p

@qi
� xi + �i = 0. (29)

As ei � 0, �0i is strictly decreasing, @xi@qi
2 (0; 1), @p

@qi
< 0 and xi � 0, the left-hand

side of (29) is strictly positive, a contradiction making �i = 0:
Consider now �rst a price taker who sees @p

@qi
= @xi

@qi
= 0 and assume conversely

that he chooses qi < ei so that �i = 0. We then obtain from (9) the contradiction
that

0 = ��0i (ei � qi + xi) + p = ��0i (ei � qi + xi) + �0i (xi) > 0
as �0i is strictly decreasing and qi < ei. Thus, a price taker supplies exactly his
endowment, and the �rst claim in the �rst bullet point is proved. We turn next to
a strategic buyer and make the converse assumption that qi < ei so that �i = 0.
Rearrange (9) and make use of �i = 0 to obtain the contradiction

0 = (p� �0i (ei � qi + xi)) �
�
1� @xi

@qi

�
+
@p

@qi
� (qi � xi)

= (�0i (xi)� �0i (ei � qi + xi)) �
�
1� @xi

@qi

�
+
@p

@qi
� (qi � xi) > 0
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as �0i (xi) = p, �0i is strictly decreasing,
@xi
@qi

2 (0; 1), @p
@qi
< 0 and qi < xi; because

he is a buyer. Hence, he supplies precisely his endowment and the rest of the �rst
claim is proved.
For the second bullet point, suppose on the contrary that qi = ei. That yields

the contradiction

0 = (p� �0i (ei � qi + xi)) �
�
1� @xi

@qi

�
+
@p

@qi
� (qi � xi)� �i

= (�0i (xi)� �0i (ei � qi + xi)) �
�
1� @xi

@qi

�
+
@p

@qi
� (qi � xi)� �i

=
@p

@qi
(qi � xi)� �i < 0

because qi = ei,
@p
@qi
< 0, qi > xi and �i � 0. Therefore, he supplies strictly less

than his endowment, and because �0i (xi) = p and �
0
i is strictly decreasing, it follows

that �0i (ei � qi + xi) < p. �

Proof of Proposition 3.4. The claims are proved by the same type of argu-
ments as in the proof of Proposition 3.3. �

Proof of Proposition 3.5. As qi � 0 and agent i is a net buyer, i.e. xi > qi, the
constraint xi � 0 cannot bite. Thus, from the �rst line in (13), �0i (ei � qi + xi) = p
for any buyer regardless of whether he is strategic or not. The last claim follows
trivially as �i � 0. �

Proof of Proposition 3.6. Because xi is a free variable, the shadow price �i dis-
appears. Thus, (13) yields �0i (ei � qi + xi) = p for all i 2 I. By writing fi := (�0i)

�1

we get ei�qi+xi = fi (p). Inserting this in the market clearing condition, it follows
that

P
i2I (fi (p)� ei + qi) =

P
i2I qi, i.e. that

P
i2I fi (p) =

P
i2I ei: Clearly, the

price p that solves this equation is the perfectly competitive one, which under the
assumed conditions is unique. �

Proof of Proposition 3.7. Follows directly from the main text.

Proof of Proposition 3.8. Concerning the �rst bullet point, suppose �rst that
@�i
@bi

= 0, then the statement follows simply by inserting @p
@bi
= 0 into (22). Next,

suppose alternatively that @�i
@bi

= �0i(ei � qi + bi
p
)1
p
� 1 < 0, which implies bi = 0,

yielding
�0i(ei � qi)� p < 0 (30)

and similarly (23) with (25) reads

�0i(ei � qi) (�1) + p� �i � 0. (31)
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If �i = 0; (30) and (31) yield the contradiction 0 < 0. Should �i > 0, then qi = ei
and (31) reads �0i(0) (�1) + p � �i = 0, which cannot happen as we have assumed
that �0i(yi)!1 as yi ! 0, and the �rst claim is proved.
Turning to the second bullet point and considering a strategic seller, i.e. an

agent i for whom qi >
bi
p
, yielding B

Q
> bi

qi
. Posit the converse of what is claimed,

namely that

0 � �0i(ei � qi +
bi
p
)� p. (32)

By using @�i
@bi
� 0 and rearranging (22), the right-hand side of (32) becomes

�
1� @p

@bi
qi

p�bi @p@bi
p2

� p =
p2(1� 1

Q
qi)

p� bi 1Q
� p: (33)

Because p = B
Q
; the right-hand side of the equality in (33)

=
B

Q

0@ B
Q

�
1� qi

Q

�
B
Q
� bi

Q

� 1

1A =
B

Q

 
bi
Q
� B

Q
qi
Q

B
Q
� bi

Q

!
<
B

Q

 
bi
Q
� bi

qi

qi
Q

B
Q
� bi

Q

!
= 0; (34)

where the second equality is simply a consequence of a common denominator,
whereas the last inequality follows by B

Q
> bi

qi
. Hence, (32), (33) and (34) say

combined that 0 < 0. A contradiction for a strategic buyer is obtained by the same
arguments with reversing the inequalities in (32) and (34) and replacing the one in
(33) with an equality, as a buyer must have bi > 0; hence, @�i@bi

= 0. �

Proof of Proposition 4.1. We start by spelling out the �rst- order conditions in
the endowment withholding game with free supply, i.e. (9) with �i = 0, together
with �i = 0, by the proof of Proposition 3.3. With quadratic payo¤s, the second
market stage of the game yields

�i � �ixi = p with p =
P

i2I
�i
�i
�
P

i2I qiP
i2I

1
�i

, (35)

and the formulas in (10) read @p
@qi
= �1P

j2I
1
�j

and @xi
@qi

= 1
�i

1P
j2I

1
�j

. Thus, the �rst-

order condition with respect to supply qi as given in the second line in (9), now
says

0 = (�0i (ei � qi + xi)� p) �
�
�1 + @xi

@qi

�
+
@p

@qi
� (qi � xi)

= (�i � �i (ei � qi + xi)� p) �
 
�1 +

1
�iP
j2I

1
�j

!
+

�1P
j2I

1
�j

� (qi � xi).(36)
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We turn next to the technology manipulation game and start with the price that
the stated pro�le ai = �i + �i (ei � qi) for all i 2 I leads to. From (16) we get

r =

P
i2I

�i+�i(ei�qi)
�i

�
P

i2I eiP
i2I

1
�i

=

P
i2I

�i
�i
�
P

i2I qiP
i2I

1
�i

= p

because of (35). Thus, r = p. Demand yi = (ai � r)=�i, therefore reduces to
yi = (�i+�i (ei � qi)� p)=�i = (ei � qi)+ (�i � p) =�i = ei� qi+xi, producing the
same �nal allocation. With the assumed functional form, (17) yields

@r

@ai
=

1
�iP
j2I

1
�j

and
@yi
@ai

=
1

�i

 
1�

1
�iP
j2I

1
�j

!
.

The left-hand side of the �rst-order condition (14) is therefore

= (�0i (yi)� r)
@yi
@ai

+
@r

@ai
(ei � yi)

= (�i � �i (ei � qi + xi)� p)
@yi
@ai

+
@r

@ai
(ei � (ei � qi + xi))

= (�i � �i (ei � qi + xi)� p)
1

�i

 
1�

1
�iP
j2I

1
�j

!
+

1
�iP
j2I

1
�j

(qi � xi)

= (�i � �i (ei � qi + xi)� p)
 
�1 +

1
�iP
j2I

1
�j

!
� 1P

j2I
1
�j

(qi � xi) (37)

The �nal equality is obtained by multiplying the previous one by ��i. As (37) is
nothing else than (36), the proof is complete. �

Proof of Proposition 4.2. The proof will be established as a contradiction to
trade, after four lemmas.

Lemma A.1 (On vanishing margins). Any feasible allocation implies that �0j(ej �
qj +

bj
p
) = 0 for at least one j 2 I.

Proof (Trivial, but stated for completeness). Suppose on the contrary that �0i(ei�
qi +

bi
p
) > 0 for all i 2 I. For the latter to be true, ei � qi + bi

p
< x̂i must hold for

all i 2 I. Final consumption summed over all agents equalsX
i2I
(ei � qi +

bi
p
) =

X
i2I
ei <

X
i2I
x̂i:

The equality follows by (20), whereas the inequality contradicts the fourth bullet
point in Assumption 4.2 on aggregate hot air. Thus, there exists at least one agent
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j 2 I with �0j(ej � qj +
bj
p
) = 0. �

Lemma A.2 (On bids and supply when the margin is nil). Suppose there ex-
ists an equilibrium where at least two agents have o¤ered strictly positive supplies.
Then, any agent j who has hot air in equilibrium, i.e. �0j(ej � qj +

bj
p
) = 0, will bid

nothing and must have supplied qj � ej � x̂j.

Proof. (22) for agent j amounts to

�0j(ej � qj +
bj
p
) �
p� bj @p@bj
p2

+
@p

@bj
qj � 1 =

1

Q
qj � 1 < 0

as �0j (�) = 0 and qj < Q: Hence, for condition (24) to hold for agent j, we must have
bj = 0. Concerning his supply, if ej � x̂j, and because qj � 0, statement qj � ej�x̂j
follows trivially. Should ej > x̂j and qj < ej � x̂j, then by the de�nition of x̂j and
by the second bullet point in Assumption 4.2, it must be true that �0j (�) = 0 in
equilibrium, so that the right-hand side of (23) reduces to

p+
@p

@qj
qj � �j = p �

�
1� qj

Q

�
� �j: (38)

Because x̂j by de�nition is strictly positive, the constraint qj � ej cannot bite when
qj < ej � x̂j, hence �j will be nil. Because by assumption qj < Q, expression (38)
becomes strictly positive, contradicting condition (25). Thus, qj < ej � x̂j is a
contradiction yielding qj � ej � x̂j. �

Lemma A.3 (On agents who bid). Suppose there exists an equilibrium allocation
where �0j(ej � qj +

bj
p
) = 0 for at least one j 2 I. Then the total �nal consumption

among i 2 Infjg is strictly greater than their aggregate business-as-usual emissions.

Proof. Because, by assumption, there is one agent j with a vanishing margin,
then by Lemma A.2, bj = 0 and

p =

P
i2Infjg biP

i2Infjg qi + qj
:
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Suppose now, and contrary to what is claimed, that

0 �
X

i2Infjg

x̂i �
X

i2Infjg

(ei � qi +
bi
p
)

=
X
i2I
x̂i � x̂j �

X
i2Infjg

ei +
X

i2Infjg

qi �
P

i2Infjg qi + qjP
i2Infjg bi

X
i2Infjg

bi

<
X
i2I
ei � x̂j �

X
i2Infjg

ei +
X

i2Infjg

qi �
X
i2I
qi (39)

=
X

i2Infjg

ei + ej � x̂j �
X

i2Infjg

ei � qj

= ej � x̂j � qj � 0;

a contradiction. The inequality in line (39) follows the fourth bullet point in As-
sumption 4.2, whereas the last inequality comes from Lemma A.2. �

Lemma A.4 (On the number of suppliers). If an equilibrium with trade exists,
then there are at least two agents with strictly positive supplies.

Proof. Because there is trade, Q > 0. Suppose, on the contrary, that qi = Q
for exactly one i 2 I with qj = 0 for all else. By the third bullet point in Assump-
tion 4.2, an agent k 6= i with hot air must then exist, i.e. ek � x̂k > 0: Because
qk = 0, agent k will in equilibrium have �0k (�) = 0. This implies that the right-hand
side of (23) for agent k reduces to p �

�
1� qk

Q

�
��k = p��k = p > 0 because �k = 0

(by the same argument as in Lemma A.2). The last inequality contradicts (25) for
agent k. �

Proof of Proposition 4.2. Suppose that a Nash equilibrium with trade exists,
i.e. B;Q and p are all > 0. By Lemma A.1, there will exist at least one agent with
�0j(ej � qj +

bj
p
) = 0. From Lemma A.4, there must be more than one supplier.

Thus, Lemma A.2 comes into e¤ect and an agent with �0j (�) = 0 must have o¤ered
a bid bj = 0 and supplied qj � ej � x̂j. By Lemma A.3, there will be hot air in
aggregate among all i 2 I n fjg, and by Lemmas A.1 and A.2, there will once again
exist at least one agent i 2 I n fjg, with �0i(ei� qi+ bi

p
) = 0; bi = 0 and qi � ei� x̂i;

and so on. By the logic of induction, this implies that all agents will choose bi = 0;
which contradicts B > 0. �
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