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Abstract In this paper we apply to multiplicative lotteries the idea of

preference for "harm disaggregation" that was used for additive lotteries in

order to interpret the signs of successive derivatives of a utility function. In

this way, we can explain in general terms why the values of the coefficients of

relative risk aversion and relative prudence are usually compared respectively

to 1 and 2. We also show how these values partition the sets of risk averse

and/or prudent decision makers into two subgroups.
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1 Introduction

Recently, Eeckhoudt - Schlesinger (2006) have given an interpretation of the

signs of successive derivatives of a von Neumann-Morgenstern (vNM) utility

function (u(·)) by reference to a preference for harm disaggregation applied

to additive lotteries. Of course, the sign of successive derivatives of u(·)

already gives much information about the decision maker’s preferences since

it indicates the direction of various attitudes towards risks. However it is

silent about the intensity of such preferences which—for the second and third

derivatives—is usually characterized by the value of the coefficients of relative

risk aversion (RRA) and relative prudence (RP ).

As far asRRA is concerned, the importance of its level (and of its behavior

with respect to wealth, here denoted x) has been known for a long time.

Indeed, in a series of papers, dealing with portfolio or savings decisions as

well as contingent claims models (such as Hahn (1970), Rothschild - Stiglitz

(1971), Fishburn - Porter (1976), Mitchell (1994), Chiu and Madden (2007)),

it appears that many comparative statics results often depend, among other

things, upon a comparison between unity and the value of theRRA coefficient

(defined as −xu
′′(x)
u′(x)

). This literature has been recently surveyed by Meyer

- Meyer (2005). Notice also that in the debate around the equity premium

puzzle, the value taken by the (constant) coefficient of relative risk aversion

plays a central role.

Since the concept of prudence is more recent than that of risk aversion,

the notion of relative prudence (defined as −xu
′′′(x)
u′′(x)

) is much less discussed

than that of relative risk aversion. However, the scant literature that exists
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suggests that the benchmark value for RP is 2 (see, e.g., Hadar - Seo (1990)

and Choi - Kim - Snow (2001)). In these papers, it appears indeed that

a second order dominant shift in the return of a risky asset increases its

demand if RP is lower than 2. These results are summarized in Gollier

(2001, pp 60-61).

As the models discussed in these papers suggest, the comparisons between

RRA and unity on the one hand and between RP and 2 on the other, are

indications of the intensity of risk aversion or prudence, respectively. In

this sense, the benchmark values of 1 and 2 for risk aversion and prudence

partition the sets of risk averse and prudent decision makers each into two

subgroups: those who are a little risk averse or prudent and those who are a

very risk averse or prudent.

So far, the literature has discussed these benchmark values in a specific

institutional context, to wit that of competitive markets for risky assets.1

The purpose of this paper is to present a comparison of simple lotteries

which enables us to elicit in general terms whether relative risk aversion (rel-

ative prudence) exceeds the values of 1 (2). The advantage of our approach

is twofold. First, it does not rely upon a specific institutional context, and

second, it is easily amenable to an experimental implementation. Our proce-

dure applies to multiplicative lotteries an approach similar to the one adopted

by Eeckhoudt - Schlesinger (2006) for additive lotteries. The transition from

the additive case to the multiplicative one will enable us to interpret in simple

1There are two exceptions that we are aware of. The first is a paper by Choi - Menezes
(1985) who discuss the value of RRA from the concept of a "probability premium". More
recently, White (2008) underlines the pertinence of the comparison between RP and 2 in
a bargaining game framework.
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and general terms the benchmark values for RRA and RP .

Our paper is organized as follows. In the next section, after a brief expo-

sition of the preference for harm disaggregation applied to additive lotteries,

we illustrate the equivalent concept for multiplicative risks. The comparison

between the two cases gives the intuition for the results presented in sec-

tion 3 where the benchmark values are formally obtained. We then briefly

conclude.

2 Multiplicative risks and the preference for

harm disaggregation

In order to introduce the case of multiplicative risks, we briefly present the

additive lotteries used in Eeckhoudt - Schlesinger (2006) to interpret the signs

of the second and third derivatives of u(·).

Consider a decision maker endowed with an initial wealth, x, who faces

the prospect of two losses (−l and −m) occurring each with probability 1
2
. If

this individual exhibits a preference for harm disaggregation, he will prefer

B0 to A0 where
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With these additive losses it is easily shown that B0 � A0 implies and is

implied by risk aversion (u′′(·) < 0).

In order to define prudence replace one of the two losses (say −l) by a zero

mean risk θ̃ which is also a harm for a risk averse decision maker. Preference

for harm disaggregation then means a preference for B1 to A1 where

Again the additive nature of the harms leads to the conclusion that B1 � A1

implies and is implied by prudence (u′′′ > 0).

Turning now to the multiplicative counterpart, the two potential losses
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are expressed as shares of wealth denoted respectively k and r with 0 < k < 1

and 0 < r < 1. The decision maker can now apportion the harms in two

different ways yielding lotteries A2 and B2 defined by
 

 

x(1 – k) (1 – r) 

x 

1/2 

1/2 

A2 

 

 

x(1 – k) 

x(1 – r) 

1/2 

1/2 

B2 

The preference relationship between B2 and A2 is now more subtle than

it was for the choice between B0 and A0. As for B0, the disaggregation of

harms that occurs in B2 gives an advantage to this lottery. However A2 has

also its own advantage: the proportional loss (1− r) now applies to a lower

wealth level (x (1− k)) so that the expected final wealth of A2 exceeds that

of B2. Hence it is clear that risk aversion alone (linked to the preference

for harm disaggregation) cannot justify a preference for B2. As we formally

show in the next section, for B2 to be preferred to A2, risk aversion must

be strong enough in the sense that RRA ≥ 1. Another and equivalent way

of interpreting the comparison between B2 and A2 (and also below for the

comparison between B3 and A3) is to notice that B2 contains "inner" results

while A2 has "extreme" ones. Indeed we necessarily have

x (1− k) (1− r) < x (1− k) and x (1− r) < x.

Of course this feature of B2 is attractive for risk averse decision makers.

However, as we observed before, the expected value of lottery A2 is higher

and thus RRA must exceed one for B2 to be chosen.

To elicit the intensity of prudence, replace one of the proportional losses
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(say −r) by a zero mean risky return, ε̃ ∈ [−1,∞), which is disliked by a

risk averse decision maker. Hence we now have to compare lotteries A3 and

B3 defined as:
 

 

x(1 – k) (1 + ε~ ) 

x 

1/2 

1/2 

A3 

 

 

x(1 – k) 

x(1 + ε~ ) 

1/2 

1/2 

B3 

The harms are better apportioned in B3 than in A3 since the two harms

never jointly occur in each of the two states of nature and this disaggregation

of the two harms is positively appreciated by a prudent individual. But A3

has—for a risk averse individual–the advantage of a lower variance2 since the

random return is applied to a lower wealth (x (1− k) instead of x for B3).

Hence, a decision maker will prefer B3 only if prudence is high enough. We

show in the next section that this occurs when RP ≥ 2.

3 Benchmark values

We now examine how the comparison between the lotteries described in sec-

tion 2 are expressed in an expected utility (EU) framework and we consider

the case of a risk averse (u′′(·) < 0) and prudent (u′′′(·) > 0) decision maker.

In proposition 1 we establish a one to one link between the choice among

B2 and A2 on the one hand and the benchmark value for RRA on the other

2Notice that -contrary to what happened for A2 and B2- the lotteries A3 and B3 have
the same expected value of final wealth.
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hand. Proposition 2 does the same for the choice among B3 and A3 and the

benchmark value for RP .

Proposition 1 For an EU risk averse decision maker, B2 � A2 for any pair

(k, r) ∈ (0, 1)2 if and only if RRA(X) ≥ 1 for any wealth X > 0.

Proof. Consider a decision maker, endowed with initial wealth x, faces

with the two lotteries A2 and B2. Then we have that for any pair (k, r) ∈

(0, 1)2,

B2 � A2

�

1

2
u [x (1− k)] +

1

2
u [x (1− r)] ≥

1

2
u [x (1− k) (1− r)] +

1

2
u [x]

�

u [x (1− k)]− u [x] ≥ u [x (1− k) (1− r)]− u [x (1− r)] . (1)

(i) sufficiency. Define a function v(·) such that v (r, k; x)
def
= u [x (1− k) (1− r)]−

u [x (1− r)]. Then B2 � A2 iff v (0, k; x) ≥ v (r, k; x) for all k ∈ (0, 1),

x ∈ R+0 . A sufficient condition for B2 � A2 is thus that

vr (r, k, x) ≤ 0

�

−x (1− k) u′ [x (1− k) (1− r)] + xu′ [x (1− r)] ≤ 0

�

u′ [x (1− r)] ≤ (1− k) u′ [x (1− k) (1− r)] .
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Now define function w such that w (r, k, x)
def
= (1− k) u′ [x (1− k) (1− r)] .

A sufficient condition for B2 � A2 (all r ∈ (0, 1), x ∈ R+0 ), is then that

w (r, k, x) is an increasing function in k, that is

wk (r, k, x) ≥ 0 (all (k, r) ∈ (0, 1)2)

�

−u′ [x (1− k) (1− r)]

−x (1− r) (1− k) u′′ [x (1− k) (1− r)] ≥ 0 (all (k, r) ∈ (0, 1)2)

�

1 +X
u′′ [X]

u′ [X]
≤ 0 (all X > 0).

So that, RRA ≥ 1 (all X > 0) implies B2 � A2.

(ii) necessity. Consider the gambles B2 and A2 with r = k = δ, a small

positive number. Using a second order Taylor expansion of u[x(1− δ)] and

u[x(1− δ)2] around δ = 0, inequality (1) can be written as

−u′′(x)x2δ2 ≥ u′(x)xδ2 +O(δ3)

�

−
u′′(x)x

u′(x)
≥ 1 +

1

u′(x)x

O(δ3)

δ2
,

with limδ→0
O(δ3)

δ
2 = 0.We have established that B2 � A2 for any pair (k, r) ∈

(0, 1)2 implies RRA(X) ≥ 1 for any X > 0.

At this stage, notice the difference between additive and multiplicative

risks. For additive risks, as shown in Eeckhoudt - Schlesinger (2006), concav-
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ity of the utility function (i.e., risk aversion) is sufficient to justify a preference

for disaggregating additive sure harms. Our analysis shows that for multi-

plicative harms, matters are less simple. In this case—as already mentioned

in section 2—harm disaggregation conflicts with a reduction in the mean final

wealth and the first effect dominates if and only if RRA exceeds 1. In the

contrary case, the mean wealth effect dominates and A2 is preferred to B2.
3

Another interpretation of this result can be obtained by considering the

logarithmic utility function (u (x) = ln (x)) for which RRA is constant and

equal to unity.4 In this case, A2 ∼ B2 since

1

2
ln (x (1− k)) +

1

2
ln (x (1− r)) =

1

2
ln (x (1− k) (1− r)) +

1

2
ln (x) .

If one concavifies ln (x) by taking an increasing and concave transforma-

tion h(·) (h′ > 0 and h′′ < 0), the resulting utility function v (x) = h[ln (x)]

will exhibit a coefficient of RRA which exceeds unity (see appendix) so that

B2 is then preferred to A2. In fact, with the logarithmic utility the appor-

tionment effect and the mean wealth one exactly compensate each other. By

concavifying the logarithmic utility (so that RRA > 1) more weight is given

to the apportionment effect and B2 is then strictly preferred to A2.

We now turn, in proposition 2, to the relationship between relative pru-

dence and the choice among lotteries B3 and A3.

3For example, Chiu and Madden (2007) obtain that some criminal activities are less
desirable when risk increases if the individual admits a RRA smaller than 1.

4We thank a referee for pointing out this interpretation. Notice that in an important
paper on multiplicative background risks, Franke - Schlesinger - Stapleton (2006) use also
this tool.
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Proposition 2 For an EU risk averse and prudent decision maker, B3 � A3

for any k ∈ (0, 1) and ε̃ ∈ [−1,∞) if and only if RP (X) ≥ 2 for any wealth

X > 0.

Proof. Consider the possibility of a zero-mean risk of return, ε̃. Lottery

B3 is preferred to lottery A3 iff for all zero-mean random variables, ε̃ ∈

[−1,∞), and all k in (0, 1),

1

2
u [x (1− k)] +

1

2
Eu [x (1 + ε̃)] ≥

1

2
Eu [x (1− k) (1 + ε̃)] +

1

2
u [x]

�

Eu [x (1 + ε̃)]− u [x] ≥ Eu [x (1− k) (1 + ε̃)]− u [x (1− k)] . (2)

(i) sufficiency. As previously, define function v(·) such that v (k, x)
def
=

Eu [x (1− k) (1 + ε̃)] − u [x (1− k)]. Then B3 � A3 (for all k ∈ (0, 1))

iff v (0, x) ≥ v (k, x) (all k ∈ (0, 1), x ∈ R+0 ). A sufficient condition for

B3 � A3 is then that

vk (k, x) ≤ 0

�

−xE (1 + ε̃)u′ [x (1− k) (1 + ε̃)] + xu′ [x (1− k)] ≤ 0

�

u′ [x (1− k)] ≤ E (1 + ε̃)u′ [x (1− k) (1 + ε̃)] .

We now define functionw(·) such thatw (k, ε, x)
def
= (1 + ε)u′ [x (1− k) (1 + ε)] .

Remembering that Eε̃ = 0 and varε̃ > 0, we can write that B3 � A3 (for
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all k ∈ (0, 1), all x ∈ R+0 ) if Ew (k, ε̃, x) ≥ w (k, Eε̃, x) . This condition is

satisfied if w(·) is strictly convex for all ε ∈ [−1,∞), that is

wεε(k, ε, x) ≥ 0 (for all k ∈ (0, 1), x ∈ R+0 )

�

2x (1− k)u′′ [x (1− k) (1 + ε)]

+x2 (1− k)2 (1 + ε)u′′′ [x (1− k) (1 + ε)] ≥ 0 (for all k ∈ (0, 1), ε ∈ [−1,∞))

�

2 +X
u′′′(X)

u′′(X)
≤ 0 (for all X > 0).

So that RP ≥ 2⇒ B3 � A3.

(ii) necessity. Consider the gambles B3 and A3 with ε̃ being a random

variable taking on the values k and −k with equal probability. Let k be a

small positive number. Inequality (2) then becomes

1

2
u [x (1 + k)] +

1

2
u [x (1− k)]− u [x] ≥

1

2
u
[
x
(
1− k2

)]
+
1

2
u
[
x (1− k)2

]
− u [x (1− k)] . (3)

Using a third order Taylor expansion of u[x (1 + k)], u
[
x (1− k)2

]
around

k = 0, inequality (3) can be written as

2u′′(x)x2k3 ≥ −u′′′(x)x3k3 +O(k4)

�

2 ≤ −
u′′′(x)x

u′′(x)
+

1

u′′(x)x2
O(k4)

k3
,

12



with limk→0
O(k4)
k3

= 0. We have established that B3 � A3 for any pair k ∈

(0, 1) and any ε̃ ∈ [−1,∞) implies RP (X) ≥ 2 for any X > 0.

A comment similar to the one made for risk aversion applies for prudence.

When the sure loss and the zero-mean risk are additive, positive prudence

(u′′′ > 0) implies a preference for harm disaggregation. However, in the mul-

tiplicative case the condition is more demanding: the preference for harm

disaggregation requires that prudence be strong enough (RP ≥ 2).

An interesting interpretation of proposition 2 can again be given through

a transformation h(·) (h′ > 0, h′′ < 0 and h′′′ > 05) of function u (x) = ln (x).

In an EU framework with a logarithmic utility, A3 ∼ B3 since

1

2
E ln (x (1− k) (1 + ε̃)) +

1

2
ln (x) =

1

2
ln (x (1− k)) +

1

2
E ln (x (1 + ε̃)) .

In this case, the better apportionment in B3 is exactly compensated for

by its higher variance of final wealth. If besides h′ > 0 and h′′ < 0, the

transformation h also satisfies h′′′ > 0, then RP exceeds 2 (see appendix) and

again more weight is attached to the apportionment effect so that B3 ≻ A3.

Before concluding, let us mention that the benchmark values of RRA and

RP could also be related to a willingness to trade-off different moments of

the lotteries. In the comparison between B2 and A2, final wealth has not

only a lower mean in B2 but also a lower variance. As far as B3 and A3 are

concerned, these lotteries yield the same expected final wealth but the higher

variance of B3 is compensated for by a lower skewness.6

5h′′′ > 0 corresponds to a convexification of h′.
6A detailed discussion of these trade-offs between the successive moments can be found
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4 Conclusion

The existing literature on savings, insurance and portfolio choices under risk

has revealed that quite often comparative statics results depend, among other

things, upon the values of the coefficients of relative risk aversion and relative

prudence. More specifically the benchmark values of RRA and RP , taken

into consideration inside these models, are respectively 1 and 2.

In this paper, we have given a more fundamental interpretation of these

benchmark values which is independent of the institutional environment in

which the choice is made. This result has been obtained by applying to mul-

tiplicative risks the notion of risk apportionment that was used for additive

risks in order to justify the alternating signs of successive derivatives of the

vNM utility function.

Finally, we believe that the relatively simple nature of the lotteries in-

volved should easily allow for an experimental determination of individual

risk attitudes.
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5 Appendix

Let us define function v(·) such as v (x) = h (ln x) with, for all y ∈ R,

h′ (y) > 0 and h′′ (y) < 0. We then obtain

v′ (x) = h′ (ln x)×
1

x
, and

v′′ (x) = h′′ (ln x)×
1

x2
− h′ (ln x)×

1

x2
,

so that the coefficient of relative risk aversion becomes

RRAv = −
h′′ (ln x)

h′ (ln x)
+ 1.
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Under h′ (y) > 0 and h′′ (y) < 0, RRAv necessarily exceeds unity.

Similarly, the coefficient of relative prudence is given by

RPv = −x
v′′′ (x)

v′′ (x)

= −x
h′′′ (lnx)x−3 − 3h′′ (ln x) x−3 + 2h′ (ln x)x−3

h′′ (ln x)x−2 − h′ (lnx)x−2

=
−h′′′ (ln x) + h′′ (ln x)

h′′ (lnx)− h′ (lnx)
+ 2.

Under h′ (y) > 0, h′′ (y) < 0 and h′′′ (y) > 0, RPv necessarily exceeds two.
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