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Summary 

Adjustment costs associated with firms’ acquirement or disposal of factors of production 

can make the individual firm unresponsive to changes in their environment. This is the 

reason why costs of adjustments is assumed to be one of the reasons why we observe firm 

and plant level adjustment patterns as unevenly distributed over time. Understanding 

what characterizes such costs is important for understanding firm level behaviour, but can 

also be important to understand dynamics of both capital and labor demand at macro 

level. Because several studies on adjustment costs and factor demand indicate correlation 

in the demand for production factors, this thesis aims to present a way to simultaneously 

estimate adjustment cost functions of two factors, including both convex and nonconvex 

components. Joint estimation also allows for possible existence of interrelations in the 

adjustment cost function. A likelihood function for estimation by Maximum Likelihood is 

derived, and results after estimation on simulated panel data is presented. The text shows 

how a likelihood function can be written to estimate adjustment cost parameters that can 

be traced directly back to a theoretical framework for adjustment costs and factor 

demand. It is also shown that under certain conditions, the procedure inhabits weaknesses 

regarding identification of model parameters, which should be improved for increased 

robustness.  
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1.  Introduction 

 

When a producer of any non-storable good decides to change the level of output from one 

period to the next, the firm will have to make an investment in one or more production 

factors. The investment decision will, among other things, depend on expectations about 

future demand and access to new technology. Even though one would expect investment 

patterns to be relatively smooth over time, given that shocks in the environment are 

relatively small and occur relatively often, we most often observe firm level investment 

patterns as lumpy rather than smooth both for capital and labor (Bloom, 2009).  

 

A typical explanation for this phenomenon is that what we call adjustment costs that arise 

when firms make investments, together with uncertainty about future shocks can make 

firms hesitant to making adjustments even if they face changes in the environment that 

affect their optimal levels of inputs. A gap between optimal and actual input levels would 

in particular arise if adjustment cost functions would contain some form of 

nonconvexities (Hamermesh and Pfann, 1996). 

 

In empirical work on the role of adjustment costs, underlying theoretical models are often 

based on a one-factor analysis with one quasi-fixed production factor. At the same time, 

research has shown that results indicating quasi-fixity of one factor in reality can be 

caused by some form of interrelation in multi-factor demand. By interrelation we simply 

mean the possibility of the demand for one input affecting the demand for another, and 

vice versa. 

 

The motivation behind this thesis is first to understand what characterizes firms’ 

investment behavior in both capital and labor, and how this behavior is affected by 

adjustment costs of different characteristics. In addition, the role of possible interrelations 

in the cost functions in a two-factor setting will be investigated. Section 2 will give an 

overview of the theoretical foundation for discussing adjustment costs and the dynamic 

optimization problem firms face prior to changes in input factors. Section 3 introduces 
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the concept of interrelations in adjustment cost functions, and presents a theoretical 

model to incorporate effects of this sort.  

 

Next, the ambition is to show how a Maximum Likelihood approach can be applied to 

estimate parameters of adjustment cost functions that are both non-convex and possibly 

interrelated for two factors of production. The derivation of a suitable likelihood function 

with properties similar to a bivariate ordered probit model is shown in section 4. 

Estimation by the model derived is carried out using a simulated dataset containing 

moments often observed in real data. Basic descriptions of the data are presented in 

section 5. Finally, sections 6 and 7 provide summarizations of results and concluding 

remarks. 
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2. Adjustment Costs and Changes in Input Factors 

2.1. What do we mean by investment behavior? 

This thesis aims to investigate what characterizes the way that firms change the level of 

their production factors. In a simplified world, we would expect firms to make 

investments according to changes in input factor profitability. Based on a standard 

marginal value equilibrium condition we would expect that if the marginal value or the 

purchase price of one input factor unexpectedly rises or falls, we would see a 

corresponding positive or negative factor adjustment. This would certainly always be the 

case if there were no costs associated with investments (Abel and Eberly, 1994).  

 

However, this is rarely the case in the real world, and research has shown that changes in 

factor levels are not necessarily instantaneous, especially when the firm is facing only 

small changes in prices or productivity. In addition we often observe investments to be 

relatively large in those periods in which they occur. When changes in input factors are 

unevenly distributed over time resulting in adjustment spikes, we say that investments are 

lumpy. In the opposite case, when changes in factor levels are evenly distributed over 

time and spikes are rarely observed, we say that investments are smooth.  

 

At macro level, most data suggest that factor demand adjusts smoothly. However, with an 

increasing access to firm or plant level panel data, researchers have observed that 

investments in both capital and labor are made in a lumpy fashion. To explain the 

observed firm level adjustment patterns, researchers have throughout the last decades 

tried to study the possible role of nonconvex adjustment costs together with uncertainty 

about future shocks. The lasting high level of European unemployment is one of several 

economic issues where adjustment costs might play an important role (Hamermesh, 

1997). 

 

The goal of this analysis is to derive a simultaneous econometric model of firm-level 

investment behavior for two production inputs. To establish an understanding of what 

should be included in a model describing firms’ factor demand, we should have an 

overview of how the research on the subject has evolved, and some of the key results that 
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have eventually lead to the derivation of models used today. Research has roughly 

developed from one-factor analyses of factor demand patterns, to investigation of the role 

of adjustment costs and further into the role of such costs in multi-factor models. 

 

 

2.2. Early Findings on Factor Demand 

In the early work by Jorgenson (1963), the author uses neoclassical theory of optimal 

accumulation of capital to present a theory of investment behavior. The author finds that 

because of lagged response, firms’ demand for investments is not equal to their demand 

for capital. The work in Jorgenson’s paper is done using aggregated data, and even 

though the findings are in line with what more recent research has tried to explain, 

Jorgenson states nothing about what might cause the slow response of capital investment. 

However, the econometric model presented uses the firm’s maximization of discounted 

future profits as a way of explaining investment behavior, an approach still used in 

today’s research. 

 

Nadiri and Rosen (1969) investigate the degree of fixity of four different factors of 

production. The paper presents a two-stage model where the firm, in the first stage 

minimizes total long-run costs, and in the second stage decides optimal adjustments of 

production factors by minimizing discounted costs. In the model presented, production 

factors are defined as capital and labor in addition to utilization rates for both inputs. 

After an empirical investigation, the paper concludes that the utilization rates of capital 

and labor (in this order) are adjusted most rapidly, while the levels of capital and labor (in 

this order) are the least flexible of the four inputs.  

 

Like Jorgensen, Nadiri and Rosen do not state anything about the role of possible 

adjustment costs when investment strategies are chosen, but the findings regarding 

investment dynamics are still interesting, and should be considered when comparing 

empirical findings in more recent studies. For example, the results indicate that the level 

of capital is relatively fixed compared to the other inputs. The authors’ own interpretation 

of the results seems to be that the role of utilization rates, and to some extent the level of 
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employment, is to maintain the level of production at a desired level, while the level of 

capital input is adjusted slowly. Although the explanation of the behavior is different, the 

findings regarding dynamics are similar to conclusions in more recent research. 

 

In a generalized form of the Q-model1 framework Galeotti and Schiantarelli (1991) treat 

labor as a quasi-fixed input factor while considering the level of capital as fixed when the 

adjustment decision regarding labor is taken. The paper presents estimates for aggregate 

data on the U.S. manufacturing sector, and the authors focus their analysis on the change 

of number of workers, not on the change of work hours, as this is consistent with a priori 

beliefs and earlier empirical findings. The results indicate a support for treating labor in 

addition to capital as quasi-fixed and possibly also allowing for interrelations between the 

two adjustment processes.  

 

 

2.3. Costs of Adjustment 

Judging from the available literature on the subject, it is fairly obvious that investment 

decisions in some way are interfered so that lumpy patterns can arise. To explain the slow 

response in firms’ investments, theoretical models of factor adjustment have in the last 

decades been equipped to consider the existence of adjustment costs. If there were no 

costs associated with changing the level of production inputs, firms would certainly react 

instantly to any change in the environment. Introducing adjustment costs in our 

investment models shows how the adjustment decision becomes a problem that is among 

several things affected by expectations about future events. In other words, we recognize 

how adjustment costs can play a key role in explaining observed behavior. But what then 

is the source of such costs, and how can they best be characterized? Different 

assumptions about functional form have different economic interpretations and give 

different predictions about expected firm behavior. This has indeed been the focus of 

much research. Hamermesh and Pfann (1996) give us an overview of the topic. 

 

                                                 
1 See Tobin, J. (1969) for details on Tobin’s q. See for example Blundell et. al. (1992) for an application to 
capital investment. 
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2.4. Functional Form 

A key question when discussing qualities of adjustment costs is their possible shape, and 

which functional form we can assume for the best possible approximation of real life 

conditions. Before making any assumptions in this thesis it would be sensible to include a 

brief discussion on what we can assume regarding the shape of so-called adjustment 

costs, and what implications we make using different assumptions about functional form. 

Hamermesh and Pfann (1996) describe four basic examples of modeling the structure of 

costs of adjustment. The following section is based on their work, and will illustrate 

different possible ways of specifying adjustment costs and their implications. 

 

2.4. a) Symmetric convex adjustment costs 

Much of the early literature on the subject assumes that the costs of adjustments are 

convex and symmetric around 0X∆ = . This is in particular true about the research that is 

based on the q-theory of investment. We can write a general example of a symmetric and 

convex specification as 

[ ]
21

( ) , 0
2

C X b X b∆ = ∆ >  

and the function is shown in figure (2.1.a). From the figure, we clearly see that 

adjustments under this specification are made continuously, although there is a clear gap 

between optimal input levels and the desired adjustments. A specification of this kind 

imply that we assume the costs of expanding or contracting the levels of capital or labor 

force to be equal, which is hardly a reasonable assumption in most cases. The popularity 

is no doubt caused almost only by analytical tractability. As Hamermesh and Pfann note: 

“Simply imposing (…), no matter how many times it has been done, in no way speaks to 

the correctness of the underlying assumption.” In other words, one is not advised to 

assume the simplest possible form, just because many have done so in earlier research. 
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2.4. b)  Asymmetric convex adjustment costs 

Because there is no reason why the marginal cost of increasing the level of one 

production input would be the same as that of an equal size decrease, Hamermesh and 

Pfann go on to describe a second possible approximation as Asymmetric Convex Costs. 

One particular function of this type can be written as: 

( ) [ ] ( )
2

.5 exp 1C X b X c X c X∆ = ∆ − ∆ + ∆ −  

and a graphical representation is found in figure (2.1.b). Again we see that adjustments 

are made continuously, although the gaps between optimal and actual input levels now 

differ in accordance with the underlying asymmetry. 

 

2.4. c) Piecewise linear adjustment costs 

A third functional form also opens for possible asymmetry. Piecewise linear costs though, 

as the name suggests, assumes linear adjustment costs which are proportional to changes 

in the production factor in question. Hamermesh and Pfann writes this cost function as: 

( ) 1 1

2 2

, 0    iff 0

, 0    iff 0

t t

t

t t

b X b X
C X

b X b X

∆ ≥ ∆ ≥ 
∆ =  

∆ < ∆ < 
 

and a graphical representation is found in figure (2.1.c). Adjustment costs in this setting 

are symmetrical only in the case of 1 2b b= − . Again we recognize the signs of asymmetry 

as costs are relatively large for positive changes. Because even the smallest change in the 

level of X induces positive costs while the marginal costs are constant except at 0X∆ = , 

it may be optimal for the firm to abstain from adjustments until the associated benefits 

offset the costs implied. 

 

2.4. d) Lumpy adjustment costs 

Because many factor investments yield adjustment costs that must necessarily be partly 

independent of the actual size of the investments, Hamermesh and Pfann introduce a 

fourth approximation that incorporates nonconvexity and “lumpiness” in the adjustment 

cost function. As the authors point out, “The gross, external costs of obtaining plans of 

acquiring a site and of creating new networks for selling the plant’s output all produce 

some fixed components. Some of the costs of hiring – advertising screening, and training, 
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and others – are up to a point independent of the number of hires.” Further they note that 

it is certainly possible to “include both lumpy and linear piecewise costs along with a 

quadratic term to describe adjustment in a more complex manner”. A simple 

representation of a lumpy adjustment cost function is written as 

( ) ( ) ( )1 1 2 2t t tC X k I X k I X∆ = ∆ + ∆ , 

and is illustrated in figure (2.1.d). As under piecewise linear costs, the firm will in some 

situations have incentives to abstain from investing because the associated benefits do not 

offset the fixed cost the firm will have to face. 

 

 

2.5. The Effects of Adjustment Costs on Factor Demand 

Much of the recent literature on investment behavior and adjustment costs builds on the 

work of Abel and Eberly (1994), which illustrates how the existence of non-convex 

adjustment costs can result in optimal investment behavior that is in accordance with 

what we actually observe. Their paper presents a one-factor model which includes 

nonconvexity in the adjustment cost function, and derives the firm’s optimal investment 

policy. The model assumes costs of investments that can be divided into three 

components; (i) purchase or resale price, (ii) costs of adjustments and (iii) fixed costs. 

The paper derives an optimal solution of the investment decision that illustrates how 

nonconvexities under certain conditions can result in the choice of zero adjustment in 

spite of a change in the optimal level of factor input. The possible existence of a fixed 

term in the costs of adjustments imposes a more strict condition to be satisfied for 

investments to occur because an adjustment of any size will trigger a minimum level of 

costs. Abel and Eberly show that if this fixed term is relatively large, we will expect to 

see longer periods without changes, and changes to be relatively large once they occur. 

 

As a natural extension of the one-factor model, Eberly and Van Mieghem (1996) 

introduces a multi-factor analysis where all the included production factors may be 

subject to adjustment costs, and the degree of fixity is endogenously determined for each 

factor. The authors use a state space divided into various domains to illustrate possible 

investment strategies. The domain of main interest is a continuation region where no 
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adjustment of any factor is an optimal solution. As in the case of a one-factor analysis, a 

continuation region with a non-empty interior stems from investments that are costly to 

reverse. The shape and size of this region depends on the degree of irreversibility and by 

possible asymmetries in marginal adjustment costs.  

 

In a similar fashion Dixit (1997) investigates the degree of fixity of two input factors, and 

introduces a model that generates an endogenous ranking of capital and labor as more or 

less flexible. Adjustment costs in this setting are assumed to be linear. Many economic 

models assume fixed levels of capital in the short or semi-long run, while employment 

may change free of costs. Using a state space illustration with a main interest in the space 

of no action, Dixit shows that employment dynamics may have many of the same 

qualities as those which characterize the dynamics of demand for capital, which means 

that the assumption of free flowing labor and fixed levels of capital in many cases might 

be unreasonable. 

 

Dixit writes that in practice, decisions regarding employment are not necessarily 

reversible and hiring and firing cost can be substantial, especially in European 

economies. The direct costs arising in firing or hiring are examples of adjustment cost 

related to changes in employment. These include production loss due to interruptions of 

the production process when reorganizing the work force, search costs and training costs 

when hiring, workers compensations when firing, and overhead administration costs of 

both hiring and firing. 

 

One of the most important lessons presented in Dixit’s paper is that, no matter which 

input factor is considered more flexible, “adjustment of the more flexible factor can occur 

on its own, but that of the less flexible factor occurs less frequently and only in 

conjunction with a complementary adjustment of the more flexible factor.” This should 

be an important reminder when investigating descriptive statistics of empirical data, and 

when interpreting results after one-factor analyses.  
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In a second paper by Abel and Eberly (1998), investment behavior is analyzed in a two-

factor model. In accordance with Dixit’s conclusions, the authors find that quasi-fixity of 

one production factor, i.e. capital, may lead to lumpy investments in a second fully 

flexible input of production. That is, we may see labor hoarding in periods of large 

investments in capital, even though input of labor does not inhabit any adjustment costs. 

Again, these results call for caution when interpreting employment dynamics, or other 

factor dynamics, as investment patterns may be highly dependent on the dynamics of a 

second quasi-fixed production factor. This should give sufficient motivation for applying 

a multi-factor analysis when investigating the possible effects of adjustment costs. 

 

Bloom (2009) analyses the impact of uncertainty shocks on output and employment. 

Because of the possible effect of adjustment costs on aggregate demand for production 

factors, the model presented jointly estimates both convex and nonconvex costs for labor 

and capital. Regarding costs of adjustment, Bloom finds that “Ignoring capital adjustment 

costs is shown to lead to substantial bias while ignoring labor adjustment costs does not”. 

 

Contreras (2006) considers possible interrelations in the adjustment cost functions, and 

the functions are specified to include a component that makes simultaneous investments 

more or less costly relative to sequential investments. Descriptive statistics indicate 

“lumpiness” in the investment patterns of both capital and labor, which may or may not 

be caused by the existence of irreversibility. Also, indications can be seen of asymmetry 

in capital investment which in turn indicates irreversibility of that factor, and there is a 

clear pattern of correlation between adjustment spikes. By logit estimation Contreras 

finds that the probability of inaction in capital adjustment increases with inaction in labor 

adjustment. The same effect is found in the opposite direction, although the effect is not 

significant.  
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3. A Model with Interrelations 

3.1. Introduction 

When we think that there are characteristics about the adjustment process that make firm 

level adjustments of both labor and capital lumpy, it would be natural to ask how the 

demand for two or more production factors actually are affecting each other. When we 

say interrelations, we simply mean that investment decisions regarding several factors are 

not made independently. On the contrary, we say that a decision to change the level of 

one input will affect the investment decisions regarding the remaining factors of 

production. 

 

As an example, we can consider a simultaneous adjustment of the two production factors, 

capital and labor. The costs associated with this joint adjustment may increase or 

decrease the total costs of adjustments relative to a sequential adjustment, where the level 

of one factor remains unchanged while investment in the other factor is carried out. 

Whether a simultaneous adjustment will result in a relative cost increase is not really 

clear. Contreras (2006) finds that an interaction component which makes simultaneous 

adjustment relatively expensive is best suited to describe the behavior in his sample. 

Letterie et al. (2004) find that dynamics in employment are significantly correlated with 

large investments in capital, and vice versa. The authors do not discuss causality, but 

indicate that interrelations should be considered when estimating the effect of adjustment 

costs on investment behavior. 

 

 

 

3.2. Letterie, Nilsen, Pfann (2009) – “Interrelated Factor Demand with 

Nonconvex Adjustment Costs.” 

To show how it is possible to estimate parameters of adjustment cost functions that are 

both nonconvex and interrelated, we first need to consider a theoretical model with the 

desired properties. For this purpose, we apply a model introduced by Letterie, Nilsen and 

Pfann (2009). 
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The model starts out by considering a firm that employs two factors of production, labor, 

L, and capital, K in period t, to produce a non-storable good. The firm’s objective 

function is given by 

{ }
,

0

( , , ) max
t s t s

s

t t t t t
I H

V K L E e ds
βε π

+ +

∞
−= ⋅∫    [3.1] 

 

The discount rate is given by β, with 0 1β< < . The operating profit of the firm in period 

t is equal to ,( , , ) ( , , )
t t t t t t t t t t

F K L w L C I K H Lπ ε= − − . The variable 
t

w  denotes the wage 

paid by the firm to a full time worker. Investment and hiring (or firing) are denoted by It 

and Ht respectively. Sales are given by the expression ( , , )
t t t

F K L ε  where the term 
t

ε  

represents a variable capturing randomness in technology or stochastic behavior of the 

demand conditions the firm is facing. The stochastic term 
t

ε  evolves according to 

( ) ( )
t t t

d dzε µ ε σ ε= + ⋅     [3.2] 

 

where dz is a standard Wiener process.  

 

When adjusting the stock of capital or the number of workers the firm incurs adjustment 

costs defined as: 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

2

2

, , , I 0 I 0 I 0
2

I 0 I 0 I 0
2

I 0 I 0

K
I I K t

t t t t t t t t t t t t

t

L
H H L t

t t t t t t t t

t

KL

t t

Ib
C I K H L p I I p I I K I

K

Hb
p H H p H H L H

L

I H

α

α

α

+ −

+ −

  
 = ⋅ > + ⋅ < + + ⋅ ⋅ ≠ 
   

  
 + ⋅ > + ⋅ < + + ⋅ ⋅ ≠ 
   

+ ⋅ ≠ ⋅ ≠

           [3.3] 

 

 

In the adjustment cost function the indicator function I(.) assumes the value 1 if the 

condition in brackets is satisfied and equals zero otherwise. We note that the cost of 

interaction given by the parameter KLα  disappears if the firm does not change the level of 

both factors simultaneously in period t. The same term is positive if a joint adjustment 
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would increase the cost relative to a sequential solution. On the other hand, KLα  will 

assume a negative value in cases where a simultaneous strategy will give the firm a 

relative cost advantage. 

 

We recognize the adjustment costs in this framework as a mix of different structures. The 

main advantage in the specification above is that the model allows for both asymmetries 

and nonconvexities. Fixed cost parameters are given by  and K Lα α  and are assumed to 

be independent of whether the changes of levels of inputs are positive or negative (i.e. 

symmetric). The model does however, allow for asymmetry when specifying the 

purchase price of capital as pt
I+ , while in the case the firm sells capital the model 

assumes that the price received for one unit of capital equals pt
I-. Due to irreversibility of 

investment decisions pt
I+

 > pt
I-, and we note that the price component also includes the 

actual cost of investment. Linear adjustment costs with respect to hiring and firing are 

denoted by pt
H+

 when Ht > 0 and pt
H-

 when Ht < 0. 

 

 

The firm decides the optimal size of the capital stock, Kt, by setting investment It, at the 

appropriate level. Since capital depreciates at rate Kδ , the capital stock evolves 

according to the law of motion 

( )K

t t t
dK I K dtδ= − ⋅       [3.4] 

 

Simultaneously, the firm determines the optimal value for the number of workers Lt, by 

choosing the desired and hence optimal level of hiring or firing denoted by Ht. The 

amount of labor evolves according to 

( )L

t t t
dL H L dtδ= − ⋅      [3.5] 

 

where Lδ  measures the autonomous quit rate of workers. 

 

To obtain the optimal values for It and Ht, the objective function is optimized with respect 

to these decision variables, subject to the laws of motion in equations [3.4] and [3.5]. 
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Before proceeding we note that variables K

t
λ  and L

t
λ are conventional marginal values of 

capital and labor, respectively.  

 

Maximization yields the following first order conditions 

I( 0) I( 0) 0K I I K t

t t t t t

t

I
p I p I b

K
λ + −  

− ⋅ > − ⋅ < − = 
 

   [3.6] 

I( 0) I( 0) 0L H H L t

t t t t t

t

H
p H p H b

L
λ + −  

− ⋅ > − ⋅ < − = 
 

   [3.7] 

Hence, optimal amounts of investment and hiring or firing are 

K I

t t t

K

t

I p

K b

λ −
=  
 

      [3.8] 

L H

t t t

L

t

H p

L b

λ −
=  
 

      [3.9] 

Where I( 0) I( 0)I I I

t t t t t
p p I p I

+ −≡ ⋅ > + ⋅ <  and I( 0) I( 0)H H H

t t t t t
p p H p H

+ −≡ ⋅ > + ⋅ < . 

 

The Effects of Nonconvexities 

Due to the presence of fixed costs of adjustment the firm will not always adjust to meet 

the optimal adjustment levels above. Sometimes it may be optimal to abstain from 

adjusting capital and or adjusting labor. The threshold equation determining whether to 

change the stock of capital and or to adjust labor becomes 

 

( , , , )K L

t t t t t t t t
I H C I K H Lλ λ+ ≥    [3.10] 

 

where the left hand side of the equation measures the expected benefits of changing 

capital and or labor, whereas the right hand side denotes the cost associated with the 

firm’s decisions. It can be shown that a necessary condition for changing the amount of 

capital is 

2 K K
L I K

t t

t

b
p A

K

α
λ − > ≡      [3.11] 
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And a similar condition for hiring or firing is 

2 L L
L H L

t t

t

b
p A

L

α
λ − > ≡      [3.12] 

 

Equations [3.11] and [3.12] show that the net benefits of adjusting capital and labor do 

not exceed a certain minimum threshold; the management will decide to abstain from 

adjusting. These two thresholds are caused by the existence of fixed adjustment costs, but 

are also affected by the magnitude of convex costs. 

 

Before proceeding with the analysis we consider two possible situations. In the first one, 

the adjustment costs are structured in a way that makes the costs of joint adjustment large 

relative to a sequential strategy. This situation would arise if 0KLα > . In the opposite 

case, simultaneous adjustment would reduce the costs of adjustment, and hence increase 

the possibility of simultaneous investments. This would be the case if 0KLα < . Let us 

now consider the first situation, and assume that both necessary conditions for adjusting 

capital and labor are satisfied as given in equations [3.11] and [3.12]. It can be shown that 

it is worth also adjusting the stock of capital (given that adjusting labor yields a higher 

value of the firm if only one input needs to be selected) as soon as 

( )
21

2

K I K KL

t t tK
p K

b
λ α α− ≥ +    [3.13]  

Similarly, labor will also be adjusted (given that changing capital yields a higher firm 

value if only one input is selected) as soon as 

( )
21

2

L H L KL

t t tL
p L

b
λ α α− ≥ +    [3.14]  

Hence, the boundaries determining when the firm will adjust both factors of production 

are 

( )2 K K KL

K I K

t t

t

b
p B

K

α α
λ

+
− > ≡    [3.15] 

( )2 L L KL

L H L

t t

t

b
p B

L

α α
λ

+
− > ≡    [3.16] 
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In the case when 0KLα < , the firm will actually incur a cost reduction by making joint 

adjustments compared to a sequential strategy. In this situation, the threshold values KB  

and LB  will be lower than the values of KA  and LA  respectively. More specifically we 

can say that if 0L KLα α+ ≤ , this would mean that it will always be optimal for the firm 

to change the level of employment in every period it changes the level of capital. This is 

true because the effect of the fixed term Lα  is completely balanced by the cost advantage 

represented by 0KLα < . Similarly it will always be optimal to change the level of capital 

input together with employment changes if 0K KLα α+ ≤ . If we consider a situation 

where both conditions 0L KLα α+ ≤  and 0K KLα α+ ≤  are satisfied, a joint investment 

strategy will always be preferred over a sequential strategy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 21 

4.  Model Set-up and Parameterization 

4.1.  Introduction 

To empirically estimate the parameters of the theoretical model presented in section 3.2, 

we need to develop a suitable estimation technique. We wish to investigate how firms in 

a sample make their investment decisions in period t. To simplify the problem we say that 

every firm decides between three options per input factor. These options are positive 

investment, negative investment and no investment. Decisions regarding two input 

factors in period t will place the strategy employed by the firm in one of three investment 

regimes: No changes (I), changes in one factor only (II), and changes in both factors (III). 

Figure (4.1) illustrates how the choices concerning adjustment of capital and labor can be 

divided into several action spaces or investment regimes. Regime I represents the case of 

no investment, regime II is the case of change in only one of the factors, while regime III 

represents the case of simultaneous change. The X- and Y-axis measure the marginal 

benefit of labor and capital respectively. With large changes in the shadow values ,

j

i tλ  or 

purchase prize ,

j

i tp , the optimal strategy of the firm will move away from no investment 

in regime I and over to one of the other regimes. The optimal investment decisions for 

each factor change as the values of , ,

L H

i t i tpλ −  and , ,

K I

i t i tpλ −  move across certain threshold 

values. These are denoted , , , ,, ,  and L L K K

i t i t i t i tLL UL LL UL  in figure 4.1. For simplicity, the 

figure illustrates a situation without an interrelation cost parameter, and thresholds 

correspond directly to the sequential factor adjustment thresholds from equations 

equation reference goes here That means 

 

, ,

,

2 L L
L L

i t i t

i t

b
LL A

L

α
= − = − , , ,

,

2 L L
L L

i t i t

i t

b
UL A

L

α
= =  

, ,

,

2 K K
K K

i t i t

i t

b
LL A

K

α
= − = − , , ,

,

2 K K
K K

i t i t

i t

b
UL A

K

α
= =  
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The probabilities of observing the different choices of investment regimes will depend on 

threshold levels derived in equations [3.11] and [3.12], which we have found to be 

dependent on characteristics in the adjustment cost functions. Since we are considering 

choices concerning two production factors simultaneously, we can derive a joint limited 

dependent variable model much similar to a seemingly unrelated bivariate ordered probit 

model. The following sections will show how the model can be derived, and how it can 

be estimated by a Maximum Likelihood routine. 

 

FIGURE 4.1: INVESTMENT REGIMES 

 I I I I    

 II II II II    

 II II II II    
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L H

i t i t
pλ −

, ,

K I

i t i tpλ −



 23 

4.2. Maximum Likelihood 2 

The starting point of maximum likelihood estimation is the assumption that the 

(conditional) distribution of an observed phenomenon (the endogenous variable) is 

known, except for a finite number of unknown parameters. These parameters will be 

estimated by taking those values for them that give the observed values with the highest 

probability, the highest likelihood.  

 

To enable maximum likelihood estimation we need to make an assumption about the 

shape of the distribution of the error terms. The most common assumption is that 
i

ε  is 

normally and independently distributed (n.i.d.) with mean zero and variance 2σ , or 

2(0, )
i

NIDε σ∼ . 

 

Let the density or probability mass function be given by ( ),
i i

f y x θ , whereθ is a K-

dimensional vector of unknown parameters, and assume that observations are mutually 

independent. In this situation, the joint probability mass function of the sample 1,..., N
y y  

is given by  

( ) ( )1

1

,..., ; ;
N

N i i

i

f y y X f y xθ θ
=

= ∏     [4.1] 

The likelihood function for the entire sample is then given by 

( ) ( ) ( )
1 1

, , ;
N N

i i i i i

i i

L y X L y x f y xθ θ θ
= =

= =∏ ∏   [4.2] 

The ML-estimator θ̂  for θ  is the solution to 

( )
1

max log max log ( )
N

i

i

L L
θ θ

θ θ
=

= ∑     [4.3] 

, where ( )log L θ  is the loglikelihood function.  

 

Provided that the likelihood function is correctly specified, it can be shown under weak 

regularity conditions that: 

                                                 
2 This subsection is taken directly from Verbeek (2008), where a more detailed discussion can be found.  
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1. The maximum likelihood estimator is consistent for θ (plim θ̂ θ= ) 

2. The maximum likelihood estimator is asymptotically efficient 

3. The maximum likelihood estimator is asymptotically normally distributed, 

according to ( )ˆ (0, )N Norm Vθ θ− → . 

 

 

4.3. Deriving the Likelihood Function 

We have seen how a theoretical model that specifies an adjustment cost function for two 

input factors is capable of predicting investment behavior with lumps and bumps. This 

analysis will consider the investment decisions for labor and capital in the theoretical 

model as two discrete variables which we can categorize as limited dependent variables. 

Now we need to develop a suitable likelihood function to be maximized by Maximum 

Likelihood. 

 

As the individual firm sees marginal values change, optimal adjustment strategies might 

also be altered. The econometrician will be able to observe firms’ investment decisions. 

However, marginal values ,

L

i tλ  and ,

K

i tλ  are not observable. As in any standard limited 

dependent variable model we say that the observed variable takes its values conditional 

on an unobserved latent variable. In other words, factor adjustments depend on factor 

profitability, which we can not observe.  

 

We start out by considering functions for the latent marginal factor values 

, 0 1 , ,

L L L L H L

i t i t t i tZ pλ β β ε= + + +     [4.4] 

, 0 1 , ,

K K K K I K

i t i t t i tZ pλ β β ε= + + +     [4.5] 
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Equations [4.4] and [4.5] tell us that the shadow values ,

L

i tλ  and ,

K

i tλ  are dependent 

variables and functions of  one explanatory variable ,

j

i tZ , in addition to a constant term,  

( )0

j j

t
pβ + and stochastic error terms , , and L K

i t i tε ε  that include all variables affecting 

marginal values that are not observable. We note that we will not be able to identify 

0  and j j

t
pβ  as these two parameters will be components of an estimated constant term.  

Also, we should be careful about defining explanatory variables ,

L

i tZ and ,

K

i tZ . A standard 

approach in the factor adjustment literature is that these are variables of output-to-labor 

and output-to-capital ratios respectively. This is based on a derivation shown in appendix 

A. The approach traditionally used is unfortunately based on assumptions that are 

somewhat in contrast what motivates this thesis, and the problem is discussed in more 

detail in the appendix. For now we continue with our derivation of the likelihood 

function. 

 

To derive the likelihood function for use in an ML estimation, we can start out by 

considering figure (4.1). As we observe firms’ investment decisions we define our limited 

dependent variable, ,i t
Y , which describes firm i's choice of investment strategy I, II or III 

in period t.  

,

,

,

Regime I          no adjustment

Regime II         adjustment of one factor

Regime III        adjustment of both factors

i t

i t

i t

Y if

Y if

Y if

=

=

=

   

 

Figure 4.1 shows how the investment regimes are limited by upper and lower thresholds 

for which we found expressions in chapter 3. We also remember that these threshold 

values apply to the latent variables ,

L

i tλ  and ,

K

i tλ  net of factor prices  and H I

t t
p p . If the net 

marginal value does not exceed one of the respective thresholds, we will see no 

adjustment of that factor. Using equations [4.4] and [4.5], we can express the investment 

variable ,i t
Y  conditional on the determinants of latent marginal values. 
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( )

( )
, , 0 1 , , ,

, 0 1 , , ,

Regime I       L L H L L L L

i t i t t i t i t i t

K K I K K K K

i t t i t i t i t

Y LL p Z UL

LL p Z UL

β β ε

β β ε

= < + + + <

< + + + <

if

and 

    
 

 

( )

( ) ( )
, , 0 1 , , ,

0 1 , , , 0 1 , , ,

Regime II       

      <

L L H L L L L

i t i t t i t i t i t

K I K K K K K I K K K K

t i t i t i t t i t i t i t

Y LL p Z UL

p Z UL p Z LL

β β ε

β β ε β β ε

= < + + + <

+ + + > + + +

if

                        and or
 

Or 

( )

( ) ( )
, , 0 1 , , ,

0 1 , , , 0 1 , , ,

Regime II       

      <

K K I L K K K

i t i t t i t i t i t

L H L L L L L H L L L L

t i t i t i t t i t i t i t

Y LL p Z UL

p Z UL p Z LL

β β ε

β β ε β β ε

= < + + + <

+ + + > + + +

if

                        and or
 

 

 

( ) ( )

( ) ( )
, 0 1 , , , 0 1 , , ,

0 1 , , , 0 1 , , ,

Regime III         <

     <

L H L L L L L H L L L L

i t t i t i t i t t i t i t i t

K I K K K K K I K K K K

t i t i t i t t i t i t i t

Y p Z UL p Z LL

p Z UL p Z LL

β β ε β β ε

β β ε β β ε

= + + + > + + +

+ + + > + + +

if   or

and  or
 

 

Given our simplification by assuming the interrelation cost parameter 0KLα =  thresholds 

are given by.  

, , ,

,

2 L L
L L L

i t i t i t

i t

b
LL A B

L

α
= − = − = − , , , ,

,

2 L L
L L L

i t i t i t

i t

b
UL A B

L

α
= = =  

, , ,

,

2 K K
K K K

i t i t i t

i t

b
LL A B

K

α
= − = − = − , , , ,

,

2 K K
K K K

i t i t i t

i t

b
UL A B

K

α
= = =  

[4.6] 

 

The likelihood function to be used in the ML estimation follows a standard setup for 

discrete variables. We have the probability for one observation as 

( ) ( ), ,Pr ,              1,2,3
i t i t i

f Y Y= ∈x θ  
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Where ,i t
x  denotes all explanatory variables for firm i at time t, and θ  is a vector of all 

estimated parameters. 

Accordingly we can write a likelihood function for the entire sample as 

( ), ,

1 1

(.) Pr ,
N N

i t i t

i i

L f Y
= =

= =∏ ∏ x θ    [4.7] 

, and the logarithmic likelihood function can then be written as 

( ), ,

1

Log Log Pr ,
N

i t i t

i

L Y
=

=∑ x θ    [4.8] 

( ) ( )

( )

, , , ,

1 1

, ,

1

Log log Pr Regime I , log Pr Regime II ,

log Pr Regime III ,

I II

III

T T

i t i t i t i t

t ti i

T

i t i t

t i

L Y Y

Y

= =∈Ω ∈Ω

= ∈Ω

= = + =

+ =

∑∑ ∑∑

∑ ∑

x θ x θ

x θ

 

           [4.9] 

 

The logarithmic likelihood function tells us that the probability of observing firm i  in its 

respective investment regime at time t is conditional on all explanatory variables ,i t
x  and 

estimated parameters θ . Since the observed adjustment variable ,i t
Y  is a function of two 

latent variables, it is also affected by the explanatory variables ,i t
x  and parameters θ  

from both equations [4.4] and [4.5] simultaneously. Given ,i t
x  and estimation of θ , the 

residuals , , and L K

i t i tε ε  will determine the probability of each observed ,i t
Y . To be able to 

consider interrelations in the two latent equations, we need to specify a functional form 

for the two processes which allows for correlation. We assume the following about our 

error terms. 3 

 

 

 

                                                 
3 The presentation of the bivariate normal distribution function follows Greene (2008). 
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   , , , , , , 0L L L K K K

i t i t i t i t i t i t
E Z Z E Z Zε ε   = =   , ,     [4.10] 

 

, , , , , , 1L L L K K K

i t i t i t i t i t i t
Var Z Z Var Z Zε ε   = =   , ,    [4.11] 

 

, , , ,,L K L K

i t i t i t i t
Cov Z Zε ε ρ  = ,      [4.12] 

 

In addition, we assume that , , and L K

i t i tε ε  are normally distributed. 

 

Now, to estimate probability contributions for each observation we need to express the 

probabilities of estimated error terms. For this purpose we the use the bivariate normal 

cumulative distribution function 

( )
1 2

1 1 2 2 2 1 2 1 2Pr( , ) , ,

x x

X x X x z z dz dzφ ρ
−∞ −∞

< < = ∫ ∫     [4.13] 

Which is defined as 

2 1 2( , , )x x pΦ . 

The simultaneous distribution function is  

( )
( )( ) ( )( )

( )

2 2 2

1 2 1 2

2 1 2 1 2
2

exp 1 2 2 1
, ,

2 1

x x x x
x x

ρ ρ
φ ρ

π ρ

− + − −
=

−
  [4.14] 

 

This distribution provides for us a way to identify the volumes of the three investment 

regimes in figure (4.1). The upper limits that are named 1x  and 2x  equation [4.13] will be 

given values according to our underlying theoretical model. Using the bivariate normal 

distribution function, it can be shown that the probabilities or likelihood contribution for 

each individual observation can be written as: 
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( ), , 2 , , 2 , ,

2 , , 2 , ,

Pr Regime I , , , , ,

, , , ,

L K L K

i t i t i t i t i t i t

L K L K

i t i t i t i t

Y ul ul ll ul

ul ll ll ll

ρ ρ

ρ ρ

   = = Φ − Φ   

   −Φ + Φ   

x θ

   [4.15] 

 

( ) ( )
( )

, , 2 , , 2 , ,

, , 2 , , 2 , ,

, 2 , , , 2 , ,

Pr Regime II , , , , ,

, , , ,

, , , ,

L K L K

i t i t i t i t i t i t

L L L K L K

i t i t i t i t i t i t

K L K K L K

i t i t i t i t i t i t

Y ll ul ll ll

ul ll ul ul ul ul

ul ul ul ll ul ll

ρ ρ

ρ ρ

ρ ρ

   = = Φ − Φ   

       + Φ − Φ − Φ + Φ       

      + Φ − Φ − Φ + Φ      

x θ

( )
( )2 , , 2 , ,, , , ,L K L K

i t i t i t i t
ul ul ll llρ ρ



   + Φ − Φ   

 

           [4.16] 

 

( ) ( )
( )

( )

, , , 2 , ,

, , 2 , ,

2 , ,

, 2 , ,

Pr Regime III , , ,

1 , ,

, ,

, ,

L L K

i t i t i t i t i t

L K L K

i t i t i t i t

L K

i t i t

K L K

i t i t i t

Y ll ll ll

ul ul ul ul

ll ll

ll ul ll

ρ

ρ

ρ

ρ

   = = Φ − Φ   

     + − Φ − Φ + Φ     

 +Φ  

   + Φ − Φ   

x θ

  [4.17] 

 

where   , , 0 1 , ,

L L L L L H

i t i t i t i tll LL Z pβ β= − − − ,  , , 0 1 , ,

L L L L L H

i t i t i t i tul UL Z pβ β= − − −  

, , 0 1 , ,

K K K K K I

i t i t i t i tll LL Z pβ β= − − − , , , 0 1 , ,

K K K K K I

i t i t i t i tul UL Z pβ β= − − −  

[4.18] 

 

Inserting equations  [4.15] - [4.18] into equation [4.9] completes the derivation of a 

likelihood function for the case of no interrelation cost, 0KLα = . 
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4.4. Adjusting For the Existence of ≠KL 0α  

Up to this point we have ignored the contents of our thresholds in figure (4.1). Since we 

have found threshold levels for both sequential and simultaneous adjustment, we 

remember that these are not identical, except for the special case where 0KLα =  (no 

interrelation cost parameter). On the contrary, threshold levels may be closer to or further 

away from zero depending on the sign of KLα , which makes our expressions for the 

action spaces ambiguous.  

 

The figures (4.2) and (4.3) illustrate possible effects of the interaction term KLα . Figure 

(4.2) shows the grid of investment regimes in the case of a positive interaction term, 

making joint adjustments relatively costly. In the second figure, the sign of the interaction 

term is negative, which causes an opposite effect. Footers A and B denote thresholds 

relevant for separate or joint adjustments respectively. 

 

Now we have two sets of lower and upper level thresholds for each of the two production 

factors. One for sequential, and one for simultaneous adjustments. As can clearly be seen 

from the two diagrams, a negative KLα  makes joint adjustments more likely to occur as 

the size of regime III clearly grows in figure (4.3). Given what we found in section 3, this 

is perhaps old news. However, this effect has important implications for our likelihood 

function as we need to specify probability expressions conditional on the sign of KLα . 
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FIGURE 4.2: INVESTMENT REGIMES, , , , KLα > 0> 0> 0> 0    
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First, we notice how the four spaces that make up regime III are limited by the same 

thresholds in both cases, even though they have different sizes. This is unfortunately not 

the case for the volume of the inaction space, regime I, which in figure (4.2) is limited 

only by , ,  and L L K K

A A A A
LL UL LL UL , but in figure (4.3) also is affected by , ,L L K

B B B
LL UL LL  

and K

B
UL . The same effect also applies to the action spaces of regime II, which clearly 

overlap in figure (4.2) but not in figure (4.3). Our likelihood function, therefore, needs to 

express the volumes of regimes I and II conditional on the sign of KLα . We start out with 

the same setup as before. 

FIGURE 4.3: INVESTMENT REGIMES, KLα < 0 
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( ) ( )

( )

, , , ,

1 1

, ,

1

Log log Pr Regime I , log Pr Regime II ,

log Pr Regime III ,

I II

III

T T

i t i t i t i t

t ti i

T

i t i t

t i

L Y Y

Y

= =∈Ω ∈Ω

= ∈Ω

= = + =

+ =

∑∑ ∑∑

∑ ∑

x θ x θ

x θ

 

           [4.9] 

This time, however, we want to consider the effect of KLα , and therefore we need new to 

revise the probability expressions. Using the fact that the volume of all the action spaces 

summarize to unity, we can write new unambiguous action spaces as the following 

conditional equations 

( )

( )

( )
( )

, ,

, , , ,

, ,

Pr Regime I , *                   0

Pr Regime I , Pr Regime III ,
1         0

Pr Regime II ,

KL

i t i t

i t i t i t i t
KL

i t i t

Y if

Y Y
if

Y

α

α

 = >

  = = =

 − <
 + =  

x θ

x θ x θ

x θ

 [4.19] 

  

( )

( )

( )
( )

, ,

, , , ,

, ,

Pr Regime II , *                0

Pr Regime II , Pr Regime III ,
1         0

Pr Regime I ,

KL

i t i t

i t i t i t i t
KL

i t i t

Y if

Y Y
if

Y

α

α

 = <

  = = =

 − <
 + =  

x θ

x θ x θ

x θ

 [4.20] 

 

( ) ( ), , , ,Pr Regime III , Pr Regime III , *
i t i t i t i t

Y Y= = =x θ x θ     [4.21] 

In accordance with what we observe from the figures, the sign of  KLα  does not alter the 

boundaries of action spaces with simultaneous adjustments (Regime III). The possibility 

of 0KLα ≠  does however, make it necessary to separate between two sets of upper and 

lower level thresholds. One that applies when 0KLα < , and one that applies when 

0KLα > . In the firs case the probability expression for Regime II is given as a residual, 

while in the latter, Regime I is a residual. The full expressions for probabilities marked 

with asterisks are given below. 
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By inserting equations [4.19] - [4.26] into equation [4.9] we obtain a logarithmic 

likelihood function for a whole sample which now contains probability expressions that 

are valid in both figure (4.2) and (4.3). In other words, it should enable us to estimate a 

model with both non-convexities and interrelations in the adjustment cost functions of 

two factors, regardless of the sign of the interrelation parameter KLα . We must now 

consider how this likelihood function can help us identify the different underlying 

adjustment cost parameters.  

 

 

4.5. Parameterization 

In section 4.3, a loglikelihood function is derived for use in a Maximum Likelihood 

estimation routine. For the sake of exact identification, we have also seen the need of 

altering the assumed adjustment cost function. Before I go on to present some results, I 

will try to give a brief summary of how estimates of the cost parameters can be found by 

manually defining the structure of the likelihood function, and maximizing the equations 

using STATA’s ML command. First, I will present the basic idea behind the 

programming structure, after which I will give a little more detailed explanation on which 

estimates can be found through such a procedure. 

 

4.5.1. The basic set-up 

To better understand the issues of estimating the likelihood function, I start out by 

considering a basic set-up behind programming the Maximum Likelihood function. 

1st step: Define variables to represent underlying cost parameters, and define equations 

for the respective threshold values. This is where we include our adjustment cost 

parameters and show how they affect the respective thresholds. 

2nd step: Define probability expressions for the three investment regimes, conditional on 

the sign of KLα , using threshold values defined in step 1. This is done by expressing each 

probability as the sum of integrals of the bivariate normal distribution. The probabilities 
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were derived as unambiguous expressions in section 4.4, where the sign of KLα  was 

identified as a key issue for specifying the likelihood function consistent with the 

theoretical model, and figures (4.2) and (4.3) 

3rd step: Define the final logarithmic likelihood function given by the sum of probability 

expressions in step 3. 

4th step: Maximize the function given in step 4, by setting cost parameters and 

coefficients to values that jointly maximize the probability of the investment behavior in 

a simulated dataset. The intuition behind the procedure is to maximize the joint 

probability of the observations through the setting of thresholds in addition to the 

coefficients of the lambdas. These thresholds are defined by cost parameters, which 

allows for maximizing the function with respect to the parameters from the theoretical 

model. 

 

 

4.5.2. Setting Cost Parameters 

Although getting estimates for all components of the adjustment cost function now seems 

to be within reach, the observant reader will notice that it may not be possible to identify 

the size of all parameters, and indeed this is the case for this procedure. When we derived 

threshold values in section 3.1, we found that the marginal value of an additional unit of 

one production factor net of the purchase price must be larger than the threshold value A 

or B. The appropriate threshold (A or B) depended on the choice of sequencing. Since 

upper and lower thresholds are identical, as seen from equations given below, we only 

define four different threshold variables. Thus, we write 

, , ,

L L

i t A i tLL A= − , , , ,

L L

i t A i tUL A= , , , ,

L L

i t B i tLL B= −  and , , ,
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i t B i tUL B= . 

And for investments in capital  
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K K

i t A i tLL A= − , , , ,

K K

i t A i tUL A= , , , ,

K K

i t B i tLL B= −  and , , ,

K K
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Where, as before 



 37 

,

,

2 L L
L

i t

i t

b
A

L

α
= , ,

,

2 K K
K

i t

i t

b
A

K

α
= , ,

,

2 L L KL
L

i t

i t

b
B

L

α α+
= , ,

,

2 K K KL
K

i t

i t

b
B

K

α α+
= . 

 

Now that we are maximizing the likelihood function with respect to four different 

threshold values, it is obvious that this is not possible while identifying five different cost 

parameters. Any combination of thresholds , ,  and L K L KA A B B can be derived from an 

infinite number of combinations of , , ,  and L K L K KLb b α α α .  

 

Since the main interest of an empirical study where one would apply the model derived 

here lies the fixed cost parameters ,  and L K KLα α α , and their relative sizes, an estimation 

of the relative size of  and L K
b b is satisfactory in this context. This can be used to limit 

the number of cost parameters to equal the number of threshold values, thus enabling 

exact identification. A satisfactory parameterization can therefore be applied by 

normalizing , ,  and L K L KA A B B with respect to 2 L
b . This gives threshold expressions: 

,
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[4.27] 

Where a tilde indicates a parameter normalized with respect to 2 L
b . Defining a variable 

K

L

b
bb

b
=  thus enables us to maximize the logarithmic likelihood function by setting 

threshold levels given by a unique combination of parameters ,  ,   and L K KLbb α α α� � � . This 

is particularly convenient because our main interest lies in the relative sizes 

of ,  and L K KLα α α . One must however, keep in mind that individual estimates of alphas 

in the normalized thresholds do not directly translate back to their interpretation from 

equations [3.11] - [3.16]. 

 

Since we are mainly interested in relative sizes we can use these normalized expressions 
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in the estimation. We must however assume that 0L
b >  to ensure that our estimated 

model has the right interpretation. Firstly, we can clearly not allow for a zero value. 

Second, because we need to specify investment regimes conditional on the sign of KLα  

which in practice needs to be conditioned on the sign of KLα� , we must add the 

assumption of 0L
b > . This should be a reasonable assumption remembering that L

b  in 

the adjustment cost function 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )
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+ ⋅ ≠ ⋅ ≠

 

           [3.3] 

is the convex cost parameter of labor adjustment, and therefore assumed to be positive. 

 

4.6.  Areas of Discontinuity of Derivatives  

Although we at this point should be able find a unique combination of parameters to 

maximize our likelihood function, convergence is not necessarily easy when running the 

estimation procedure. Apart from setting feasible initial values, another problem easily 

arises as the software iterates to find a maximum. If either LB  or KB  is likely to be zero, 

the estimator will have a strong tendency to arrive at values of ,   and L K KLa a a� � �  so that 

KL L
a a= −� �  or KL K

a a= −� � . This will indeed give zero values of LB or KB  respectively. 

However, such values make it impossible for the software to calculate numerical 

derivatives (at 0 ), and consequently the estimation will break down. 

 

In their theoretical model, Letterie et al. predicts that if 0K KLα α+ ≤ , this would mean 

that it will always be optimal for the firm to change the level of capital in every period it 

changes the level of employment. This is true because the effect of the fixed term Kα  is 
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completely balanced by the cost advantage represented by 0KLα < . This might indeed be 

the effect that is causing problems for the issue of convergence, and running simulations 

with different characteristics indicates that the estimation is more likely to break down if 

adjustment in one of the factors is always followed by adjustment of the other. 

 

Since we may run into this issue when applying the estimation procedure to real life data, 

it might in practice be necessary to reformulate the likelihood function, in particular the 

threshold values, to avoid “unfriendly” values of ,   and L K KLα α α . This however, can 

not be done without changing the formulation of the adjustment cost function in the 

theoretical model. The following section shows how such a reformulation can be carried 

out, and how new adjustment thresholds are derived. 

 

 

4.7.  Re-formulation of the Adjustment Cost Function 4 

4.7.1.  Sequential adjustment 

As before the management maximizes the value of the firm denoted by V(.) in equation 

(2.4.1). However, the new specification of the firms adjustment cost function is as 

follows: 
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           [4.28] 

                                                 
4 The derivation in this subsection follow the derivation of optimal factor adjustment levels in Letterie et. 
al. (2009) 
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where the changes from the original formulation are given in bold letters. Under this 

specification, we let fixed cost components depend on firm size. The fixed costs of 

capital adjustment grow with the level of capital,
t

K , and the fixed costs of labor 

adjustment grow with the number of workers employed by the firm,
t

L . The size of a 

possible interrelation cost is dependent on the levels of both capital and labor, through the 

term t tK L . As before capital and labor evolve according to equations [3.4] and [3.5] 

respectively. Maximization of firm value yield identical first-order conditions as were 

shown in equations [3.6] and [3.7], and optimal rates of investments and hiring as in 

equations [3.8] and [3.9]. 

 

The management of the firm will wish to adjust the level of capital if the benefits 

associated with an adjustment exceed the costs. That is if 

( )
2

0
2

K
K I K t

t t t t t
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Ib
p I K K
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λ α

 
− > +  
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   [4.29] 

which gives  

1
( )

2

K I K

t tK
p

b
λ α− ≥      [4.30] 

Now we have the following threshold for capital adjustment:5 

*2L I K K K

t t
p b Aλ α− > ≡      [4.31] 

And similarly we have the following threshold for changes in labor: 

*2L H L L L

t t
p b Aλ α− > ≡      [4.32] 

 

 

 

                                                 
5 Asterisk denotes factor adjustment thresholds after re-formulation of the adjustment cost function. 
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4.6.2.  Simultaneous adjustment 

In the case of simultaneous adjustment, the cost component KLα  will come into play, and 

we can derive thresholds that are valid under the new parameterization of the adjustment 

cost function. As before, it is optimal to adjust an additional factor of production if the 

net benefits associated with that adjustment exceed the fixed costs of that second input 

( Kα  or Lα ) plus the cost of interrelation 0KLα > . For an additional investment in 

capital, this gives 

( )
2

0
2

K
K I K KLt

t t t t t t t

t

Ib
p I K K K L

K
λ α α

 
− > + + 
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  [4.33] 

 , which can be rewritten as 

( )
21

2
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t t t t tK

t

p K K L
b K

α
λ α− > +    [4.34] 

In the case of an additional adjustment in the number of employees this translates into 

( )
21

2

KL
L H L

t t t t tL
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p L K L
b L

α
λ α− > +     [4.35] 

We now have the following two thresholds for simultaneous adjustments: 

*2K I K K KL Kt

t t

t

L
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K
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 
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 
   [4.37] 

As before, we can estimate the model with normalized threshold expressions and 

maximize the likelihood function with respect to parameters ,  ,   and L K KLbb α α α� � � .  

 

When applying these new thresholds to the log likelihood function, we avoid the 

problems using the original parameterization, described in section 4.3. The reason for this 

can clearly be seen as the term in the brackets on the right hand side of equations[4.36] 
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and [4.37] no longer only consist of a sum of K KLα α+  and L KLα α+  respectively. The 

last term is now a product of KLα  and the square root of the ratio of labor to capital, or 

capital to labor. This means that a solution where LB  or KB  is set to zero for all 

observations can not be accomplished by simply setting Lα  or Kα  equal to KLα− , but 

must result from 0L KLα α= =  or 0K KLα α= = . 

 

On a further note, one of the predictions of Letterie et al. was that the importance of 

possible interrelations is dependent upon firm size, represented by  and 
t t

L K . More 

precisely the prediction was that firm size would decrease the importance of the 

interrelation term KLα  through the denominators  and 
t t

L K  in the investment thresholds 

 and L K

I I
B B  respectively. Under the new specification of the cost function, we lose the 

inclusion of these denominators, so that the roles of  and 
t t

L K  become slightly different.  

 

A large 
t

L  will still undermine the importance of KLα in labor adjustments, and 
t

K  will 

do the same for capital adjustments. However, under the alternative specification, the 

relative levels and not the absolute levels of production factors are decisive. A large 

labor-to-capital ratio (number of workers for every machine) will decrease the 

importance of KLα  in decisions of hiring when capital is adjusted in the same period. 

Likewise, it will increase the importance of KLα  in decisions of capital investment when 

labor is adjusted in the same period. In other words, a labor-intensive producer will be 

relatively unconcerned about whether or not the firm also invests in capital when 

deciding on changes in employment. Interrelations in hiring decisions should, on the 

other hand, matter more when it comes to a capital-intensive producer.  
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5. Data 

To be able to observe the performance of the Maximum Likelihood estimator, a 

simulated panel dataset is constructed for use in an illustrative analysis. In this section, 

some characteristics of data in similar empirical studies are discussed. Summary statistics 

for data simulated to test our derived model follows. The simulated data is created to 

replicate moments seen in datasets used to analyze firms’ factor demand. 

 

5.1. Characteristics of Data in Empirical Research 

In studies concerning factor adjustments of labor, capital or both, we can find some 

general characteristics that seem to be relatively consistent in the datasets applied. We 

can use some of these general qualities as a basis for our simulations to ensure that we are 

not drifting to far off from the real world.  

 

For our purpose, the feature of main interest lies in the variables of hiring and investment. 

While zero adjustment of capital make up about eight per cent of the observations from 

US manufacturing plants used by Cooper and Haltiwanger (2005), Norwegian data used 

in a study by Nilsen and Schiantarelli (1998) contain about twenty-one per cent inaction 

observations. Rota (2004), studying adjustments of labor, apply a dataset where zero 

adjustment stand for around twenty per cent of observations of Italian firms over a ten 

year period. Contreras (2006) studies simultaneous adjustments of labor and capital for 

Colombian plants, and inaction in investments make up about nineteen per cent of the 

observations, while inaction in labor adjustment stand for about thirteen per cent. 

 

Further, investments in capital equipment seem on average to be positive, while the 

average of hiring or firing seems to lie closer to zero. Letterie et al. (2004) use data from 

the Dutch manufacturing sector with an average labor adjustment ratio of 0.015 and an 

average investment ratio of 0.098. Similarly, the average investment rate in the data 

applied by Cooper and Haltiwanger (2005) is about twelve per cent and the fraction of 

observations with negative investments only ten per cent. 
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Also, most data used indicates positive correlation between hiring and investment 

decisions, although of different magnitude. In a working paper by Narazzani (2009), firm 

level correlation seems substantial, while the data studied by Contreras (2006) only 

inhabit a correlation of 0.057. 

 

5.2.  Simulation 

Variables are generated for 1000 observations to represent hiring (H/L) and investment  

rates (I/K) together with levels of labor (L) and capital (K) and variables to represent 

shadow values net of purchase/resale prices for the two inputs (qK and qL). We establish 

positive correlation between shadow values and their respective adjustment rates, but also 

set a low positive correlation between shadow values and adjustments of the second 

input. In addition to positive correlation between the factor adjustment rates, we simulate 

a positive correlation between the two marginal values. Investment rates are constructed 

to be slightly higher than hiring rates on average, and the same is done for the average 

level of capital compared to the average level of labor.  

 

We also construct year variables, so that we work with a balanced panel data set of 200 

firms over five years. However, we do not generate any time specific or firm specific 

effects, so that any such effects are purely random  

 

To give the data qualities similar to those seen in studies of investment behavior, we take 

a few extra measures in the generating process. Firstly we drop observations with values 

of labor (L) and capital (K) smaller than 25 to avoid negative and small values. Secondly, 

we wish to observe the same accumulation around zero adjustments as is seen in a lot of 

firm level data. This is done by letting all hiring and investment rates with an absolute 

value less than 0.05 take a zero value. The effect is clearly seen from the histograms in 

figures (5.1) and (5.2) as they display apparent peaks around the zero values in what 

otherwise looks like bell shaped distributions.  
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TABLE 5.1: CORRELATION MATRIX 

    H/L I/K L K qK qL 

H/L 1      

I/K 0.7238 1     

L -0.0095 0.0295 1    

K -0.0700 -0.0539 0.5778 1   

qK 0.2198 0.5595 0.0241 -0.0383 1  

qL 0.5604 0.1673 -0.0329 -0.0633 0.5066 1 

 

 

 

TABLE 5.2: SUMMARY STATISTICS 

Variable Obs. Mean Std. dev. Min. Max. 

H/L 1000 .003465 .198821 -.7398592 .5436076 

I/K 1000 .0105616 .2002771 -.5664857 .7501802 

L 1000 358.0854 240.7971 25.46533 1389.317 

K 1000 7884.791 3779.305 89.18464 20929.77 

qK 1000 3.084015 2.986225 -8.111652 12.74151 

qL 1000 3.916717 4.16364 -9.872766 20.57577 

 

 

When we look at the joint distribution of the discrete variables of hiring and investment 

in table 5.3, we see that the simulated sample is dominated by positive investment in 

capital, but also that observations with a simultaneous positive adjustment have the 

highest count. Hiring seems only to occur along with positive investments, while firing is 

relatively evenly distributed over investments in capital. Negative investments in capital 
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are almost exclusively occurring alongside firing, while positive investments are more 

evenly distributed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When it comes to inaction, we see a very small amount of simultaneous inaction, which 

to the eye indicates a relatively small role played by non-convexities, even though the 

indications from the individual histograms point in another direction. Given the 

possibility of interrelations in the adjustment cost functions and lessons from earlier 

research, we also know that we should be careful about which conclusions we draw from 

simply investigating descriptive statistics of investment patterns. Perhaps these 

distribution diagrams show us just that. The next section will present the estimation 

results after applying our empirical model on the simulated data. The hope is that these 

results can shed some light on possible underlying factors. 
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TABLE 5.3: HIRING & INVESTMENT (JOINT DISTRIBUTION) 

 Hiring  

Invest -1 0 1 Total 

-1 87 3 1 91 

0 92 24 8 124 

1 214 152 419 785 

Total 393 179 428 1000 

 

 

It is noteworthy how different ways of generating zeros in the two adjustment processes 

give different implications for what we would expect of the role of an interrelation cost 

parameter KLα . Working on generating data in does in some ways give insight to how 

difficult it can be to spot an interrelation effect from the cost function just by an eyeball 

FIGURE 5.2: INVESTMENT 
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test of descriptive statistics. In appendix B, descriptive statistics of an alternative 

simulation can be found. The correlation matrix and summary statistics of the two 

datasets applied look very much similar. However, these matrices are not really the main 

determinants of observations of joint inaction. The main difference between the two 

simulations presented lies in the process of generating extra observations of zero 

adjustments.  

 

The first dataset is given extra zeroes by letting observations of the variables H/L and I/K 

take a zero value if the absolute value is less than 0.05. The approach is altered when 

generating the second dataset as we want to see the effects of a cost reduction from 

simultaneous adjustments. We increase the amount of observations with no adjustments 

to increase the probability of significant nonconvex parameters, and zeroes are generated 

for absolute values less than 0.10. This creates both individual and joint zeroes dependant 

on the correlation between H/L and I/K. In addition, extra zero observations are 

generated for all observations where one of the adjustment variables has an absolute 

value less than 0.20, but only if the other adjustment variable is a zero. The intention 

behind this is to let those observations that are simultaneously larger than the first 

threshold have “an advantage” over those that only contain one adjustment variable 

above that particular limit, thus simulating a simultaneous cost advantage. In sum, we 

would therefore expect interrelations to play a more prominent role in the behavior 

simulated in the appendix, as no such trick is applied in the simulated data presented 

above. 
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6. Estimation Results 

6.1. Simultaneous Estimation 

Table 6.1 presents estimation results for two different simulated data sets with standard 

deviations in parentheses. Column (i) contains estimates for the data presented in chapter 

5, while column (ii) contains estimates for a dataset with characteristics presented in 

appendix B. Our parameterization using a reformulated adjustment cost function allows 

estimation of coefficients of simulated marginal q’s from equations [4.4] and [4.5], 

normalized with respect to 2 L
b  (denoted 1

Lβ�  and 1

Kβ� ). We also obtain normalized 

coefficient estimates of constant terms which include ( )0 ,

K I

i t
pβ +  and ( )0 ,

L H

i t
pβ +  from 

the same equations, in addition to year dummies, though they are not reported here. 

 

Further, estimates are reported for logarithmic values of the normalized fixed adjustment 

cost parameters,  and L Kα α� � , and the relative sizes of  convex cost parameters, 
LK

b b . 

These are on logarithmic form to restrict estimation to positive values. No such restriction 

is applied to the estimation of the interrelation cost parameter KLα� , although we must 

remember that this of course is normalized with respect to 2 L
b as indicated by a tilde. 

 

The last estimate is of ρ� , which we remember is the correlation coefficient in the 

bivariate normal distribution function in equation  [4.14]. A large positive estimate of this 

parameter indicates a high level of positive correlation between the error terms 

, , and L L

i t i tε ε  in the latent equations [4.4] and [4.5]. This would mean that any unobserved 

factors affecting the profitability of one input have a tendency of affecting the 

profitability of the second input in the same direction. Obviously, the opposite would be 

true in the case of a large negative estimate of ρ� . 
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Table 6.2 presents derived parameters and ratios that we are able to obtain from the 

results in table 6.1. P-values after nonlinear tests are reported in the parentheses. These 

are perhaps the results of main interest, since normalized parameter estimates 

individually are of limited use. They include as well as comparisons of convex and 

nonconvex cost parameter sizes for labor and capital, the relative sizes of fixed costs 

compared to the estimated interrelation component and a comparison of estimated total 

threshold sizes, 
L

K
A

A
. 

 

From column (i) in table 6.1 we see that although only two of the parameter estimates are 

statistically significant, the results indicate positive relationships between marginal q’s 

and factor profitability through positive estimates of 1

Lβ�  and 1

Kβ� . This is certainly 

something we would expect from real life firm behavior. The estimated correlation 

coefficient ρ�  is significant and indicates a strong negative correlation between the error 

terms , , and L L

i t i tε ε . This suggests that unobserved effects that influence factor profitability 

seem to have opposite effects for the two production inputs. The estimates of log 

transformed fixed cost parameters  and L Kα α� � , indicate a relatively large fixed cost 

component in labor adjustment costs and a relatively small fixed cost component for 

capital. The opposite is true for the estimate of the relative sizes of convex cost 

parameters ( ln
LK

b b  ) where the indication points towards a relatively large convex 

cost component for capital compared to that of labor adjustment. The indications are 

supported by the post-estimation results presented in table 6.2, where relative sizes of 

cost parameters and threshold levels are shown explicitly.  

 

Although none of the estimates are statistically significant, we note that they are perhaps 

in contrast to what we would expect from observed firm level behavior regarding the 

degree of fixity of labor and capital. Since capital is usually considered as a less flexible 

input than labor, we would for a real data set, expect the fixed component of adjustment 

costs to be large relative to that of labor, and perhaps, but not necessarily, the opposite 
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relationship for convex costs. It would at least be likely that the threshold size would be 

larger for capital than labor, given that capital adjustment in most cases is more lumpy 

than labor adjustment.  

TABLE 6.1: PARAMETER ESTIMATES    

(Reformulated adjustment cost function) 

 (i) (ii) 

1

Lβ�  .01606 
(.01157) 

.09757 
      (.01383)*** 

1

Kβ�  .08160 
      (.02223)*** 

.28485 
      (.02754)*** 

( )ln Lα�  3.5222 
(3.1875) 

4.5280 
      (.40275)*** 

( )ln Kα�  -4.2445 
(7.7759) 

1.2353 
      (.34863)*** 

ln
LK

b b  
4.1122 

(7.7635) 

-1.0286 
      (.37800)*** 

KLα�  .00053 
(.00826) 

-7.9402 
(4.6760)* 

ρ�  -.84752 
      (.0724482)*** 

.15809 
(.10708) 

N 
1000 1000 

Log L 
-658.49 -951.53 

Notes: Standard deviations are given in parentheses. * Indicates significance at 10% 
level. ** Indicates significance at 5% level. *** Indicates significance at 1% level. 
Column (i) presents results from estimation on the dataset presented in section 5. Column 

(ii) presents results from estimation on a dataset created to generate 0
KLα < . ρ̂  is the 

estimated correlation coefficient for the error terms , , and L K

i t i tε ε in the latent equations. 

 

Column (ii) of table 6.1 displays estimation results for the second set of simulated data. 

First, we notice how nearly all coefficient estimates are statistically significant. Again we 

find positive relationships between marginal q’s and factor profitability through positive 

estimates of 1

Lβ�  and 1

Kβ� . The estimate of the correlation coefficient however, has gone 

from negative to not significantly different from zero. As in column (i), the estimate of 

fixed cost parameters  and L Kα α� � indicate a relatively large fixed cost component for 

adjustments in labor, which is confirmed by the post-estimate of  L Kα α  in table 6.2. 
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The estimation of the relative sizes of convex cost parameters also strongly indicates a 

relatively large parameter for labor. In contrast to the results in column (i), the relative 

differences are statistically significant, and so is the difference in threshold levels, 

measured by 
L

K
A

A
.  

 

 

TABLE 6.2: DERIVED PARAMETERS AND RATIOS 

(Reformulated adjustment cost function) 

 (i) (ii) 

Lα�  
33.859 

(0.754)* 

92.578 
(0.013)* 

Kα�  
.01434 

(0.898)* 

3.4393 
(0.004)* 

L Kα α  
2360.8 

(0.907)** 

26.918 
(0.006)** 

L KLα α  63514 
(0.950)** 

-11.659 
(0.011)** 

K KLα α  26.903 
(0.903)** 

-.43315 
(0.000)** 

LK
b b  

61.082 
(0.899)** 

.35748 
(0.000)** 

L

K
A

A
 

38.650 
(0.773)** 

75.299 
(0.0185)** 

Notes: The table presents post-estimations of derived ratios together with p-values in 
parentheses after non-linear tests. * Indicates a p-value of a test with a null hypothesis of 
size = 0. ** Indicates a p-value of a test with a null hypothesis of size = 1. Column (i) 
presents results from estimation on the dataset presented in section 5. Column (ii) 

presents results from estimation on a dataset created to generate 0
KLα < . 

 

In addition to the obvious result that more estimates turn out to be significant in column 

(ii), the estimate of the interrelation cost parameter, KLα� , has gone from very close to 

zero in the first column to a borderline case of a significantly negative estimate. In 

addition, the post-estimation of L KLα α  and K KLα α tell us that the interrelation 

parameter is relatively small compared to Lα , and relatively large compared to Kα . A 
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small relative size in absolute terms seems most reasonable, given that possible 

interrelation effects in most studies appear to be subtle.  

 

The estimation presented in column (ii) is applied to data generated to inhabit strong 

signs of both nonconvexities and interrelations. The results presented indicate that our 

routine is equipped to pick up such differences in data characteristics. However, it is 

crucial to include a discussion of what the effect the estimate of KLα�  may have on the 

identification of the remaining parameters. In table 6.1 we see a striking difference 

between the estimates of Kα�  and the relative sizes of  and K L
b b . In column (i) a large 

estimate of ln
LK

b b  goes hand in hand with a small estimate of ( )ln Kα� . This happens 

while standard deviations indicate very uncertain estimates. This might not look too 

dramatic, but may nevertheless lead us to investigate the possible role of KLα� . 

 

Perhaps the most important motivational factor behind estimating a likelihood function 

described in this section, is to allow for interrelations in our adjustment cost function to 

see how this affects decisions of factor adjustment. We have derived an empirical model 

that allows us to test the null hypothesis of 0KLα = . Given that we want to test this 

hypothesis, we should also consider what happens to our model if the true value of the 

interaction term is in fact zero.  

 

No interaction term would, as we remember make our adjustment thresholds equal for 

sequential and simultaneous adjustments. That is 

, ,

,

2 L L
L L

i t i t

i t

b
A B

L

α
= =    and   , ,

,

2 K K
K K

i t i t

i t

b
A B

K

α
= =  

Or given by our four parameters used in estimation 
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, ,

,

L
L L

i t i t

i t

A B
L

α
= =

�
� �    and   , ,

,

K
K

L
K K

i t i t

i t

b

bA B
K

α
= =

�

� �  

 

The equation above tells us that under the condition of no interrelation term, estimation 

of our previously chosen parameters will make our model unidentifiable. The problem 

arises because one threshold level for capital adjustment in our likelihood function now 

can be expressed through an infinite number of combinations of parameters 

 and 
K

K
L

b
b

α� . This is certainly problematic since one of the key questions in this 

analysis is how we can estimate the size of KLα . Now that we see how our estimation 

approach will break down if a null hypothesis of 0KLα =  is true, it should make us 

question the attractiveness of the log likelihood function for our purpose. A likely 

outcome of any empirical application is that we end up with an estimated KLα�  that differs 

insignificantly from zero. If this would be the case, estimates of  and 
K

K
L

b
b

α�  would as 

a consequence be highly questionable, and we would possibly be unable to identify the 

size of convex costs compared to nonconvex costs in addition to the relative size of 

convex cost parameters 
K

L
b

b
 and nonconvex parameters 

L

K
α

α
.  

 

In an empirical application we would roughly stated, as the interrelation term moves 

towards zero, expect the likelihood function to move closer to an area where the 

parameters in question are unidentifiable. In such a case we would expect the derivatives 

that describe the marginal effects on the likelihood value of adjusting parameter values to 

become very small as they move towards zero. Accordingly we may observe very large 

or very small estimates of either one of the estimates, even though none of them are 

significantly different from zero. The intuition behind this stems from what we know 

about estimation by Maximum Likelihood, where standard deviations are estimated on 

the basis of second derivatives. A relatively small standard deviation which indicates a 

reliable coefficient estimate corresponds to a large negative second derivative and vice 
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versa. In the opposite case, adjusting the coefficient estimate marginally is not important 

for the likelihood value, resulting in an uncertain estimate. 

 

This potential identification problem may be a plausible explanation for some of the 

differences between column (i) and (ii). In any case, the possibility that the parameters in 

our model are not identifiable under certain circumstances is of great concern. Therefore, 

in future work on an empirical application of this model, this weakness should be 

addressed. For that purpose, a new formulation of the adjustment cost function might be 

necessary. 

 

 

6.2  Separate Estimation 

For comparison purposes, we also estimate two separate ordered probit models by a 

customized ML approach. The difference is that this time we assume that the interrelation 

term, 0KLα = , and that we assume the two adjustment decision equations are completely 

unrelated, so that there exists no correlation between the error terms in the two equations 

( )0ρ = . Table 6.2 displays the results of the separate estimations. We notice how we 

find the same relationship between the simulated marginal q’s and factor adjustment as 

before. As expected, coefficients  and L K
q q

β β are positive, which means that they have a 

positive effect on the latent variables , , and L K

i t i tλ λ  respectively. In a traditional limited 

dependent variable language, we interpret this as a positive effect of the marginal value 

of one input factor on the expected utility of one additional unit of that input. We further 

note that the threshold for capital adjustment is estimated to be relatively large compared 

to that of labor. Even though the difference seems small and the threshold estimates after 

simultaneous estimation were not significantly different, this is the opposite of what was 

indicated in table 6.1 using the same data.  
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TABLE 6.2: PARAMETER ESTIMATES  -  

SEPARATE ESTIMATION   

 Labor Capital 

1

Lβ�  .16230 
      (.01073)*** 

- 

1

Kβ�  - .23767 
     (.01859)*** 

( )ln L

S
A  -1.2983 

       (.06832)*** 
- 

( )ln K

S
A   -1.102545 

     (.08239)*** 
   
N 1000 1000 

Log L -906.51 -565.42 

Notes: *** Indicates estimates significant at 1% level. Separate likelihood functions only 

allow us to estimate one threshold parameter for each factor. These are denoted 
L

S
A  for 

labor, and 
K

S
A for capital. To restrict the estimation to positive values, we estimate log 

transformed variables. The relative size of 
L K

S S
A A  is approximately 0.82.  
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7. Concluding Remarks 

In this analysis we have derived and discussed the properties of an estimable model of 

factor adjustment that allows for nonconvex adjustment costs. In addition our model 

allows for the existence of an interrelation cost that may reduce or increase the costs 

when factor adjustments in two inputs occur simultaneously. Further, we have discussed 

parameterization necessary to identify our parameters of main interest. In sum, this text 

shows how a likelihood function can be written to estimate adjustment cost parameters 

that can be traced directly back to a theoretical framework for adjustment costs and factor 

demand.  

 

The model is tested on simulated panel data which replicate moments often seen in 

datasets used to analyze firms’ factor demand. Two different datasets are created to 

investigate the properties of the model. The datasets have characteristics that are similar 

in most respects, but are purposely created to differ in the patterns of zero adjustments. 

Running the estimation routine, we are able to obtain estimates of nonconvex adjustment 

cost parameters. The estimations on simulated data show how the ML estimates differ 

between a case with an interrelation cost parameter close to zero and a case where we 

estimate the parameter to be negative.  

 

While presenting the performance of our customized Maximum Likelihood estimation, 

the text has also pointed out crucial assumptions and weaknesses to such an approach. 

The simultaneous estimation allowing for correlation between factor demand equations is 

obviously a strength. Empirical findings strongly indicate that ignoring correlation could 

lead to biased estimates of adjustment costs. Furthermore, working on simulating and 

estimating interrelation costs leaves the impression that spotting the existence of such 

costs by viewing the data separately is extremely difficult. However, for the ML 

estimator applied in this thesis, identification problems arising in the existence of an 

interrelation parameter equal to zero is clearly a weakness that should be dealt with in 

future work. 



 58 

 

As a natural extension of the work on this thesis, the model should of course be tested on 

real data. Firstly by applying the likelihood function derived in this thesis. As we have 

spotted obvious room for improvement, a more robust parameterization should also be 

found, most likely together with a reformulation of the underlying adjustment cost 

function itself. 

 

Considering that data on factor adjustment generally contains information about the 

actual size of the factor adjustment, it would be desirable to apply an estimation 

technique that can make use of this information. In a probit estimation like the one 

derived in this thesis we do not make use of all available information. Properties of a 

Tobit-like likelihood function to obtain more efficient estimates could therefore be worth 

exploring. 
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Appendix: 

 (A.1) Treating Marginal Values 

In this thesis we have considered determinants of firms’ investment behavior with a focus 

on non-convexities in adjustment cost functions. What should be seen as the most 

important factor of influence, namely the marginal values of capital and labor has to a 

large extent been left out of the discussion. In the theoretical framework, the variables are 

denoted by  and L K

t t
λ λ , and can be traced back to the Lagrangean objective function 

applied to maximize firm value (.)V . These shadow values can be affected by changes in 

demand or technological changes and other determinants of factor productivity, like 

utilization rates for both factors. 

 

Working with simulated data, we have assumed that the unobserved marginal values can 

be described by a linear relationship with marginal q’s which we generate with desired 

characteristics into our dataset. We have simply assumed that this is a reasonable 

approach and gone on with the estimation. Since we mainly are interested in deriving an 

estimation technique, the assumption is not really critical for our purpose. However, since 

the thesis aims to present a way to estimate adjustment cost functions with interrelations 

applicable to empirical research, we should consider what actually lies behind this 

assumption, and what implications it might have for our ability to obtain valid empirical 

results.  

 

The lack of observability simply results from the fact that marginal values are never 

reported, and the general way of dealing with this is to apply a suitable linear 

approximation. It can be shown analytically that the shadow values for capital and labor 

are given by 
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respectively. 

 

These equations tell us that the marginal values are functions of expectations over an 

infinite number of discrete time periods t. Further, we clearly see that the marginal values 

of input factor adjustments can be separated into two components. The first component 

and perhaps the most obvious one, is the marginal product one production factor in all 

future periods. The second component, the term on the right side in the brackets, is 

perhaps less obvious. We can consider this a cost advantage of an additional unit of 

capital or labor in period t. This cost advantage arises because an additional unit today 

affects the expected level of adjustment costs tomorrow. Now the reasoning gets a little 

tricky. Since the shadow value in reality is an expectation, the investment decision in 

period t must clearly depend on the decision in every future period t s+  . However, we 

also know that future investment decisions will be dependent on the firms’ previous 

choices. How to deal with this is in no way clear cut, but under certain assumptions 

approximations can be derived.  

 

In most of the literature on this subject, one assumes convex adjustment costs which 

implies smooth and relatively small adjustment rates. In section A.2 it is shown that if 

adjustments are small, shadow values can be approximated by: 

( )( )
( )
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and 
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, which expresses shadow values as functions of sales-to-capital and sales-to-labor ratios 

in period t. This approximation is fairly standard in empirical work, but implies an 

assumption that adjustments are small. When we want to estimate the effect of non-

convex adjustment costs on investment behavior, the simplification is less justifiable as 

the last term in equations [9.6] and [9.7] can be of substantial size. This concern is of 

course supported by our knowledge of lumpiness in factor adjustment patterns. 

Since it may not be reasonable to ignore the cost saving terms in equations [9.6] and [9.7]

, we need to develop an approach that considers the effect that the level of investment 

chosen in period t has on the expectation of adjustments in future periods. In a paper 

published in 2004, Paola Rota deals with the possibility of corner solutions in the demand 

for labor, by considering a “discrete-time-discrete-choice dynamic structural model”. The 

model estimates fixed costs of adjustment in a three-step approach where the first step 

estimates conditional adjustment probabilities that are required to obtain a structural 

parameter for a dynamic marginal productivity equilibrium condition similar to those in 

equations [9.6] and [9.7]. This condition takes into account that that the firm has a choice 

between adjustment and non-adjustment because of the existence of fixed costs in each 

time period t. After a structural parameter is obtained, it is used in estimating the fixed 

cost of labor adjustment.  

 

The procedure is certainly less convenient than the standard approach where one simply 

ignores the cost saving issue that arises with non-convex costs, but shows that the issue 

can be dealt with empirically in a way that is consistent with the factor adjustment model 

in this thesis. In an empirical investigation of a model with interrelations, we would meet 

another challenge in treating the effect of interrelations when modeling discrete choice 

probabilities, but for now this problem is left out for a later treatment. 
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 (A.2) Deriving Marginal Productivity Conditions 

We start out by deriving an expression for K

t
λ  and consider the same Lagrange function 

as from which we found optimal investment levels t

t

I

K
 and t

t

H

L
.  
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To obtain an expression for the shadow value K

t
λ , we set the derivative of L with respect 

to Kt+1 equal to zero. 
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Taking the derivative gives us 
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which can be rewritten as 
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we obtain  
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and we get the following equality for the shadow value of capital: 
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Similarly the shadow value of one unit of labor is: 
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( )stWP +  is the probability of adjustment in period t s+ . Leaving out the cost saving 

component from equation [eq.#], we have the following: 
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Further, we note that  
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and use this to get 
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, which in turn can be written as: 
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           [9.10] 

 

A corresponding derivation for the second term in the expression for K

t
λ  can also be done 

by inserting discrete probabilities of investment, yielding; 
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In the literature, because one has mainly focused on convex adjustment costs, one has 

assumed that 

2
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
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

t

t

K

I
is small. However, this assumption stands in contrast to our 

knowledge about micro-data behavior, which has been described as “lumps and bumps”, 

and also the motivation behind this thesis which attempts to discuss a way of estimating 

adjustment costs that are likely to be non-convex.  

 

First, let us see what the assumption of a small investment rate 

2


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
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t

t
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I
implicates, when 

we allow ourselves to write an approximation of the shadow value K

t
λ as 
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Using our previous result, we then obtain 
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Which in turn results in the following approximation for K

t
λ , which is conveniently 

observable in many cases: 
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While for labor, the expression becomes: 
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(B) Descriptive Statistics of the Second Simulated Dataset (ii) 
 
 
 

TABLE B.1: CORRELATION MATRIX 

    H/L I/K L K qK qL 

H/L 1      

I/K 0.6558 1     

L 0.0060 0.0343 1    

K -0.0563 -0.0291 0.5778 1   

qK 0.1980 0.5538 0.0241 -0.0383 1  

qL 0.5410 0.1615 -0.0329 -0.0633 0.5066 1 

 

 

 

TABLE B.2: SUMMARY STATISTICS 

Variable Obs. Mean Std. dev. Min. Max. 

H/L 1000 .011755 .1905979 -.7398592 .5436076 

I/K 1000 .1934281 .2102485 -.5664857 .7501802 

L 1000 358.0854 240.7971 25.46533 1389.317 

K 1000 7884.791 3779.305 89.18464 20929.77 

qK 1000 3.084015 2.986225 -8.111652 12.74151 

qL 1000 3.916717 4.16364 -9.872766 20.57577 
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TABLE B.3: HIRING & INVESTMENT (JOINT DISTRIBUTION) 

 Hiring  

Invest -1 0 1 Total 

-1 58 1 0 59 

0 70 252 1 323 

1 113 184 321 618 

Total 241 437 322 1000 

 


