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Abstract 

This paper describes methods that can be applied to select the best conditional volatility 

model for an individual asset. Three exchange traded funds (ETFs) for the financials, energy 

and utilities sectors of the Dow Jones Total Market Index are evaluated to illustrate the 

complexity of model selection. For the univariate series, the symmetric GARCH model and 

three asymmetric models (EGARCH, GJR-GARCH and TGARCH) with a variety of lag structures 

are parameterized under the assumption of both normal and t-distributed errors. The 

ranking of these models are based on how well the parameters of each model fit to the 

underlying data set (the likelihood), on selection criterions (AIC and BIC) and on their 

forecasting ability (through statistic and economic loss functions). The results show that 

different volatility models with different lag structures are selected for each of the three 

sectors. For the financial sector a t-distributed EGARCH(1,2,1) model gives the most 

satisfying results. The energy sector is best described by a t-distributed GJR-GARCH(1,1,2) 

model, while a normal distributed GJR-GARCH(1,1,1) model is recommended for the utilities 

sector.   

 

In addition to the selection of univariate models, multivariate models are described and 

tested. The main focus in this part is on the Dynamic Conditional Correlation model that 

builds on univariate parameterizations of the volatility. A DCC model based on three 

univariate normal distributed GJR-GARCH(1,1,1) models is compared to the BEKK model and 

to a multivariate EWMA model. This comparison shows that while the DCC model performs 

best when it comes to minimizing the risk of a portfolio, the BEKK model is superior when 

evaluated on the reward-to-variability ratio (Sharpe). This is mainly due to the fact that the 

DCC model is unable to catch the time-varying correlation between the three chosen assets. 
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1. Introduction 

Traditional technical analysis, which involves predicting the future by looking at historical 

variables, is based on the assumption of a long-term mean, constant variances, and thus 

constant covariances among assets. These constants calculated on e.g. five years of historical 

data, and become the information set used to determine the allocation of asset weights in a 

portfolio for the next period. The main idea behind such assumptions is that asset prices are 

mean-reverting. The volatility of financial assets are, however, time-varying, meaning that 

there will be periods with high volatility and periods of low volatility. Portfolios that need 

frequent updating regarding the allocation of assets therefore need to reflect the current 

level of volatility. If the current volatility is low, while it was high three years ago, then the 

past high volatility should not be given as much weight as the current low. Conditional time-

varying volatility models and historical volatility models where the recent past observations 

are given higher weights than distant past observations, e.g. the EWMA model, will 

therefore give more realistic variance-covariance-matrices than those obtained from 

assuming that the volatility is constant. 

 

The main focus in this paper is on time-varying volatility. Three exchange traded funds (ETFs) 

on the Dow Jones Total Market Index are evaluated at the univariate level. The three assets 

are arbitrarily chosen as the aim is to highlight the difficulty and sophistication of conditional 

volatility modeling. For each asset, a variety of models will be estimated under different 

assumptions of the distribution of the data set. Every financial asset will have their unique 

features, so it is impossible to say that one model is superior to another, as each model 

catches different stylized facts associated to financial time series. The goal is therefore to 

find the one model that fits best to each asset. Univariate processes will be estimated by the 

symmetric GARCH model and the asymmetric EGARCH, GJR-GARCH and TARCH models. The 

final selection of what is the best model will not only be based on the in-sample fit, but also 

on their out-of-sample performances. 

 

Multivariate time-varying correlation models are also considered. The main focus here will 

be on the Dynamic Conditional Correlation model, which is a multivariate model that builds 

on the already estimated univariate processes of volatility. This will lead to the construction 
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of a time-varying portfolio. Portfolios based on the DCC model will be compared to the more 

parsimonious multivariate EWMA portfolios and the more complex BEKK portfolios. 

 

The paper is organized as follows. Chapter 2 gives a definition and introduction to the 

motivation of using conditional volatilities, together with stylized facts of financial assets 

that needs to be captured. Historical volatility models are given a more thorough 

introduction, and models for the estimation of conditional mean will be presented briefly. In 

Chapter 3 the conditional volatility models that will be estimated in this paper are described. 

Tests that should be applied in the pre- and post-estimation to control the appropriateness 

and how well specified the estimations are respectively are also presented. The evaluation 

of the forecasting ability of each model is also well-described. Finally, the focus of this 

chapter moves to alternative multivariate correlation models. Chapter 4 describes the data 

used in this paper, and Chapter 5 gives the results of the parameterized univariate and 

multivariate models. Conclusions are given in Chapter 6. 
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2. Background 

It is a well known fact that for financial data, the errors made when predicting markets are 

not of a constant magnitude. The market fluctuations will be large for some periods and 

smaller for others (Engle et al., 2008). The rate of new information connected to financial 

assets is time-varying, and thus the variances of returns and the covariances between the 

assets are time-varying as well. This time-varying behaviour is referred to as 

heteroskedasticity, meaning that the volatility of an asset or market tends to cluster in 

periods of high volatility and in periods of low volatility. Time-varying mean, variance and 

covariances are based on the information currently available and are referred to as 

conditional mean, variance and covariances. The time-varying conditions that they are based 

on are the values of variables determining the level of parameters that describes the time-

varying process (Bodie et al., 2008). If the mean, variance and covariances are treated as 

time-invariant, i.e. as constants, they are said to be unconditional estimates. The usual 

estimate of return variance is then given by the average of squared deviations over the 

sample period.  

 

Robert F. Engle (1982) was the first to introduce the concept of conditional 

heteroskedasticity. He proposed a model where the conditional time series is a function of 

past shocks. The model, called the autoregressive conditional heteroskedasticity (ARCH) 

model, led to a breakthrough in financial econometrics. The impact this model has had on 

the research around time-varying volatility gave him the Nobel Prize in Economic Sciences in 

2003. Although the initial ARCH model was designed to capture persistence in inflation, the 

model fits to a number of other financial time series. The model has had an enormous 

influence on theoretical and applied econometrics and was influential in the establishment 

of Financial Econometrics as a discipline (Franses and McAleer, 2002). This discipline can be 

defined as the application of econometric tools to financial data (Engle, 2001a). The 

introduction of ARCH class models extended traditional time-series tools such as 

autoregressive moving average (ARMA) models concerning the mean to equivalently 

essential models for the variance (Bauwens et al., 2003). 
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Engle (2001a) points to the fact that the least-squares method for many years served as a 

satisfactory tool in applied econometrics for the implementation of stock market forecasts, 

tests of efficient markets and tests of portfolio models such as the CAPM.  The basic version 

of the least square model assumes that the expected value of all squared error terms is the 

same at any given point, or in other words that the variance of the error terms is constant 

(Engle, 2001b). This assumption is referred to as homoskedasticity. When the variances of 

error terms are not equal, but are expected to be larger for some periods and smaller for 

others, the data are heteroskedastic. When heteroskedasticity is present in the time series, 

the regression coefficients for an ordinary least squares regression are still unbiased, but the 

standard errors and confidence intervals estimated will be too narrow, giving a false sense of 

precision (Engle, 2001b). 

 

In the ARCH model, the conditional variance is allowed to change over time as a function of 

past errors, while the unconditional variance is left constant (Bollerslev, 1986). A 

generalization of the ARCH model was proposed by Bollerslev (1986). His generalized 

autoregressive conditional heteroskedasticity (GARCH) model allows for past conditional 

variances in the current conditional variance equation. This generalization leads to models 

that are parsimonious and easy to estimate. Even in its simplest form it has proven 

successful in predicting conditional variance (Engle, 2001b). 

 

The advantage of ARCH and GARCH models, and other models built on these, is that 

heteroskedasticity is treated as a variance to be modeled. They thus correct for the 

deficiencies of the least squares model and computes a prediction for the variance of each 

error term (Engle, 2001b). ARCH and GARCH models have become popular tools for dealing 

with time series heteroskedastic models. The aim of models like these is to provide a 

volatility measure that can be used for e.g. derivates pricing, optimal portfolio selection, and 

risk management (Fleming et al., 2000). These models do not only give an estimate of the 

conditional variance of the time series, they also enable forecasts of future conditional 

variance to be computed (Harris and Sollis, 2003). Modeling and estimation of time-varying 

return variances and covariances can lead to a better understanding of the expected returns 

as well (Bodie et al., 2008). 
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The vast research on time-varying volatilities over the last decades has had a primarily focus 

on univariate volatilities and not on correlations (Cappiello et al., 2006). Kroner and Ng 

(1998) argue that changes in asset returns due to the occurrence of time-varying conditional 

volatility should imply that this asset also has a time-varying correlation with other assets 

displaying time-varying volatility. Time-varying covariances are often estimated using the 

constant conditional correlation (CCC) model of Bollerslev (1990) to simplify the 

computational task of estimation. There is, however, no theoretical justification for this 

assumption (Cappiello et al., 2006). Other multivariate correlation models, like the BEKK 

model, require the estimation of a large number of parameters, and thus needs a lot of 

processing time for systems containing many assets. The Dynamic Conditional Correlation 

(DCC) model of Engle (2002) is a generalization of the CCC model where the correlation 

between the assets can be time-varying. The main advantage of the CCC and DCC models 

over the BEKK model is that they are based on univariate GARCH processes. This enables the 

conditional correlations to be calculated between assets based on the standardized residuals 

of the estimated univariate volatility models. 

 

2.1 Defining volatility 

Unlike prices, volatility and correlations cannot be directly observed in the market, so 

models are needed to generate estimates for them (Alexander, 2001). Alexander divides the 

procedure of volatility forecasting between implied volatility and statistical forecasting. The 

former gives the volatility forecast over the life of an option, a topic that won’t be described 

in this paper. The latter usually refers to time-series models, such as a moving average 

model or a GARCH model. When applied to historical data, such models will give a statistical 

estimate of the volatility in the past, in addition to the generation of forecasts until some 

future point in time. A stochastic process governing price movements can be referred to as a 

volatility process. The realizations of this process are called the realized volatility, measured 

using historical price data. If the price process turns out to have a constant volatility, the 

realized volatility will simply be the sample standard deviation of observed returns 

(Alexander, 2001). Realized volatility is the ex-post estimate of the process volatility. It is 

difficult to forecast the realized volatility ex-ante, because it is likely to be affected by 

market movements during the forecasting horizon (Alexander, 2001). 
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Volatility is a measure of the dispersion in a probability density. The variance is a measure of 

the dispersion of the density function around its mean. The standard deviation, σ, which is 

the square root of the variance, is the most common measure of dispersion for a random 

variable (Alexander, 2001), as it is measured in the same units as the original data 

(Sheppard, 2009a). The sample standard deviation σ is given by: 

 

�� � � �
��� ∑ 	
� � 
������   (2.1) 

 

where rt is the return on day t and μ is the average return from the T-day period.  

 

The standard deviation is more stable and more desirable for computational estimation and 

volatility forecast evaluation than variance (Poon and Granger, 2003). In this paper volatility 

therefore refers to the standard deviation. Equation 2.1 gives the constant volatility, also 

known as the unconditional volatility, of the return process. It can only be defined when 

asset returns are assumed to be generated by a stationary stochastic process where the 

variance is finite (Alexander, 2001). 

 

Since volatility for financial assets is time-varying, a more suitable information at time t is the 

conditional volatility σt,τ. The conditional volatility is the expected volatility at a future point 

in time, t+τ, based on all information available up to time t (Sheppard, 2009b). Daily returns 

used to proxy daily volatility will give a very noisy estimate of the volatility. The ARCH, and 

subsequent conditional volatility models, is a less noisy approach for this task (Poon, 2005). 

In such models the conditional mean is often assumed to be constant, even though it is 

actually time-varying, when the purpose is to estimate and forecast conditional volatility 

(Alexander, 2001). 

 

Even though volatility is related to risk, it is not strictly the same. The volatility is a measure 

of uncertainty involving both positive and negative outcomes of a return, while the risk is 

associated with undesirable outcomes only (Poon, 2005). 
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As it is not possible to compare a n-day variance with a m-day variance on the same scale, 

the volatility is often expressed as the standard deviation in annual terms, so that the annual 

volatility is defined as 100�√�, where A is the annualizing factor representing the number 

of returns per year (Alexander, 2001). An A equal to 252 days is normal, and will be used in 

this paper. 

 

In most of the ARCH class volatility models the measure of volatility is based on squared 

returns. Poon (2005) investigates 93 studies related to volatility models. She reports several 

studies suggesting that volatility should be measured from absolute returns. Davidian and 

Carroll (1987) show that absolute returns are more robust against asymmetry and non-

normality. McKenzie (1999) among others, proves that absolute return based models 

produce better forecasts than models based on square returns.  

 

That volatility change over time has a number of explanations, but individually they are not 

completely satisfactory. Phenomenon’s like illiquidity and news announcements are 

examples of such explanations (Sheppard, 2009a). Illiquidity refers to situations where 

shocks have a large impact on prices due to few participants being willing to trade an asset. 

This normally only lasts up until a couple of days, so it cannot explain the long cycles in 

present volatility (Sheppard, 2009a). News announcements make investors update their 

beliefs, leading to portfolio rebalancing and thus higher volatility. But the periods of higher 

volatility are generally short also for this phenomenon (Sheppard, 2009a).  

 

2.2 Stationarity 

Economic time-series are considered as realizations of stochastic processes, meaning that 

each observation is a random variable (Engle et al., 2008). The simplest stochastic process 

would be one where the random variables are independent and identically distributed (i.i.d.) 

for some distribution, for example a normal distribution (Sheppard, 2009a). A sequence of 

variables in a stochastic process is characterized by joint-probability distributions for every 

finite step at different time periods (Engle et al., 2008). A stochastic process that has a finite 

mean and variance is covariance stationary, or weakly stationary, if for all t and t-s the mean 

µ, variance ��� and autocorrelation γs are constant through time (Enders, 2004): 
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�	��� � �	����� � μ  

��
	��� � ��
	����� � ���  

���	��, ����� � ������� , ��� ��! � "�  (2.2) 

 
For a covariance stationary time series, the autocorrelation between yt and yt-s can be 

defined as $� % "�/"' (Enders, 2004). The autocorrelation is time-independent since the 

autocorrelation between yt and yt-1 must be identical to that between yt-s and yt-s-1. 

Covariance stationarity applies only to the unconditional moments, so it might still have a 

varying conditional mean (Sheppard, 2009a). 

 

If none of the process’ finite distributions depends on time so that the only factor to have an 

influence between two observations is the gap between them, the process is said to be 

strictly stationary (Sheppard, 2009a). A strictly stationary series is weaker than i.i.d. as the 

process might be dependent (Sheppard, 2009a).  

 

The properties of one part of a stationary series are in other words similar to the properties 

of another part of the series. The stationary property is only defined for a model, so a real 

stationary time-series is not likely to exist. The time-series can, however, exhibit the 

characteristics of a stationary process (Chatfield, 2003). 

 

2.3 White noise 

White noise is a basic building block of discrete stochastic time series (Enders, 2004). 

Imagine a time-series (� � ∑ )*+��*,*�' , where εt is the uncontrollable portion of the series. 

When the sequence εt has a mean equal to zero, a constant variance and uncorrelated 

realizations, the sequence is said to be white noise (Enders, 2004). A white noise process is 

therefore also covariance stationary as all three conditions are met. If one or more of these 

conditions are not met then xt is not a white noise process.  
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2.4 Stylized facts 

When modeling volatility, time series properties and stylized facts have to be exploited. Each 

individual financial time series will have their unique features. This makes volatility modeling 

difficult and sophisticated (Poon, 2005). To be able to choose the right volatility forecasting 

model, some insight into the stylized facts associated with financial time series is needed as 

the models should be able to pick up these stylized facts (González-Rivera et al., 2004). 

Stylized facts include fat tails, volatility clustering and leverage effects. Engle’s ARCH model 

was made to catch clusters and fat-tail behavior of the data. Subsequent models account for 

more complex issues, for example asymmetric responses to volatility news and the 

persistence of the volatility process (González-Rivera et al., 2004). In the end there is no 

straight-forward answer to the question which volatility model to use; it all comes down to 

the objectives of the study (González-Rivera et al., 2004). The most important stylized facts 

will be presented in the subsequent chapters. Bollerslev et al. (1993) give a thorough 

examination of stylized facts associated with financial time series.  

 

2.4.1 Thick tails 

Mandelbrot (1963) and Fama (1965) both document the fact that asset returns tend to be 

leptokurtic, i.e. the time series of returns exhibit fatter tails than a normal (Gaussian) 

distribution. A normal distribution has a skewness equal to zero and a kurtosis equal to 

three. Mandelbrot (1963, p.394) finds that “… the empirical distributions of price changes are 

usually too ‘peaked’ to be relative to samples from Gaussian populations”. The kurtosis of a 

time-series measures the tail thickness. Excess kurtosis, that is kurtosis above 3, implies that 

the distribution has a sharper peak and fatter tails than a normal distribution. A low kurtosis, 

on the other hand, implies that the distribution has a rounder peak and shorter, thinner tails. 

A negative skewness, for example, tells us that the distribution will have a longer left tail 

than a right tail. In other words, a negative skewness indicates extreme losses, while a 

positive skewness indicates extreme gains.  

 

The kurtosis and skewness are very sensitive to outliers in the time-series. By removing or 

‘dummying out’ extreme outliers, both the kurtosis and the skewness will drop significantly 

(Poon, 2005). The “black Monday” on the 19th of October 1987 is an example of an 
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occurrence that might be better left out for volatility forecasting purposes. Removing 

outliers does not remove volatility persistence, but has a great impact on the variance and 

thus increases the autocorrelation coefficient (Poon, 2005). 

 

2.4.2 Volatility clustering 

It is a well known fact that financial market volatility tends to cluster. This means that 

volatile periods tend to persist for some time before the market returns to normality (Poon, 

2005). Mandelbrot (1963, p.418) for example points out that “… large changes tend to be 

followed by large changes - of either sign - and small changes tend to be followed by small 

changes,…”. This effect can visually be seen when plotting a series of returns through time, 

which will be shown later in the paper (see Figure 5.2). A plot of the returns, together with 

statistical tests, shows that financial returns are not i.i.d. through time (Bollerslev et al., 

1993). The positive and negative disturbances given by the day-to-day changes become a 

part of the information set used to construct variance forecasts for the coming period. This 

means that large shocks of either sign can have an influence on the forecasts for several 

periods to come. When the clustering is significant, the time series is said to display 

autoregressive conditional heteroskedasticity (Alexander, 2001). The effect becomes more 

pronounced the higher the frequency of the sample data is. Daily data is often sufficient to 

see the clustering, but it becomes clearer from intra-day data. The consequence of volatility 

clustering is that future volatility can be predicted by past and current volatility. 

 

Rob Engle’s (1982) ARCH model, which will be described in Chapter 3.2.1, captures this kind 

of  volatility persistence. There is a close relationship between clustering and thick tails. The 

volatility clustering is a type of heteroskedasticity and accounts for some of the excess 

kurtosis typically observed in the distribution of a financial time series. Another part of the 

excess kurtosis can be due to the presence of a non-normal asset distribution, e.g. the 

Student’s T, which happens to have fat tails.  

 

2.4.3 Leverage effects 

The leverage effect refers to the tendency of volatility to increase if the previous days 

returns are negative, i.e. changes in stock prices are negatively correlated with changes in 

stock volatility (Bollerslev et al., 1993). A fall in stock price causes leverage and financial risk 
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of a firm with outstanding debt and equity to increase. A leverage effect results in volatility 

asymmetry, a phenomenon most marked during large falls (Poon, 2005). For time series 

exhibiting leverage effects, asymmetric GARCH models should be applied because the 

asymmetry cannot be captured by symmetric GARCH models. Asymmetric GARCH models 

will be presented in Chapter 3.3. 

 

2.5 Conditional mean models 

Autoregressive moving average (ARMA) processes are often considered as the core of time-

series analysis. ARMA models can be divided into two smaller classes; the autoregressive 

(AR) processes and the moving average (MA) processes. For full derivation of the formulas 

for unconditional and conditional means and variances in the following sections, see Enders 

(2004) or Sheppard (2009a). 

 

A first-order moving average, MA(1), process can be given by: 

 

�� � -' . /�+��� . +�  (2.3) 

 

where -' and /� are parameters, while +� is a series of white noise. The current value of yt 

thus depends on both a new shock and the previous shock (Sheppard, 2009a). The 

unconditional mean from this process is simply �0��1 � -' while the conditional mean is 

given as ����0��1 � -' . /�+���, where the difference reflects the persistence of previous 

shocks in the current period (Sheppard, 2009a). The unconditional variance is 20��1 �
��	1 . /���  while the conditional variance is 2���0��1 � ���  so that the unconditional 

variance is larger than the conditional variance, reflecting the extra variability given by the 

moving average term (Sheppard, 2009a). The autocovariance for an MA(1) process will be 

/��� between yt and yt-s when s=1 and zero when s>1. Adding additional lagged errors gives 

an MA(Q) process. 

 

A first order autoregressive process, AR(1), can be given as: 

 

�� � -' . -����� . +�  (2.4) 
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where the unconditional mean is �0��1 � -' 	1 � -��⁄  and the conditional mean is 

����0��1 � -' . -����� . The unconditional variance is 20��1 � ��/	1 � -���  while the 

conditional variance is still 2���0��1 � ���. The unconditional variance is still larger than the 

conditional, and will explode as  |-�|  approaches 1 or -1 (Sheppard, 2009a). The 

autocovariance of an AR process is given as: 

 

�0	�� � �0��1�	���� � �0����1�1 � -�� 56
��786  (2.5) 

 

Additional lags of yt gives an AR(P) process. 

 

An ARMA(P,Q) model can be given as: 

 

�� � -' . ∑ -9���9:9�� . ∑ /,+��,;,�� . +�  (2.6) 

 

where the unconditional mean of an ARMA(1,1) is �0��1 � -' 	1 � -��⁄ . This is the same as 

for the AR(1) process since the moving average terms are mean zero. The conditional mean 

is ����0��1 � -' . -����� . /�+��� . Unconditional variance is 20��1 �� ��	�<�78=8<=86
��786 � 

while conditional variance is still 2���0��1 � ���.  

 

2.6 Historical volatility models 

Historical volatility models (HIS) are easy to manipulate and construct and have showed 

good forecasting performance compared to other time series volatility models such as ARCH 

and stochastic volatility (SV) (Poon, 2005). In the historical volatility models the conditional 

volatility is modeled separately from the returns, making them less restrictive and more able 

to respond to changes in the volatility dynamic. Poon’s (2005) extensive research on the 

large amount of papers studying forecasting performance of various volatility models lists 

seven papers concluding that historical volatility models give better forecasts than ARCH 

and/or SV models. Among these are Andersen et al. (2001) using a realized volatility variant 

of the historical volatility models. Realized volatility will be briefly discussed in Chapter 3.5. 
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In the ARCH family of models the conditional volatility σ2 is modeled as a byproduct of a 

return equation of the form 
� � 
 . +� through maximizing the likelihood of observing εt 

using a normal, or another chosen, density. These models are explained in depth in Chapter 

3. The HIS models, on the other hand, are built directly on conditional volatility, for example 

an AR(1) model given as �� � " . )����� . >�   (Poon, 2005). The estimation of the 

parameters γ and β1 is done through minimizing the in-sample forecast errors >� and the 

forecaster can choose between reducing the mean square errors, the mean absolute errors, 

etc. (see Chapter 3.4). 

 

Poon (2005) divides the HIS models in two: the single-state and the regime-switching 

models. The single-state models include e.g. the random walk, the historical average method 

and the exponentially weighted moving average (EWMA) method. These are given a short 

introduction below. Examples of regime switching models referred to by Poon (2005) include 

the threshold autoregressive model of Cao and Tsay (1992) and the smooth transition 

exponential smoothing model of Taylor (2004). These models are not described in this 

paper. 

 

The random walk model is the simplest of the HIS models. In the random walk model the 

difference between consecutive period volatility is modeled as a random noise where the 

best forecast for tomorrow’s volatility, ���<�, is today’s volatility σt. 

 

The historical average method makes a forecast based on the entire history of the time 

series. It assumes that the distribution of volatility has a stationary mean so that all variation 

in estimated volatility can be attributed to measurement error. The historical average is 

therefore computed as the unweighted average of volatility observed in-sample: 

 

?�<� � �@� �  �
� 	�� . ���� . A . ���  (2.7) 

 

The forecasts based on the mean can provide a benchmark for comparative evaluation of 

the alternative forecasting models (McMillan et al., 2000). 
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A simple moving average method is similar to the historical mean method, but it discards 

older information. The lag length, τ, to past information can be subjectively chosen or based 

on minimizing the in-sample forecast error B�<� � ��<� � ���<� (Poon, 2005).  The moving 

average method is given as: 

 

���<� �  �
C 	�� . ���� . A . ���C���  (2.8) 

 

The multi-period forecasts ���<C for τ > 1 will be the same as the one-step ahead forecast. 

 

The exponentially weighted moving average (EWMA) model gives more weight to the recent 

past and less to the distant past observations by letting their importance decline smoothly. 

The decay factor λ, for a value between 0 and 1, determines how rapidly the weights on past 

observations decline. The variance of the EWMA model is given as a weighted average of 

yesterday’s variance and yesterday’s squared return: 

 

���<�� � D��� . 	1 � D�
��  (2.9) 

 

λ can be estimated by minimizing the in-sample forecast errors ξt (Poon, 2005). A common 

value for λ is 0.94, as used by RiskMetricsTM (J.P.Morgan, 1997), because it has been found as 

the average value that minimizes the one-step-ahead error variance for a number of 

financial assets. 

 

2.7 Time-varying conditional volatility models 

Analyses of time series are often treated in terms of the long-run moments of the series. 

That is the mean, variance and covariance as time approaches infinity. The ARCH model, 

developed by Engle (1982), allows for time-varying conditional variance, while the 

unconditional variance is constant. In other words, it is a model with conditional 

heteroskedasticity, but unconditional homoskedasticity (Harris and Sollis, 2003). When the 

mean, variance or covariance of a time series are time-varying, the series is non-stationary, 

so one might assume that a series with conditional heteroskedasticity is non-stationary. 

When defining ‘non-stationarity’, however, it is referred to the long-run or unconditional 
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moments of the series. Therefore a time series with conditional heteroskedasticity can be 

stationary as long as the unconditional moments are constant (Harris and Sollis, 2003). 

 

In the ARCH model, ‘autoregressive’ refers to the fact that high or low volatility tends to 

persist, ‘conditional’ means time-varying or with respect to a certain point in time and 

‘heteroskedasticity’ is a technical expression for non-constant volatility (Poon, 2005). 

 

The conditional and unconditional properties of a time series can be distinguished through 

its probability distribution. When using a maximum likelihood to estimate econometric 

models, it is typically assumed that the series has a conditional normal distribution (Harris 

and Sollis, 2003). But it also has an unconditional probability distribution which may not take 

the same form as the conditional distribution. When a normal distribution is assumed for an 

ARCH model, the unconditional distribution turns out to be non-normal. It will more 

specifically be leptokurtic, meaning it has fat tails (Harris and Sollis, 2003). 

 

Time-varying volatility was not an unknown property before Engle’s introduction of the 

ARCH model. Earlier informal procedures like recursive estimates of variance over time or 

moving variance were typically used (Bera and Higgins, 1993). The ARCH model, however, 

was the first formal model designed to capture volatility persistence. Since Engle’s initial 

model there has been a large number of generalizations of the model, each capturing 

various stylized facts, to accommodate for real world features (Bera and Higgins, 1993). The 

initial ARCH model alone cannot capture stylized facts like the leverage effect, excess 

kurtosis and the high degree of nonlinearity (Bera and Higgins, 1993).  

 

After Engle’s introduction of the ARCH model, the focus shifted over from returns 

themselves to return volatility. Daily and monthly returns are approximately unpredictable, 

but it is widely agreed that return volatility is highly predictable (Andersen et al., 2001). 

 

There are now very many models building on the ARCH model and only a handful of them 

will be presented in this paper. Bollerslev et.al (1993), among others, presents a large 

number of models in the ARCH family. They regard the richness of the ARCH family as both a 
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blessing and a curse since the flexibility of ARCH class models enables us to formulate the 

appropriate model for a given analysis, but complicates the search for a “true” model.   
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3. Methods 

In this chapter the various ARCH class models that will be used in this paper are presented. 

Firstly, univariate conditional volatility models are presented. These can be divided into two 

main groups; symmetric and asymmetric models. The main difference between these two 

classes is that symmetric models, including ARCH and GARCH do not capture leverage effects 

in the time-series, as opposed to the asymmetric models.  Section 3.6 describes tests that 

can be applied to the time series to ensure that conditional volatility modeling is 

appropriate, and to check that an estimated model is well specified. Finally in section 3.8 

multivariate models used to construct portfolios of assets will be presented. 

 

3.1 Maximum Likelihood and parameter estimation 

Estimation of ARCH class models mostly involves maximizing a likelihood function since it is 

known to produce consistent, asymptotically normal and efficient estimates (Alexander, 

2001). Under an assumption about the shape and distribution of the data generation 

process, the set of parameters, θ, should maximize the likelihood of the data. This involves 

optimization of a function of several variables. Algorithms to solve this problem are often 

iterative, involving the parameter estimates to update using a scheme. For a normal 

distributed GARCH(1,1) model (described in Chapter 3.2.2) where the variance is time-

varying given by the parameters θ=(ω,α,β), the log likelihood function of each observation is: 

 

E� � � �
� Fln	2J� . EK ��� . LM6

5M6N  (3.1) 

 

This procedure can for example be solved for an initial conditional variance on day 1, ���, 

equal to the unconditional variance of the whole sample, or even zero. The conditional 

variances for the remainder of the sample are then updated using an updating rule. The 

maximum log likelihood is the sum of the individual log likelihoods, lt, so by adding the 

necessary constraints to obtain positive conditional variances, the maximum log likelihood is 

found by iteratively changing the values for the three parameters. The goal is to obtain the 

largest maximum likelihood possible, so the procedure should be repeated with different 

starting values for the parameters to ensure that the global optimum of the likelihood 

function is found (Alexander, 2001).  
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The easiest way to estimate the parameters so that the maximum likelihood can be obtained 

is to use statistical software such as Matlab, EViews, PcGive or Gauss, just to mention a few, 

where the most common GARCH models are incorporated. Brooks et al. (2001) give a review 

to determine the accuracy of coefficient and standard error estimates for a number of 

softwares. It is a good starting point when selecting the right software, but it might be a bit 

out of date. For this thesis Matlab is used, but instead of the built in Econometric Toolbox, 

the Oxford MFE Toolbox by Kevin Sheppard2 is used. In the MFE Toolbox the starting values 

are computed using a grid of experience driven reasonable values. If the optimizer based on 

these starting values fails to converge, then other starting values are tried (Sheppard, 

2009b). Therefore, in this work, the parameter estimates given by the MFE estimation are 

accepted without specifying the starting values manually. 

 

3.2 Symmetric GARCH models 

The most common univariate symmetric model for conditional volatility is Bollerslev’s (1986) 

GARCH model. The GARCH model is presented in Chapter 3.2.2. The GARCH model is a 

generalization of Engle’s (1982) ARCH model. Even though the ARCH model is not much used 

in this thesis, it is an important model for the understanding of conditional volatility models, 

and it will therefore be given a thorough introduction in the following section. 

 

3.2.1 ARCH 

Before Engle’s introduction of the ARCH model in 1982, there was much effort on 

forecasting future returns, but virtually no methods were available to forecast future 

variance. The most popular tool until then was the rolling standard deviation, calculated 

using a fixed number of the most recent n observations (Engle, 2001b). This model assumes 

that the variance of tomorrow’s return is an equally weighted average of the squared 

residuals from the last n days. Since the model gives zero weight to observations more than 

n days old, and because more recent events will probably be of higher relevance than the 

first day of the estimation window, it can be argued that a specification like this is not 

sufficient. In the ARCH model these weights are parameters to be estimated. This is done by 

                                                      
2
The toolbox can be obtained from http://www.kevinsheppard.com/wiki/MFE_Toolbox (Accessed February 12, 

2009). 
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allowing the data to determine the best weights to be used to forecast the variance (Engle, 

2001b). The ARCH process explicitly recognizes the difference between the unconditional 

and conditional variance, and allows the latter to change over time as a function of past 

errors (Bollerslev, 1986). 

 

Under the assumptions of normality, the ARCH process, based on the current information 

set ψ, and it’s likelihood, l, are given by: 

 

��|O���~Q	0, ?��,  
?� � R' . R�+���� . A . R9+��9�   (3.2) 

+� � �� � (�),  
E � �

� ∑ E�,����   (3.3) 

E� � � �
� E�S?� � �

�
+�� ?�T   

 

In this specification, p is the order of the ARCH process and ht is the variance function. xtβ is 

the mean of the return series yt and may include lagged dependent and exogenous variables. 

The use of square residuals εt
2 and the constraints α0 > 0 and R* U 0 for i = 1,…,p ensures 

that the conditional variance is positive. Since the residuals are squared, leverage effects 

cannot be captured by the ARCH model. 

 

The estimation of the unknown parameters α and β can be done by maximizing the 

likelihood function (Engle, 1982). The estimation of α and β can be considered separately 

without loss of asymptotic efficiency, and both can be estimated with full efficiency based 

only on a consistent estimate of the other (Engle, 1982). In his paper, Engle (1982) 

recommends to initially estimate β by ordinary least squares, and obtain the residuals. The 

residuals are then used to estimate α, and based on these R� estimates, efficient estimates of 

β can be found. 

 

The simplest form of the ARCH(q) model is the first-order linear model ARCH(1) given under 

the assumptions of normality as: 
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��|O���~Q	0, ?��,  
?� � R' . R������   (3.4) 

 

For a one-lagged ARCH model, a large observation of y will lead to a large variance for the 

disturbance in the next period. If α1 = 0, y will be Gaussian white noise. 

 

The conditional variance function, ht, is formulated to resemble the phenomena of clustering 

of large shocks to the dependent variable. Large shocks in the regression model will be 

represented by a large deviation of yt from its conditional mean. In the ARCH model the 

variance of the current error εt conditional on realized values of the lagged errors is an 

increasing function of the magnitude of the lagged errors. The sign of the error terms does 

not matter, so large errors of either sign tend to follow large errors of either sign, while small 

errors tend to follow small errors of either sign. The lag-order p determines how long a 

shock persists in conditioning the variance of subsequent errors (Bera and Higgins, 1993) and 

is typically of high order due to the phenomenon of volatility persistence (Poon, 2005). 

 

The one-step ahead forecast of an ARCH model is ht since we know ht-1, while the multi-step 

ahead forecasts can be formulated through the assumption that 0+�<C� 1 � ?�<C (Poon, 2005).  

 

The unconditional variance of the time-series yt is given by �� � V
��∑ WXYXZ8

. 
 

The ARCH process is covariance stationary only if the sum of the autoregressive parameters 

is less than one (Poon, 2005), i.e. ∑ R , �� \ 1. 

 

3.2.2 GARCH 

Bollerslev’s (1986) GARCH model is, as Engle’s ARCH, a weighted average of past squared 

residuals, but with declining weights that never go completely to zero. While the ARCH 

model has a rather random, but often long, linear declining lag structure for the conditional 

variance equation, the GARCH model allows for a much more flexible lag structure 

(Bollerslev, 1986). The GARCH model includes lags of the conditional variance (ht-1, ht-2,… ht-p) 
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as regressors in the model for the conditional variance in addition to lags of the squared 

error term (+���� , +���� , … , +��,� ) (Harris and Sollis, 2003). 

 

A GARCH process with the orders p and q is denoted as GARCH(p,q) where p refers to the 

number of autoregressive lags (ARCH terms) in the equation and q refers to the number of 

moving average lags (GARCH terms) specified (Engle, 2001b). When p=0, the process is a 

ARCH(q) process, and for p=q=0, εt is white noise. Usually a GARCH(p,q) model with low 

values for p and q provides a better fit than an ARCH(q) model with a high value of q (Harris 

and Sollis, 2003). The generalization of ARCH to GARCH is similar to the generalization of a 

MA to ARMA process. The intention of the generalization is that GARCH parsimoniously can 

represent a high-order ARCH process (Bera and Higgins, 1993). The analogy to the ARMA 

class of models means that the time-series techniques used to identify the ARMA models 

can be used to identify the orders of p and q in a GARCH model  (Bollerslev et al., 1993). 

 

The most common GARCH model, the GARCH(1,1), states that the best estimate of the 

variance for next period is given as a weighted average of the long-run average variance, the 

current predicted variance, and the new information captured by the last squared residual 

(Engle, 2001b). An updating rule like this is according to Engle (2001b) a simple description 

of learning behavior that can be thought of as Bayesian updating. Sometimes, models with 

more than 1 lag are needed to ensure that the variance forecasts are good (Engle, 2001b). 

 

By letting εt denote a real-valued discrete-time stochastic process, ψt denote the 

information set of all information through time t, and ht denote the variance of the residuals 

of a regression 
� � ^� . _?�+� , the GARCH(p,q) process is given by: 

 

+�|O�~Q	0, ?��,  
?� � ` . ∑ R*+��*� . ∑ )*?��*,*��9*��   (3.5) 

 

To ensure nonnegativity, the lag orders and parameters are constrained so that a U 0, 

b c 0, ` c 0, R* U 0 for i= 1,…q and )* U 0 for i= 1,…p. The parameters ω, α and β are 

estimated through the same log likelihood function as for the ARCH(p) model (Equation 3.3). 

Updating then only requires knowing the previous forecast h and the residual.  
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Nelson and Cao (1992) shows that less severe inequality constraints for higher order GARCH 

models than those suggested by Bollerslev (1986) are sufficient to keep the conditional 

variance positive.  

 

The GARCH(p,q) process is covariance stationary only if ∑ )*,*�� . ∑ R 9 �� \ 1 (Poon, 2005). 

The short-run dynamics of the volatility series is determined by the GARCH error coefficient, 

α, and the GARCH lag coefficient, β. A large β indicates that shocks which have entered the 

system take long time to die out, making the volatility persistent. A large α implies that the 

volatility reacts intensely to market movements. For a large α combined with a low β, the 

volatility tends to be more ‘spiky’ (Alexander, 2001). According to Alexander (2001), 

common estimates for the parameters of financial markets based on daily data are usually 

above 0.8 for β and below 0.2 for α. All three parameters in the GARCH(1,1) model are 

sensitive to the data used. This means that the choice of historic data will affect the current 

volatility forecast (Alexander, 2001). The GARCH model captures thick tailed returns and 

volatility clustering, and can also be modified to capture stylized facts such as non-trading 

periods and predictable events, but not leverage effects (Bollerslev et al., 1993). 

 

The GARCH(p,q) model gives the forecast for the next period directly. Based on the one-

period forecast, a two-period forecast can be made. By repeating this step many times, the 

long-horizon forecasts can be constructed. For each step, the forecast will be a little closer to 

the long-run average variance, and ultimately, the distant-horizon forecast is the same for all 

time periods as long as the covariance stationary requirement is met. The long-run forecast 

is just the unconditional variance given by:  

 

�� � V
��∑ deYeZ8 �∑ WXfXZ8

  (3.6) 

 

This means that the GARCH models are mean reverting and conditionally heteroskedastic, 

but they have a constant unconditional variance (Engle, 2001b). The one-step-ahead 

forecast of the conditional variance at time t is given by  ?g�<� � ` . R�+�� . )�?� and the 

multi-step-ahead forecast is: 
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?g�<C � V
��	W8<d8� . 	R� . )��C0R�+�� . )�?�1  (3.7) 

 

As long as α1 + β1 < 1 the second term of this equation eventually dies out and thus ?g�<C 

converges to the unconditional variance (Poon, 2005).   

 

The GARCH(1,1) can be extended and modified in a variety of ways (Engle, 2001b). According 

to Bera and Higgins (1993) it has frequently been demonstrated that a GARCH(1,1) process is 

able to represent the majority of financial time series, and data sets requiring models of 

higher order than GARCH(1,2) or GARCH(2,1) are rare.  

 

Engle’s (1982) ARCH model was initially applied to economic data. According to Alexander 

(2001), Bollerslev’s (1986) GARCH model is more appropriate for financial data. Figure 3.1 

illustrates how a GARCH(1,1) process models an infinite ARCH process for IYF, which is one of 

the assets I will study in Chapter 5. This is done with more sensible constraints on 

coefficients and with fewer parameters. An ARCH model with a few number of lags, such as 

the ARCH(5) in the figure, will be too variable because the lag is too short. The more lags 

applied, the more similar is the ARCH(p) process to a GARCH(1,1) process, which can be seen 

in Figure 3.1 for ARCH(20). The difference is the amount of noise around the estimates. The 

problem with increasing the lag in an ARCH model is of course that more parameters must 

be estimated. This is difficult because more parameter estimates make the likelihood 

function very flat (Alexander, 2001). A GARCH(1,1) model, on the other hand, requires only 

the estimation of three parameters. 
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Figure 3.1 Comparing ARCH(p) models with a GARCH(1,1) model for IYF. 

 

3.2.3 T-distributed GARCH 

According to Bollerslev (1987), a conclusion drawn from many studies is that speculative 

price changes and returns are approximately uncorrelated (but not independent) over time, 

and therefore well described by a distribution with fatter tails than a normal. Bollerslev 

(1987) therefore suggests an extension to the GARCH model to allow for conditionally t-

distributed errors, giving a distinction between conditional heteroskedasticity and a 

conditional leptokurtic distribution. Both can account for the observed unconditional 

kurtosis in the data. The conditional variance of a return series estimated under the t-

distribution will have an extra parameter ν, which is the degrees of freedom parameter. The 

t-distribution is symmetric around 0. When 1/ν > 0, the t-distribution has fatter tails than the 

corresponding normal distribution, while when 1/ν approaches zero, the t-distribution 

approaches a normal distribution. According to Bollerslev (1987), a fat-tailed conditional 

distribution might be superior to a conditional normal distribution. A model with t-

distributed errors allows for this possibility. 

 

According to Sheppard (2009a), the motivation behind using another distribution than the 

normal is that a better approximation to the conditional distribution of standardized returns 

may improve the precision of the estimated volatility process parameters, something that 
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can be important when using GARCH models for purposes like Value-at-Risk and option 

pricing. Sheppard (2009a) lists Bollerslev’s standardized Student’s t, Nelson’s (1991) 

generalized error distribution (GED) and Hansen’s (1994) skewed t distribution as 

alternatives to the normal assumption, and concludes that all three may be better 

approximations as they allow for kurtosis greater than that of a normal. In this paper only 

normal and t-distributions will be studied. 

 

The log-likelihood of a t-distribution is given as: 

h� � ln ij kl . 1
2 mn � ln Fj ol

2pN � 0.5 ln0π	ν � 2�1 � 0.5 t ulnσw� . 	1 . ν�ln x1 . zw�ν � 2z{
|

w��
 

 (3.8) 

 

where ν is the degrees of freedom in the range 2 \ l } ∞, Γ(.) is the gamma function and 

�� � +� ��⁄ , which is the standardized residual (Peters, 2001). 

 

3.2.4 Integrated GARCH (IGARCH) 

When ∑ R*9*�� . ∑ ) , �� � 1  the unconditional variance σ
2 is no longer definite for a 

GARCH(p,q) process, meaning that the series rt is no longer covariance stationary. It is, 

however, still strictly stationary (Poon, 2005). For a case like this, the conditional variance is 

an integrated GARCH process. The EWMA model is a non-stationary version of GARCH(1,1) 

where the persistence parameters sum up to one: α1 + β1 = 1 (Poon, 2005).  Therefore the 

EWMA specification can be interpreted as an integrated GARCH model where the 

parameters are ω=0, α=λ and β=1-λ (González-Rivera et al., 2004). Alexander (2001) 

recommends the use of IGARCH or EWMA when the sum of α+β is close to or equal to 1. The 

EWMA model should in this case have a decay factor λ equal to the estimated GARCH β. 

 

Although the EWMA model has an infinite variance, it is regarded to be a powerful model for 

volatility forecasting as it is not constrained by a mean level of volatility but adjusts to 

changes in unconditional volatility (Poon, 2005). The GARCH volatility forecasts of most 

financial markets tend to mean-revert, meaning that there is a convergence towards a long-

term average volatility level. But for some markets, for example the currency market, the 
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volatilities might not mean-revert at all (Alexander, 2001). Generally, for many applications 

using high-frequency financial data, α+β turns out to be close to unity (Bollerslev et al., 

1993). 

 

The IGARCH is similar to a symmetric GARCH(p,q) model. For α+β=1 (or very close to 1), 

IGARCH is given by (Alexander, 2001): 

 

��� � ` . 	1 � D�+���� . D�����   (3.9) 

 

where 0 } D } 1. The unconditional variance is no longer defined and term structure 

forecasts do not converge. The variance is now non-stationary. When ω=0, the model is 

simply an EWMA model (Alexander, 2001). 

 

In the IGARCH(p,q) model, introduced by Bollerslev and Engle (1993), a shock to the 

conditional variance is persistent, meaning that it remains important for future forecasts of 

all horizons (Bollerslev et al., 1993). 

 

3.3 Assymetric GARCH models 

The ARCH and GARCH models described so far ignore information on the direction of returns 

since they specify a symmetric response to market news. A symmetric volatility refers to the 

fact that the unexpected returns are squared so that only the magnitude matters. There is, 

however, convincing evidence that direction affects volatility (Engle, 2001b). Symmetric 

volatility models like the GARCH model often give a too low estimate of the conditional 

volatility after a price drop, while it’s too large after a price increase. This can lead to asset 

mispricing and poor in- and out-of-sample forecasts (Cappiello et al., 2006).  The leverage 

effect has become quite noticeable during the last years (Alexander, 2001). Many 

asymmetric GARCH models are available. These include the EGARCH model of Nelson (1991), 

the GJR-GARCH of Glosten, Jagannathan and Runkle (1993) and the TARCH (threshold ARCH) 

model of Zakoian (1994). The problem with applying symmetric GARCH models to time-

series showing leverage effect is that the conditional volatilities are likely to be very spiky, 

meaning they will show a large reaction (large α) and low persistence (low β) (Alexander, 
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2001). The parameter estimates from a symmetric GARCH will in other words be quite 

different from time-series not exhibiting leverage effects.  

 

3.3.1 Exponential GARCH (EGARCH) 

The EGARCH(p,o,q) model, where o refers to the number of asymmetric lags, proposed by 

Nelson (1991), models the natural logarithm of the variance rather than modeling the 

variance directly. It is then no need to impose estimation constraints to obtain nonnegative 

conditional variance (Poon, 2005). The EGARCH process is defined as (Sheppard, 2009a): 

 


� � μ� . ��  

μ� � -' . -�
��� . A . -�
���  

ln	σw�� � ` . ∑ R9 x��M�f
5M�f� � ��

�z:9�� . ∑ "' �M��
5M��

���� . ∑ ), ln����,� !;,��   (3.10) 

�� � ����  

��~�. �. �. Q	0,1�  

 

For the EGARCH model, ��� depends on both the sign and the magnitude of �t. It thus 

captures the leverage effect where negative shocks lead to higher conditional variance in 

subsequent periods than positive shocks (Poon, 2005). For an EGARCH(1,1,1) model the log 

variance will thus be a constant, ω, plus three terms. The α-term is the absolute value of a 

normal random variable minus its expectation. It is thus a mean zero shock. The γ-term is 

also a mean zero shock. The difference between these shocks is that the former produce a 

symmetric rise in the log variance while the latter creates an asymmetric effect (Sheppard, 

2009a). A negative and significant estimated γ indicates the presence of asymmetry effects 

(Harris and Sollis, 2003) so that volatility rises more subsequent to negative shocks than to 

positive shocks. The β-term is the lagged log variance. The EGARCH process is covariance 

stationary only if  ∑ ) \ 1, �� .  

 

EGARCH models are difficult to use for volatility forecasting because no analytic form is 

defined for the volatility term structure (Alexander, 2001). The multi-step-ahead forecast for 

the EGARCH model is given by (Poon, 2005): 
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?g�<C � ?��W8	� � 1� exp	`� �(a�00.5	/ . "��1�	/ . "� . �(a00.5	/ � "��1�	/ � "��  

 (3.11) 

 

where ` � 	1 � R��R' � "_2 J⁄ . 

 

3.3.2 GJR-GARCH 

GJR refers to Glosten, Jagannathan and Runkle (1993). The GJR-GARCH(p,o,q) model which 

also allows for asymmetrical dependencies is given by: 

 

?� � ` . ∑ ),;,�� ?��, . ∑ R9+��9� . ∑ "���,���+��������:9��   (3.12) 

���� � � 1   �� +��� \  0  0   �� +���  U 0 �  

 

When α0 > 0, αi U 0, αi + γi U 0 and βj U 0, for i = 1, …, p and j = 1, …, q, the conditional 

volatility is positive (Poon, 2005). An estimated γ > 0 is evidence that asymmetry is present, 

indicating that negative shocks increase the volatility of returns by more than positive shocks 

of the same magnitude (Harris and Sollis, 2003). 

 

The GJR-GARCH process is only stationary when ∑ ),;,�� . ∑ oR9 . �
� "9p:9�� \ 1 (Poon, 

2005). 

 

For a GJR-GARCH(1,1) model the one-step-ahead forecast is given by (Poon, 2005): 

 

?g�<� � ` . )�?� . R�+�� . "�+����  (3.13) 

 

while the multi-step-ahead forecast for time τ is given by (Poon, 2005): 

 

?g�<C � ` . o�
� 	R� . "�� . )�p ?�<C��  (3.14) 

 

Bollerslev et al. (1993, p.11) summarize the GJR-GARCH model as a model that “allows a 

quadratic response of volatility to news with different coefficients for good and bad news, 

but maintains the assertion that the minimum volatility will result when there is no news”. 



Estimation and selection of time-varying volatility models Øystein Skregelid, 2009   

29 

 

 

3.3.3 Threshold GARCH (TARCH) 

The TARCH, also known as ZARCH, model by Zakoian (1994) is similar to the GJR-GARCH. The 

difference is that it parameterizes the conditional standard deviation as a function of the 

lagged absolute value of shocks instead of squared residuals (Sheppard, 2009a). 

TARCH(p,o,q) conditional standard deviation is specified as: 

 

�� � ` . ∑ R9�+��9� . ∑ "����� ��,���|+���|:9�� . ∑ ),���,;,��    (3.15) 

 

The conditional volatility from the TARCH model is positive when the parameters satisfy ω > 

0, αp U 0, αp + γo U 0 and βq U 0. The process is covariance stationary for the case p=q when 

(Poon, 2005): 

 

)�� . �
� 0R�� . 	R� . "���1 . �

√�� )�	R� . "�� \ 1  (3.16) 

  

According to Sheppard (2009a) models of conditional standard deviations often outperform 

models where the conditional variance is directly parameterized since absolute shocks are 

less responsive than squared shocks. 

 

The one-step-ahead forecast of the TARCH(1,1,1) is given by: 

 

���<� � ` . )��� . R�|+�| . "�|+�|��  (3.17) 

 

3.3.4 Asymmetric Power ARCH (APARCH) 

The APARCH model by Ding, Granger and Engle (1993) is a model that nests several other 

popular univariate parameterizations and therefore allows the data to determine the true 

form of asymmetry (Harris and Sollis, 2003). It extends TARCH and GJR-GARCH models in the 

sense that non-linearity in the conditional variance is directly parameterized through a 

parameter δ. It thus gives a greater flexibility when modeling the memory of volatility, while 

remaining parsimonious (Sheppard, 2009a).  The APARCH(p,q) model is given by: 
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��� � ` . ∑ R*	|+��*| � "*+��*��9*�� . ∑ )*���*�,*��   (3.18) 

 

To satisfy non-negative conditional variances, it is necessary that ω > 0, αk U 0 and 

�1 } "* } 1 (Sheppard, 2009a). 

 

The model for example nests a standard linear GARCH(p,q) model when δ = 2 and γi = 0, a 

GJR-GARCH model when δ = 2 and a TARCH model when δ = 1 (Laurent, 2004). To test if an 

APARCH specification fits better than for example a GARCH model the null hypothesis that δ 

= 1 and γ = 0 must be tested (Laurent, 2004).  

 

3.4 Forecasting performance of the various GARCH models 

Poon’s (2005) survey of volatility forecasting models reveals that there is no clear 

consistency between different researcher’s findings when it comes to comparing the ability 

of the numerous models available. She finds, however, that models allowing asymmetry do 

well due to the strong negative relationship between volatility and shocks. Cao and Tsay 

(1992) and Lee (1991) are among those who support the EGARCH model for stock indices 

volatility. Furthermore, Brailsford and Faff (1996) and Taylor (2004) find that GJR-GARCH is 

superior to GARCH for stock indices. 

 

When it comes to GARCH versus historical models such as the EWMA and rolling window, 

Poon (2005) refers to Akigray (1989) who finds that GARCH outperforms EWMA and rolling 

window models in all sub periods and under all evaluation measures.  

 

Poon (2005) also refers to plenty of studies preferring exponential smoothing methods over 

GARCH for volatility forecasting. This is often the case when the GARCH family of models 

leads to convergence problems, possibly due to the fact that parameter estimation becomes 

unstable when the data period is short or when there is a change in the volatility level.  

 

Finally, Poon (2005) shows to a lot of studies where the results are not so clear. She suggests 

that the reasons for this could be that 

• The studies test a large number of very similar models. 
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• They use a large number of different forecasting error statistics with different loss 

functions. 

• The forecasts and error statistics are calculated for variance and not standard 

deviations. 

• Squared returns are used to proxy ‘actual’ volatility, making the results extremely 

noisy. 

 

3.5 Realized volatility 

With so many competing parametric volatility models, all with different properties, it is 

obvious that misspecifications do exist in the volatility forecasting methodology. At least one 

of the models could be correct, but none is strictly correct (Andersen et al., 2001). A 

relatively new way to measure volatility, supported by the ever-improving technology to 

handle large amounts of data, and databases making intraday data available, is termed 

realized volatility. Andersen et al. (2001) compute daily realized volatility by summing 

intraday squared returns. The theory behind this is that realized volatility from very high 

frequency data (10 years of continuously recorded 5-min returns is used in the paper) will be 

close to the underlying integrated volatility, which is the integral of instantaneous volatility 

over the interval studied. This is according to the authors a natural volatility measure. So by 

treating volatility as observed, they are able to examine the properties of the volatility 

directly, using much simpler techniques than those required from complicated econometric 

models. Poon (2005) expects to see a big increase in the research on realized volatility 

variant of historical volatility models in the coming years. In this paper, however, daily 

returns will be used. 

 

3.6 Testing appropriateness of GARCH class modeling  

Before taking the step of applying conditional volatility models to a time-series, it should be 

checked if such a procedure is appropriate. Tests that should be undertaken in the pre-

estimation analysis are presented in Chapter 3.6.1. In a similar fashion, the results from a 

conditional volatility specification should be checked to test whether the model is well 

specified. These post-estimation tools are presented in Chapter 3.6.2. 
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3.6.1 Pre estimation analysis 

The main tests before actually estimating the conditional volatility are Engle’s ARCH test and 

Box-Pierce-Ljung’s Q-test. The former tests whether the data is heteroskedastic, while the 

latter tests whether volatility clustering is present. Tests for normality in the raw returns will 

also be presented, although they will almost certainly reject normality. These normality tests 

are more useful in the post-estimation phase, where they are applied to standardized 

residuals of the estimated volatility models. Finally, a test for leverage effects in the returns 

series is presented. This test will give a useful insight to whether a symmetric or an 

asymmetric univariate volatility model should be applied. 

 

Engle’s ARCH test 

Since the ARCH class of models requires iterative procedures, it is desirable to test whether 

it is appropriate before the estimation. An ideal tool for this is the Lagrange multiplier test 

(Engle, 1982). The null hypothesis assumes that the model is a standard dynamic regression 

model written as �� � (�) . +� , where xt is a set of weakly exogenous and lagged 

dependent variables and εt is a Gaussian white noise process, meaning that the data are 

homoskedastic and that variance cannot be predicted (Bollerslev et al., 1993). The 

alternative is that the errors are ARCH(q), or in other words that there are ARCH effects in 

the sample as large values of ε
2

t will be predicted by large values of the past squared 

residuals (Bollerslev et al., 1993). The reason for using a test like this is that if data turn out 

to be homoskedastic, then the variance cannot be predicted and variations in the squared 

residuals are purely random. If the test shows that ARCH effects are present, then large 

values of the squared residuals will be predicted by large values of past squared residuals 

(Bollerslev et al., 1993). This test is often referred to as Engle’s ARCH test. 

 

Autocorrelation functions 

Autocorrelations and partial autocorrelation functions can be useful tools for identifying and 

checking GARCH behavior in the conditional variance equation (Bollerslev, 1986). A standard 

test for autoregressive conditional heteroskedasticity is to study the autocorrelation of 

squared returns, since returns themselves may not be autocorrelated. This is often the case 

for financial time-series. Volatility clustering implies that the autocorrelation of squared 
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returns is strong. The significance of the autocorrelation in the squared returns can be tested 

by the Box-Pierce LM test (Alexander, 2001). It tests for autocorrelation up to order p. It is a 

form of Lagrange multiplier test meaning it is asymptotically distributed as chi-squared with 

p degrees of freedom. The test statistic is: 

 

� � � ∑ -	K��9���   (3.19) 

 

where T is the sample size and -	K� is the n-th order sample autocorrelation given by: 

 

-	K� � ∑  �M6�M��6�MZ��8∑ �M��MZ8   (3.20) 

 

Even though volatility clustering is present, this test might show insignificant autocorrelation 

in the squared returns. This could be caused by one or more extreme negative returns in the 

sample. A negative skewness and extreme excess kurtosis (significantly above 3) will tell if 

this is the fact, and the solution then is to remove or ‘dummy out’ these outliers (Alexander, 

2001). 

 

Testing for normality 

The skewness, τ, which is the standardized third moment of the time-series distribution, is 

given as (Alexander, 2001): 

 

� � �0	  � 
�¡1/�¡  (3.21) 

 

The kurtosis, κ, is the standardized fourth moment, given as: 

 

¢ � �0	  � 
�£1/�£  (3.22) 

 

A Jarque-Bera normality test is defined in terms of the sample estimates of τ and κ. For a 

sample with the size n the test is: 
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¤¥ � K0	�̂� 6⁄ � . 	¢̂� 24⁄ �1  (3.23) 

 

This test statistic is asymptotically chi-squared with 2 degrees of freedom (Alexander, 2001).  

 

Quantile-Quantile (QQ) plots can be used to observe departures from normality and thus 

give a nonparametric view to assess whether a distribution is skewed or heavy tailed. A 

density plot shows the relative frequency distribution of the time-series compared to e.g. 

the normal density of the same mean and standard deviation. The QQ-plot is a scatter plot 

of empirical quantiles of a given distribution on the vertical axis against theoretical quantiles 

on the horizontal axis. Points along a 45° line indicate a good distributional fit. Returns that 

have excess kurtosis have a greater probability of large negative or large positive values than 

a corresponding normal density function. The lower quantiles are then less than the normal, 

and the upper quantiles are greater. Fat tails are displayed in the QQ plots as deviations 

below the line for the lower quantiles and above the line for upper quantiles (Alexander, 

2001). A better understanding of the QQ-plot can be obtained through Figure 5.3, where the 

raw returns of the IYF are plotted against a normal distribution.  

 

Testing for asymmetry 

To investigate the leverage effect of a time series, an asymmetric GARCH test can be applied. 

This test is calculated by computing the first-order autocorrelation coefficient between 

lagged returns and current squared returns (Alexander, 2001): 

 

AGARCH Autocorrelation � ∑ �M6�M�8�MZ6
�∑ �M��MZ6 ∑ �M�86�MZ6

  (3.24) 

 

When the asymmetric autocorrelation is negative and the corresponding Box-Pierce test is 

significantly different from zero, there is asymmetry in volatility clustering. When asymmetry 

is present the variances after a negative shock will be greater than after a positive shock 

(Cappiello et al., 2006). This asymmetry cannot be captured by symmetric GARCH models. 
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3.6.2 Post estimation analysis 

The true variance process could be different from the one specified by the conditional 

volatility models. Many diagnostic tests are available in order to test this. The simplest test is 

to construct the series of residuals, εt. This series is supposed to have constant mean and 

variance if the model is specified correctly. Tests for autocorrelation in the squares are also 

able to detect model failures. A Ljung and Box (1978) portmanteau test with 15 lagged 

autocorrelations for ε2 is often used (Engle, 2001b). The Ljung-Box Q statistic tests the null 

hypothesis that the first s (for example 15) autocorrelations are all zero. The alternative is 

that at least one is non-zero (Sheppard, 2009a).  

 

Remaining ARCH effects 

If a GARCH model has captured volatility clustering, the residuals standardized by their 

conditional volatility �+� _?�⁄ !  should have no significant ARCH effects left. Standardized 

returns are then nearly normally distributed (Alexander, 2001). To test whether there are 

remaining ARCH effects, Engle’s ARCH test is therefore applied to the standardized residuals.  

 

Remaining autocorrelation 

Just as in the pre-estimation analysis, the autocorrelation function is useful in the post-

estimation analysis. The standardized returns squared 	
�µ� � 
��/����� , should have no 

remaining autocorrelation if the GARCH model is well specified (Alexander, 2001).  

 

When applying different ARCH class models on the same time-series, and more than one 

show no autocorrelation in squared standardized returns, a simple procedure is to choose 

the model giving the highest maximum likelihood for the sample, implying that this model is 

more likely under the density generated by the volatility forecasts (Alexander, 2001).  

 

AIC and BIC 

The Akaike Information Criterion (AIC) and the Schwarz Bayesian Information Criterion (BIC 

or SBC) are useful for model selection among specifications with different numbers of 

parameters. Adding lags for p and q requires estimation of additional coefficients and are 

associated with a loss of degrees of freedom. The use of a maximum likelihood function in 



Estimation and selection of time-varying volatility models Øystein Skregelid, 2009   

36 

 

the model parameterization often leads to adding additional parameters to increase the 

likelihood. This could result in overfitting of the model. The AIC and BIC models trade off a 

reduction in the sum of squares of the residuals for a more parsimonious model, i.e. it 

introduces a penalty term for the number of parameters in the model. The penalty for 

additional parameters is higher for the BIC than for AIC. For n parameters estimated and T 

usable observations (to deal with the fact that observations are lost when increasing the 

lags), these formulas are given by (Enders, 2004): 

 

�¶· � � ln	¸¹^ �� ¸b¹�
�� 
�¸��¹�E¸� .  2  (3.25) 

¥¶· � � ln	¸¹^ �� ¸b¹�
�� 
�¸��¹�E¸� . K ln 	��  (3.26) 

 

The AIC and BIC should be as low as possible, and the methods will thus select the model 

with the lowest value for AIC and SBC respectively. T must therefore be fixed between each 

model, since fewer observations reduce the AIC and the BIC. BIC will always select a more 

parsimonious model than AIC since ln(T) will be greater than 2 (Enders, 2004). If both tests 

select the same model, the choice of model is easy. When the two tests do not select the 

same model, certain diagnostics can be done to end up with the right selection. For the 

model selected by BIC it should be determined whether the residuals appear to be white 

noise since BIC selects the most parsimonious model, while the significance of all coefficients 

should be tested for the model selected by AIC (Enders, 2004). 

 

3.7 Evaluation of volatility forecasts 

The objective of applied econometrics is often to find the superior forecasting model. 

Traditionally this is done by direct comparison of the mean squared error (MSE) of the 

forecasts, while more popular tests in recent literature evaluate the statistical significance of 

differences in MSE and compare the informational content of forecasts (Harris and Sollis, 

2003).  

 

According to Gonzáles-Rivera et al. (2004) the task of comparing the relative performance of 

different volatility models is built on either a statistical loss function or an economic loss 

function. Statistical loss functions are based on moments of forecast errors, and include 
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statistics such as the mean error (ME), the root mean square error (RMSE), the mean 

absolute error (MAE) and the mean absolute percent error (MAPE): 

 

Mean Error 	ME� �  �
¼ ∑ +�¼��� � �

¼ ∑ 	��� � ���¼���   (3.27) 

Mean Square Error 	MSE� � �
¼ ∑ +��¼��� � �

¼ ∑ 	��� � ����¼���    (3.28) 

Root Mean Square Error 	RMSE� � ��
¼ ∑ +��¼��� � ��

¼ ∑ 	��� � ����¼���   (3.29) 

Mean Absolute Error 	MAE� � �
¼ ∑ |+�|¼��� � �

¼ ∑ |��� � ��|¼���   (3.30) 

Mean Absolute Percent Error 	MAPE� � �
¼ ∑ |LM|

5M
¼��� � �

¼ ∑ |5ÂM�5M|
5M

¼���   (3.31) 

 

The best model would be the one that minimizes such a function of the forecast errors. 

While the evaluation of such models are straight forward for conditional mean models, 

forecasts of the conditional variance are more complex to evaluate as observed values of the 

conditional variance are not available even when holding back a part of the sample for this 

purpose (Harris and Sollis, 2003). Squared returns, 
��, are traditionally used as a proxy, 

enabling forecasts to be evaluated in the same way as the forecasts of the return series. The 

squared values are, however, often a poor proxy of the conditional variance leading to many 

studies that apply such a proxy concluding that GARCH models produce poor forecasts of the 

conditional variance (Harris and Sollis, 2003). According to Andersen and Bollerslev (1998, 

p.3) this is “an inevitable consequence of the inherent noise in the return generating 

process”. They suggest a method involving high-frequency data for the construction of 

volatility measurements. According to Sheppard (2009a) squared returns are, however, 

reasonable for short-horizon problems using daily data when the squared conditional mean 

is small relative to the variance. For samples containing monthly data, Sheppard (2009a) 

suggests the use of squared residuals, +��, produced from a conditional mean model instead. 

 

A generalized Mincer-Zarnowitz (GMZ) R2 regression can be applied to evaluate the 

optimality of the forecasts (Patton and Sheppard, 2008, Sheppard, 2009a). The GMZ 

regression is given by: 
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�<Ã� � ���<Ã|�� � "' . "����<Ã|�� . "���� . A . "Ä<��Ä� . Å�   (3.32) 

 

where zjt e.g. can be 
��, |rt| or rt. If the forecast is correct, the regression of the proxy (for 

realized volatility) on its forecast should give (approximately) γ0 = γ2 = γK+1 = 0 and γ1 = 1 

(Sheppard, 2009a). This can be tested e.g. by a Wald test under the null that the coefficients 

are 0. 

 

A common measure of risk is Value-at-Risk (VaR). This is an example of an economic loss 

function. VaR is the maximum loss (stated at a 1-α confidence level) that can be expected 

from normal market movements for a specified time period under the assumption that the 

portfolio is unmanaged during this time (Alexander, 2001). It gives a more sensible measure 

of risk than variance because the focus is on losses (Sheppard, 2009a). The probability that a 

portfolio will lose more than its VaR for a particular time horizon is equal to α, which is a 

prespecified number (Engle and Manganelli, 1999). A 1% VaR, for example, is the number of 

dollars (or other currency) one can be 99% sure exceeds any losses for the next day. This is a 

1% quantile, as 1% of the outcomes are worse and 99% are better (Engle, 2001b). VaR 

involves forecasting a value at each time period that will be exceeded by a confidence level 

of 1-α.   

 

Three approaches for the calculation of VaR will be examined in this paper. These are the 

fully parametric conditional VaR, the semi-parametric conditional VaR and the historical 

simulation models. 

 

A fully parametric conditional VaR is estimated using maximum likelihood. At time t the 

conditional VaR is given by: 

 

2�Æ�<� � �μ� � ���<�ÇW��  (3.33) 

 

where ÇW�� is the α-quantile for the distribution of residuals (Sheppard, 2009a). The VaR thus 

depends on the mean and standard deviation. The mean µ is assumed to be constant, while 

the standard deviation σ is the conditional volatility from an estimated model, like for 
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example a GARCH(1,1) model. ÇW�� is an inverse cumulative density function (CDF) with 

probability α, mean 0 and variance equal to 1. This is approximately equal to 2.33, 1.65 and 

1.28 for a normal distribution with 99%, 95% and 90% confidence level respectively. So a 

one-day ahead 1% VaR using the fully parametric method equals: 

 

2�Æ�<� � �μ� � ���<� · 2.33  (3.34) 

 

F can also be a Student’s t distribution with ν degrees of freedom. One limitation of this 

model is that knowledge of the density is required; if the distribution is misspecified then the 

quantile used is wrong (Sheppard, 2009a). An alternative when the distribution is unknown 

is a semi-parametric estimation. In this case a standard maximum likelihood estimation 

(MLE) is not available, but the model can be estimated through a quasi-MLE (QMLE) where 

ÇgW�� is now the empirical α-quantile of a series of ordered standardized residuals (Sheppard, 

2009a).  The use of standardized residuals has an advantage over the use of residuals since 

the density does not have to be assumed. 

 

A third method is the unconditional, or historical, VaR. This is the VaR computed directly 

from unmodified returns in order to compute the appropriate quantile (Sheppard, 2009a). At 

a time t the historical VaR is simply the α% quantile of the empirical distribution of the data 

set in the range 1 to t-1. 

 

One way to rank the forecasting performance of each model based on VaR is to find the total 

“hits”: Q � ∑ Ê¶��<����� , where Ê¶��<� is equal to 1 if the return on day t+1 is less than VaR 

at day t+1, and 0 otherwise. A Mincer-Zarnowitz regression of HITt+1|t on HITt in the out-of-

sample period after demeaning the series (e.g. subtract 0.01 from each value of HITt at the 

99% confidence level) can be calculated to control the quality of the model (see Sheppard, 

2009a). For a correctly specified model, all coefficients should be zero. If the model is 

rejected, another confidence level can be tested.  
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3.8 Multivariate models 

The motivation behind the use of multivariate modeling is that financial volatilities move 

together across markets and assets. In multivariate modeling we need to capture 

movements in the conditional variances.  

 

If the joint distribution of two stationary return processes, r1 and r2, has stable properties 

over time, they are said to be jointly covariance stationary (Alexander, 2001). Stable 

properties means e.g. that the covariance between the series is a constant at all times, so 

that at every point in time cov(r1t,r2t) = σ12. Only then can the constant correlation ρ be 

defined as $�� � ��� ����⁄  where σi is the standard deviation of series i.  

 

In financial markets the correlations between assets change from day to day, so that the 

unconditional correlation does not exist. A conditional correlation model allows correlations 

in a conditional joint distribution to change over time (Alexander, 2001). This is done by 

dividing the conditional covariance by the product of the conditional standard deviations of 

each return so that $��,� � ���,� ��,���,�⁄ . Multi period forecasts can be defined similarly. 

 

Conditional correlation models are typically very unstable over time, in contrast to 

unconditional correlation models.  The reason is that the past plays a weaker role in the 

conditional models, while events happening many periods ago still affect the unconditional 

models. The only variation seen in correlation estimates of an unconditional model is due to 

sampling errors, and the past can affect the sampling error just as much as the present. For 

time-varying correlation models the variations in the estimates are also due to changes in 

the true value of the parameters (Alexander, 2001).  

 

Many models are available for the estimation of conditional correlations. The estimates of 

the various models can be quite different. In practice, simple methods like a rolling historical 

correlation or exponential smoothing are often preferred, but more advanced models like 

multivariate GARCH models can have many advantages. In the following, some different 

approaches to correlation modeling will be presented.  
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EWMA correlation 

The EWMA correlation estimator uses declining weights given by the decay factor λ so that 

the latest data is given more weight, while past data never become uninformative. The 

conditional correlation is defined as: 

 

$���,� � ∑ ËM�X�8�8,Ì�6,ÌM�8ÌZ8
��∑ ËM�Ì�8�8,Ì6M�8ÌZ8 !�∑ ËM�Ì�8�6,Ì6M�8ÌZ8 !  (3.35) 

 

For the multivariate EWMA, λ should be the same for all assets to ensure a positive definite 

correlation matrix (Engle, 2002). RiskMetricsTM (J.P.Morgan, 1997) uses λ=0.94, and this will 

also be used in this paper. The value of the decay factor could otherwise be estimated in a 

number of ways, e.g. to a value that optimizes an economic or statistical criterion (such as 

the value that minimizes the one-step ahead forecast error variance). The estimator of the 

EWMA correlation Ht is given as: 

 

Ê� � D�
�� 
�� Í! . 	1 � D�Ê���  (3.36) 

 

Many practitioners prefer EWMA to GARCH correlations. EWMA correlations are easier to 

estimate, but also have their limitations including the fact that, in contrast to univariate 

GARCH, the term structure forecasts does not mean revert (Alexander, 2001).  

 

Vech and BEKK 

For a multivariate time series yt the conditional variances of individual series and the 

conditional covariances between each series are estimated simultaneously by maximum 

likelihood (Harris and Sollis, 2003). The conditional mean of yt is a n x 1 vector denoted µt, 

while the conditional variance is a n x n matrix denoted Ht. The Ht matrix has the variances 

on the diagonal and covariances on the off-diagonal elements. Many different multivariate 

GARCH models are available. Two of the most common are the vech and the BEKK 

specifications (Harris and Sollis, 2003). 
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A n-dimensional multivariate GARCH model has n conditional mean equations. The diagonal 

vech model has a separate GARCH equation for each asset. It parameterizes the vector of 

variances and covariances. A n-dimensional vech model is defined as (Alexander, 2001): 

 

���?	Ê�� � � . ¥���?	
���
���Í � . ·���?	Ê����  (3.37) 

 

where Ht is the conditional covariance matrix at time t, so that vech(Ht) is a vector containing 

all elements of the covariance matrix. For the bivariate case, rt = (ε1t, ε2t)’, A = (ω1, ω2, ω3)’, B 

= diag(α1, α2, α3) and C = diag(β1, β2, β3).  

 

The BEKK model, named after Baba, Engle, Kraft and Kroner, first introduced by Engle and 

Kroner (1995), is a general parameterization that involves a minimum number of 

parameters. This model has no cross equation restrictions and it ensures positive 

definiteness for any parameter (Alexander, 2001). The BEKK model is specified as: 

 

Ê� � �Í� . ¥Í	
���
���Í �¥ . ·ÎÊ���·  (3.38) 

 

A, B and C are n x n matrices and A is triangular. This method involves eleven parameters for 

a bivariate GARCH(1,1) model, which is two more than for a bivariate diagonal vech. The 

more assets involved, the higher becomes the number of parameters, making the estimation 

procedure difficult. This feature is shared by the diagonal vech procedure. For a ten-

dimensional system for example, at least 175 parameters have to be estimated using one of 

these multivariate GARCH methods. All these parameters have to be estimated 

simultaneously, which can lead to extreme convergence problems (Alexander, 2001). 

 

For special cases, the B and C matrices can be for example scalar or diagonal, refered to as 

SCALAR BEKK and DIAGONAL BEKK respectively (Engle, 2002).  

 

The multivariate GARCH models can be estimated by the “variance targeting” constraint that 

the long run covariance matrix is the sample covariance matrix (Engle, 2002).  
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For portfolio problems where possibly thousands of assets are considered, a large number of 

correlations are required. The construction of an optimal portfolio requires forecast of the 

covariance matrix of returns, and the calculation of the standard deviation of today’s 

portfolio requires a covariance matrix of all portfolio assets (Engle, 2002). Models such as 

vech and BEKK are difficult to use in those cases; when there are many assets the number of 

parameters is too big to optimize the portfolio (Engle, 2002). There is therefore a lot of 

research on new classes of multivariate models to handle such tasks. The CCC and DCC 

models are approximations to multivariate GARCH covariance matrices Ht, generated by 

univariate GARCH models. These will be described next. Another alternative is an orthogonal 

GARCH model. For more on this, see Alexander (2001). 

 

Constant conditional correlation (CCC) 

Bollerslev’s (1990) constant GARCH correlation is given by Ê� � ��Æ��, where �� � _?*� is a 

k x k diagonal matrix of conditional volatilities from univariate GARCH models and R is the 

constant correlation matrix (Alexander, 2001). It is thus a product of time-varying volatilities 

and a time-invariable correlation matrix. Using the individual return series for each asset, 

GARCH volatilities can be estimated using univariate GARCH models. The correlation matrix 

can then be estimated using equally weighted moving averages over the whole data period 

(Alexander, 2001).  By assuming that the correlation is constant, the model becomes feasible 

and ensures that the estimator is positive definite under the requirement that each 

conditional variance is non-zero (Engle and Sheppard, 2001). 

 

Dynamic conditional correlation multivariate GARCH (DCC-MVGARCH) 

The DCC model by Engle and Sheppard (2001) is a generalization of Bollerslev’s constant 

conditional correlation model where the correlation matrix can be time-varying (Alexander, 

2001). It has the flexibility of univariate GARCH models combined with parsimonious 

parametric models for the correlations. It parameterizes the conditional correlations directly 

in two steps. Firstly the volatilities and standardized residuals are calculated for each asset 

through univariate GARCH models. The standardized residuals of each asset are then used to 

calculate conditional covariances between them, using a maximum likelihood criterion and 

one of many models for the correlations. The covariance and correlation matrices are 
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guaranteed to be positive definite (Engle and Colacito, 2004). Two examples of such 

correlation models are Engle’s (2002) DCC model, allowing an asymmetric response in 

variances, and the asymmetric DCC (A-DCC) model by Cappiello et al. (2006), which also 

allows for asymmetric dynamics in the correlation. The difference between these two 

specifications is thus that the latter allows correlation to rise more when both returns are 

falling than when both are rising (Engle and Colacito, 2004). 

 

The standard errors from the univariate step remain consistent, while the standard errors 

for the correlation parameters need to be modified (Engle and Sheppard, 2001). This gives a 

computational advantage over multivariate GARCH models because the number of 

parameters to be estimated for the correlation step is independent from the number of 

series to be correlated (Engle, 2002). DCC is thus very convenient for big systems (Engle and 

Colacito, 2004). 

 

The DCC models have a covariance matrix given as Ht = DtRtDt, where Dt is a k x k diagonal 

matrix of time-varying standard deviations from univariate GARCH models and Rt is the 

(possibly) time-varying correlation matrix (Cappiello et al., 2006). The parameterizations of R 

follow the same requirements as a parameterization of H, except that the conditional 

variances must be unity (Engle, 2002).  

 

An asymmetric DCC for two assets is formulated by Engle and Colacito (2004) as: 

 

�*,� � ?*,�
�8

6Ï*,�  

Ê� � u ?�,� $�_?�,�?�,�
$�_?�,�?�,� ?�,�

{  (3.39) 

 

where yi,t is the standardized residuals of each asset, defined as the residuals ξ divided by the 

conditional standard deviations of each series. The Dt elements in the covariance matrix (hi,t 

for i=1,2) are given by any univariate GARCH process (i.e. symmetric or asymmetric) with 

normally distributed errors satisfying stationary conditions and non-negativity constraints 

(Engle and Sheppard, 2001) so that:  
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?*,� � `* . ∑ )*,;,�� ?*,��, . ∑ R*9�*,��9� . ∑ "*��*�,����*,��������:9��   (3.40) 

 

The subscripts on P and Q indicate that the lag lengths for the two assets can be different. 

The correlation $� � Ã86,M
�Ã8,Mµ Ã6,Mµ  (the Rt elements) is given by: 

 

?*,�µ � o1 � /� � /� � =Ð
� p . /�+*,���� . /�?*,���µ . /¡�*,���µ +*,����   

?��,� � -�� · 	1 � /� � /�� � -¡/¡ . /�+�,���+�,��� . /�?��,���  

              . /¡���,���µ +�,���!���,���µ +�,���!  (3.41) 

 

The variables �*,�  and �*,�µ  are dummies for yi,t and εi,t respectively, where εi,t are the 

standardized residuals of the two univariate asymmetric volatility processes.  The dummies 

are equal to one when these variables are negative and zero otherwise. The coefficient /¡/2 

relies on the assumption that the standardized residuals have a symmetric distribution. -�� 

is the average correlation of returns, while -¡  is the average asymmetric component 

���,���µ +�,���!���,���µ +�,���! (Engle and Colacito, 2004).  

 

The log-likelihood of the estimator Ht is given in Engle and Sheppard (2001) as: 

 

h � � �
� ∑ 	Ñ log	2J� . 2 log	|��|� . log	|Æ�|� . ��ÍÆ����������   (3.42) 

 

3.9 Portfolio optimization 

An optimal portfolio needs to match two conditions: it must be feasible and efficient. If the 

weights of the assets in the portfolio sum to one, it is a feasible portfolio. This gives a set of 

all portfolio returns and standard deviations that are feasible. The portfolio with the 

minimum variance is on the envelope of the feasible set. An efficient portfolio is one that for 

a given level of risk maximizes the return, and the set of all possible efficient portfolios is 

called the efficient frontier (Benninga, 2008). 
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The return of a linear portfolio of n assets at day t is the sum of individual asset returns 

multiplied with the corresponding weight w invested in this asset, so that: 

 

�	
9,�� � Ó�,��	
�,�� . A . ÓÔ,��	
�,��  (3.43) 

where ∑ Ó* � 1  

 

The variance of such a portfolio is: 

 

�9,�� � Ó�,�� ��,�� . A . ÓÔ,�� ��,�� . 2Ó�,�Ó�,�����Ó�,�, Ó�,�! . A  

.2Ó���,�Ó�,�����Ó���,�, Ó�,�!  (3.44) 

 

In matrix form the variance of the portfolio is simply �9,�� � ÓÍÊ�Ó, where w is a vector of 

weights, w’ is the inverse vector of weights and Ht is the covariance matrix of asset returns. 

 

A global minimum variance portfolio (GMVP) is a portfolio strategy that minimizes the 

expected variance of the portfolio. It is thus done on the basis of risk characteristics 

(Alexander, 2001). The asset allocation of a GMVP is given by: 

 

minVM `�Í Ê�`�      Ó?�
� ∑ Ó* � 1  (3.45) 

 

When short-selling is allowed, meaning that asset weights can be negative or zero, the 

optimal weights of GMVP is given by (Alexander, 2001): 

 

Ó*µ � O* ∑ O*⁄   (3.46) 

 

where ψi is the sum of elements in the ith column of Ê���, and ∑ O*  is the sum of all 

elements of Ê���. The variance of the GMVP is then 1/∑ O*. When short-selling is not 

allowed the solution is more complex.  

 

The GMVP approach ignores the portfolio return characteristics (Alexander, 2001). An 

alternative optimization could be an allocation that allows more risk, accompanied by higher 



Estimation and selection of time-varying volatility models Øystein Skregelid, 2009   

47 

 

returns. Another option is to find the weights of the portfolio that gives the best return for 

the risk undertaken. This reward-to-variability can be measured by the Sharpe ratio θ by 

dividing the risk premium of the portfolio (expected return of portfolio minus the risk free 

rate) on the risk of the portfolio (Bodie et al., 2008): 

 

θw � Ù�ÚÛ,Ü!�ÚÝ,Ü
ÞÛ,Ü   (3.47) 

 

The slope of θt, which is connecting the risk free rate with the optimal portfolio, is known as 

the capital market line (CML). The optimal portfolio, given by the asset weights that 

maximize the Sharpe ratio, is the tangent portfolio between the CML and the efficient 

frontier. 
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4. Data 

For GARCH models daily or intra-day returns are commonly used since the GARCH effects at 

lower frequencies are less apparent. The inclusion of major market events in the estimation 

period will raise long-term volatility forecasts by several percent, and this needs to be 

considered when choosing the time period (Alexander, 2001). All parameter estimates in a 

GARCH model are sensitive to the choice of historic data used, so it has to be decided 

whether events that occured a long time ago should influence current forecasts. To ensure 

that the likelihood function is well defined, and that the models properly converge, a few 

years of data are needed, but not so many years that current market conditions are not 

reflected. A too short period may give parameter estimates that lack robustness (Alexander, 

2001). In this paper four years of daily data, leading up to December 31, 2005, are used for 

the estimation of various volatility models. The reason for this choice of time span is that the 

volatility has been relatively stable over this period, apart from the first year where it was 

slightly higher, and the models perform best during stable times. It also gives room for 

comparing the forecasts with the “actual” volatility. For this comparison, data from 2006 are 

used as the out-of-sample period. This means that a total of 1258 daily observations for each 

asset are collected. Of course, when constructing portfolios in real life the estimation has to 

be done up to the current date.  

 

Three arbitrarily chosen ETFs from the Dow Jones Total Market Index are used in this paper 

as a proxy for the investment in three different industries. These industries are the financials 

(IYF), energy (IYE) and utilities (IDU) sectors of the Dow Jones index. The data are collected 

from Yahoo! Finance3. The returns of each asset, calculated as log differences using the 

dividend adjusted closing prices, represent the total return in each sector.  

 

 

  

                                                      
3
 http://finance.yahoo.com 
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5. Results 

This chapter is organized as follows: firstly, some descriptive statistics for the three 

individual time series are outlined. This gives a useful input to the stylized facts of each time-

series. Secondly, the results of the three univariate time series are presented one-by-one in 

Chapters 5.2 to 5.4. Several models, estimated under the assumption of both normal and t-

distributed errors, will be considered for each asset. The choice of the right model is based 

on how well the estimated parameters fit the underlying data set and on how well each 

model predicts future volatilities. Lastly, Chapter 5.5 presents the results of multivariate 

modeling, where portfolios of the three assets are created. 

 

5.1 Descriptive statistics 

Figure 5.1 describes the price development of the three sectors from 2002 to 2007; the 

starting prices are set equal to 100. All series have had an upward trend in the analysis 

period and especially the energy sector has performed well in this time-span.  

 

 

Figure 5.1 Price development of the three assets. Initial prices set to 100. 

 

Table 5.1 provides the relevant information about the three time-series. The table shows 

that all three series possess standard properties of financial returns: they have a higher 

kurtosis than that of a normal distribution, and a skewness deviating from zero. The 

leptokurtic is most pronounced for IDU with an excess kurtosis of about 10. IYF is positively 
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skewed, while IYE and IDU are negatively skewed. A formal test to check whether a 

distribution is normal, is the Jarque-Bera test (Equation 3.23). This test strongly rejects that 

the raw returns of all three series are normally distributed at all significance levels. Even 

though the raw returns are far from normal, it is well known that returns standardized by 

corresponding conditional standard deviations from a conditional volatility model can be 

normal or close to normal (Cappiello et al., 2006). Conditional volatility models under the 

assumption of normal distributions will therefore be estimated and tested for each asset. 

 

 

Table 5.1 Descriptive statistics for the three returns series. 

 

The three sectors all have a positive average return over the five year period, with the 

energy sector producing the highest average of 17.6% in annualized terms. The daily return 

plots for the three indices, multiplied by 100 for estimation purposes, are shown in the left 

pane of Figure 5.2. The absolute returns are plotted in the right pane to better illustrate the 

volatility clusters that are evident from all three indices.  

 

A formal test to check whether the time-series display volatility clustering is the Box-Pierce 

LM test. Volatility clustering implies that there should be a strong autocorrelation in the 

squared returns. Table 5.1 reports GARCH Autocorrelation for the first-order autocorrelation 

of squared returns (Equation 3.20). The corresponding Box-Pierce statistic is also given as 

GARCH LM (Equation 3.19). This test confirms that the three indices all have significant 

Descriptive statistic IYF IYE IDU

Observations 1258 1258 1258

Daily mean 0.038% 0.070% 0.038%

Kurtosis 7.1358 4.3926 13.0100

Skewness 0.2238 -0.2860 -0.3687

Unconditional variance 0.0001 0.0002 0.0001

Unconditional st.dev. 1.12% 1.43% 1.12%

Minimum return -5.33% -6.97% -8.20%

Maximum return 6.45% 6.88% 7.73%

GARCH Autocorrelation 0.3074 0.1373 0.4012

GARCH LM 118.99 23.75 202.68

A-GARCH Autocorrelation -0.1042 -0.0748 -0.2119

A-GARCH LM 13.72 7.10 56.58

Jarque-Bera 905.65 118.61 5272.22

P value 0.0000 0.0000 0.0000
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autocorrelation (the 0.1% chi-squared critical value is 10.83) in the squared returns, implying 

that volatility clustering is present.  

 

 

 

 

 

 
 

 

 

 

Figure 5.2 Plots of daily raw returns scaled by 100 (left) and corresponding absolute returns (right) for IYF, IYE and IDU 

respectively.  

 

The asymmetric GARCH test in the last two rows of Table 5.1 investigates the leverage effect 

of the three indices (Equation 3.24). IYF and IDU have very significant leverage effects, 

implying that asymmetric volatility models should be used rather than symmetric models. 

For IYE the evidence is a bit weaker, but it is still significant against the 1% chi-squared 
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critical value of 6.63. Estimating one of the asymmetric volatility models for the time series 

will eventually confirm whether the asymmetry is significant. 

 

In the following the results for the three ETF’s are given one by one, starting with the 

financial sector.  

 

5.2 iShares Dow Jones US Financial sector (IYF) 

The IYF fund tracks the financial and economic sectors of the U.S. equity market. As 

mentioned, it is arbitrarily chosen as the focus is on showing how to select the right time-

varying volatility model. This chapter is divided into six parts. The steps that should be 

analyzed before estimating volatility models are presented first to control whether the time-

series meets the requirements of conditional volatility estimation. Chapter 5.2.2 presents 

the parameterizations of a variety of conditional volatility models under the assumption of 

normally distributed errors for IYF, and tries to rank the models based on how well they fit 

the data in the estimation-period. The normality of the standardized residuals from each 

model is evaluated in the post-estimation analysis in Chapter 5.2.3. Chapter 5.2.4 shows the 

parameterization of the same conditional volatility models when assuming t-distributed 

errors, while Chapter 5.2.5 gives a visual comparison of the volatility processes estimated via 

the different models and distributions. Finally, Chapter 5.2.6 evaluates the forecasting 

performance of the significant estimated volatility models. 

 

5.2.1 Pre-estimation analysis 

The Kernel density plot in Figure 5.3 can be used to get a non-parametric view to assess 

whether the raw returns distribution is skewed or heavy tailed. This is done by plotting the 

individual distribution against a normal. The IYF density clearly has a higher peak than a 

normal distribution, implying that there is excess kurtosis. The skewness is close to normal. A 

QQ-plot for IYF is also shown in Figure 5.3 in order to visualize how far from normal the data 

set is. This plot shows that the data are heavier tailed than a normal. 
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Figure 5.3 Kernel density plot (left) and QQ-plot (right) for the IYF raw returns against a normal distribution. 

 

The Ljung-Box-Pierce Q-test for departure from randomness is a hypothesis test that can be 

used to quantify the correlations. This test is often used as a post-estimate lack-of-fit test on 

the fitted innovations of the time-series process, but it is also convenient in the pre-fit 

analysis because the default model assumes that returns are defined as a constant plus an 

innovation process. The null hypothesis of the test is that there is no serial correlation. The 

Q-test is asymptotically χ-distributed. The alternative is that there is significant serial 

correlation. At the 0.05 significance level, this test rejects the null at 10, 15 and 20 lags for 

both the raw returns and the squared returns, as illustrated in Table 5.2. 

 

 

Table 5.2 Box-Pierce-Ljung’s Q-test of no serial correlation at the 0.05 significance level. 

 

The autocorrelations of squared returns up to 20 lags are shown on the left hand side of 

Figure 5.4. The broken lines in the figure give the confidence interval using heteroskedastic 

robust errors, and as the autocorrelations exceeds the errors there is significant 

autocorrelation in the squared returns, implying that there is volatility clustering in the 

returns series.  

 

As there are signs that volatility clustering is present, GARCH parameterization seems to be 

ideal. A final test is to use Engle’s ARCH test on the residual returns to test for the presence 

of ARCH-effects. The null hypothesis of the ARCH test is that the series is a random sequence 

Lags Critical value

Q-stat P value Q-stat P value

10 20.46 0.0252 1303.14 0.0000 18.31

15 27.26 0.0267 1522.47 0.0000 25.00

20 40.98 0.0037 1658.46 0.0000 31.41

Raw returns Squared returns
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of Gaussian disturbances, or in other words that the series is homoskedastic, and thus that 

there is no ARCH-effect. Since the Q-statistic of the raw returns in Table 5.2 indicates that 

there is serial correlation in the raw returns, ARMA modeling should perhaps be used when 

modeling the conditional mean. A common practice when modeling conditional volatility, 

however, is to treat the mean as constant µ. The residuals are therefore calculated as εt = rt 

+ µ. The result of the ARCH test is given on the right hand side of Figure 5.4. It shows that 

homoskedasticity can be rejected as the p values are very small. The alternative hypothesis 

that heteroskedasticity is present is therefore accepted.  

 

  
Figure 5.4 Autocorrelations of squared returns with heteroskedastic robust errors (left) and Engle’s ARCH test (right). 

 

5.2.2 Model parameterization and selection 

Table 5.3 reports the parameterizations of the various ARCH class models applied under the 

assumption of normal distribution for IYF. The process leading towards a choice of model 

follows the steps of Sheppard (2009a). 

 

A natural starting point is to examine a symmetric GARCH(1,1) model. This specification gives 

alpha and beta coefficients that are very significant. It is therefore checked whether any 

more lags of the square residual (symmetric lags) or variance are needed. Estimating the 

GARCH(2,1) shows that the second symmetric lag is significant, but that the first lag becomes 

highly insignificant. The GARCH(1,2) shows that a second lag of the variance is not needed 

either. A GARCH(1,1) parameterization so far seems to be the most reasonable specification 

for the capture of symmetric dynamics. This means that the model describing the volatility 

process so far is best given by ?� � 0.000009 . 0.072+���� . 0.919?���, which corresponds 

to Equation 3.5. 
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Table 5.3 Parameterization of conditional volatility models for IYF under the assumption of a normal distribution. P-

values are reported in brackets, while LL reports the maximum log likelihood for the different models. 

 

As noted in section 5.1, there is evidence for asymmetry in the time series of IYF. The GJR-

GARCH(1,1,1) model confirms this as the asymmetric lag γ is significant. The symmetric lag, 

however, is insignifcant, impliying that it could be dropped in the parameterization. The 

symmetric lag will be kept as it can be assumed that there should be a rise in volatility after 

large positive shocks. This rise will not be large as the estimated α is zero to at least the third 

decimal. The GJR-GARCH(1,1,1) is superior to the GARCH(1,1) specification as it has a higher 

likelihood. Again additional lags are examined. The estimated parameters of the GJR-

GARCH(2,1,1), GJR-GARCH(1,2,1) and GJR-GARCH(1,1,2) models respectively show that an 

additional symmetric lag, asymmetric lag and variance lag are all insignificant. 

 

ω (x 10-3) α1 α2 γ1 γ2 β1 β2 LL

GARCH(1,1) 0.009 0.072 0.919 -1418.4
(.067) (.000) (.000)

GARCH(2,1) 0.013 0.000 0.097 0.892 -1414.5
(.047) (.999) (.027) (.000)

GARCH(1,2) 0.009 0.072 0.919 0.000 -1418.4
(.056) (.000) (.000) (.999)

GJR(1,1,1) 0.011 0.000 0.106 0.936 -1406.2
(.020) (.980) (.000) (.000)

GJR(2,1,1) 0.011 0.000 0.021 0.096 0.920 -1405.3
(.768) (.999) (.990) (.848) (.000)

GJR(1,2,1) 0.011 0.000 0.106 0.000 0.936 -1406.2
(.016) (.974) (.008) (.999) (.000)

GJR(1,1,2) 0.011 0.000 0.106 0.936 0.000 -1406.2
(.011) (.999) (.000) (.000) (.999)

TARCH(1,1,1) 0.010 0.009 0.077 0.952 -1406.6
(.032) (.454) (.000) (.000)

TARCH(2,1,1) 0.014 0.000 0.030 0.074 0.933 -1404.8
(.513) (.999) (.932) (.367) (.000)

TARCH(1,2,1) 0.010 0.009 0.077 0.000 0.952 -1406.6
(.703) (.802) (.901) (.999) (.000)

TARCH(1,1,2) 0.010 0.009 0.077 0.952 0.000 -1406.6
('.031) (.512) (.000) (.000) (.999)

EGARCH(1,1,1) -0.001 0.091 -0.073 0.991 -1406.4
(.755) (.000) (.000) (.000)

EGARCH(2,1,1) -0.001 -0.127 0.245 -0.083 0.987 -1400.7
(.696) (.034) (.000) (.000) (.000)

EGARCH(1,2,1) -0.001 0.083 -0.229 0.159 0.993 -1401.5
(.665) (.004) (.000) (0.005) (.000)

EGARCH(1,1,2) -0.001 0.093 -0.075 0.966 0.025 -1406.4
(.750) (.000) (.000) (.000) (0.035)

EGARCH(2,2,1) -0.001 -0.176 0.284 -0.242 0.162 0.990 -1394.5
(.607) (.019) (.000) (.000) (.002) (.000)

EGARCH(2,2,2) -0.001 -0.174 0.279 -0.243 0.166 1.015 -0.024 -1394.4
(.610) (.021) (.000) (.000) (.002) (.000) (.428)
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The TARCH parameterization is examined next to check whether a nonlinearity is needed. 

The TARCH(1,1,1) model also has an insignificant symmetric lag, and the specification adds 

nothing over the GJR-GARCH(1,1,1) model as the log likelihood is lower. Adding more lags to 

the TARCH does not change anything. The GJR-GARCH(1,1,1) model still fits the time-series 

best. 

 

Finally, it is tested whether an EGARCH model may fit better. All parameters in the 

EGARCH(1,1,1) model are significant at any level, but the log likelihood is slightly lower than 

for GJR-GARCH. A second lag of the symmetric term is significant, but the first symmetric lag 

is negative and thus insignificant. The likelihood is, however, improved over the GJR-

GARCH(1,1,1). Adding an extra asymmetric lag shows that all parameters are significant at 

the 0.05 level (although the second asymmetric lag is positive, which is a slightly 

contradictiv) and the EGARCH(1,2,1) has a much higher likelihood than GJR(1,1,1). In terms 

of the likelihood, an EGARCH(1,1,2) adds nothing. An EGARCH(2,2,1) model improves the log 

likelihood further, but α1 is negative and thus insignificant. This is also the case for 

EGARCH(2,2,2), where β2 is insignificant as well. 

 

From this analyzis EGARCH(1,2,1) seems to give the best fit, followed by GJR-GARCH(1,1,1) 

and EGARCH(1,1,1). Finally the AICs and BICs are examined. These are plotted in Figure 5.5. 

These criterions select the model with the lowest AIC and BIC respectively, meaning that 

plots to the left of are preferred. 

 

 

Figure 5.5 Plots of AIC (left) and BIC (right) for IYF. 
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The AIC selects EGARCH(2,2,1). Generally, the EGARCH models seem to do well according to 

the AIC selection criterion. The BIC criterion will always select more parsimonious models, 

i.e. models with fewer parameters, and is often exclusively used as a criterion to select the 

best model (see e.g. Cappiello et al. (2006)). GJR(1,1,1) is selected, but closely followed by 

EGARCH(1,1,1) and TARCH(1,1,1). The GARCH models perform badly as expected, since they 

do not include an asymmetric term. Both criterions show that adding an extra variance lag 

can be ruled out for IYF. Since the EGARCH(1,2,1) seems highly significant, has a high 

likelihood and does reasonably well according to both the AIC and BIC selection criterion, 

EGARCH(1,2,1) is selected as the best model for IYF.  

 

5.2.3 Post-estimation analysis 

The parameterizations in Table 5.3 are estimated under the assumption of a normal 

distribution. The standardized residuals from the models therefore need to be examined for 

normality. Table 5.4 shows the skewness, kurtosis and Jarque-Bera statistics for the raw 

returns in the estimation period and the standardized residuals from various GARCH class 

models. 

 

 

Table 5.4 Normality test of raw returns and standardized residuals from a set of GARCH specifications for IYF. 

 

The raw returns, with significant positive skewness and high excess kurtosis, reject normality 

strongly, as can be seen by the Jarque-Bera statistic with a null hypothesis that the skewness 

is 0 and the kurtosis is 3. The standardized residuals come closer to being normally 

distributed. The kurtosis is closer to 3, while the skewness is only slightly negative, indicating 

that the actual return distribution is asymmetric. The p-value of the Jarque-Bera test 

confirms this, especially for EGARCH(1,2,1), which is almost significant at the 0.05 level. As 

the standardized residuals are so close to normal, the assumption of normal errors can 

Skew Kurt JB P value

Raw returns 0.229 6.624 558.840 0.0000

Standardized residuals

GARCH(1,1) -0.090 3.390 7.742 0.0208

GJR(1,1,1) -0.124 3.376 8.519 0.0141

TARCH(1,1,1) -0.102 3.426 9.340 0.0094

EGARCH(1,1,1) -0.093 3.394 7.932 0.0190

EGARCH(1,2,1) -0.061 3.360 6.033 0.0490
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explain most of the leptokurtis in the returns. If this was not the case, mistakes would be 

made when predicting returns. The density- and the QQ-plots for the standardized residuals 

from the EGARCH(1,2,1) model in Figure 5.6 confirm that the standardized residuals look 

more normal than the raw returns in Figure 5.3, but the QQ-plot shows signs of deviation 

from normality, especially in the lower tail. 

 

 

Figure 5.6 Kernel density plot (left) and QQ-plot (right) of the standardized residuals from an EGARCH(1,2,1) model 

against a normal distribution.  

 

The fact that the standardized residuals might not be completely normal can be neglected as 

they are close. Figure 5.7 reports the result of an ARCH test of the standardized residuals 

from the EGARCH(1,2,1) model. The high p-values reject the null of remaining significant 

ARCH effects, meaning that the volatility clusters have been captured. The only worry is that 

there is still significant autocorrelation in the first lag of the squared standardized residuals. 

This is also the case for the other evaluated models. 

 

 

Figure 5.7 ARCH LM test of the standardized residuals (left) and autocorrelations of squared standardized residuals 

(right) for EGARCH(1,2,1). 
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5.2.4 Student’s T distribution 

Since there is still some excess kurtosis in the standardized residuals, the assumption of t-

distributed errors is used to parameterize the GARCH class models again. The student t’s 

distribution parameterizations are given in Table 5.5. 

 

 

Table 5.5 Parameterization of conditional volatility models for IYF under the assumption of a t-distribution.  

 

For a t-distribution an extra parameter, ν, is estimated. This parameter, which is the shape 

parameter, is significant at the 0.05 level for all models appart from GJR(2,1,1). Testing the 

covariance stationarity restriction shows that GARCH(2,1) is the only model not to meet this 

as ∑ )*9*�� . ∑ R , �� c 1. When an estimated model is no longer covariance stationary, the 

unconditional variance does not exist so that the asymptotic properties of the maximum 

likelihood estimators are unclear.  

 

Under the assumption of a t-distribution, TARCH(1,1,1) fits better than the GJR-

GARCH(1,1,1). The symmetric lag of both models is still insignificant, but close to zero. The 

ω (x 10-3) α1 α2 γ1 γ2 β1 β2 ν LL

t-GARCH(1,1) 0.010 0.076 0.913 15.7422 -1415.6
(.060) (.000) (.000) (.032)

t-GARCH(2,1) 0.011 0.000 0.118 0.930 16.451 -1411.9
(.019) (.999) (.000) (.000) (.040)

t-GARCH(1,2) 0.010 0.076 0.913 0.000 15.742 -1415.6
(.057) (.000) (.000) (.999) (.029)

t-GJR(1,1,1) 0.011 0.000 0.118 0.930 16.451 -1403.6
(.019) (.999) (.000) (.000) (.040)

t-GJR(2,1,1) 0.012 0.000 0.022 0.107 0.913 17.012 -1402.8
(.040) (.999) (.875) (.036) (.000) (.100)

t-GJR(1,2,1) 0.011 0.000 0.118 0.000 0.930 16.455 -1403.6
(.019) (.999) (.085) (.999) (.000) (.032)

t-GJR(1,1,2) 0.011 0.000 0.118 0.930 0.000 16.456 -1403.6
(.017) (.999) (.000) (.000) (.999) (.036)

t-TARCH(1,1,1) 0.010 0.004 0.091 0.949 14.510 -1403.3
(.026) (.735) (.000) (.000) (.016)

t-TARCH(2,1,1) 0.014 0.000 0.025 0.085 0.931 16.122 -1402.0
(.075) (.999) (.577) (.000) (.000) (.034)

t-TARCH(1,2,1) 0.010 0.004 0.091 0.000 0.949 14.512 -1403.3
(.090) (.737) (.271) (.999) (.000) (.014)

t-TARCH(1,1,2) 0.011 0.003 0.097 0.886 0.061 14.411 -1403.3
(.030) (.830) (.003) (.000) (.765) (.018)

t-EGARCH(1,1,1) -0.001 0.097 -0.087 0.990 14.712 -1403.4
(.797) (.000) (.000) (.000) (.018)

t-EGARCH(2,1,1) -0.001 -0.128 0.249 -0.096 0.987 16.421 -1397.9
(.696) (.033) (.000) (.000) (.000) (.030)

t-EGARCH(1,2,1) -0.001 0.085 -0.245 0.165 0.992 15.214 -1398.8
(.691) (.001) (.000) (.004) (.000) (.015)

t-EGARCH(1,1,2) -0.001 0.101 -0.093 0.921 0.068 14.617 -1403.4
(.790) (.000) (.003) (.000) (.757) (.018)

t-EGARCH(2,2,1) -0.002 -0.193 0.300 -0.266 0.177 0.990 16.249 -1391.7
(.578) (.007) (.000) (.000) (.001) (.000) (.018)

t-EGARCH(2,2,2) -0.001 -0.188 0.289 -0.269 0.185 1.045 -0.055 16.089 -1391.6
(.580) (.013) (.000) (.000) (.001) (.000) (.698) (.019)
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choice is now between TARCH(1,1,1) and one of the EGARCH models. EGARCH(1,1,1) has a 

slightly lower likelihood, but all parameters are significant at the 0.05 level. As for the 

normal distribution, the EGARCH(1,2,1) has the highest likelihood of the significant models. 

It is therefore ranked ahead of TARCH(1,1,1), EGARCH(1,1,1) and GJR(1,1,1). 

 

The AIC selection criterion in the left pane of Figure 5.8 selects EGARCH(2,2,1). This model, 

however, has a negative first symmetric lag which is undesirable. The EGARCH models are 

generally preferred by AIC. The BIC criterion ranks TARCH(1,1,1) ahead of EGARCH(1,1,1) and 

GJR(1,1,1), but these are extremely close. EGARCH(1,2,1) is also ranked high for both 

models, in fact it is the highest ranked significant model according to AIC. 

 

 

Figure 5.8 Plots of AIC (left) and BIC (right) for IYF for t-distributed errors. 

 

Figure 5.9 examines whether the assumption of a t-distribution seems reasonable. The 

standardized residuals from the EGARCH(1,2,1) model are drawn in the density plot together 

with a student’s t density with 15.2 degrees of freedom, corresponding to the estimated ν 

for EGARCH(1,2,1). The series seems to be just as well explained by t-distributed as by 

normal distributed errors, altough the QQ-plot shows deviations from the t(15.2) 

distribution in both tails. 
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Figure 5.9 Kernel density plot (left) and QQ-plot (right) of the standardized residuals from an t-distributed EGARCH(1,2,1) 

model against a t(15.2). 

 

All models were tested for remaining ARCH effects in the standardized residuals and 

autocorrelations in the squared standardized residuals, with the same result as for the 

normal distribution.  

 

The most interesting comparision that can be made between the normal distributed and t-

distributed parameterizations is to study the log likelihood. Table 5.6 shows that the 

likelihood is improved for all models when using t-distribution. The t-distributed 

EGARCH(1,2,1) model is therefore the model that gives the best fit for IYF, ahead of the 

normal distributed EGARCH(1,2,1) .  

 

 

Table 5.6 Descriptive statistics for normal and student’s t distributed models. 

 

Skew Kurt LL AIC BIC

Normal

GARCH(1,1) -0.090 3.390 -1418.4 1.4145 1.4292

GJR(1,1,1) -0.124 3.376 -1406.2 1.4044 1.4239

TARCH(1,1,1) -0.102 3.426 -1406.6 1.4048 1.4243

EGARCH(1,1,1) -0.093 3.394 -1406.4 1.4046 1.4241

EGARCH(1,2,1) -0.061 3.360 -1401.5 1.4017 1.4261

Students t

GARCH(1,1) -0.096 3.403 -1415.6 1.4137 1.4333

GJR(1,1,1) -0.135 3.414 -1403.6 1.4038 1.4282

TARCH(1,1,1) -0.117 3.500 -1403.3 1.4035 1.4279

EGARCH(1,1,1) -0.111 3.480 -1403.4 1.4036 1.4280

EGARCH(1,2,1) -0.071 3.401 -1398.8 1.4010 1.4303



Estimation and selection of time-varying volatility models Øystein Skregelid, 2009   

64 

 

5.2.5 Visual comparision of the time-varying volatilities 

Even though a lot of models have been tested, each giving different estimates of the 

parameters, there is not a big visual difference in how the time-varying volatility evolves 

over time. Figure 5.10 shows that for a TARCH(1,1,1) model, the volatility process is 

approximately identical for normal and t-distributed errors, something that is a common 

feature when estimating under alternative distributional assumptions (Sheppard, 2009a). 

According to Sheppard (2009a), the alternative distributions are more meaningful when 

looking at the Value-at-Risk (see Chapter 5.2.6). Figure 5.11 shows the difference between 

the symmetric GARCH(1,1) process and the asymmetric EGARCH(1,1,1) process. The two 

volatility series are similar because the asymmetric coefficient of the EGARCH model is of a 

very small magnitude. The forecasts, however, will be different for a symmetric model 

compared to that of an asymmetric model. This is studied in section 5.2.6. 

 

 

Figure 5.10 Estimated time-varying volatility using a TARCH(1,1,1) specification for both normal and t-distributed errors. 
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Figure 5.11 Estimated time-varying volatility using a symmetric GARCH(1,1) and an asymmetric EGARCH(1,1,1), both t-

distributed. 

 

 

Finally, Figure 5.12 illustrates the difference between the RiskMetricsTM (J.P.Morgan, 1997) 

EWMA model with a decay factor of 0.94 and a normal distributed GJR(1,1,1). The figure also 

shows the unconditional volatility recalculated every sixth month.   

 

 
Figure 5.12 Estimated time-varying volatility from RiskMetrics

TM
 versus the normal distributed GJR(1,1,1). These are 

compared to the unconditional volatility calculated at 6 month intervals. 
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5.2.6 Forecast evaluation 

Figure 5.13 illustrates what a conditional volatility forecasting model actually does. Four 

years of data have been used to estimate the parameters of an EGARCH(1,1,1) model under 

the assumption of a normal distribution. The estimated parameters are then used to 

forecast the volatility for the next year. This forecast must then be compared to the “actual” 

volatility, which is unobservable. Therefore squared residuals for the last year of the time-

series, i.e. 2006, are calculated to provide a proxy for the actual volatility. The residuals are 

calculated as daily returns minus the mean of the first four years of returns. The estimated 

conditional volatility models should therefore be compared on how well they predict the 

future.  

 

As with the time-varying volatility in the estimation period, there is no big difference in the 

various model’s forecasts for the upcoming year. This is illustrated in Figure 5.14 for a t-

distributed EGARCH(1,2,1) process and a normal-distributed GJR(1,1,1) process. This figure 

also shows the six-month unconditional volatilities for the five years of data.  

 

 

Figure 5.13 Time-varying volatility and volatility forecasts for a normal distributed EGARCH(1,1,1) process for IYF. 
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Figure 5.14 Time-varying volatility and volatility forecasts for a t-distributed EGARCH(1,2,1) and a normal distributed 

GJR(1,1,1) process for IYF. The unconditional volatility is updated every sixth month for the five years of collected data. 

 

The first step that is applied when evaluating the volatility forecasts of the various models is 

the Mincer-Zarnowitz regression (R2), using squared residuals as a proxy for volatility. The 

null hypothesis using a Wald test is that the forecasts are not optimal. Optimal forecasts 

should have a MZ statistic close to one. The MZ procedure does not reject optimality for any 

of the asymmetric models as the p-values exceed any realistic significance level. The 

GARCH(1,1) models are also optimal at the 0.05 level, but not at the 0.1 level for the t-

distribution. 

   

 

Table 5.7 Mincer-Zarnowitz R
2
 for normal and t-distributed squared residuals as proxy for volatility. 

 

Table 5.8 ranks the estimated forecasts by four statistical loss functions; ME, MSE, RMSE and 

MAE. These four statistics are also used by among others Akgiray (1989) and Brailsford and 

Faff (1996). The ranking is based on how well the model minimizes the statistical loss 

MZ P value MZ P value

GARCH(1,1) 4.209 0.1219 4.909 0.0859

EGARCH(1,1,1) 0.422 0.8098 0.673 0.7145

EGARCH(1,2,1) 0.893 0.6400 1.267 0.5308

TARCH(1,1,1) 0.408 0.8154 0.586 0.7462

GJR(1,1,1) 0.653 0.7216 0.873 0.6462

Normal T-distribution
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function of the forecast errors, where squared residuals are still used as a proxy for volatility. 

In addition, the R2 ranking is based on how close to one the Mincer-Zarnowitz regression is. 

 

 

Table 5.8 The forecasting performance ranked by statistical loss functions and the Mincer-Zarnowitz R
2
. 

 

The EGARCH models seem to minimize the errors mostly. Interestingly, it is the normal 

distributed, rather than the t-distributed, EGARCH(1,2,1) model which provides the best 

forecasts. The ranking is also quite consistent with previous conclusions regarding which 

models are best.  

 

 

Figure 5.15 Estimated % VaR using historical simulation, parametric and semi-parametric VaR models for IYF at the 90% 

confidence level. The period Jan06 – Jan07 is the out-of-sample period. 

 

ME MSE MAE MAPE R
2

Total Total rank

GARCH(1,1) 2 9 9 9 9 38 9

EGARCH(1,1,1) 2 3 3 6 7 21 3

EGARCH(1,2,1) 1 6 1 2 1 11 1

TARCH(1,1,1) 7 2 4 8 8 29 6

GJR(1,1,1) 9 5 7 4 5 30 7

t-GARCH(1,1) 5 10 10 10 10 45 10

t-EGARCH(1,1,1) 5 4 4 5 4 22 4

t-EGARCH(1,2,1) 4 7 2 1 3 17 2

t-TARCH(1,1,1) 8 1 6 7 6 28 5

t-GJR(1,1,1) 10 8 8 3 2 31 8
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Figure 5.15 shows the development in the one-day ahead VaR at the 90% confidence level 

for a normal distributed EGARCH(1,2,1) model using the historical simulation, fully 

parametric and semi-parametric VaR models. A 10% VaR is the return value of an investment 

we are 90% confident we will not lose more than. In other words, a 10% 1-day VaR 

represents the loss level that would be exceeded under normal market cirumstances one 

day in every ten days, when the portfolio is left unmanaged (Alexander, 2001). For a 10%-

VaR this should occur approximately for 10% of the returns. When the model predicting the 

VaR is too low, more than 10% exceptional losses (i.e. hits) will be observed in the out-of-

sample period. The parametric and semi-parametric models are very similar for this case.  

 

 

Table 5.9 Out-of-sample hits and percentage hits for various VaR models at the 90% confidence level. There is a total of 

251 days in the out-of-sample period. The Mincer-Zarnowitz regression asserts the quality of each specification, while 

the ranking is based on how close to zero the regression coefficients are, i.e. how close to 10% the out-of-sample hits 

percentages are. 

 

The parametric VaR is calculated from the volatility estimated by each GARCH class model 

leading up to December 29, 2005 and the corresponding volatility forecasts for the next 

year. The last year is thus the out-of-sample period. At the 90% confidence level there will 

Hits % Hits MZ P-value Ranking

Historical  VaR Simulation 11 4.38% 20.18 0.0000

GARCH(1,1) Parametric 19 7.57% 2.42 0.2979

Semi parametric 18 7.17% 3.12 0.2104

GJR(1,1,1) Parametric 21 8.37% 0.88 0.6445 4

Semi parametric 21 8.37% 0.88 0.6445 4

TARCH(1,1,1) Parametric 21 8.37% 1.55 0.4617 10

Semi parametric 21 8.37% 1.55 0.4617 10

EGARCH(1,1,1) Parametric 21 8.37% 1.55 0.4617 10

Semi parametric 21 8.37% 1.55 0.4617 10

EGARCH(1,2,1) Parametric 23 9.16% 0.19 0.9085 2

Semi parametric 24 9.56% 0.07 0.9637 1

t-GARCH(1,1) Parametric 17 6.77% 4.10 0.1289

Semi parametric 18 7.17% 3.12 0.2104

t-GJR(1,1,1) Parametric 21 8.37% 0.88 0.6445 4

Semi parametric 21 8.37% 0.88 0.6445 4

t-TARCH(1,1,1) Parametric 20 7.97% 1.97 0.3733

Semi parametric 21 8.37% 1.55 0.4617 10

t-EGARCH(1,1,1) Parametric 21 8.37% 1.55 0.4617 10

Semi parametric 22 8.76% 1.46 0.4820 8

t-EGARCH(1,2,1) Parametric 22 8.76% 1.46 0.4820 8

Semi parametric 23 9.16% 0.19 0.9085 2
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be 10% hits in the in-sample period. The question is how many hits occure in the out-of-

sample period.  

 

VaR models at the 95% and 99% confidence levels were tested, using parametric, semi-

parametric and historical simulation. All these VaR models were by Mincer-Zarnowitz (MZ) in 

the out-of-sample period when comparing the forecasts of the VaR model with actual 

returns. Table 5.9 therefore reports the hits and percentage hits in the out-of-sample period 

at the 90% confidence level, together with the MZ regression and its p value. It shows that 

the MZ regression rejects that the historical VaR simulation is a good model for IYF, while the 

quality of the other models are sufficient enough not to be rejected. The closer the MZ 

statistic is to zero, which depends on how close the percentage hits in the out-of-sample 

period are to 10%, the better is the quality of the VaR model. The problem associated with 

using a model that understates the true VaR, is that the firm will keep less capital in reserve 

to cover unexpected losses. None of the forecasted VaR models have more than 10% hits in 

the out-of-sample period. A semi-parametric VaR model for the standardized residuals of an 

EGARCH(1,2,1) model  gives the most precise out-of-sample forecasts of the value at risk. If 

IYF had been a firm concerned with risk management this model would thus be the best 

choice concerning the calculation of the amount of capital to hold back.  

 

Finally, the 1-day 10% VaR for the first forecast in the out-of-sample period for a normal 

distributed and a t-distributed EGARCH(1,2,1) model are studied. A parametric VaR model is 

calculated as 2�Æ �  �á��	R�, where á��	R� is -1.28 for all the normal distributed models, 

while the value is different for the t-distributed models depending on the degrees of 

freedom parameter4. The t-distributed EGARCH(1,2,1) model for example, where the 

estimated ν=15.2, has a á��	R� approximately equal to -1.34. The one-day parametric VaR 

is equal to -0.9608% for the normal model. This can be interpreted as a 10% chance that the 

investment loses 0.96% or more over the next day. The corresponding VaR for a t-distributed 

model is -0.9661%. On a $1,000,000 portfolio invested in IYF on the last day of the 

estimation period, the 10% 1-day VaR is therefore $9608 and $9661 for the normal and t-

distributed EGARCH(1,2,1) models respectively. The VaR is thus a bit higher for the t-

                                                      
4
 á��	R� for a normal distribution is an inverse CDF with probability α, mean 0 and variance equal to 1. For a t-

distribution it is an inverse CDF with probability α and ν degrees of freedom (Sheppard, 2009a). 
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distribution, which is not uncommon as it accounts for fatter tails in the distribution of 

returns. 

 

For the semi-parametric VaR models the one-day 10% VaR is calculated as the 10% quantile 

of standardized residuals from the EGARCH(1,2,1) model. For the normal distributed model 

the 10% quantile of standardized residuals is equal to -1.2626, while it is -1.2648 for the t-

distributed standardized residuals. This results in a 10% 1-day VaR of $9466 for the normal 

distributed EGARCH(1,2,1) and $9535 for the t-distributed EGARCH(1,2,1)5. This shows that 

the semi-parametric VaR model is better than the parametric VaR model, and that normal 

distribution is better than t-distribution for VaR purposes. 

 

5.3 iShares Dow Jones US Utilities sector (IDU) 

The IDU fund tracks the utilities stocks in the U.S. equity market. The same steps as for IYF 

are in the following applied on IDU. 

 

5.3.1 Pre estimation analysis 

The raw returns are not normal, as can be seen from the skewness, kurtosis and Jarque-Bera 

in Table 5.1. There is an excess kurtosis of about 10 and the returns are negatively skewed. 

The Box-Pierce-Ljung Q-test statistics for IDU are shown in Table 5.10. For the raw returns 

there are no significant serial correlations at the 0.05 level up to 20 lags. The squared 

returns, however, have as expected significant serial correlation up to at least 20 lags, 

implying that volatility clustering is also present in the IDU returns series. 

 

 

Table 5.10 Box-Pierce-Ljung’s Q-test of no serial correlation for IDU. 

 

Engle’s ARCH test on the residual returns for IDU shows that there is homoskedasticity at the 

0.05 level at the first lag of the squared innovations. This could imply a problem as the 

                                                      
5
 VaRt+1,α = ht+1 * α% quantile (Sheppard, 2009a). 

Lags Critical value

Q-stat P value Q-stat P value

10 14.67 0.1446 767.78 0.0000 18.31

15 17.24 0.3047 864.72 0.0000 25.00

20 29.07 0.0864 946.60 0.0000 31.41

Raw returns Squared returns
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variance cannot be predicted from homoskedastic data and the variations in the squared 

residuals will be purely random. This is shown in the left pane of Figure 5.16. Removing the 

most extreme outliers solves this issue. The returns plot for IDU in Figure 5.2 shows some 

extreme outliers in the first year of the estimation period that should not influence the 

current and future level of volatility. All outliers with an absolute value above 7.5% were 

therefore simply dummied out. These are given in Table 5.11. 

 

 

Table 5.11 Removed outliers (IDU). 

 

The p-values from the ARCH test on the returns series, after dummying out the outliers, are 

given in the right pane of Figure 5.16. Homoskedasticity in the residuals is now strongly 

rejected. 

 

  
Figure 5.16 P-values from the ARCH LM tests before (left) and after (right) removing outliers. 

 

The Q-test on the altered return series still shows significant correlation in the squared 

returns. 

 

5.3.2 Model parameterization and selection 

A similar analysis as for the IYF index was done for IDU. The estimated parameters after the 

three outliers have been removed, is given in Table 5.12. The initial analysis shows that all 

models are covariance stationary. Looking at the log likelihoods and the significance of the 

parameters at the 0.10 significance level, GJR(1,1,2) turns out to meet the requirements 

Date Return

Jul 23, 2002 -8.20%

Jul 24, 2002 7.73%

Oct 9, 2002 -8.17%
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best, followed by GJR(1,1,1), TARCH(1,1,2) and EGARCH(1,1,2). In contrast to the 

parameterization for IYF, the symmetric term of IDU is significant at the 0.1 level for all these 

models. At the 0.05 significance level TARCH(1,1,1) is the best model for IDU, followed by 

GARCH(1,1) and EGARCH(1,1,1). 

 

For comparision, Table 5.13 shows the estimated parameters for the best models including 

the three extreme outliers. GJR(1,1,2) and TARCH(1,1,2) are no longer significant at the 0.10 

level, so the GJR(1,1,1) seems to give the best fit, followed by EGARCH(1,1,2), TARCH(1,1,1) 

and EGARCH(1,1,1). The sum of the likelihoods are higher for all models when the three 

outliers are dummied out, which is natural as the likelihoods on these dates become higher. 

 

 
Table 5.12 Parameterization of conditional volatility models for IDU under the assumption of a normal distribution. 

Three extreme outliers have been removed from the time series. 

 

ω (x 10-3) α1 α2 γ1 γ2 β1 β2 LL

GARCH(1,1) 0.021 0.100 0.882 -1381.5

(.043) (.000) (.000)

GARCH(2,1) 0.021 0.100 0.000 0.882 -1381.51

(.166) (.010) (.999) (.000)

GARCH(1,2) 0.026 0.137 0.360 0.481 -1380.05

(.049) (.000) (.180) (.060)

GJR(1,1,1) 0.026 0.057 0.074 0.881 -1377.44
(.035) (.063) (.030) (.000)

GJR(2,1,1) 0.026 0.057 0.000 0.074 0.881 -1377.44
(.393) (.623) (.999) (.089) (.000)

GJR(1,2,1) 0.026 0.057 0.074 0.000 0.881 -1377.44
(.030) (.061) (.091) (.999) (.000)

GJR(1,1,2) 0.031 0.075 0.104 0.372 0.471 -1375.7
(.032) (.052) (.029) (.072) (.018)

TARCH(1,1,1) 0.022 0.058 0.057 0.910 -1380.87
(.035) (.041) (.000) (.000)

TARCH(2,1,1) 0.022 0.058 0.000 0.057 0.910 -1380.87
(.432) (.757) (.999) (.030) (.000)

TARCH(1,2,1) 0.022 0.058 0.057 0.000 0.910 -1380.87
(.043) (.048) (.133) (.999) (.000)

TARCH(1,1,2) 0.028 0.085 0.079 0.377 0.497 -1379.12
(.029) (.044) (.019) (.079) (.014)

EGARCH(1,1,1) 0.001 0.166 -0.046 0.981 -1382.01
(.740) (.001) (.025) (.000)

EGARCH(2,1,1) 0.001 0.314 -0.183 -0.049 0.986 -1378.96
(.711) (.000) (.038) (.010) (.000)

EGARCH(1,2,1) 0.001 0.164 -0.076 0.033 0.982 -1381.71
(.738) (.002) (.147) (.516) (.000)

EGARCH(1,1,2) 0.002 0.244 -0.067 0.451 0.523 -1379.75
(.745) (.000) (.029) (.009) (0.002)

EGARCH(2,2,1) 0.001 0.309 -0.178 -0.065 0.017 0.987 -1378.88
(.709) (.001) (.045) (.262) (.755) (.000)

EGARCH(2,2,2) 0.001 0.309 -0.146 -0.055 -0.004 0.760 0.223 -1378.73
(.738) (.002) (.533) (.702) (.985) (.492) (.838)
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Table 5.13 Parameterization of conditional volatility models for IDU without removing outliers. 

 

The AIC and BIC criterias (see Figure 5.17) support the choice of GJR(p,o,q) models. 

GJR(1,1,1) is selected by AIC and does well for the BIC. It is also interesting to see that the 

BIC criteria selects GARCH(1,1) because it is the most parsimonious model. In comparision to 

IYF, the EGARCH models does not perform well for IDU according to these selection criterias. 

An APARCH(1,1,1) model has also been estimated, although it is not presented in the tables 

above as it due to it’s complexity will not be used in the forecasting evaluation (see Chapter 

5.3.5). It has a higher likelihood than all the listed models, with significant parameters at the 

0.05 significance level. As can be seen from the AIC selection criteria, it is also ranked as the 

third best model. The estimated delta of the APARCH(1,1,1) is however not significantly 

different from two, which means it is actually just nesting a GJR(1,1,1). 

 

  
Figure 5.17 Plots of AIC (left) and BIC (right) for IDU for normal distributed errors. 

 

ω (x 10-3) α1 α2 γ1 γ2 β1 β2 LL

GARCH(1,1) 0.031 0.129 0.845 -1392.90

(.028) (.000) (.000)

GJR(1,1,1) 0.039 0.064 0.107 0.844 -1386.76

(.008) (.058) (.006) (.000)

GJR(1,1,2) 0.049 0.083 0.146 0.304 0.493 -1384.37

(.009) (.056) (.009) (.184) (.030)

TARCH(1,1,1) 0.034 0.066 0.081 0.883 -1389.87

(.012) (.044) (.000) (.000)

TARCH(1,1,2) 0.044 0.097 0.111 0.273 0.564 -1386.84

(.006) (.030) (.003) (.126) (.001)

EGARCH(1,1,1) 0.002 0.205 -0.066 0.971 -1391.18

(.737) (.001) (.004) (.000)

EGARCH(1,1,2) 0.002 0.296 -0.093 0.377 0.584 -1387.27

(.800) (.000) (.006) (.009) (.000)
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5.3.3 Post estimation analysis 

Table 5.14 reports the skewness, kurtosis and Jarque-Bera statistic for the raw returns (after 

the removal of the extreme outliers) in the estimation period and the standardized residuals 

from various GARCH class models. The Jarque-Bera statistic rejects normality for both the 

raw returns and for all the volatility models. It is, however, no doubt that the standardized 

residuals are closer to normal than the raw returns. There is a noticable left skewness for all 

the residuals, while the excess kurtosis exceeds 0.5.   

 

The density- and the QQ-plots for the standardized residuals from the GJR(1,1,1) model in 

Figure 5.18 also indicate that an alternative distribution like Bollerslev’s Student’s T or 

Hansen’s Skewed T might be desirable. The first will be examined in the following section. 

 

 

Table 5.14 Testing for normality in standardized residuals (IDU). 

 

  
Figure 5.18 Kernel density plot (left) and QQ-plot (right) of the standardized residuals from an GJR(1,1,1) model for IDU 

against a normal distribution. 

 

Skew Kurt JB P value

Raw returns -0.004 8.135 1104.36 0.0000

Standardized residuals

GARCH(1,1) -0.182 3.669 24.281 0.0000

GJR(1,1,1) -0.121 3.663 20.861 0.0000

GJR(1,1,2) -0.104 3.627 18.297 0.0001

TARCH(1,1,1) -0.115 3.762 26.549 0.0000

TARCH(1,1,2) -0.109 3.725 23.989 0.0000

EGARCH(1,1,1) -0.120 3.771 27.308 0.0000

EGARCH(1,1,2) -0.109 3.723 23.850 0.0000

EGARCH(1,2,1) -0.106 3.783 27.521 0.0000
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Engle’s ARCH test on the standardized residuals rejects remaining ARCH effects for all 

models analyzed, and there is also no remaining significant autocorrelation for any of the 

models. 

 

5.3.4 Student’s T distribution 

The student’s t distribution parameterizations for IDU are given in Table 5.15. The shape 

parameter, ν, is significant for all models. The ranking of the various models is not much 

different than for the normal distribution. GJR(1,1,2) is the best model at the 0.1 significance 

level, ahead of GJR(1,1,1). The latter is now also significant at the 0.05 level. Specifications 

with two variance lags perform well.  

 

 

Table 5.15 Parameterization of conditional volatility models for IDU under the assumption of a t-distribution.  

 

ω (x 10-3) α1 α2 γ1 γ2 β1 β2 ν LL

t-GARCH(1,1) 0.020 0.096 0.885 12.4974 -1375.8

(.033) (.000) (.000) (.002)

t-GARCH(2,1) 0.024 0.050 0.076 0.886 13.398 -1375.8

(.019) (.019) (.013) (.000) (.004)

t-GARCH(1,2) 0.026 0.132 0.391 0.453 13.038 -1374.9
(.035) (.000) (.173) (.091) (.003)

t-GJR(1,1,1) 0.024 0.050 0.076 0.886 13.398 -1372.2
(.019) (.019) (.013) (.000) (.004)

t-GJR(2,1,1) 0.024 0.050 0.000 0.076 0.886 13.398 -1372.2
(.031) (.057) (.999) (.014) (.000) (.005)

t-GJR(1,2,1) 0.024 0.050 0.076 0.000 0.886 13.398 -1372.2
(.023) (.022) (.036) (.999) (.000) (.004)

t-GJR(1,1,2) 0.031 0.068 0.109 0.383 0.461 14.116 -1371.0
(.018) (.012) (.013) (.084) (.027) (.007)

t-TARCH(1,1,1) 0.023 0.056 0.061 0.907 12.596 -1374.6
(.017) (.011) (.006) (.000) (.002)

t-TARCH(2,1,1) 0.023 0.056 0.000 0.061 0.907 12.596 -1374.6
(.039) (.337) (.999) (.006) (.000) (.003)

t-TARCH(1,2,1) 0.023 0.056 0.061 0.000 0.907 12.596 -1374.6
(.137) (.057) (.572) (.999) (.000) (.003)

t-TARCH(1,1,2) 0.031 0.082 0.086 0.387 0.482 13.161 -1373.4
(.015) (.017) (.005) (.105) (.032) (.004)

t-EGARCH(1,1,1) 0.001 0.168 -0.051 0.979 12.281 -1375.5
(.769) (.000) (.009) (.000) (.002)

t-EGARCH(2,1,1) 0.001 0.290 -0.144 -0.051 0.983 13.411 -1373.9
(.767) (.000) (.071) (.008) (.000) (.003)

t-EGARCH(1,2,1) 0.001 0.166 -0.087 0.040 0.981 12.300 -1375.1
(.769) (.000) (.063) (.382) (.000) (.002)

t-EGARCH(1,1,2) 0.001 0.245 -0.073 0.469 0.503 13.022 -1374.0
(.785) (.000) (.009) (.015) (.009) (.004)

t-EGARCH(2,2,1) 0.001 0.282 -0.137 -0.081 0.033 0.984 13.327 -1373.7
(.765) (.000) (.085) (.105) (.506) (.000) (.004)

t-EGARCH(2,2,2) 0.001 0.287 -0.099 -0.069 0.004 0.719 0.259 13.446 -1373.6
(.783) (.000) (.554) (.271) (.964) (.396) (.755) (.004)
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The plots for the AIC and BIC selection criterions can be seen in Figure 5.19. The curves are 

almost identical to the normal distribution. GJR-GARCH models seem to give the best fit of 

the returns series for IDU. 

 

  
Figure 5.19 Plots of AIC (left) and BIC (right) for IDU for t-distributed errors. 

 

The kernel density and QQ plots for the GJR(1,1,1) standardized residuals against a t(13.4) 

distribution, where 13.4 corresponds to the degrees of freedom parameter estimated, are 

given in Figure 5.18. It is obvious that the GARCH-filtered residuals have a higher kurtosis 

and a left skew compared to a t(13.4) distribution.   

 

 

Figure 5.20 Kernel density plot (left) and QQ-plot (right) of the standardized residuals from a t-distributed GJR(1,1,1) 

model for IDU against a t(13.4) distribution. 

 

Since neither the t-distribution nor the normal distribution is completely satisfying, it is 

difficult to conclude which assumption is best. The best way to analyze this is the direct 

comparison of the fits of corresponding models between the two distributions. As for IYF, 
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Table 5.16 shows that the likelihoods are improved under the assumption of t-distribution 

for all models. 

 

 

Table 5.16 Descriptive statistics for normal and student’s t distributed models (IDU). 

 

The t-distributed GJR (1,1,2) is the best model based on the log likelihood, but t-GJR(1,1,1) is 

a strong alternative since it has more significant parameters and is chosen ahead of t-

GJR(1,1,2) according to AIC and BIC.   

 

5.3.5 Forecast evaluation 

The Mincer-Zarnowitz regression rejects optimality for all estimated models for the IDU 

time-series at the 0.05 significance level (see Table 5.17).  The GJR-models are closest to 

being optimal. The fact that optimality is rejected does not mean that the forecasts have no 

value, rather that it does not satisfy the condition of optimality. It could be caused by an 

unstable data generation process, and might be improved if the first year of data was 

omitted, as this is the most volatile period. 

 

Skew Kurt LL AIC BIC

Normal

GARCH(1,1) -0.182 3.669 -1381.5 1.3779 1.3925

GJR(1,1,1) -0.121 3.663 -1377.4 1.3758 1.3953

GJR(1,1,2) -0.104 3.627 -1375.7 1.3761 1.4005

TARCH(1,1,1) -0.115 3.762 -1380.9 1.3792 1.3987

TARCH(1,1,2) -0.109 3.725 -1379.1 1.3795 1.4039

EGARCH(1,1,1) -0.120 3.771 -1382.0 1.3804 1.3999

EGARCH(1,1,2) -0.109 3.723 -1379.8 1.3801 1.4045

EGARCH(1,2,1) -0.106 3.783 -1381.7 1.3820 1.4064

Students t

GARCH(1,1) -0.183 3.671 -1375.8 1.3742 1.3937

GJR(1,1,1) -0.118 3.676 -1372.2 1.3726 1.3970

GJR(1,1,2) -0.099 3.638 -1371.0 1.3734 1.4026

TARCH(1,1,1) -0.109 3.770 -1374.6 1.3750 1.3994

TARCH(1,1,2) -0.101 3.738 -1373.4 1.3757 1.4050

EGARCH(1,1,1) -0.114 3.779 -1375.5 1.3759 1.4003

EGARCH(1,1,2) -0.100 3.735 -1374.0 1.3763 1.4056

EGARCH(1,2,1) -0.096 3.796 -1375.1 1.3775 1.4068
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Table 5.17 Mincer-Zarnowitz R
2
 for normal and t-distributed squared residuals as proxy for volatility for IDU. 

 

Table 5.18 ranks the models based on statistical loss functions and on how far from optimal 

the R2 is. T-distributed models dominate normal distributed models, as the top three ranked 

models regarding forecasting performance are t-distributed. The GJR models perform best 

for the IDU time series. The GARCH(1,1) models also perform well for the volatility forecasts 

both according to the R2 and the statistical loss functions.  

 

 

Table 5.18 The forecasting performance ranked by statistical loss functions and the Mincer-Zarnowitz R
2
. 

 

Since the Mincer-Zarnowitz R2 rejects optimality, it comes as no surprise that the hits-

percentages at the 90% confidence level for VaR for all models are far from 10%. A 

parametric VaR for the normal distributed GARCH(1,1) model has a hit-percentage in the 

out-of-sample period of 7.2% versus 6.77% for almost all the other specifications. It is 

therefore difficult to draw conclusions from the VaR analysis of IDU. 

 

MZ P value MZ P value

GARCH(1,1) 8.181 0.0167 7.989 0.0184

GJR(1,1,1) 8.042 0.0179 7.770 0.0206

GJR(1,1,2) 7.775 0.0205 7.746 0.0208

TARCH(1,1,1) 12.598 0.0018 12.979 0.0015

TARCH(1,1,2) 12.611 0.0018 13.222 0.0013

EGARCH(1,1,1) 11.434 0.0033 11.919 0.0026

EGARCH(1,1,2) 12.659 0.0018 13.152 0.0014

Normal T-distribution

ME MSE MAE MAPE R
2

Total Total rank

GARCH(1,1) 2 4 2 14 6 28 4

GJR(1,1,1) 5 2 6 12 5 30 6

GJR(1,1,2) 5 6 3 11 3 28 4

TARCH(1,1,1) 13 9 11 6 9 48 10

TARCH(1,1,2) 10 11 12 5 10 48 10

EGARCH(1,1,1) 8 7 7 1 7 30 6

EGARCH(1,1,2) 7 12 9 3 11 42 9

t-GARCH(1,1) 3 3 1 13 4 24 3

t-GJR(1,1,1) 4 1 4 9 2 20 1

t-GJR(1,1,2) 1 5 5 10 1 22 2

t-TARCH(1,1,1) 14 10 13 8 12 57 13

t-TARCH(1,1,2) 12 14 14 7 14 61 14

t-EGARCH(1,1,1) 11 8 8 2 8 37 8

t-EGARCH(1,1,2) 9 13 10 4 13 49 12
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5.4 iShares Dow Jones US Energy sector (IYE) 

The IYE fund tracks U.S. energy stocks as represented by the Dow Jones U.S. Oil & Gas index. 

The same steps as for IYF and IDU are applied in the following sections. 

 

5.4.1 Pre estimation analysis 

The squared returns of IYE have significant serial correlation up to at least 20 lags, implying 

that volatility clustering is also present here. But as for IDU, Engle’s ARCH test on the residual 

returns cannot reject homoskedasticity for the first lag of squared innovations at the 0.05 

significance level. The most extreme outliers are removed to work around this issue. The 

returns plot for IYE in Figure 5.2 shows three outliers in excess of 6% (absolute value) in the 

first year of the estimation period. Although these returns are by no means extreme, they 

should not influence the main task of forecasting volatility after 2006. The three outliers that 

were dummied out for IYE are given in Table 5.19. 

 

 

Table 5.19 Removed outliers (IYE). 

 

The p-values from the ARCH LM test after removing these outliers are now low enough to 

reject homoskedasticity. The Q-test on the altered return series still shows significant 

correlation in the squared returns. 

 

5.4.2 Model parameterization and selection 

Table 5.20 shows the parameterization of conditional volatility models for IYE under the 

assumption of a normal distribution. Only significant models at the 0.1 level are presented 

here. As can be seen from Table 5.1, the evidence of asymmetry was weaker for IYE than for 

the two other assets. This fact is also somehow confirmed by the parameterizations below, 

as the GARCH(1,1) model has the second highest likelihood. The estimated asymmetry 

coefficients are however significant for all the presented asymmetry models. The GJR(1,1,1) 

model gives the best fit of the data.  

 

Date Return

July 19, 2002 -6.97%

July 24, 2002 6.88%

August 1, 2002 -6.64%
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Table 5.20 Parameterization of conditional volatility models for IYE under the assumption of a normal distribution. 

 

Figure 5.21 plots the AICs and BICs for IYE. The AIC selection criteria selects GARCH(1,1) as 

the best model, narrowly ahead of GJR(1,1,1). This is also the ranking of the BIC criteria, 

where the margin between them is larger. 

 

 

Figure 5.21 Plots of AIC (left) and BIC (right) for IYE under the assumption of normal distributed errors. 

 

 

Table 5.21 shows the parameterization for t-distributed errors. GJR(1,1,1) is still the 

strongest, now followed by a GARCH(2,1) model. AIC and BIC, however, maintain the same 

ranking as for the normal distributed parameterizations, including that GARCH(1,1) is ranked 

ahead of GJR(1,1,1). 

 

ω (x 10-3) α1 γ1 β1 LL

GARCH(1,1) 0.019 0.052 0.938 -1693.17

(.131) (.000) (.000)

GJR(1,1,1) 0.029 0.028 0.042 0.934 -1691.268
(.103) (.054) (.095) (.000)

TARCH(1,1,1) 0.023 0.035 0.037 0.940 -1693.926
(.064) (.006) (.000) (.000)

EGARCH(1,1,1) 0.008 0.102 -0.031 0.984 -1693.487
(.070) (.000) (.075) (.000)
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Table 5.21 Parameterization of conditional volatility models for IYE under the assumption of a t-distribution.  

 

 

5.4.3 Post estimation analysis 

Table 5.22 shows that the raw returns in the estimation period are far from normal (but 

closer than the raw returns of IYF and IDU). The Jarque-Bera statistic also rejects normality 

for the standardized residuals from GARCH(1,1) and GJR(1,1,1) under the assumption of 

normal distribution, although the latter is very close to being significant at the 0.05 level. The 

standardized residuals of TARCH(1,1,1) and EGARCH(1,1,1) are normal distributed. 

 

 

Table 5.22 Postestimation statistics for IYE. 

 

In contrast to the IYF and IDU parameterization there is no evidence that a t-distribution 

gives a better fit to the data than a normal distribution. The likelihoods are similar, and in 

most cases slighly lower for the t-distributed models. A normal and a t-distributed GJR(1,1,1) 

have about the same likelihood, so the conclusion is that a GJR(1,1,1) model under any of 

the two distributions is recommended for IYE. 

Model ω (x 10-3) α1 α2 γ1 γ2 β1 β2 ν LL

t-GARCH(1,1) 0.010 0.050 0.930 101.4178 -1693.1

(.131) (.000) (.000) (.000)

t-GARCH(2,1) 0.020 0.020 0.040 0.930 194.826 -1692.9

(.098) (.046) (.094) (.000) (.000)

t-GJR(1,1,1) 0.020 0.020 0.040 0.930 194.826 -1691.3
(.098) (.046) (.094) (.000) (.000)

t-TARCH(1,1,1) 0.020 0.030 0.030 0.930 133.701 -1693.9
(.063) (.006) (.072) (.000) (.001)

t-EGARCH(1,1,1) 0.000 0.100 -0.030 0.980 141.260 -1693.5
(.077) (.000) (.078) (.000) (.005)

Skew Kurt LL AIC BIC JB P value

Raw returns -0.2277 3.7229 30.5624 0

Normal

GARCH(1,1) -0.2052 3.0594 -1693.17 1.6874 1.702 7.2021 0.0273

GJR(1,1,1) -0.1889 3.0254 -1691.27 1.6875 1.707 6.0011 0.0498

TARCH(1,1,1) -0.1724 3.0408 -1693.93 1.6901 1.7096 5.0489 0.0801

EGARCH(1,1,1) -0.1693 3.0374 -1693.49 1.6897 1.7092 4.8595 0.0881

Student's T

t-GARCH(1,1) -0.2054 3.0595 -1693.1 1.6893 1.7088

t-GARCH(2,1) -0.2059 3.0483 -1692.87 1.691 1.7154

t-GJR(1,1,1) -0.1889 3.0256 -1691.25 1.6894 1.7138

t-TARCH(1,1,1) -0.1725 3.0412 -1693.89 1.692 1.7164

t-EGARCH(1,1,1) -0.1632 3.0522 -1693.83 1.694 1.7233
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5.4.4 Forecast evaluation 

The Mincer-Zarnowitz regression fails to reject optimality for all estimated models for the 

IYE time-series at the 0.05 significance level. This is shown in Table 5.23. 

 

 

Table 5.23 Mincer-Zarnowitz R
2
 for normal and t-distributed squared residuals as proxy for volatility for IYE. 

 

Table 5.24 ranks the models based on statistical loss functions and on how far from optimal 

the R2 is. Suddenly the TARCH(1,1,1) models are to prefer, followed by the normal 

distributed GJR(1,1,1). The GARCH(1,1) models, which gives a very good fit in the estimation 

period, fails to keep up the performance in the out-of-sample period.  

 

 

Table 5.24 The forecasting performance ranked by statistical loss functions and the R
2
 for IYE. 

 

VaR modeling using parametric and semi-parametric VaR models at the 90% confidence level 

for the normal distributed GJR(1,1,1) model is shown in Figure 5.22, together with a 

historical simulation of the returns data. In the out-of-sample period the historical 

simulation has a hit-percentage of 9.6%, compared to 10.36% for the semi-parametric and 

10.76% for the parametric models for GJR(1,1,1). The last two thus overhit at the 90% 

confidence level. According to the hits-percentages the semi-parametric GJR(1,1,1) models 

(normal and t) and the GARCH(1,1) models (normal and t) perform equally well, ahead of all 

other specifications. This confirms the presumption that the GJR(1,1,1) specification is the 

MZ P value MZ P value

GARCH(1,1) 2.2479 0.3250 2.2521 0.3243

GJR(1,1,1) 1.5987 0.4496 1.6088 0.4473

TARCH(1,1,1) 0.8871 0.6418 0.9014 0.6372

EGARCH(1,1,1) 0.7669 0.6815 0.7786 0.6775

Normal T-distribution

ME MSE MAE MAPE R
2

Total Total rank

GARCH(1,1) 8 8 8 8 7 39 8

GJR(1,1,1) 2 5 3 5 5 20 3

TARCH(1,1,1) 4 1 1 2 2 10 2

EGARCH(1,1,1) 6 3 5 3 4 21 4

t-GARCH(1,1) 7 7 7 7 8 36 7

t-GJR(1,1,1) 1 6 3 6 6 22 6

t-TARCH(1,1,1) 3 2 1 1 1 8 1

t-EGARCH(1,1,1) 5 4 5 4 3 21 4
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best alternative for IYE for the chosen time horizon. Since it is better than the t-distributed 

GJR(1,1,1) for forecasting purposes, the normal distributed GJR(1,1,1) model is the 

recommended model for IYE. 

 

 

Figure 5.22 Estimated % VaR based on a normal distributed GJR(1,1,1) model, using historical simulation, parametric and 

semi-parametric VaR models for α=10%.  

 

5.5 Multivariate models 

The previous sections show evidence for time-varying volatility for individual time-series. 

The probability of time-varying correlations (and thus covariances) between each pair of 

assets is therefore large. This should lead to re-allocations of the total portfolio assets based 

on the time-varying correlations. Cappiello et al. (2006) use an asymmetric version of the 

DCC model to explore the dynamics and changes in correlation of asset markets to 

investigate whether the correlation demonstrate evidence of asymmetric response to 

negative returns. For national equity index returns series they find asymmetry both in the 

conditional volatility and in conditional correlations. An asymmetric DCC model will also be 

used in this paper to construct a time-varying portfolio of the three ETF’s studied. Although 

different volatility models have been recommended for each individual ETF, the asymmetric 

models have performed well. For IYF the suggestion a t-distributed EGARCH(1,2,1) model, 
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for IDU a t-distributed GJR(1,1,2) model and for IYE a normal distributed GJR(1,1,1) model. 

The multivariate DCC parameterization for the construction of a portfolio of the three assets 

will be based on normal distributed GJR(1,1,1) models for all three assets. The reason for this 

choice is not only that GJR(1,1,1) models have performed well for the three assets (ranked 

highest of the asymmetric models by the BIC criterion for all normally distributed models), 

but also the fact that the current version of the MFE Oxford Toolbox for Matlab builds on 

GJR(p,o,q) specifications for the univariate time-series. DCC models are based on the 

assumption of normal distributed standardized residuals. 

 

Looking at the unconditional correlation matrix and the unconditional variance-covariance-

matrix between the three ETF’s in Table 5.25, shows that the assets are reasonably 

correlated. The correlation is highest between financials and utilities, while the correlation 

is,  as expected, a bit lower (but positive) between energy and utilities. 

 

 

Table 5.25 Unconditional correlation of returns of the three ETF’s. 

 

 

Table 5.26 Unconditional Variance-Covariance (VCV) matrix (scaled by 10,000) of the returns. 

 

Three time-varying global minimum variance portfolios are created for the three-asset 

problem: a DCC(1,1) model, a BEKK model and an EWMA model with a decay factor of 0.94, 

i.e. RiskMetrics’ decay factor. The three portfolios will be ranked on how well they minimize 

the variance. 

 

A DCC(M,N) model represents a dynamic conditional correlation model with M (positive 

scalar) innovation lags and N (non-negative scalar) variance lags in the correlation model. A 

DCC(1,1) model for three univariate GJR-GARCH(1,1,1) processes will thus require the 

estimation of 17 parameters (ωi, αi, γi and βi for i=1,2,3 parameters from the three univariate 

IYF IYE IDU

IYF 1.0000 0.4951 0.5709

IYE 1.0000 0.4844

IDU 1.0000

IYF IYE IDU

IYF 1.4301 0.8141 0.7659

IYE 1.8908 0.7472

IDU 1.2584
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processes and θ1,...,θ5 correlation parameters). The first step of the DCC(1,1) model is to 

parameterize the univariate series. Table 5.27 shows the DCC parameterizations, which are 

equal to the estimated univariate GJR(1,1,1) models of each asset in previous sections of 

Chapter 5. 

 

 

Table 5.27 DCC parameterizations of the univariate GJR(1,1,1) models for normal distributed errors. 

 

The parameterization of the second step of the DCC process is given in Table 5.28. The alpha 

and beta parameters correspond to θ1 and θ2 in Equation 3.41 respectively, while the 

correlation parameters γ12 (IYF-IYE), γ13 (IYF-IDU) and γ23 (IYE-IDU) represent θ3 .  

 

 

Table 5.28 Parameterization of the DCC(1,1) model, step 2. LL is the log likelihood of the DCC(1,1) model. 

 

The BEKK6 parameterization is done in one step, and for the three-asset model this involves 

the estimation of 24 parameters. It needs much more processor time than the estimation of 

a DCC model, which would make it unsuitable for higher systems.  

 

Figure 5.23 shows the time-varying annualized standard deviations given by the three 

multivariate models over the estimation period. As expected, there is little deviation 

between the models when it comes to volatility. By looking at the time-varying correlations 

in Figure 5.24, however, it can be seen that while the correlation changes much over time 

for both the RiskMetrics and BEKK models, there are no meaningful changes in the 

correlation for the DCC model, partly due to the use of standardized residuals.  

 

                                                      
6
 BEKK modeling in Matlab is done with Kevin Sheppard’s UCSD GARCH toolbox as it is not implemented in the 

MFE toolbox. The UCSD toolbox can be found at http://www.kevinsheppard.com/wiki/UCSD_GARCH (Accessed 

February 12, 2009). 

ω (x 10
-3

) α γ β

IYF 0.0107 0.0004 0.1055 0.9358

IYE 0.0288 0.0284 0.0423 0.9338

IDU 0.0256 0.0566 0.0743 0.8814

γ12 γ13 γ23 α β LL

DCC(1,1) 0.4341 0.5799 0.4888 0.0103 0.9895 -4092.7
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Figure 5.23 Development in annualized standard deviations for the three assets given by the DCC(1,1), RiskMetrics and 

BEKK estimations. 

 

 

Figure 5.24 Time-varying correlations between each pair of assets given by the DCC(1,1), BEKK and RiskMetrics models. 
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Based on the daily estimates of the correlation matrix Ht from the three multivariate models, 

daily optimal weights on each asset are created in order to minimize the variance. In other 

words, three time-varying global minimum variance portfolios are constructed. Figure 5.25 

shows the development in the annualized standard deviation of the DCC model compared to 

the annualized standard deviation of the three individual assets. The figure shows that while 

the minimum variance portfolio from the DCC model has volatility in excess of 30% in the 

third quarter of 2002, it is possible to construct a portfolio of these three assets at around 

10% volatility in December 2005. 

 

The time-varying weights of the three portfolios are shown in Figure 5.26.  The weights 

changes considerably during the estimation period. There is a strong relationship between 

the volatility of the individual assets and the weights. An example of this can be seen by 

looking at the weights on IYF at the end of the estimation period. The weight is high 

compared to the other assets because the volatility in IYF was much lower than for IYE and 

IDU at the end of 2005.  

 

 

Figure 5.25 Volatility of the global minimum variance portfolio from DCC(1,1) compared to the three individual assets 

given by univariate GJR(1,1,1) processes. 
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Figure 5.26 Daily optimal GMVP weights for IYF (top), IYE (middle) and IDU (bottom) given by the three multivariate 

models. 
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The annualized standard deviations for the three GMVP-portfolios are given in Table 5.29. It 

is calculated as the standard deviation of the daily returns of the portfolio, given by the time-

varying weights in each asset multiplied by the actual returns on that day. The annualized 

standard deviations show that the DCC method minimizes the volatility better than BEKK and 

RiskMetrics, although the difference is not huge. The Sharpe ratio (calculated for an 

assumed risk-free rate of zero), however, representing the reward-to-variability, is much 

higher for the BEKK model. The reason for this is probably that the BEKK model captures the 

time-varying correlation better than the DCC model for these three assets. The transaction 

costs of a daily rebalancing scheme as illustrated in Figure 5.26 will of course be high, but 

since the weights of the three models evolves in a similar way, transaction costs are 

neglected in this paper.  

 

 
Table 5.29 Annualized returns and standard deviations for the minimum variance portfolios. 

 

The result of an optimization procedure of the three portfolios so that the Sharpe ratio each 

day is maximized, is given in Table 5.30. The BEKK model again has the highest Sharpe ratio, 

while the DCC is narrowly beaten by the RiskMetrics optimization. The daily weights of these 

portfolios are calculated under the assumption that the mean of the estimation period 

represent the long-term average for each asset. The risk-free return in the Sharpe formula 

(Equation 3.47) is once again set to zero, as it would be the same for all assets. The portfolio 

weights are also constrained to lay within the interval of -1.2 to 1.2, to correspond with the 

weights of the minimum variance portfolios. 

 

 

Table 5.30 Optimization based on maximizing daily Sharpe ratio. 

 

Although BEKK is the clearly the most adequate model with regards to maximizing the 

Sharpe ratio, it is less convenient for higher systems. For ten assets the parameters of the 

RiskMetrics DCC BEKK

Annualized returns 5.64% 5.77% 7.78%

Annualized std.dev 15.76% 15.64% 15.68%

Sharpe ratio 0.36 0.37 0.50

RiskMetrics DCC BEKK

Annualized returns 13.05% 12.50% 14.53%

Annualized std.dev 17.12% 16.76% 17.30%

Sharpe ratio 0.76 0.75 0.84
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BEKK model may take several hours to estimate. The DCC model will also probably be more 

useful than the multivariate EWMA model when it comes to correlation forecasting. This 

paper only presents an ex-post evaluation of the three correlation models.  
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6. Conclusions 

The goal of this thesis was to present time-varying volatility in theory and practice. Even 

though a variety of models dealing with this issue has been presented and parameterized, 

the list of conditional volatility models that have not been mentioned is large. The paper 

gives, however, a comprehensive overview of symmetric versus asymmetric models. The 

conclusion regarding these two classes of models is that the asymmetric models generally 

perform better than symmetric models due to the fact that the asymmetric effects were 

evident for all three individual series. Alexander’s (2001) statement that the leverage effect 

has become quite noticeable during the last years can therefore be supported, but this 

paper is unable to confirm it as analysis of older time-series is neglected. 

 

Different models with different lag structures were recommended for each of the three 

time-series. These recommendations are subjective choices based on the likelihood and 

significance of estimated parameters, selection criterions (AIC and BIC), and forecasting 

ability through both economic and statistical loss functions. It is no surprise that no single 

model is rated above all other models for all assets, as each asset has its own unique 

features. The finding is consistent with Poon’s (2005) survey over different researcher’s 

findings regarding the ability of different models.  

 

The final recommendation of the best model for each asset in this paper does not 

necessarily reflect the choice that would be undertaken by other researchers. If, based on 

these three U.S. sector indices, one single model should be chosen as the best model for all 

U.S. sectors, then the choice would be a GJR-GARCH(1,1,1) model. On average, this model 

gives the best fit of the three time-series according to both the significance of the 

parameters and the likelihood. According to the BIC selection criteria, which in the literature 

often is used as the main basis for the final selection, the GJR-GARCH(1,1,1) model is also 

superior to other models.  This choice is in agreement with Brailsford and Faff (1996) and 

Taylor (2004) who find that GJR-GARCH is superior to GARCH for stock indices.  

 

This thesis has also compared parameterizations under the assumption of alternative 

distributions of the errors, namely the normal distribution versus the student’s T 
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distribution. The fit and forecasting ability of two of the three assets were markedly 

improved by using the student’s T distribution. These two assets, IYF and IDU, have a higher 

excess kurtosis in their raw returns over a normal than IDU. It therefore makes sense that 

the t-distribution gives a better fit, as it has fatter tails than a corresponding normal 

distribution. Ideally, other alternative distributions, like Nelson’s (1991) generalized error 

distribution (GED) and Hansen’s (1994) skewed t distribution could be tested as well to find 

out if such parameterizations would improve the fit of the time-series even more. This is 

therefore a suggestion for further investigation of the subject. 

 

Finally, multivariate modeling shows that portfolio optimization using the Dynamic 

Conditional Correlation model, which builds on the already parameterized univariate GJR-

GARCH(1,1,1) models for each asset, perform well when the target is to minimize the risk of 

the portfolio. For the three asset portfolio, however, BEKK gives a higher return on the risk 

undertaken than the DCC model. Analysing the time-varying correlation from the two 

models shows that the BEKK model is superior to the DCC model when it comes to catching 

this feature for the chosen assets. That the time-varying correlation between assets is this 

flat over time is not a feature that is shared by Cappiello et al. (2006) who study correlations 

in international equity indices and bonds. The DCC model performs equally well to the 

multivariate EWMA model, but this is for the in-sample data only. A more realistic portfolio 

problem would be to look at the out-of-sample performances of each time-varying 

correlation model, and for more assets than the three analysed. As the main focus in this 

paper was on univariate time-series, correlation forecasting was neglected. Further 

investigation on this issue therefore also goes down as a suggestion for further investigation.  

  



Estimation and selection of time-varying volatility models Øystein Skregelid, 2009   

95 

 

Literature 

Akgiray, V. (1989) Conditional Heteroscedasticity in Time Series of Stock Returns: Evidence 

and Forecasts. The Journal of Business 62, 55-80. 

Alexander, C. (2001) Market models: a guide to financial data analysis, Chichester, Wiley. 

Andersen, T. G. & T. Bollerslev (1998) Answering the skeptics: Yes, standard volatility models 

do provide accurate forecasts. International Economic Review 39, 885-905. 

Andersen, T. G., T. Bollerslev, F. X. Diebold & P. Labys (2001) The Distribution of Realized 

Exchange Rate Volatility. Journal of the American Statistical Association 96, 42-55. 

Bauwens, L., S. Laurent & J. V. K. Rombouts (2003) Multivariate GARCH Models: A survey 

[online]. CORE Discussion Paper No. 2003/31. Available from 

http://ssrn.com/abstract=411062. [Accessed May 8, 2009]. 

Benninga, S. (2008) Financial Modeling, Cambridge, Massachusetts, The MIT Press. 

Bera, A. K. & M. L. Higgins (1993) ARCH models: properties, estimation and testing. Journal 

of Economic Surveys 7, 305-366. 

Bodie, Z., A. Kane & A. J. Marcus (2008) Investments, Boston, Mass., McGraw-Hill. 

Bollerslev, T. (1986) Generalized autoregressive conditional heteroskedasticity. Journal of 

Econometrics 31, 307-327. 

Bollerslev, T. (1987) A conditional heteroskedastic time series model for speculative prices 

and rates of return. The Review of Economics and Statistics 69, 542-547. 

Bollerslev, T. (1990) Modelling the Coherence in Short-Run Nominal Exchange Rates: A 

Multivariate Generalized Arch Model. The Review of Economics and Statistics 72, 

498-505. 

Bollerslev, T. & R. F. Engle (1993) Common persistence in conditional variances. 

Econometrica 61, 167-186. 

Bollerslev, T. P., R. F. Engle & D. B. Nelson (1993) ARCH models. IN: Bollerslev, T. P., R. F. 

Engle & D. B. Nelson (Eds.) The Handbook of Econometrics. Department of 

Economics, University of California. Available from 

http://finance.martinsewell.com/stylized-facts/BollersvlevEngleNelson1994.pdf. 

Brailsford, T. J. & R. W. Faff (1996) An evaluation of volatility forecasting techniques. Journal 

of Banking & Finance 20, 419-438. 

Brooks, C., S. P. Burke & G. Persand (2001) Benchmarks and the accuracy of GARCH model 

estimation. International Journal of Forecasting 17, 45-56. 

Cao, C. Q. & R. S. Tsay (1992) Nonlinear Time-Series Analysis of Stock Volatilities. Journal of 

Applied Econometrics 7, 165-185. 

Cappiello, L., R. F. Engle & K. Sheppard (2006) Asymmetric Dynamics in the Correlations of 

Global Equity and Bond Returns. Journal of Financial Econometrics 4, 537-572. 

Chatfield, C. (2003) The analysis of time series: an introduction, CRC Press. 

Davidian, M. & R. J. Carroll (1987) Variance Function Estimation. Journal of American 

Statistical Association 82, 1079-1091. 



Estimation and selection of time-varying volatility models Øystein Skregelid, 2009   

96 

 

Ding, Z., C. W. J. Granger & R. F. Engle (1993) A long memory property of stock market 

returns and a new model. Journal of Empirical Finance 1, 83-106  

Enders, W. (2004) Applied econometric time series, Hoboken, N.J., Wiley. 

Engle, R. F. (1982) Autoregressive conditional heteroscedasticity with estimates of the 

variance of United Kingdom inflation. Econometrica 50, 987-1007. 

Engle, R. F. (2001a) Financial econometrics - A new discipline with new methods. Journal of 

Econometrics 100, 53-56. 

Engle, R. F. (2001b) GARCH 101: The use of ARCH/GARCH models in Applied Econometrics. 

Journal of Economic Perspectives 15, 157-168. 

Engle, R. F. (2002) Dynamic conditional correlation. Journal of Business and Economic 

Statistics 20, 339-350. 

Engle, R. F. & R. Colacito (2004) Dynamic Conditional Correlation - A simple class of 

multivariate GARCH models [online]. Draft. Available from 

http://accounting.uwaterloo.ca/finance/documents/RColacito_001.pdf. [Accessed 

June 9, 2009]. 

Engle, R. F., S. M. Focardi & F. J. Fabozzi (2008) ARCH/GARCH Models in Applied Financial 

Econometrics. IN: Fabozzi, F. J. (Ed.) Handbook of Finance. John Wiley and Sons. 

Available from http://pages.stern.nyu.edu/~rengle/ARCHGARCH.pdf. 

Engle, R. F. & K. F. Kroner (1995) Multivariate Simultaneous Generalized ARCH. Econometic 

Theory 11, 122-150. 

Engle, R. F. & S. Manganelli (1999) CAViaR: Conditional Autoregressive Value at Risk by 

regression quantiles [online]. NBER Working Paper No. W7341. Available from 

http://ssrn.com/abstract=195948. [Accessed June 6, 2009]. 

Engle, R. F. & K. Sheppard (2001) Theoretical and empirical properties of Dynamic 

Conditional Correlation multivariate GARCH. USCD Discussion Paper 2001-15, NYU 

Discussion Paper. 

Fama, E. F. (1965) The behavior of stock-market prices. The Journal of Business 38, 34-105. 

Fleming, J., C. Kirby & B. Ostdiek (2000) The economic value of volatility timing. Journal of 

Finance 56, 329-352. 

Franses, P. H. & M. McAleer (2002) Financial Volatility: An Introduction. Journal of Applied 

Econometrics 17, 419-424. 

Glosten, L. R., R. Jagannathan & D. E. Runkle (1993) On the Relation between the Expected 

Value and the Volatility of the Nominal Excess Return on Stocks. The Journal of 

Finance 48, 1779-1801. 

González-Rivera, G., T.-H. Lee & S. Mishra (2004) Forecasting volatility: A reality check based 

on option pricing, utility function, value-at-risk, and predictive likelihood. 

International Journal of Forecasting 20, 629-645. 

Hansen, B. E. (1994) Autoregressive conditional density estimation. International Economic 

Review 35, 705-730. 



Estimation and selection of time-varying volatility models Øystein Skregelid, 2009   

97 

 

Harris, R. I. D. & R. Sollis (2003) Applied time series modelling and forecasting, Chichester; 

Hoboken, N.J., J. Wiley. 

J.P.Morgan (1997) RiskMetrics Technical Documents, 4th edition, New York. 

Kroner, K. F. & V. K. Ng (1998) Modeling Asymmetric Comovements of Asset Returns. The 

Review of Financial Studies 11, 817-844. 

Laurent, S. (2004) Analytical derivates of the APARCH model. Computational Economics 24, 

51-57. 

Lee, K. Y. (1991) Are the GARCH models best in out-of-sample performance? . Economics 

Letters 37, 305-308. 

Ljung, G. M. & G. E. P. Box (1978) On a Measure of Lack of Fit in Time Series Models. 

Biometrika 65, 297-303. 

Mandelbrot, B. (1963) The variation of certain speculative prices. The Journal of Business 36, 

394-419. 

McKenzie, M. D. (1999) Power transformation and forecasting the magnitude of exchange 

rate changes. International Journal of Forecasting 15, 49-55. 

McMillan, D., A. Speight & O. Apgwilym (2000) Forecasting UK stock market volatility. 

Applied Financial Economics 10, 435-448. 

Nelson, D. B. (1991) Conditional Heteroskedasticity in Asset Returns: A New Approach. 

Econometrica 59, 347-370. 

Nelson, D. B. & C. Q. Cao (1992) Inequality Constraints in the Univariate GARCH Model. 

Journal of Business & Economic Statistics 10, 229-235. 

Patton, A. J. & K. Sheppard (2008) Evaluating volatility and correlation forecasts. IN: 

Andersen, T. G., R. A. Davis, J.-P. Kreiss & T. Mikosh (Eds.) Handbook of financial time 

series. New York, Springer. Available from 

http://www.kevinsheppard.net/images/c/c6/Patton_Sheppard.pdf. 

Peters, J.-P. (2001) Estimating and forecasting volatility of stock indices using asymmetric 

GARCH models and (Skewed) Student-t densities [online]. Preprint. Ecole 

d’Administration des Affaires, University of Liége, Belgium. Available from 

http://www.unalmed.edu.co/~ndgirald/Archivos%20Lectura/Archivos%20curso%20S

eries%20II/jppeters.pdf. [Accessed June 1, 2009]. 

Poon, S.-H. (2005) A practical guide for forecasting financial market volatility, Chichester ; 

Hoboken, N.J., Wiley. 

Poon, S.-H. & C. W. J. Granger (2003) Forecasting volatility in financial markets: a review. 

Journal of Economic Litterature 41, 478-539. 

Sheppard, K. (2009a) Financial Econometric Notes [online]. University of Oxford. Available 

from http://www.kevinsheppard.com/images/a/af/Financial_Econometrics_2008-

2009.pdf. [Accessed April 17, 2009]. 

Sheppard, K. (2009b) MFE Matlab Function Reference Financial Econometrics [online]. 

Available from 

http://www.kevinsheppard.com/images/9/95/MFE_Toolbox_Documentation.pdf. 

[Accessed May 11, 2009]. 



Estimation and selection of time-varying volatility models Øystein Skregelid, 2009   

98 

 

Taylor, J. W. (2004) Volatility forecasting with smooth transition exponential smoothing. 

International Journal of Forecasting 20, 273-286. 

Zakoian, J.-M. (1994) Threshold heteroskedastic models. Journal of Economic Dynamics and 

Control 18, 931-955. 

 

 


