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Introduction

BackgroundRe
alling the 
redit 
risis as one of the events de�ning of the last de
ade, it is no wonder
redit risk modeling has be
ome one of the 
entral resear
h areas in modern �nan
e.Leading up to and even more after the aforementioned 
redit 
risis, there has been mu
hdebate on the need for regulating 
redit derivatives, an asset 
lass by many viewed asimportant for understanding the ba
kground for the 
risis. A natural extension of thisdebate is that of the value of the models used for valuing an risk managing su
h instru-ments, in parti
ular with respe
t to the quality of 
redit ratings. The same models havealso seen appli
ations in banking 
apital regulation, another area where previously heldbeliefs have been 
hallenged by these events.
OverviewThe fo
us of this thesis is the two main 
lasses of 
redit risk models that appear inthe a
ademi
 literature and are used by pra
titioners in �nan
ial institutions and 
reditrating agen
ies. There is no "industry standard" pri
ing model for 
redit derivatives orrisk management, in the manner of the Bla
k-S
holes Model for sto
k options. I willtherefore 
over qualitatively some of the variation in the �eld. Be
ause of the limiteds
ope of this thesis, the fo
us of this presentation is on the basi
 prin
iples and methods,whi
h are presented in a detailed and more formal way. I will also outline how the basi
models 
an be extended.The �rst two 
hapters provide an introdu
tion to these two model frameworks, knownas redu
ed form and stru
tural models, respe
tively. Stru
tural models build more or lessdire
tly on option pri
ing theory, and make spe
i�
 assumptions on the 
ausal relationshipbetween stru
tural variables su
h as asset values, debt level, interest rate on the one handand 
redit events on the other, viewing a 
redit event mainly as an endogenous event - anevent that is explained inside the models by other variables. Redu
ed form models, onthe other hand, see defaults as exogenous. No 
ausal relationships are assumed, we are9



LIST OF FIGURESonly trying to obtain a probabilisti
 model based on available market data and 
ertainassumptions about the data generating pro
esses. A brief dis
ussion on some simplete
hniques for model 
alibration is also in
luded.Chapter 4 illustrates some of the theoreti
al 
on
epts developed in the pre
eding
hapters by appli
ations to derivatives pri
ing. Finally, the appendi
es 
ontain a briefoverview over some 
on
epts in valuation theory and sto
hasti
 modeling that are usedthroughout the thesis, as well as the simulation methods used in model implementation.
MethodsIn the �eld of 
redit risk resear
h, there are numerous arti
les and books 
ontaining ana-lyti
al results for highly sophisti
ated models. While re
ognizing the pra
ti
al usefulnessof su
h 
ontributions, I believe there are 
ertain important advantages to fo
using on anumeri
al approa
h.The 
onstraints related to 
omputational 
osts that used to be the main problemwith numeri
al te
hniques have be
ome less important due to the exponential growth in
omputing power. Se
ondly, it 
an often be a simpler modelling task to implement a nu-meri
al approa
h than to sear
h for analyti
al solutions for many 
omplex problems, andit is often su�
ient with a sele
t set of numeri
al methods for ta
kling many problems.Analyti
al approa
hes on the other hand, often require 
onsiderable mathemati
al inge-nuity and sophisti
ation that may be beyond many pra
titioners. Furthermore, a simplenumeri
al model 
an often easily be extend to more 
omplex 
ases without modifying
ore parts of the program.
AcknowledgementsI wish to thank my advisor, professor Steinar Ekern, not only for his guidan
e andadvi
e that has been invaluable for my work with this thesis, but also for his tea
hing in�nan
ial theory and derivatives pri
ing at NHH that stirred my interest in the �elds ofmathemati
al and theoreti
al �nan
e, hereunder the methods and problems I dis
uss inthis thesis.
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Chapter 1

Credit Risk - Empirical Data and Some Notes

on Modeling

"Credit default swaps (CDSs) haveproved to be one of the mostsu

essful �nan
ial innovations of the1990s." Hull and White (2003)
1.1 BackgroundFinan
ial a
tivities 
reate wealth whenever they lead to a more produ
tive allo
ation of
apital and risk between the agents in the e
onomy. For many agents, �nan
ial institu-tions in parti
ular, the handling of 
redit risk � i.e. the risk of a borrower being, totally orpartially, unable to repay a loan � is an issue of utmost importan
e. Until quite re
ently,managing 
redit risk has been di�
ult due to the low liquidity of debt se
urities, so thatagents have been unable to redu
e their exposure to su
h risk, either by selling debtinstruments or taking o�setting positions in other instruments. While traditional debtinstruments, su
h as 
orporate bonds, obviously are 
redit derivatives, they also have anembedded interest risk element, whi
h make them less ideal for trading and transferring
redit risk.In the last two de
ades, the way �nan
ial institutions handle 
redit risk has beenaltered in a fundamental way by the introdu
tion of modern 
redit derivatives, the mostimportant being the 
redit default swap or CDS. The CDS is a simple instrument thatfor a periodi
 payment guarantees prote
tion against the 
redit risk of a referen
e entity,usually in terms of some prede�ned 
ash settlement between the issuer and the buyer of11



1.2. DATA SOURCES AND SOME EMPIRICAL FACTS ABOUT CREDIT RISK

Figure 1.1: Histori
al default rates. Sour
e: Moody's (2000).
redit prote
tion in event of default, wholly or partially 
overing the loss 
aused by the
redit event. An institution having a large 
redit exposure to some parti
ular entity 
antherefore use a CDS to neutralize this position. Furthermore, it is of 
ourse unne
essaryto a
tually hold the underlying bonds in order to obtain a 
ertain risk pro�le; trading inCDS's alone is su�
ient, as these instruments 
an be issued independently of whether ornot the bonds are a
tually issued.
1.2 Data Sources and Some Empirical Facts About Credit RiskFrom Figure 1.1, where the histori
al over-all US 
orporate default rates are plotted asa time series together with the US Industrial Produ
tion Index (a measure of e
onomi
growth), we get a few impressions of some properties of default rates. Though fairly weak(−.14), there is a 
orrelation between the IP index and default rates. Strong e
onomi
growth tends to go hand in hand with low default rates, though there has been a variyingpattern with resepe
t to whether a weakening of the e
onomy pre
eeds or follows anin
rease in default rates.Another 
on
ept of key interest in 
redit risk modeling in addition to default rates isdefault severity, often referred to as loss given default, usually a per
entage of outstandingprin
ipal. Moody's (2000) have 
ompiled similar data for this quantity, and it exhibitssimilar time series properties. On average, re
overy rates are low near the bottom ofbusiness 
y
le 
ontra
tions and high after periods of strong e
onomi
 growth.The 
y
li
al nature of 
redit risk that is apparent from Figure 1.1 is also reminis
entof the problem of default 
orrelation or 
lustering, the fa
t that one default tends tobe followed by others. We 
an explain su
h 
ausality by 
onsidering the dependen
e12



1.2. DATA SOURCES AND SOME EMPIRICAL FACTS ABOUT CREDIT RISKbetween �rms in a supply 
hain; if a major buyer shuts down produ
tion, the suppliersare also more likely to default. We 
an also think of how similar �rms depend on the samema
roe
onomi
 fa
tors su
h as fuel pri
es, and aggregate demand, et
., and parti
ularrisk fa
tors su
h as trends or hypes.
1.2.1 Ratings Data and the Estimation of Default ProbabilitiesAs defaults are infrequent low-probability events, empiri
al data on default probabilitiesand interdependen
es are hard to 
ompile. Of 
ourse, for a �rm that has not defaulted,we 
annot dire
tly observe its default probability as this is an event that only o

urson
e. Hen
e, we need to 
ome up with some estimates of these probabilities based ondata available for similar �rms, or imply them from market pri
es using some pri
ingmodel. AAA AA A BBB BB B CCC DefaultAAA 90.81 8.33 0.68 0.06 0.12 0 0 0AA 0.70 90.65 7.79 0.64 0.06 0.14 0.02 0A 0.09 2.27 91.05 5.52 0.74 0.26 0.01 0.06BBB 0.02 0.33 5.95 86.93 5.30 1.17 0.12 0.18BB 0.03 0.14 0.67 7.73 80.53 8.84 1.00 1.06B 0 0.11 0.24 0.43 6.48 83.46 4.07 5.20CCC 0.22 0 0.22 1.30 2.38 11.24 64.86 19.79Default 0 0 0 0 0 0 0 100.00Figure 1.2: One year transition matrix of Standard and Poor's 
redit ratings for theperiod 1981-1996. Sour
e: CreditMetri
s.One 
ommon method for estimating su
h probabilities is using data published byrating agen
ies su
h as Standard & Poor. Consider Figure 1.2 where a one year transitionmatrix of 
redit ratings is given. Entry aij in the table gives the probability of a �rmgoing from rating i to rating j over the 
ourse of one year. There are several thingsto note about su
h data. We see that the default state is absorbing; on
e a �rm hasdefaulted, it will never live again, and the probability of transition from default to anyother rating is 
onsequently zero. Furthermore, the transition probabilities are physi
alprobabilities. This should be quite obvious as they are estimated from a
tual histori
aldata. They will therefore generally di�er from the risk neutral default probabilities that
an be implied from market pri
es. This method is dis
ussed in Se
tions 2.6.1 and 2.6.2.Appendix A explains the distin
tion between risk neutral and physi
al probabilities.Using this matrix it is simple to 
ompute the n-year probability matrix. If T1 denotesthe one year transition matrix, then the two year transition matrix is given by T2 =

T1 · T1. To see that this holds 
onsider the probability of starting in state AAA, and13



1.2. DATA SOURCES AND SOME EMPIRICAL FACTS ABOUT CREDIT RISKbeing in state AAA after two years. This is the probability of staying in AAA two yearsin a row plus the probability of going from AAA to AA the �rst year and ba
k to AAAthe se
ond, and so forth:
p2(AAA|AAA) = p2AAA,AAA + pAAA,AApAA,AAA + pAAA,ApA,AAA + ...+ pAAA,CCCpCCC,AAAIn the same manner, we 
an �nd the n-year transition probability matrix as Tn =

T
n
1 . Considering only the rightmost 
olumn of the matri
es {T1,T2, ...,Tn, } we haveestimates of the physi
al default probabilities for a �rm of a given rating, for any timehorizon. The 
umulative density fun
tion following from this method is plotted in Figure1.3.
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Figure 1.3: Physi
al 
umulative default probabilities for some ratings 
lasses from Figure1.2.
Problems with Ratings DataThere are several reasons why probabilities implied from market data using models ispreferable to ratings data for the pri
ing appli
ations:14



1.3. MODELING CREDIT RISK
• Rating agen
ies rea
t slower than the market in anti
ipation of future 
redit quality.The most striking example is the re
ent 
redit 
risis where the sub-prime mortgageba
ked se
urities defaulted with a triple-A status.
• Firm spe
i�
 information 
ontained in market pri
es is ignored; the default proba-bilities inferred from ratings data are averages over a potentially very heterogeneousgroup of �rms that are likely exposed to very di�erent risk fa
tors.
• The probabilities are physi
al, and 
an therefore not be used dire
tly as input tothe valuation models as they usually are stated.

1.2.2 Credit Derivatives MarketsAs we have seen, there are good arguments for that ratings data may not be the best datasour
e for estimating default probabilities. Often, a better alternative is to use marketdata. There are three important markets from whi
h we 
an infer 
redit risk informationusing the modeling tools dis
ussed later. These are the equity, bond and 
redit derivativesmarkets. This thesis explores some methods for implying 
redit risk information fromthe se
urities traded in these markets.Obviously, the quality of su
h information depends 
ru
ially on the liquidity and thetransparen
y of the �nan
ial markets. If market parti
ipants are uninformed with respe
tto the assets that are traded, the market pri
es do not re�e
t a
tual values or probabilitiesand is therefore worthless. Likewise, if markets are illiquid, market pri
es may not re�e
ta
tual asset values. The latter is often a problem with using bond pri
es whi
h is why
redit derivative pri
es are often preferred in estimating default probabilities.Furthermore, 
redit default swap rates are usually quoted for a larger number ofmaturities than bonds whi
h means a �ner 
redit 
urve1. This approa
h is illustrated inChapter 2.
1.3 Modeling Credit RiskThe two 
lasses of models presented here 
an be seen as representing two di�erent "tradi-tions". Stru
tural models are straightforward extensions of 
lassi
al option pri
ing theory,and was indeed one of the �rst appli
ations of this theory outside 
ontingent 
laims val-uation (see for instan
e Merton (1974) and Bla
k and Cox (1976)). They rely expli
itlyon a theory on the 
ausal relationship between asset pri
es2 and bankrupt
y.1The 
redit 
urve is 
ommon term des
ribing the term stru
ture of default probabilities.2Or, in more advan
ed 
ases su
h as Goldstein et al. (2001), the relationship between 
ash �ows,interest rates et
. and bankrupt
y. 15



1.3. MODELING CREDIT RISK
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Figure 1.4: Outstanding CDS notional. Sour
e: ISDA (http://www.isda.org/statisti
s/).From a theoreti
al point of view, stru
tural models are for many reasons the "pre-ferred" framework , as they not only provide a 
ausal relationship between the stru
turalvariables of the �rm and the default probabilities, but also a 
oherent framework for valu-ing any 
laim on the �rm's assets. Furthermore, they 
an be extended in many dire
tionsin
orporating, among other things, endogenous 
apital stru
ture 
hanges, so that thereis an interdependen
e between asset values and 
apital stru
ture de
isions. Su
h models,whi
h in the literature is referred to as dynami
 
apital stru
ture models, do not appearoften pra
ti
e in 
redit derivatives valuation as they are harder to 
alibrate than the sim-pler stati
 
apital stru
ture models 
onsidered here. Therefore, it is assumed throughoutthe dis
ussion on stru
tural models in this thesis that the 
apital stru
ture irrelevan
eassumption3 holds.As pointed out by Vasi
ek (1984), modern stru
tural 
redit risk models are purelyquantitative, and is therefore radi
ally di�erent from "traditional" methods for assetpri
ing and 
redit valuation that relies on the analyst's knowledge of a �rm's operationsto proje
t future 
ash �ows under various s
enarios. However, the data used in the tra-ditional method, both about the �rm and the markets in whi
h it operates is presumablypubli
 information. Assuming a 
ertain degree of market e�
ien
y, this information willalready be re�e
ted in the pri
es of the �rm's assets as re�e
ted by debt and equity values.Redu
ed form models represent an approa
h based on reliability theory that is similar3The asset value is independent of the �nan
ial stru
ture of an entity.16



1.4. EVALUATING MODELSto modeling in insuran
e and operations management. They do not model 
ausal rela-tionships between stru
tural variables, rather use default probabilities as inferred frommarket pri
es. A default is 
onsidered "similar" to the o

urren
e of an event trigger-ing a payment from an insuran
e 
ompany, or in the operations management 
ase, thebreakdown of a parti
ular ma
hine that is part of a produ
tion pro
ess. There may beseveral 
auses behind su
h a breakdown; it may be due to human failing or have somete
hni
al 
ause. In the model however, these are seen as random events o

urring a
-
ording to some pro
ess. From a modeling perspe
tive, we are interested in determiningthis pro
ess than the a
tual 
ausality.What separates the 
redit risk setting from the operations management setting is therole of interdependen
e. Default time interdependen
e is a major risk fa
tor that mustbe a

ounted for in 
redit portfolio valuation and risk assessment. While in a produ
-tion pro
ess, simultaneous breakdowns may be preferable so that a total maintenan
e
an be performed, a large number of defaults o

urring over a short period of time is
learly problemati
 for a �nan
ial institution with a limited 
ash �ow and 
apital reserve.Another important problem is that in many pra
ti
al problems the 
redit portfolio may
ontain a large number of assets, so that in order to "s
ale down" the problem in su
h away that we 
an make qualitative sense of the data, some redu
tion of dimensionality isne
essary. This topi
 is 
entral throughout this thesis and as we will see, many di�erentmethods are proposed in the literature. One standard method is to assume 
orrelationarises through the individual assets' dependen
e on a set of systemi
 risk fa
tors.
1.4 Evaluating ModelsThis thesis presents the two fundamental 
lasses of 
redit risk models as well as some ofthe several extensions of these models that have been proposed. From a pra
ti
al point ofview, it is ne
essary to have some 
riteria by whi
h these models are evaluated dependingon their appli
ation.Based on the nature of defaults suggested by empiri
al studies su
h as Moody's (2000),we 
an spe
ify requirements a model should be able to reprodu
e with respe
t to keyquantities like default rate 
orrelations and default probabilities. As demonstrated inthe CDO example in 4.4, multi-name 
redit derivative values are extremely sensitive todefault 
orrelations4. Furthermore, the analyst implementing the model is fa
ed withseveral important 
onstraints su
h as:

• S
ar
ity of data. Data on defaults is limited in many respe
ts. One may not havesu�
iently long time series available or there may be 
hanges in the data generating4As dis
ussed in Hull (2007), this is quite 
lear from the 
ash �ow me
hani
s of these instruments.17



1.4. EVALUATING MODELSpro
esses5 so that older observations are no longer valid. Hen
e, a model with fewparameters to estimate is tra
table due to the un
ertainty in the estimates.
• Time 
onstraints in implementing, testing and 
alibrating the models. A simplenumeri
al model is often simpler to verify against an analyti
 base 
ase.The last point shows that there is an important trade-o� between the ri
hness of themodel and the time spent on implementing and maintaining it. The fo
us here is thereforethe basi
 
ases of the models that are treated thoroughly in a quantitative manner andimplemented numeri
ally. Extending these is usually a quite straightforward issue ofadding more "bells and whistles" to the fundamentals.

5Su
h shifts may be 
aused for instan
e be 
aused by regulatory 
hanges.18



Chapter 2

Reduced Form Credit Risk ModelsThis 
hapter provides an introdu
tion to the theory behind one of the two standard 
lassesof 
redit risk models often referred to as redu
ed form 
redit risk models. A

ording toHull et al. (2006), this 
lass of models is largely the industry standard in 
redit derivativemodeling, primarily be
ause they are easy to �t to observed market pri
es.This 
hapter also pays some attention to di�erent methods for 
orrelation modelingthat are also used later on for stru
tural models. Parti
ular attention is paid to the so-
alled 
opula approa
h that provides a te
hni
ally e�
ient method for implementing themultivariate distribution of a set of assets given the marginal distributions and estimatesof 
orrelations.
2.1 Single Credit FrameworkConsider a single defaultable se
urity and let τ denote its survival time as measuredfrom t = 0. On the �ltered probability spa
e1 (P,F ,Ω). Here P denotes the risk neutralprobability measure. τ is a stopping time (a random variable) with respe
t to the �ltration
Ft that represents the a

umulated market information available at time t.We are now interested in a framework in whi
h probabilisti
 statements about τ 
anbe made. Therefore let F (T ) = P(τ ≤ T ) be the 
umulative distribution fun
tion (
df)of the default time, ie. the probability that the time of default o

urs before a parti
ulartime T . An equivalent statement is the survival fun
tion S(T ) = 1 − F (T ) whi
h isthe probability that a se
urity does not default prior time T . Closely related to F (T ) isthe probability density fun
tion (pdf) f(t) = dF (t)

dt
that 
an be interpreted as the defaultprobability on an in�nitesimally small time interval around some point in time t.1See Appendix A for some ba
kground and referen
es on this terminology.19



2.1. SINGLE CREDIT FRAMEWORK
2.1.1 A Binomial Model of Credit RiskAs an illustration, 
onsider a bond with fa
e value 100, and 6% annual 
oupon ratepaid annually until maturity in year 3. Let q = λ∆t = .08 be the 
onditional riskneutral default probability on an interval of length ∆t = 1, i.e. the probability of defaulto

urring during the interval, 
onditioned on survival up to the start of the interval.Further assume that if default o

urs, the value re
overed is 
onstant R = 40 paid at theend of the year as illustrated in Figure 2.1.
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Figure 2.1: Binomial tree illustrating dis
rete time default pro
ess.As dis
ussed in Appendix A, we 
an value this risky bond by dis
ounting the expe
ted
ash �ows by the risk free interest rate, here assumed to be 5% with dis
rete 
ompounding.The example is summarized in Figure 2.2. The probabilities in row 2 and 4 are the
umulative survival and annual default probabilities, respe
tively. To arrive at the resultshere, the 
onditional probability of default in a parti
ular year is the probability ofsurviving up to that year times the probability of defaulting in that parti
ular year.Year 1 2 3Cash �ow, survival 6 6 106Cumulative Probability 0.9200 0.8464 0.7787Cash �ow, default 40 40 40Annual Probability 0.0800 0.0736 0.0677Expe
ted Cash Flow 8.7200 8.0224 85.2494Dis
ounted Cash Flow 8.3048 7.2766 73.6416Expe
ted NPV 88.2230Figure 2.2: Pri
ing in the binomial model.In 
omparison, the present value of a risk free bond with the same 
ash �ow stru
ture20



2.1. SINGLE CREDIT FRAMEWORKis 6 · 1.05−1 + 6 · 1.05−2 + 106 · 1.05−3 = 102.7232, so the risk premium on the risky bondis 13.5003. It is assumed throughout this thesis that 
redit risk is the only risk fa
tor.In reality, su
h a pri
e di�eren
e is usually explained in terms of other, additional riskfa
tors, liquidity risk being the most important.
Mixed Probability Binomial ModelsIn many valuation problems, the binomial model is an ex
ellent tool; its primary ad-vantage being its te
hni
al simpli
ity and intuitive nature. It is the among the simplestderivative pri
ing models to understand, explain and implement numeri
ally, yet pow-erful enough to to repli
ate the results from simulation models in many 
ases given asu�
iently small step size.The key problem with this model as it is formulated above is that it does not a

ountfor dependen
e between default times whi
h is, as mentioned in the introdu
tion, oneof the most important risk fa
tors that any 
redit risk model must handle well if it isto be applied to portfolio modeling. One 
ommon extension of the binomial model isto randomize the default probability q to mimi
 dependen
e between the binomial treesrepresenting the various �rms in the portfolio.While su
h binomial models are used in pra
ti
e, the next se
tions, take a di�erentapproa
h to modeling 
orrelation that uses a 
ontinuous time framework.
2.1.2 The Hazard Rate FunctionA key quantity of interest2 is the instantaneous default probability 
onditional on survivalup to a 
ertain point in time t. This probability is often referred to as the hazard ratefun
tion. It is de�ned as the limit of the probability of survival on an interval (t, t+∆t),given τ > t, as ∆t approa
hes zero:De�nition 2.1.1. Hazard Rate Fun
tionLet F (t) be the 
umulative distribution fun
tion of the default time t and f(t) itsderivative, then the hazard rate fun
tion λ(τ) is de�ned as:

λ(τ) = lim
∆t→0

P[t < τ < t+∆t|τ > t] =
f(τ)

1− F (τ)
=

f(τ)

S(τ)
(2.1.1)The last equality 
an be seen by writing out the probabilities as integrals and applyingthe fundamental theorem of 
al
ulus to the numerator and re
ognizing the denominatoras 1− F (t).2This is be
ause it spe
i�es the default generating pro
ess in this model framework.21



2.1. SINGLE CREDIT FRAMEWORKNote that we are yet to spe
ify the fun
tional form of F , f and λ as we have sofar only dealt with them abstra
tly. In the the example in Se
tion 2.1.1, λ is assumed
onstant and F (t) is on the form:
F (n∆t) = λ∆t+ (1− λ∆t)λ∆t + (1− λ∆t)2λ∆t + ...+ (1− λ∆t)nλ∆tHere λ∆t is the probability of defaulting on an interval of length ∆t. In the nextse
tion we 
onsider a model where λ a
ts as the parameter in a 
ontinuous default timedistribution.

2.1.3 The Poisson/Cox ProcessAs initially noted, we want to provide some model of defaults as the o

urren
e of adis
rete and rare event without, as in the stru
tural models 
onsidering the underlyinge
onomi
 pro
esses driving these events. A simple example of a pro
ess satisfying theserequirements is the Poisson pro
ess N(t) whi
h is a 
ontinuous time, dis
rete spa
e
ounting pro
ess. We want to de�ne the default of asset i as the �rst jump of the pro
ess
Ni(t). The interdependen
e between the �rms in the portfolio is given by the 
orrelationstru
ture of a set of Poisson pro
esses.Walpole et al. (2007) de�nes the Poisson pro
ess in terms of three key properties:De�nition 2.1.2. Poisson Pro
essLet I be the indi
ator fun
tion asso
iated with the stopping time τ . The Poissonpro
ess is a fun
tion F : Ω → N

+ mapping the sample spa
e to the set of positive integerssu
h that:
N(t) =

n∑

i=1

Iτi≤t (2.1.2)satisfying the following properties:1. The Markov property or "memorylessness": the number of events o

urring on atime interval [t0, t1] is independent of the number of events o

urring on any otherdisjoint time interval [T1, T2].32. The probability of an event o

urring on a parti
ular time interval is proportionalto the length of the interval.3. The probability of more than one event o

urring an an in�nitesimal time intervalis negligible.3In parti
ular, any event o

urring on a time interval starting at t is independent of Ft (here: the setof information revealed to the market (histori
al default data)).22



2.1. SINGLE CREDIT FRAMEWORK
Some Properties of the Poisson DistributionTwo important 
onsequen
es of this de�nition are:

• The probability distribution of N(t) is the Poisson distribution, that is, the proba-bility of exa
tly k events o

urring on a time interval of length τ is then given bythe probability mass fun
tion of the Poisson distribution:
F (T, k) = P[N(t + T )−N(t) = k] =

e−λT (λT )k

k!
(2.1.3)

• In parti
ular we see that the probability that no defaults o

ur on a given timeinterval is given by:
F (T, 0) = P[N(t + T )−N(t) = 0] = e−λT (2.1.4)That is, the probability distribution of the waiting time until the �rst o

urren
eis an exponential distribution with parameter λ4.The last point above is important as we interpret the time τ1 of �rst jump as the timeof default. The time to default (or survival time) is therefore exponentially distributedwith a mean 1

λ
and varian
e 1

λ2 . Note that we 
ould also start with the assumption thattime to default is exponentially distributed, and then arrive at the above de�nition of thePoisson pro
ess.We 
an show the latter by 
onsidering a dis
rete setting where λ(t)h denotes theprobability of surviving on an interval [t, t + h] 
onditional on no previous default. The
umulative probability of surviving up to time t is ps(t). It follows that:
ps(t + h)− ps(t) = −λ(t)ps(t)hTaking the limit as h → 0:

dV

dt
= −λ(t)ps(t)whi
h has the solution:

ps(t) = e−
∫ t

0
λ(s)dsWe say that N(t) is a 
ounting or "jump" pro
ess. We interpret the time τ of theo

urren
e of the �rst "jump" of the pro
ess N(τ) as default.4For notational simpli
ity, λ is assumed 
onstant here.23



2.1. SINGLE CREDIT FRAMEWORKThe Poisson pro
ess is entirely spe
i�ed by a single parameter λ, the hazard rate,often referred to as the pro
ess' intensity, whi
h is as the name indi
ates, a measure ofthe frequen
y of events o

urring. The Poisson pro
ess, or as it is sometimes 
alled, the(time) homogeneous Poisson pro
ess is a parti
ular 
ase of the more general Cox pro
ess,where λ(t) = λ is a 
onstant. Later on, λ(t) is de�ned in terms of a sto
hasti
 di�erentialequation so as to allow for random variations in default intensities.The default of a single 
redit is in this framework given as the �rst jump of the Poissonpro
ess whi
h is the �rst passage time to N(t) = 1, τ de�ned similarly to a default in theBla
k-Cox model:
τ = inf{t ∈ R

+|N(t) = 1} (2.1.5)
The Credit CurveThe notion of a term stru
ture of default intensities or, more 
olloquially, 
redit 
urveis o

urring frequently in the literature on 
redit risk. Similarly to the yield 
urve ininterest rate modeling, expressing the yield on a short interval [t, t+ dt], the 
redit 
urveis the instantaneous default probability or hazard rate on a short interval. The 
redit
urve does of 
ourse 
ontain pre
isely the same information as the survival or defaulttime distributions.
The Cox ProcessThe above Poisson model 
an be generalized to allowing for a time varying and evensto
hasti
 default intensity. This type of pro
ess is referred to as a Cox pro
ess or anon-homogeneous Poisson pro
ess. For instan
e, we 
ould allow λ = λ(t) to be given bythe following sto
hasti
 di�erential equation (SDE):

dλ(t, λ(t)) = µ(t, λ(t))dt+ σ(t, λ(t))dW (t) (2.1.6)where W (t) is the standard univariate Wiener pro
ess de�ned in Appendix A. We 
anthink of the pro
ess driving this as the "state of the e
onomy", where λ(t) will be inverselyrelated to state variables su
h as GDP growth, 
redit spreads and so forth. One approa
hto mimi
 the 
y
li
ality apparent in a
tual default data is to use a mean-reverting SDE,su
h as the Ornstein-Uhlenbe
k pro
ess de�ned in Appendix A.From the instantaneous default probability it is a simple matter to derive an expressionfor the probability of a se
urity surviving on a time interval [t, T ] 
onditional on no priordefault as the "sum" of all the instantaneous default probabilities:24



2.1. SINGLE CREDIT FRAMEWORK
ps(t, T ) = P[τ > T |τ > t] = E

[
exp

(
−
∫ T

t

λ(s)ds

) ∣∣∣F(t)

] (2.1.7)The probability of default o

urring on the same interval is denoted pd(t, T ):
pd(t, T ) = 1− ps(t, T ) (2.1.8)These integrals are not ne
essarily simple or even possible to evaluate analyti
ally.This depends on the fun
tional form of λ. However, simple numeri
al methods often doa good job approximating them.In the homogeneous 
ase (
onstant λ), the survival probability 
an be simpli�ed:
ps(t, T ) = e−λ(T−t) (2.1.9)and likewise the 
umulative default probability:

pd(t, T ) = 1− e−λ(T−t) (2.1.10)
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Figure 2.3: Hazard rate as Ornstein-Uhlenbe
k pro
ess and 
orresponding default time
df.Figure 2.3 illustrates the relationship between hazard rates and the 
umulative de-fault probability. Here the hazard rate fun
tion is given by the sto
hasti
 di�erential25



2.2. PRICINGequation5 dλt = α(λ0 − λt)dt + σdWt. As before, the survival probability is ps(0, t) =

exp[−
∫ t

0
λ(s)ds]. Conversely, the 
umulative default probability pd(0, t) = 1− ps(0, t).The top �gure shows a parti
ular traje
tory for the mean-reverting default intensitypro
ess. To 
ompute the integral behind the se
ond �gure, the midpoint method fornumeri
al integration6 is used. Note how the 
df below is �at in the times where thedefault intensity is low and steep later on when λ is high. For a simulation model, it isne
essary to simulate a large number of traje
tories for λ.

SummaryTo 
on
lude the dis
ussion here, we restate some key points that are 
entral to the simu-lation algorithms later on. With a 
onstant hazard rate λ, time to default is 
hara
terizedby an exponential distribution. The properties of this distribution is summarized below.
• Cumulative probability distribution of defaulting prior to t: F (t) = 1− e−λt.
• Corresponding probability density fun
tion f(t) = λe−λt.
• Mean survival time: 1/λ and varian
e: 1/λ2.

2.2 Cash Flow Pricing in a Reduced Form ModelFrom the above framework it is possible to work out formulas pri
ing risky 
ash �owsusing its default probability and an interest rate model. Consider �rst the simple 
aseof �nding the time t value of a defaultable zero 
oupon bond G(t, T ) paying a unit 
ash�ow at time T 
ontingent on survival and nothing otherwise7.Letting P (t, T ) denote the risk-free dis
ount fun
tion we have the following whi
h is adire
t appli
ation of the risk neutral pri
ing framework des
ribed earlier8 for a defaultablezero 
oupon bond:
G(t, T ) = E[P (t, T )|F(t)] = P (t, T )ps(t, T ) = e−

∫ T

t
(r(s)+λ(s))ds (2.2.1)When both the hazard and interest rates are sto
hasti
 pro
esses, there is a resem-blan
e between the above pri
ing equation and the bond pri
ing expressions found in5There is a very important problem to note about using this parti
ular pro
ess as a model for defaultintensities; namely that it is not stri
tly non-negative, 
learly at odds with the de�nition of the hazardrate as a probability.6See Cheney and Kin
aid (2007).7This assumption will be relaxed later on. In the most general 
ase the fra
tion lost to bankrupt
y
ost α(t) is spe
i�ed as a sto
hasti
 pro
ess.8Under the standard assumptions of arbitrage free markets, the same results hold for almost anypro
ess for asset values. 26



2.3. CORRELATION AND IMPLEMENTATIONmulti-fa
tor interest rate models9. In the 
ase of 
onstant default intensity and interestrates we get a very simple pri
ing equation:
G(t, T ) = e−(r+λ)(T−t)From these equations, it is reasonable to interpret λ as a risk premium. Using theseequations, any other defaultable se
urity 
an be pri
ed similarly to the above zero 
ouponbond.

2.2.1 Recovery RatesThe above example is 
learly stylized as it assumes that re
overy rates are zero; eitherthere is a unit 
ash �ow at time T or there is no 
ash �ow. This is of 
ourse unrealisti
, andas in the stru
tural models of Chapter 3, we 
an introdu
e a re
overy value proportionateto the fa
e value of the bond.This approa
h is known as re
overy of fa
e value (RFV), and is perhaps the simplestpossible approa
h, in parti
ular when the fra
tion re
overed is 
onstant. More advan
edmodels may apply re
overy of market value or model the fra
tion re
overed as a sto
has-ti
 pro
ess. Hull (2006) dis
usses a number of di�erent models of re
overy rates withreferen
es to the literature.Let α denote the fra
tion re
overed, τ the stopping time indi
ating default, the valueof a defaultable zero 
oupon bond with unit fa
e value is now given as:
G(t, T ) = E[P (t, T ) + αP (t, τ)|F(t)] (2.2.2)While a 
losed form expression 
an be derived for the above expe
tation, I will only
onsider an intuitive numeri
al method of evaluating the integrals using a midpoint ap-proximation and 
ompute the expe
tations by Monte Carlo simulation.

2.3 Default Correlation and Model ImplementationNow that a redu
ed model of default probability and single entity or asset pri
ing hasbeen established, the key problem still remains, namely spe
ifying dependen
e or asso-
iation stru
ture between default times. While the primary question of interest is the
orrelations between default times, it is important to stress that it is not the only. Inmore advan
ed models we are also interested in the relationship between variables su
h9Even though there is a well-established theory on multi-fa
tor interest rate models, working out ananalyti
 expression in the most general 
ase with 
orrelated rates is non-trivial.27



2.3. CORRELATION AND IMPLEMENTATIONas default, re
overy, interest rates, et
. In this thesis, the main 
on
ern is default timedependen
e.Before we 
an start implementing a model, an appropriate measure of interdepen-den
e must be 
hosen. Whereas this is a relatively simple matter in terms of stru
turalmodels, where it is one usually 
an settle with the 
orrelation < dA1, dA2 > between twoIt� pro
esses (see Shreve (2004) for rigorous de�nition), there are several approa
hes tomodeling asset pri
e interdependen
e in redu
ed form models. As dis
ussed in Li (2000)and Elizalde (2005a), one 
ould 
hoose the standard Pearson 
orrelation 
oe�
ient given,in the bivariate 
ase, as:
ρXY =

cov[X, Y ]

σXσYTranslating this into our framework of defaultable se
urities, we 
an let 1A(t) and
1B(t) denote two indi
ator random variables taking on the value one if entity A or B,respe
tively, have defaulted by time t. Letting pA(t) be the probability that A defaultsprior to time t:

var(1i) = pA(t)(1− pA(t))and:
cov[1i, 1j] = pij − pipjwe get the following:

ρXY =
pAB − pApB√

pApB(1− pA)(1− pB)
(2.3.1)For a parti
ular 
lass of multivariate distributions, known as ellipti
al distributions,whi
h in
ludes the important Gaussian distribution, the 
orrelation 
oe�
ient (or moregenerally, the 
orrelation matrix) fully determines the dependen
e stru
ture. However,it 
an be problemati
 due to its linearity whi
h means that we 
an have a fully deter-ministi
 relationship between two variables yet zero 
orrelation. A simple illustrationis if X ∼ Φ(0, 1) and Y is an even fun
tion of X , for instan
e, Y = X2. Obviously,this is problemati
, as we want a zero 
orrelation 
oe�
ient to signify that there is noasso
iation between the variables. This is a key problem that is dis
ussed later in these
tion on 
opulas. Su�
e it to say for now that the Pearson 
orrelation measure remainsimportant in this analysis, in parti
ular as an input to the 
opula models.

2.3.1 Simulating Defaults – The Inversion MethodWe have now 
overed su�
ient detail to develop a simple simulation algorithm when weknow the fun
tional form and parameters of λ(t) as well as the 
orrelation matrix Σ.28



2.3. CORRELATION AND IMPLEMENTATIONLet X be a random variable and F be some asso
iated 
umulative distribution fun
tionfun
tion (
df). Sin
e F is a non-de
reasing fun
tion, it has an inverse F−1:
F−1(q) = inf{x : FX(x) ≥ q} (2.3.2)From the de�nition of the 
df and the properties of the uniform distribution, thefollowing important relationship that is 
entral to the simulation algorithms applied toredu
ed form models follows. Let U be a uniform random variable on the interval [0, 1].Then we have the following relationship:

P[X ≤ x] = P[F−1(U) ≤ x] (2.3.3)
= P[F (F−1(U)) ≤ F (x)] (2.3.4)
= P[U ≤ F (x)] (2.3.5)
= F (x) (2.3.6)The �rst equality uses the fa
t that X = F−1(U). To see this, 
onsider the parti
ular
ase of default times. Now the domain of F is R+ and its range is [0, 1] (by the de�nitionof a probability). The inverse F−1, therefore, must transform elements in [0, 1] onto R

+a

ording to the 
df. The last equality above follows from the property of the uniformdistribution on [0, 1], that P (U < u) = u.So we have that X and F−1
X (U) have the same 
df. Thus random variables with anygiven 
df 
an be simulated by drawing uniform random variables and applying the inverse
df. This algorithm is known as the inversion method10.For example: we 
an generate two 
orrelated uniform random ve
tors [U1,U2]. As-suming asset 1 has a t5 distributed returns while asset 2 is normally distributed, we set

X1 = t−1
5 (U1) and X2 = Φ−1(U1). Using this we let the above 
df F (t) = e−λt be thesurvival fun
tion, ie. probability of no default prior to time x. The inverse of this fun
tionis:

T = − ln(ps)

λSin
e ps is a probability we 
an generate default times by simulating a set of [0, 1]uniform random variates {u1, u2, ..., un} and transforming them by the formula: Ti =

− ln(ui)
λ

. This method is dis
ussed further in Se
tion 4.1.10As an aside, the inversion method 
an be very useful when simulating a portfolio of assets wherethe individual assets have di�erent (marginal) probability distributions. For example, if we assume twoassets A and B have normally and t5 distributed returns, we 
an generate two uniform random ve
tors
{u1, u2} and let the return ve
tors be RA = Φ−1(u1) and RB = t−1

5
(u2).29



2.4. CONDITIONALLY INDEPENDENT DEFAULTS
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2.4 Conditionally Independent DefaultsWe now turn to the �rst te
hnique for dealing with 
orrelation modeling. The 
ore ideabehind 
onditionally independent defaults - CID-models, is that defaults are independent
onditioned on the realization of a set of systemi
 fa
tors that determine the hazard rate.Su
h fa
tors may be GDP, the short interest rate11, 
redit spreads, et
. To illustrate thete
hnique we let λ(t) be a sto
hasti
 pro
ess. Firm i is assumed to default at time τgiven by:

τ = inf

{
t :

∫ t

0

λ(t)dt ≥ Ei

} (2.4.1)Where Ei is an unitary exponentially distributed random variable (Ei ∼ eZ0,1), and
Ei and Ej are independent for i 6= j.
IllustrationMost authors, su
h as Du�ee (1999) use rather 
ompli
ated models to determine λ relyingon multi-fa
tor te
hniques from term stru
ture modeling. To illustrate, we 
onsider asimpli�ed model, where the hazard rate is a zero drift geometri
 Brownian motion with
onstant volatility:

dλ(t, λ(t)) = λ(t)σdW (t)11Du�ee (1999) proposes a model on the form λi(t) = λ∗

i
(t) + αs1(t) + βs2(t) where the si are fa
torsinferred from a two-fa
tor model of the short rate.30



2.5. COPULA FUNCTIONS
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riterion for �rm i is still as given in Equation 2.4.1. We then have that:
P[τi > t] = exp

(
−
∫ t

0

λ(t)dt

) (2.4.2)so that 1t>τi is a Cox, or doubly sto
hasti
 Poisson pro
ess. The simulation algorithmis summarized below:1. Generate one path of λ and approximate the integral in Equation 2.4.1.2. Generate N exponential random variates and determine the time of default a

ord-ing to Equation 2.4.1.3. Repeat step 1 and 2 above.Two sample pats and default time histograms are plotted in Figure 2.5.
2.5 Copula Functions

2.5.1 Definition and Some Central PropertiesA popular method for 
orrelation modeling in the redu
ed form framework is the 
opulamethod, a method that uses a transformation of a set of marginal distributions to 
reatea joint distribution. This se
tion will present the fundamentals of 
opula theory andsome parti
ular 
opula fun
tions illustrating the basi
 
on
ept as well as the breadth ofmodels available. The next se
tion shows how it 
an be applied to pri
ing problems usingsimulation in a redu
ed form model. 31



2.5. COPULA FUNCTIONSSeveral good referen
es on 
opula theory and its appli
ations in �nan
ial modelingare available, hereunder Nelsen (1999) and Li (2000). A 
omprehensive arti
le on themeasuring and modeling of 
orrelated risks is Wang (1998). Elizalde 2005a 
ontains a
omprehensive list of referen
es to further arti
les on this �eld. Finally, many softwarepa
kages and �nan
ial algorithms libraries su
h as MATLAB and QuantLib 
ontain rou-tines for 
opula models that are 
omprehensively do
umented.We start by a de�nition:De�nition 2.5.1. CopulaA n-dimensional 
opula is de�ned as the joint 
umulative density fun
tion C : [0, 1]n →
[0, 1] of a uniformly distributed random ve
tor U ∈ R

n:
C(u1, u2, ..., un,Σ) = P{U1 ≤ u1, ...,UN ≤ un} (2.5.1)A 
opula is therefore a multivariate distribution fun
tion with uniformly distributedmarginals. An important result in the theory of 
opulas states that the marginal distri-butions and the dependen
e between the set of variables 
an be separated. Firstly, we
an use 
opulas to link a set of marginal distributions to a joint distribution:

C(F1(x1), ..Fn(xn) = P[U1 ≤ F1(x1), ...,Un ≤ Fn(xn)] (2.5.2)
= P[F−1

1 (U1) ≤ x1, ..., F
−1
n (Un) ≤ xn] (2.5.3)

= P[X1 ≤ x1, ..., Xn ≤ xn] (2.5.4)
= F (x1, ..., xn,Σ) (2.5.5)For instan
e, in the bivariate 
ase with X and Y random variables with marginal 
dfs

FX and FY : C(x, 1) = P[U ≤ x,U ≤ 1] = x.The following theorem, �rst proven by Sklar, shows the the 
onverse also holds; anymultivariate distribution fun
tion 
an, under 
ertain te
hni
al assumptions be written asa 
opula.Theorem 2.5.2. (Sklar) Let G be an n-dimensional distribution fun
tion with 
ontin-uous marginals F1, ..., Fn. Then there exists an n-dimensional 
opula C su
h that:
G(x1, ..., xn) = C(F1(x1), ..., Fn(xn)) (2.5.6)If we 
onsider two bivariate uniform random variables on [0, 1], X and Y , with the
opula fun
tion C(x, y, ρ) = P(X < x, Y < y|ρ), we observe that:32



2.5. COPULA FUNCTIONS
• C(x, 1, ρ) = P(X < x, Y < 1|ρ) = P(X < x) = x, ie. we 
an obtain the of avariable X by evaluating the 
opula when all other parameters are 1.
• If X and Y are independent, then C(x, y, ρ) = P(X < x)P(Y < y) = xy.
• With perfe
t 
orrelation, C(x, y, ρ) = P(X < x)P(Y < y) = min(x, y)

Why Use Copula Models?While the theory of 
opulas may perhaps seem unne
essarily 
omplex at �rst sight, thekey point to the above dis
ussion about what a 
opula a
tually does, namely 
reating amultivariate joint distribution that is 
onsistent with the spe
i�ed marginal distributionsof the systemi
 and idiosyn
rati
 fa
tors. While we have 
ertain "simple" multivariatedistributions that 
an be used to generate multivariate data su
h as a default times of aportfolio, this set is limited. Furthermore, most simple methods impose restri
tions thatare important in pra
ti
e, the most important being that the marginals must have thesame univariate distribution. For example, the multivariate Gaussian distribution hasunivariate Gaussian marginals.For instan
e, 
onsider the 
orrelation stru
ture that will be used mu
h later on in thedis
ussion on stru
tural models. Let Xi be the random variable that determines the timeof default for �rm i. It is a fun
tion of a systemi
 risk fa
tor Y and an idiosyn
rati
 riskfa
tor ǫi where Y and ǫi are independent:
Xi = ρiYi +

√
1− ρ2i ǫiNow, the 
hoi
e of marginal distribution for Y and ǫi will determine the 
opulauniquely. If for instan
e both Y and ǫi are standard normally distributed, a Gaussian
opula will result. For any other 
hoi
e of distributions, a di�erent 
opula is the result.To summarize, what is tra
table about the 
opula approa
h is that it provides simplemethod to spe
ify a multivariate joint distribution for any set of marginal distributions.

2.5.2 Some Classes of Copula FunctionsFor the purpose of this thesis we 
onsider three 
opula fun
tions that appear frequentlyin the �nan
ial literature in general, and parti
ularly in that on redu
ed form models -normal, t- and mixed normal 
opulas. These are under no 
ir
umstan
es the only onesavailable, but they are 
omparatively simple to estimate and implement with standardsoftware. Furthermore, the basi
 properties of these distributions are well known fromfundamental probability theory. For further dis
ussion on 
opula models see for instan
eLi (2000) and Elizalde (2005a) and sour
es 
ited therein.33



2.5. COPULA FUNCTIONSDe�nition 2.5.3. Normal CopulaLet ΦN denote the N-dimensional normal 
umulative distribution fun
tion, the N-dimensional normal or Gaussian 
opula CN is given by:
CN(u1, u2, ..., uN) = ΦN (Φ−1(u1),Φ

−1(u2), ...,Φ
−1(uN),Σ) (2.5.7)As a parti
ular example we note the bivariate normal 
opula given by:

C2(u1, u2) = Φ2(Φ−1(u1),Φ
−1(u2), ρ)In a similar fashion to that above, we 
an de�ne the N dimensional Student t 
opula with

v degrees of freedom.De�nition 2.5.4. Student t CopulaLet tNv denote the student t 
umulative distribution fun
tion with v degrees of freedom.Then the N dimensional t-
opula Ct is de�ned by:
Ct(u1, u2, ..., uN) = tNv (t

−1
v (u1), t

−1
v (u2), ..., t

−1
v (uN)) (2.5.8)Typi
ally, for �nan
ial appli
ations, v is 
hosen to a low number su
h as 5 or 3produ
ing a fat tailed distribution (higher risk of extreme losses and gains). As thenumber of degrees of freedom gets very high, the distribution 
onverges to a normaldistribution.Finally, we 
onsider two 
opulas that are somewhat di�erent from the two previous.The �rst approa
h follows from the two last properties of 
opulas at the end of Se
tion2.5.1, that C(x, y, 1) = min(x, y) and C(x, y, 0) = xy. Consider next a weighted 
om-bination of these two fun
tions ρ be the weight assigned to the �rst. We 
onsider thebivariate normal 
ase:De�nition 2.5.5. Mixed Bivariate CopulaLet (x, y) be a set of random variables that are independent. A 
opula is then givenby C1 = xy. Let (v, w) be two perfe
tly 
orrelated random variables. Another 
opula isthen given by C2 = min(x, y). If 0 < ρ ≤ 1,

C(u, v) = (1− ρ)uv + ρmin(u, v) = (1− ρ)C1 + ρC2 (2.5.9)de�nes a mixed bivariate 
opula.Finally, as an illustration of the breadth of 
opula fun
tions available as alternativesto the more 
ommon normal and t-
opulas, we 
onsider a type of 
opula that is notdetermined by the standard 
orrelation 
oe�
ient.34



2.5. COPULA FUNCTIONSDe�nition 2.5.6. Clayton CopulaLet u and v be uniform random variables on [0, 1] and 0 < θ < ∞ be a 
onstant. Thefun
tion C(u, v) de�nes a bivariate Clayton 
opula if:
C(u, v) = (u−θ + v−θ − 1)−

1

θ (2.5.10)The parameter θ is here a parameter determining the dependen
e between the twovariables, where θ = 0 means independent marginals. Contrary to the 
opulas above, theClayton 
opula does not allow for negative 
orrelation. However, as Trivedi and Zimmer(2005) states, it exhibits strong left tail dependen
e whi
h makes it an appropriate modelfor 
redit risk. This type of dependen
e is important in 
redit risk modeling; on
e one�rm defaults, it has 
onsequen
es for other �rms it is doing business with.
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(b) t1-
opula.Figure 2.6: Default times simulation with two di�erent 
opula fun
tions.Figure 2.6 illustrate default times generated using the inversion method from a bivari-ate normal 
opula versus default times from a t1-
opula. It is apparent that the normal
opula yield mu
h more s
attered default times than the t-
opula that exhibits more ofa default 
lustering.Figures 2.7-2.8 are plots of the random variates from bivariate 
opulas themselves.Noti
e the di�eren
e between the Gaussian and the t-
opula; while the �rst tend tos
atter the observations more, the t-
opula gives a "
learer" pattern. For a 
orrelation
oe�
ient of .8, the band formed in the t-
opula example is mu
h slimmer than in theGaussian 
ase. 35



2.5. COPULA FUNCTIONS

0 0.5 1
0

0.2

0.4

0.6

0.8

1
rho = 0.8

U1

U
2

0 0.5 1
0

0.2

0.4

0.6

0.8

1
rho = 0.1

U1

U
2

0 0.5 1
0

0.2

0.4

0.6

0.8

1
rho = −0.1

U1

U
2

0 0.5 1
0

0.2

0.4

0.6

0.8

1
rho = −0.8

U1

U
2

Figure 2.7: Bivariate normal 
opula simulation.
2.5.3 Relationship Between Input and Copula CorrelationsWhile the dependen
e between the random variates generated by the 
opula model isdetermined by the ρi,j that are inputs to the model, these ρi,j do not measure the 
or-relation between the variates generated by the 
opula. To see this, 
onsider a bivariateGaussian 
opula. On
e we have generated the two 
orrelated standard normal ve
tors Z1and Z2, the inverse standard normal 
df transforms these ve
tors to make them a 
opula
{U1, U2}.Now the linear 
orrelation ρ(Z1, Z2) between Z1 and Z2 is 
learly not the same as the
orrelation between U1 and U2, as a non-linear transformation has been applied. In thegeneral 
ase, there is no simple relationship between the before and after 
orrelations.For this reason, rank 
orrelations12 su
h as Spearman's ρ or Kendall's τ are often usedinstead as these are invariant under any monotoni
 transformation.The de�nitions of these rank 
orrelation 
oe�
ients, are somewhat more te
hni
al12Informally stated, rank 
orrelations measure the degree to whi
h values of the same magnitude of aset of random variables are asso
iated (o

ur at the same time).36
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Figure 2.8: Bivariate t-
opula simulation with one degree of freedom.than the Pearson 
oe�
ient, but they are already implemented in most software pa
kages.Like the Pearson 
orrelation 
oe�
ient, ρ, these measures lie on the interval [−1, 1] withzero for independen
e and 1 or -1 for deterministi
ally related data.In the Gaussian 
opula 
ase the relationship between τ and ρ is given as T = 2 arcsin(R)
πwhere T is the matrix of Kendall's τ and R the linear 
orrelation matrix13.Consider the default time simulation for two assets in Figure 2.6. The input 
orrelationmatrix (Pearson) and the 
orresponding T-matrix using the above formula are:

Rinput =

[
1 .8

.8 1

]
, Tinput =

[
1 .5903

.5903 1

]If we measure the 
opula 
orrelation:
RNC =

[
1 .7202

.7202 1

]
, TNC =

[
1 0.5913

0.5913 1.0000

]13Cf. Nelsen (1999) and Trivedi and Zimmer (2005) for this related formulas for other 
opulas andde�nitions of 
orrelation 
oe�
ients. 37



2.5. COPULA FUNCTIONSFrom the above, we see that while the Pearson matrix 
hanges, the Kendall rank
oe�
ient from the simulation remains quite the same (only subje
t to some minor per-turbations due to the fa
t that only 500 variates are simulated for ea
h ve
tor).
2.5.4 Simulation Algorithms for Copulas

Sampling from the Normal CopulaThe following pro
edure has been applied in the generation of random variables from theGaussian 
opula with 
orrelation matrix Σ:1. Find a de
omposition matrix M so that Σ = MM ′.142. Draw an n-dimensional ve
tor v = [v1, ...., vn] of standard normal variates15.3. Let v∗ = vM . v∗ is now a ve
tor of 
orrelated standard normal variates.4. Transform v
∗ into a uniformly distributed random ve
tor by applying the standardnormal 
df: u = Φ(v∗).

Sampling from the Student t Copula with v Degrees of FreedomSimilar to the above, we state a simulation algorithm for the Student t 
opula:1. Find a de
omposition matrix M of the 
orrelation matrix Σ so that Σ = MM ′.2. Generate an n-dimensional ve
tor v = [v1, ...., vn] of standard normal variates.3. Generate an independent χ2
v random variable s.4. Let v∗ = vM . v∗ is now a ve
tor of 
orrelated standard normal variates.5. Let x = v

∗
√

v/s .6. Transform v
∗ into a uniformly distributed random ve
tor by applying the t distri-bution 
df with v degrees of freedom: u = tv(v

∗).Now we have provided su�
ient details on the theory behind the redu
ed form modelsand the 
opula approa
h to implement a simple pri
ing model from s
rat
h; later 
hap-ters will treat more se
urity spe
i�
 issues as well as parameter estimation and model
alibration.14There are several algorithms for doing this; most linear algebra pa
kages have at least one implemen-tation. For symmetri
 positive de�nite matri
es su
h as the 
orrelation matrix with positive entries, ane�
ient method is the Cholesky de
omposition. For details see for instan
e Cheney and Kin
iad (2007).15Most software pa
kages and programming languages su
h as Ex
el and MATLAB 
ontain methodsfor generating standard normal variates. If su
h fun
tions are not available, a uniform variates {ui} 
anbe transformed to a distribution spe
i�ed by the 
df F (x) by xi = F−1(ui).38



2.6. ESTIMATING DEFAULT PROBABILITIES
2.6 Estimating Default Probabilities and Calibrating a Reduced Form

ModelThe dis
ussion so far has fo
used on the theory behind redu
ed form models and howthey 
an be implemented. To round up the dis
ussion on these models, some notes onparameter estimation is in
luded.
2.6.1 Using a Single Bond Price - Constant Default ProbabilityConsider �rst a simple example where the default probability is assumed 
onstant. Wenow 
onsider a single risky bond with maturity 3 years. The market yield to maturity is7.0% with 
oupon rate 6.0% paid semi-annually. With a fa
e value of 100, this 
orrespondsto semi-annual 
oupons of 3. The risk free rate is assumed to be 5%. The amountre
overed given default is 
onstant equal to 40.The pri
e of the risky bond is then:

5∑

t=1

3e.07t/2 + 103e.07·3 = 97.01and the risk free bond pri
e is similarly:
5∑

t=1

3e.05t/2 + 103e.05·3 = 105.58If we assume that the default probability is 
onstant equal to Q over the horizon, weget the following:Time Cash �ow RF DF Risky DF Value RF Bond LGD PV exp. Loss0 3 1 1 105.580.5 3 0.98 0.97 105.17 65.17 63.57 Q1 3 0.95 0.93 104.76 64.76 61.60 Q1.5 3 0.93 0.9 104.34 64.34 59.69 Q2 3 0.9 0.87 103.90 63.90 57.82 Q2.5 3 0.88 0.84 103.46 63.46 56.00 Q3 103 0.86 0.81 103.00 63.00 54.22 QFigure 2.9: Estimating default probability from a single bond pri
e.Figure 2.10 illustrate the 
omputation of the risk neutral default probability Q.Columns 3 and 4 
ontain the risk free and risky dis
ount fa
tors, respe
tively. Col-umn 5 is the value of the risk free bond at time t. Column 6 is the loss given default attime t given as the di�eren
e between the risk free bond value and the loss given default39



2.6. ESTIMATING DEFAULT PROBABILITIES(40). The �nal 
olumn gives the dis
ounted loss given default times the risk neutraldefault probability.Summing the expe
ted loss from the last 
olumn above and equating it to the pri
e dif-feren
e between the risky and risk free bond we get 352.9Q = 105.58−97.01 or Q = .0243assuming as before the risk premium is entirely 
onstituted by 
redit risk. Here Q repre-sents the probability of the bond issuer defaulting on any half year interval 
onditionedon previous survival.
2.6.2 Using a Set of Bond PricesA weakness of the above pro
edure is that it gives a �at term stru
ture of 
redit risk(
onstant default probability). However, if we have a set of bonds with di�erent maturitiesfor the same entity, we 
an use a bootstrap pro
edure to estimate default probabilities forshorter time intervals.From the previous se
tion we see that a bond with maturity in one year paying eitherthe full fa
e value of 100 at maturity or some re
overy amount R, the pri
e di�eren
e d1between this risky bond (whose value is (100(1− q1)+Rq1)e

−r and a similar zero 
ouponbond (with value 100e−r) is given by:
d1 = (100− R)e−rq1where q1 denotes the default probability during the �rst year. We 
an now solve thisequation to obtain the one year default probability as before.Next 
onsider a bond with a 
oupon payment in one year from now and maturity intwo years. The pri
e di�eren
e between this and a two year zero 
oupon bond is:

d2 = (100− R)e−r·1q1 + (1−R)e−r·2q2 = d1 + (100−R)e−r·2q2And generally:
dn = d1 + d2 + ... + (100− R)e−r·nqnUsing this iterative pro
edure (that 
an of 
ourse be modi�ed to handle 
oupon bonds)
oupled with the method from the pre
eding se
tion, the 
redit 
urve 
an be 
onstru
tedfrom an arbitrarily large set of 
orporate bonds.

IllustrationConsider a set of risky and risk free bonds with maturities from one to �ve years, allwith 
oupon rates of 6,0% and 40 re
overy value in the 
ase of default. Further assume40



2.6. ESTIMATING DEFAULT PROBABILITIESthat defaults 
an o

ur only at 
oupon payment dates and that the yields for the riskyand risk free bonds are as given by 
olumns 2 and 3 below. The pri
es implied by theseyields follow from 
olumn 4 and 5 (these are 
omputed as the expe
ted value of future
ash �ows dis
ounted by the respe
tive yields). For ea
h pri
e, a table similar to that inFigure 2.10 needs to be 
ompiled.The annual default probabilities 
omputed by the above method follow in 
olumn 6.For instan
e, the probability of the �rm defaulting during year 3, 
onditioned on survivalup to the start of the year is .0342. The 
df following from the data in this example isplotted in Figure 2.11.Maturity Risky YTM RF YTM RF Pri
e Risky Pri
e Pri
e Di�eren
e Default prob1 3.75% 3.00% 102.87 102.10 0.77 0.01092 3.98% 3.25% 105.40 103.89 1.51 0.03543 4.15% 3.50% 107.61 105.46 2.15 0.03424 4.77% 4.00% 109.28 105.46 3.83 0.06515 5.14% 4.25% 110.67 106.99 3.68 0.0642Figure 2.10: Estimating default probability from a single bond pri
e.
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Figure 2.11: Cumulative probabilty fun
tion estimated using a set of bond pri
es.
2.6.3 Using CDS PricesThere are two important problems with the method previously suggested:

• It is relatively burdensome 
omputationally (large amounts of data must be 
om-piled and pro
essed). 41



2.6. ESTIMATING DEFAULT PROBABILITIES
• In many 
ases, there aren't su�
iently many maturities available for 
orporatebonds.Therefore, is may often be more 
onvenient to estimate default probabilities from CDSspreads when these are available.Se
tion 4.2 dis
usses the CDS instrument in greater detail. Here we'll just state thepri
ing equation for a simple CDS stru
ture that ignores premium a

rual:

N∑

i=1

δe−rti = E
[
L(τ)e−rτ

] (2.6.1)where δ is the �xed leg premium and L(τ) is the loss given default at time τ (assumedto be paid immediately upon default). Now we want to use the known CDS spreads16to 
ompute the default probabilities using the models developed so far. We 
onsider asimpli�ed example:
IllustrationConsider CDS on a bond with fa
e value 100 maturing in 2 years. Defaults 
an o

ur attimes {0.5, 1.5}, and CDS premia δ are paid at the end of ea
h year. Assume the risk freeinterest rate is 3% and the annual default probability is 
onstant Q(t) = q for t ∈ {1, 2}.Amount re
overed given default is 
onstant R(τ) = 60.t Default Prob. Risk Free DF Expe
ted payments Expe
ted NPV0.5 q 0.9851 40q 0.9851 · 40q1.5 (1− q)q 0.9560 40(1− q)q 0.9560 · 40(1− q)qFigure 2.12: Floating leg 
ash �ows.t Survival Prob. Risk Free DF Expe
ted payments Expe
ted NPV1 1− q 0.9704 δ(1− q) 0.9704δ(1− q)2 (1− q)2 0.9417 δ(1− q)2 0.9417δ(1− q)2Figure 2.13: Fixed Leg 
ash �ows.From the above table we see that we 
an re
over the average annual risk neutraldefault probability q by equating the �oating and �xed leg 
ash �ows and �nding theroots of the se
ond degree polynomial (ie. �nding the break-even default probability):

0.9851 · 40q + 0.9560 · 40(1− q)q = 0.9704δ(1− q) + 0.9417δ(1− q)216In reality there is a bid-ask spread on CDS's. It is therefore 
ommon in pra
ti
e to use an arithmeti
average of these, or mid-market CDS spread. 42



2.6. ESTIMATING DEFAULT PROBABILITIESThe left hand side are the �oating leg 
ash �ows from Figure 2.12, the right hand sidethe �xed 
ash �ows from Figure 2.13. For δ = 2, q = .0469.To estimate a more realisti
 term stru
ture of default probabilities; multiple CDSspreads 
an be used similarly to the multiple bond pri
es example in Se
tion 2.6.2.
2.6.4 Physical or Risk Neutral Probabilities?So far we have ex
lusively dealt with risk neutral default probabilities. To see why thismust be so, 
onsider the examples in Se
tions 2.6.1 and 2.6.2. Here we use the risk freeinterest rate as a dis
ount fa
tor. This means that expe
ted losses must be 
omputed withrespe
t to an equivalent risk neutral probability measure, so the probabilities estimatedfrom the bond pri
es are the risk neutral default probabilities.From this dis
ussion it is quite 
lear that the hazard rates (λ) are dependent on whi
hprobability measure is used, and 
are must be taken when swit
hing from a valuation toa risk management perspe
tive as a 
hange of measure means shifting the probabilitydistribution. Hull (2006) pp. 488-489 dis
usses some of the reasons for the di�eren
ebetween the risk neutral and physi
al default probabilities.
2.6.5 Calibrating Copula Models and the Relationship to Structural ModelsThe simplest way to estimate the 
orrelation parameters in a 
opula model is to useestimates of asset, or yet simpler, equity pri
e 
orrelations as a proxy. These 
an be 
om-puted readily from time series using built-in fun
tions in any standard software pa
kagesu
h as Ex
el. As the 
ausal relationship between asset pri
es and default probabilitiesis somewhat weak, another and perhaps more suitable proxy is the 
orrelation betweenCDS spreads (see Se
tion 4.2 for dis
ussion on CDS's) as the 
hanges in these spreads
an be interpreted as 
hanges in markets assessments on the likelihood of default. Theadvantage of the latter is that the 
orrelations are risk neutral.If the asset pri
e 
orrelation approa
h is taken, the normal 
opula approa
h 
an beshown to yield a 
orrelation stru
ture equivalent to the Merton model dis
ussed in thenext 
hapter if asset pri
es follow a geometri
 Brownian motion. If we let qA and qBdenote the risk neutral one-year default probabilities for assets A and B, we obtain zAand zB so that:

qA = Φ(zA) (2.6.2)
qB = Φ(zB)The joint probability of both these assets defaulting is given by:43



2.6. ESTIMATING DEFAULT PROBABILITIES
P(ZA < zA, ZB < zB) = Φ2(zA, zB, ρ)In the bivariate normal 
opula, the same probability looks like:

P(τA < 1, τB < 1) = C((FA(1)), (FB(1)), ρ) = Φ2(Φ−1(FA(1)),Φ
−1(FB(1)), ρ) (2.6.3)Noting that the probability of default during year one is:

qi = P(τi < 1) = Fi(1)So (2.6.3) is really:
Φ2(Φ−1(qA),Φ

−1(qB), ρ)But by (2.6.2), Φ−1(qi) = Zi whi
h 
ompletes the argument.
Using Rank CorrelationsIn Se
tion 2.5.3, we argued that 
ontrary to the Pearson 
orrelation 
oe�
ient, rank 
or-relations are invariant under transformations su
h as 
opula fun
tions, so rank 
orrelationmay be a more attra
tive measure. Hen
e, the rank 
orrelation produ
ed by the 
opulamodel should be the same as for the data it is estimated from. In the Gaussian (and someother simple 
ases), we have simple formulas relating the two measures. If, for examplewe have measured the input data rank 
orrelation and want to use a Gaussian 
opula, we
an use the relationship T = 2 arcsin(R)

π
to �nd the 
orrelation matrix R to use in the simu-lation algorithm. For a general 
opula where we don't have su
h a relationship, it 
an beobtained numeri
ally using simulation. This pro
edure gets somewhat more 
ompli
atedif the individual 
orrelations are allowed to vary.
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Chapter 3

Structural Credit Risk ModelsStru
tural models are the se
ond of the two most widely used approa
hes to 
redit riskmodeling. The 
ore idea is the realization of the "option-like" feature of 
orporate (orsovereign) se
urities due to limited liability. The appli
ation of option pri
ing theory toproblems of 
apital stru
ture and valuation of 
orporate se
urity was stated by Merton(1974) in one of the earliest papers on the Bla
k-S
holes-Merton model.
3.1 The Merton ModelAs an illustration of the 
on
ept, we 
onsider �rst a simple example 
lose to Merton'smodel. Let A(t) denote the value of a �rm's assets at time t, and assume it follows thefollowing sto
hasti
 pro
ess under the physi
al probability measure P:

dA(t)/A(t) = µdt+ σdW (t) (3.1.1)where µ and σ are 
onstants.Under the standard assumptions1 of arbitrage-free markets, we 
an restate the samepro
ess under the risk-neutral probability measure P̃:
dA(t)/A(t) = rdt+ σdW̃ (t) (3.1.2)We now want a pre
ise mathemati
al formulation of the two 
laims on the total valueof this �rm, equity and debt. We will therefore make 
ertain simplifying assumptionsthat allow for a 
onvenient analyti
al treatment. First we de�ne the debt value at time

t, D(t, T ) as a 
ash �ow D at time T where D ≥ 0. Here D denotes the fa
e value of thedebt.1Hereunder that the �rm pays no dividend 
ash �ows. See for instan
e Goldstein et al. (2001) orDu�e (2001) for a dis
ussion on these topi
s. 45



3.1. THE MERTON MODELEquity E(t, T ) is de�ned as the value of an option; the holder 
an 
hoose eitherto re
eive residual E = A(T ) − D or zero at the maturity of the debt. If the equityholder 
hooses the zero 
ash �ow, debt holders re
eive the entire �rm value A(T ). In thisinterpretation of the model, A(T ) < D 
orresponds to default. To summarize:
E(T ) =




0 if A(T ) < D

A(T )−D if A(T ) ≥ D
= max(A(T )−D, 0)

D(T ) =




A(T ) if A(T ) < D

D if A(T ) ≥ D
= min(A(T ), D) = A(T )−max(A(T )−D, 0)Under standard assumptions, equity is of 
ourse pre
isely equivalent to a European
all option and debt is a portfolio with a long position in the asset and a short 
all option.Therefore the 
laims 
an be valued by a straight-forward appli
ation of the Bla
k-S
holes-Merton formula2:

E(t) = AtΦ(d1)− e−r(T−t)DΦ(d2)] (3.1.3)with:
d1 =

ln(At

D
) + (r − σ2

2
)(T − t)

σ
√
T − t

(3.1.4)
d2 = d1 − σ

√
T − t (3.1.5)The debt value 
an then be found as the residual D(t) = A(t)−E(t)3.

Φ(−d2) in the above formula 
an be interpreted as the risk neutral probability ofdefault similar to the probability of a European 
all being out of the money at the timeof exer
ise, or AT < DT . We 
an show this using the properties of the Wiener pro
ess,writing out the 
ondition for default using the 
losed form expression for the asset pri
epro
ess under P̃:
Ate

(r−σ2

2
)(T−t)+σ(W̃T −W̃t) = Ate

(r−σ2

2
)(T−t)+σ

√
T−t Z0,1 < D (3.1.6)as W̃T − W̃t ∼ Φ(0,

√
T − t ), whi
h 
an be rewritten in terms of a standard normalrandom variable Z0,1. Rearranging we get the default probability as a standard normal2Usually, the value of these 
laims are known as they are interpreted as the observable market pri
esof debt and equity. We 
an then use the model to imply the asset volatility σ as in Se
tion ??.3Throughout this thesis, we assume that 
apital stru
ture does not a�e
t asset values. More advan
edstru
tural models (for instan
e Goldstein et al. (2001) relax this assumption. These models are less
ommonly used in derivatives pri
ing however. 46



3.2. EXTENDING THE MERTON MODELprobability:
P̃[AT ≤ D] = P̃[Z0,1 ≤ z0] = P̃

[
Z0,1 ≤

ln(At

D
) + (r − σ2

2
)(T − t)

σ
√
T − t

]
= Φ(−d2) (3.1.7)

3.2 Extending the Merton ModelThe above model is extremely simplisti
 with regard to the assumptions on 
apital stru
-ture. Several 
riti
isms may arise:
• Defaults do not only o

ur at maturity T.
• We need to allow for 
oupon payments.
• The pro
ess A(t) is hard to estimate as it is not a traded asset.
• We may need to a

ount for portfolios of several assets Ai(t) that are 
orrelated.
• and so forth..To �x the �rst point above means 
onsidering equity as an Ameri
an derivative. Gen-erally, there are no 
losed form solutions to the problem of valuing �nite maturity Amer-i
an derivatives, so either analyti
 approximations4 or numeri
al methods are required.The latter is dis
ussed in Appendix B.If we are 
ontent with the assumption that defaults 
an only o

ur at maturity, theMerton model 
an be extended in su
h a way that we 
an study asset portfolios. Thisis done in the next se
tion. The so-
alled Bla
k-Cox model, where defaults o

ur on
easset values fall below a 
ertain threshold, is treated in the �nal se
tion of this 
hapter.

3.3 Correlations in the Merton ModelNext we 
onsider an approa
h to modeling asset portfolios in the Merton model that was�rst proposed by Vasi
ek (1987). Given a portfolio of assets indexed n = 1, . . . ., N , wedenote the probability of �rm i defaulting prior to the time T of its debt maturing, pd,i,whi
h as before is given by Φ(−d2,i). It is further assumed for simpli
ity that all �rms areequal, having identi
al 
apital stru
tures and following identi
al Wiener pro
esses underthe risk neutral measure P̃:4Su
h as assuming in�nite maturity. 47



3.3. CORRELATIONS IN THE MERTON MODEL
dAi

t/A
i
t = rdt+ σdW̃ i

t (3.3.1)The approa
hes to modeling portfolios of 
orrelated assets are more or less straightforward extensions of either the single 
redit framework dis
ussed so far or the Bla
k-Coxmodel in the next se
tion. Several methods for modeling the interdependen
ies between
redit events are proposed:1. Dire
tly modeling 
orrelated pro
esses; ie. letting W̃ 1
t , .., W̃

N
t be a set of brownianmotions with dW̃ i

t dW̃
j
t = ρi,j.2. Fa
tor models: Letting the Z i

t be the random variable (or state variable) determin-ing the time of default for asset i, Z i
t is now a fun
tion of a set of 
ommon fa
tors

{X1, ..., Xn} a�e
ting, to a greater or lesser extent, all assets in the portfolio, inaddition to an idiosyn
rati
 risk fa
tor. We 
an think of several ma
roe
onomi
variables that 
an be used as proxies in 
ommon fa
tor models: interest rates, GDP(or proxies su
h as sto
k indi
es), CDS spreads and so forth.3. Contagion models is another 
ommonly proposed method in the literature. Insteadof simply letting the asset values determine the timing of the default, we 
ould alsoimagine the default thresholds as 
orrelated random variables5.Te
hni
ally, su
h 
ontagion e�e
ts 
an be implemented using indi
ator variablesfor 
ertain events a�e
ting 
redit risk. Theoreti
ally, several me
hanisms 
an betriggered, for instan
e, a higher default threshold (that eventually returns to normalafter some time), in
reased volatility, asset pri
e jumps and so forth.
3.3.1 Common Factor ModelsThe default probability of a single �rm i is given as a fun
tion of a standard normalvariable Xi. Therefore we 
an spe
ify the 
orrelation stru
ture between the �rms in theportfolio in terms of the Xi's. One approa
h is to use so-
alled 
ommon fa
tor modelswhere we introdu
e a set of fa
tors Yj, j = 1, ..,M , and let Xi be a weighted sum of thesystemi
 risk fa
tors Yi and a idiosyn
rati
 risk fa
tor ǫi where Yj and ǫi are independent.For simpli
ity, we 
onsider only the single fa
tor 
ase:

Xi =
√
ρi Y +

√
1− ρi ǫi (3.3.2)5For instan
e, the default threshold 
ould be in
reased in a �nan
ial 
risis where short term �nan
ingis hard to obtain, or if a major �rm in a supply 
hain defaults, the probability of default in
reases for�rms further up the 
hain. 48



3.3. CORRELATIONS IN THE MERTON MODELHere Y is a global or 
ommon risk fa
tor a�e
ting all �rms in the portfolio to variousdegrees measured by the 
orrelation 
oe�
ient ρi that varies between the di�erent entitiesthus forming the stru
ture of 
orrelations between �rms as the ǫi's are independent. We
an therefore think of the terms √ρi and √
1− ρi as �rm i's exposure to the systemi
and idiosyn
rati
 risk fa
torsWe now make two simplifying assumptions for the sake of easier notation:

• All �rms have the same 
orrelation ρ with the 
ommon fa
tor.
• All �rms have the same default probability pd (this follows from equal dynami
sand 
apital stru
ture for all �rms).Consider now the 
onditional default probability:

pd,Y = P[Xi < x|Y ]

= P[
√
ρ Y +

√
1− ρi ǫi < x|Y ]

= P[
√

1− ρ ǫi < x−√
ρ Y |Y ]

= P

[
ǫi <

x−√
ρ Y√

1− ρ

∣∣∣Y
]

= Φ
[x−√

ρ Y√
1− ρ

]The last equality above follows from the independen
e between the systemi
 andidiosyn
rati
 risk fa
tors. If we have some estimate of the default probability of ea
h �rm,that is, the individual default probabilities, pi = p, we 
an �nd the default thresholds
−d2 from equation 3.1.7; p = P[AT ≤ D] = Φ(−d2) whi
h gives d2 = Φ−1(p), so that:

pd,Y = Φ
[Φ−1(p)−√

ρ Y√
1− ρ

] (3.3.3)Equation 3.3.3 is an expression for the default probability of a �rm 
onditional onthe realization of the 
ommon fa
tor Y expressed in terms of the 
ommon 
orrelation
oe�
ient between ea
h �rm and the systemi
 risk fa
tor and the default probability ofthe �rm, both of whi
h are possible to estimate from market data.
3.3.2 Portfolio Loss RatesWe 
an now represent losses on a portfolio level by introdu
ing a set of indi
ator vari-ables In, n = 1, ..., N for ea
h of the N �rms representing whether a �rm has defaulted.49



3.3. CORRELATIONS IN THE MERTON MODELA 
ounting variable S =
∑N

n=1 In denotes the number of �rms in the portfolio having de-faulted. The default rate 
an therefore be given as R = S/N . With the above framework,we are now interested in the distribution of R for instan
e given by its un
onditional 
u-mulative distribution fun
tion F (r, p, ρ) = P[R ≤ r]. Several approa
hes are available,here divided in two. The LHP model (Vasi
ek (1987)) that makes a number of simpli-fying assumptions so that 
losed form valuation formulas are available for many of theinstruments 
onsidered and se
ondly, models with more realisti
 assumptions that oftenrequire numeri
al approa
hes:1. Large Homogeneous Portfolio Assume a large number of 
redits in the port-folio (N → ∞). R will now 
onverge to p (the individual, un
onditional defaultprobabilities) as defaults are independent 
onditioned on the 
ommon fa
tor, so
F = Φ(x).2. Finite or Heterogeneous Portfolios The most widely traded CDO instrumentstoday are CDO indi
es su
h as the iTraxx and the CDS NA IG whi
h are singletran
he CDOs on an equally weighted portfolio of 125 referen
e entities. This isprobably a too small number of �rms for the law of large numbers to guaranteea

urate pri
ing.In the 
ase of a heterogeneous portfolio, the referen
e entities have di�erent 
hara
-teristi
s su
h as default probabilities (above assumed to be equal), unequal weights in theportfolio, di�erent re
overy rates and so forth. Under the �rst assumption it is possibleto derive analyti
al pri
ing expressions involving binomial probabilities, whereas underthe se
ond this be
omes mu
h more 
ompli
ated.

3.3.3 Default Rates in a PortfolioEquation 3.3.3 gives the default probability 
ontingent on the realization of the 
ommonfa
tor Y as:
pd,Y = Φ

[Φ−1(p)−√
ρ Y√

1− ρ

]Next, we are interested in the probability distribution of defaults in a portfolio 
on-tingent on Y . This depends only on the idiosyn
rati
 risk fa
tors that are independent.So if X is a random variable denoting the number of defaults in a portfolio of N assets,this random variable would have a binomial distribution 
hara
terized by the individ-ual default probabilities pd,Y . The probability of exa
tly x ≤ N defaults o

urring istherefore: 50



3.3. CORRELATIONS IN THE MERTON MODEL
P(X = x|Y = y) =

(
N

x

)
(pd,Y )

x(1− pd,Y )
N−x (3.3.4)The un
onditional probability of exa
tly x defaults is therefore a probability weighted"sum" over all the possible realizations of Y .

P(X = x) =

∫

y∈ω

(
N

x

)
(pd,Y )

x(1− pd,Y )
N−xf(y)dy (3.3.5)If the systemi
 fa
tor is normally distributed, then f(y) = φ(y) = d

dy
Φ(y), so we getthe 
umulative distribution fun
tion F (m) = P(X ≤ m) as:

F (x) = P(X ≤ m) =
m∑

x=0

(
N

x

)∫ ∞

y=−∞
(pd,Y )

x(1− pd,Y )
N−xφ(y)dy (3.3.6)

IllustrationThe expression 3.3.6 
an be evaluated numeri
ally using standard software pa
kages.Appendix C 
ontains a s
ript implementing it using a simple numeri
al integration s
hemein MATLAB.
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Figure 3.1: The density fun
tion for the number of asset defaults.51



3.4. THE BLACK-COX MODELAs an illustration we let p = .1 be the one year individual default probabilities thatis equal over the portfolio of N = 50 assets. Figure 3.1 shows the density fun
tion forthe number of defaults in this portfolio given various levels of the 
orrelation 
oe�
ient
ρ. We noti
e that for a large ρ the right tail of the distribution is fatter, mu
h as onewould expe
t.Using this model, for instan
e as implemented in Appendix C, it is simple to value
redit derivatives written on a portfolio of 
redit derivatives. It is also appli
able for
omputing risk measures su
h as value at risk for the underlying loan portfolio.There is one 
omputational issue with this model however, namely that it uses a "di-re
t" method for 
omputing the binomial 
oe�
ients. This may be
ome 
omputationallyburdensome and even impre
ise under some implementations for large portfolios. Hulland White (2004) dis
usses some alternative methods for evaluating su
h probabilities.
3.4 The Black-Cox ModelA more "advan
ed" stru
tural model was introdu
ed by Bla
k and Cox (1976) that allowsfor defaults prior to maturity. My presentation, largely based on Hull, Predes
u andWhite (2006) is somewhat trun
ated and informal as the mathemati
s of this model isquite advan
ed and beyond the s
ope of this thesis. Rather, I will attempt to give aintuitive presentation aimed at a simulation-based implementation.Next we 
onsider the 
ase where defaults 
an o

ur at any time t ≤ T prior tomaturity. As before, the dynami
s of the asset pri
es are given by Equation 3.1.2, ie. ageometri
 Brownian motion with 
onstant drift r and volatility σ under the risk neutralmeasure. Time of default is now de�ned as the �rst time τ the asset value At passesbelow some threshold K, often referred to as the �rst passage time to K:

τ = inf{τ : t0 ≤ τ ≤ T |Aτ < K} (3.4.1)As in the Merton model, we want to express the default threshold at any point intime t in terms of a standard normally distributed random variable X(t) rather than thelog-normal asset pri
e. This involves expressing the above inequality in terms of X(t) bytaking the logarithms as shown previously. This gives the threshold for X(t):
K∗(t) =

lnK − lnA0 − (r − σ2/2)t

σwhere K is a �rm spe
i�
 
onstant determining the probability of default. Letting
β =

lnK − lnA0

σ52



3.4. THE BLACK-COX MODELand
γ = −r − σ2/2

σwe obtain the default threshold as a linear equation in time: K∗(t) = β+γt. Assuminga non-sto
hasti
 default threshold K(t), the that the probability of default on a timeinterval [t, T ] is given as6:
P[t ≤ τ ≤ T ] = Φ (d1) + e2(X(t)−β−γt)γΦ (d2) (3.4.2)with

d1 =
β + γ · (T − t)−X(t)√

( T − t)

d2 =
β + γ · (2t− T )−X(t)√

( T − t)Among the main drawba
ks of �rst passage models is the analyti
al 
omplexity. Thederivation of the above formula is te
hni
al and lengthy and therefore omitted here.Though 
omplex, there are several 
onditions under whi
h it is possible to derive 
losedform expressions for the values of 
orporate se
urities.Among the simplest of these is debt is rolled over in�nitely. Here, 
orporate se
uri-ties are equivalent to perpetual Ameri
an options. In this 
ase, the partial di�erentialequation des
ribing the option pri
e redu
es to a se
ond degree di�erential equation inone variable whi
h gives a simple algebrai
 solution. For an example of su
h analysis, seeLeland (1994), and Goldstein et al. (2001), and referen
es 
ited therein.
3.4.1 Specification and Solution MethodAs mentioned, a numeri
al approa
h is often ne
essary for �rst passage models. Thismethod takes a simple approa
h by drawing a set of standard normal variates [Xt1 , Xt2 , ..., Xtn]that are 
ompared to the default threshold K∗(t) = β + γt. For 
orrelation modeling, wehave the usual options su
h as 
opulas, 
ommon fa
tors and so on. Finally, it is worth-while to note that there are numeri
al methods by whi
h the model parameters 
an bedetermined so as to mat
h the default probabilities on an interval [tk, tk+1] in this dis
reteapproximation to Equation 3.4.27.Another approa
h to the Ameri
an option valuation problem developed by Longsta�and S
hwartz (2001), the least squares Monte Carlo method (LSMC), is explained inthe appendix. This method takes uses a dynami
 programming te
hnique involving the6A similar derivation, in the 
ontext of Ameri
an option valuation is found in Shreve (2004) 
hapter9. 7Cf. Hull (2001). 53



3.4. THE BLACK-COX MODELmethod of least squares to determine the optimal exer
ise time for ea
h simulated pri
epath. Note that the optimality 
riterion implies a model di�erent from the above modelwith a time dependent threshold that is suboptimal. Optimal exer
ise by equity holdersimplies di�erent pri
es for 
orporate se
urities as dis
ussed in Leland (1994).This method is simple to implement and has many advantages when it 
omes tomulti-fa
tor models. The disadvantage of this method is that to determine the optimalexer
ise pri
e for ea
h path requires a large number of fun
tion evaluations, so that pre
ise
omputation is very time 
onsuming when there are many fa
tors.
IllustrationLet us 
onsider a simple example to see how the Bla
k-Cox model 
an be implemented invaluing a multi-name 
redit derivative problem. We let t = [.25, .50, .75] be the possibledefault times. To value a 
redit derivative, we need to simulate 
redit events for aportfolio of 
orrelated assets at three di�erent points in time. Asset i defaults at time .25if Xi(.25) < K∗(.25). We 
onsider a simple model where the dynami
s of the asset pri
eis dXi(t) = ρdY (t) +

√
1− ρ2 dǫi(t).So we are 
onsidering a single-fa
tor model. As we have seen, the default thresholddetermines the individual default probabilities. The pro
edure is therefore similar to theMerton model, only it is repeated for the three time-steps; for ea
h realization of Y (t)generate ǫ1(t), ..., ǫN(t) for the N assets in the portfolio. Y (t) will now represent thesystemi
, or market risk fa
tor and ǫi(t) the idiosyn
rati
 fa
tors for ea
h �rm.Next, 
ompute and 
ompare the Xi(t) to K(t), and determine the time of default asthe in�mum over t of the set Xi(t) < K(t) as de�ned in Equation 3.4.1.The default threshold is on the form K∗(t) = β + γt. We now obtain the dis
retizedasset pri
e pro
ess as:
Xi(t) = Xi(t− 1) + ρY (t) +

√
1− ρ2 ǫi(t)

ǫi(t) = ǫi(t− 1) +
√
∆t Z0,1

Y (t) = Y (t− 1) +
√
∆t Z0,1Figure 3.2 illustrates ten 
orrelated paths from this simulation s
heme. We 
an thinkof this as one realization of a portfolio of 10 assets. Ea
h simulation of the ten assetsrequire one simulation of the systemi
 fa
tor. To value the portfolio, we 
learly needto repeat this pro
ess a large number of times. The thin blue line marks the defaultthreshold. The time of default for an asset is the earliest time its path passes below thethreshold line marked by 
ir
les. 54



3.5. ALTERNATIVE STRUCTURAL MODELS
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Figure 3.2: Sample paths from Bla
k-Cox simulation.
3.5 Alternative Structural ModelsIn this se
tion we have 
onsidered some 
lassi
al examples of stru
tural models wherethe primitive state variable is the asset pri
e whi
h follows a geometri
 Brownian motionpro
ess, time of liquidation equals the time of default and interest and re
overy rates are
onstant. Many extensions have been proposed:

• EBIT models: rather than using the asset pri
e as the primitive variable, someauthors su
h as Goldstein et al. (2001) have proposed to let earnings before interestand taxes be a sto
hasti
 pro
ess in turn determining, equity, debt and asset pri
es.Now the 
urrent asset pri
e endogenously given as the dis
ounted expe
ted value offuture EBIT �ows, whi
h among other things allow for a more 
omplex relationshipbetween interest rates and asset pri
es.
• Sto
hasti
 interest rates. Means a more realisti
 term stru
ture (dis
ount fun
tion)8thus better �tting of the models to a
tual data. Longsta� and S
hwartz (1995)develops this type of model using the Vasi
ek term stru
ture model for interest raterisk where the �rm value and the interest rate follow 
orrelated Brownian motions.8In the examples 
onsidered here, the dis
ount fun
tion is on the form B(t) = e−rt where r is a
onstant. It is well known that this is not a realisti
 term stru
ture.55



3.6. CALIBRATING STRUCTURAL MODELS
• Sto
hasti
 re
overy rates. These are likely 
orrelated between assets; in re
essionswhen the number of defaults are up, re
overy rates 
an also be expe
ted to be lower.
• Liquidation pro
ess models: Finally, rather than assuming that liquidation takespla
e at the same time τ that asset values hit the lower threshold, this triggers anegotiation pro
ess (dependent on the future asset pri
e path) that 
an either endin the �rm being liquidated or it 
an 
ontinue its operations. This is similar to debtnegotiation under Chapter 11 under the US bankrupt
y 
ode. An example of thistype of model with dynami
 
apital stru
ture is in Goldstein et al. (2001).Finally, it is worthwhile to expli
itly some of the limitations behind the models aspresented in 
hapters 2 and 3. The fo
us of my presentation is on 
redit risk modeling.Issues of taxation, liquidity (market) risk, 
ounter-party risk and so forth are thereforeignored. Ignoring liquidity risk for bonds may be problemati
 in estimating default prob-abilities if the pri
e di�eren
e between risk free and risky bonds are assumed to be purelya 
redit risk premium.

3.6 Calibrating Structural ModelsThe stru
tural models introdu
ed so far use �rm values as the primitive state variables.As this is not dire
tly a traded asset, we need a method for estimating the parameters ofthe equation dAt/At = µdt + σdWt. The simplest approa
h when equity Et is a tradedasset is to assume it is a fun
tion of the asset value: Et = f(t, At) with dynami
s givenby the PDE:
dEt/Et = rdt+ σdWt (3.6.1)We 
an then apply Ito's formula:

dEt =

(
∂f

∂t
+ rAt

∂f

∂At
+

1

2

∂2f

∂t2
Atσ

2

)
dt+

∂f

∂At
AtσdWt (3.6.2)Equating the Brownian motion terms from the two pre
eding equations we obtain:

σEEt =
∂f

∂At

AtσA = Φ(d1)AtσA (3.6.3)Mat
hing the observed Êt with the theoreti
al equity values f(At, t), a system of twoequations in At and σA is obtained.An even simpler approa
h to this problem is to 
ompile times series data on tradedequity and debt values as well as estimates of non-traded se
urities su
h as bank loans.56



3.6. CALIBRATING STRUCTURAL MODELSNow the problem 
an be solved using standard time series te
hniques su
h as the GARCHmodel.
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Chapter 4

Applications and Examples

The two 
lasses of models developed so far have a wide array of appli
ations in �nan
e.Here I will 
on
entrate on two of them, valuation of 
redit derivatives and risk man-agement. This se
tion explains the valuation of three very 
ommon 
redit derivativeprodu
ts and provides expli
it mathemati
al formulas that 
an be used in valuing thesealong with the numeri
al models explained earlier.As my primary approa
h is numeri
al, many valuation expressions are given in termsof expe
ted values of stopping times or their asso
iated indi
ator variables. These ex-pressions 
onvenient when translating the methods to some programming language forimplementation using Monte Carlo methods. Under some assumptions these values 
anbe stated analyti
ally by evaluating the proper integrals, but that is beyond the s
ope ofthis thesis.This 
hapter is primarily intended to demonstrate how the models presented in the
hapters 2 and 3 
oupled with the numeri
al methods dis
ussed in Appendix B 
an beapplied to valuing some "vanilla" 
redit derivatives. The valuation formulas are simpli�edversions of similar formulas found for example in Hull (2006), Hull and White (2005),O'Kane and Turnbull (2003), Elizalde (2005). The formulas used in this thesis ignore
ertain issues related to day 
ounting, a

rued premia and so forth. These assumptionsare not 
on�i
t with the pri
ing theory; it is the 
ash �ow stru
ture of the instrumentsin the examples that are simpli�ed.All expe
tations and probabilities in this 
hapter are with respe
t to the risk neutralmeasure. To provide a transparent introdu
tion to these instruments, we �rst 
onsiderthree instruments with a very simple 
ash �ow stru
ture, paying a unit 
ash �ow atdefault, thus abstra
ting from issues su
h as re
overy rates, 
oupon payments, et
. Aswe will see later on, the 
on
lusions drawn in the instruments also hold up when weintrodu
e a slightly more advan
ed 
ash �ow stru
ture.59



4.1. BINARY CREDIT DERIVATIVES
4.1 Binary Credit DerivativesA binary 
redit default swap (CDS) is a relatively simple instrument to value as thepayo� is not a variable amount, but a 
onstant 
ash �ow that is paid if the underlyingasset (
alled the referen
e entity) defaults. This means that we only need to worry aboutissues of probability, and the 
ash �ow given default 
an without loss of generality beset to 1. We 
onsider two variations on this instrument; �rst a binary CDS written on asingle 
redit and se
ondly a basket binary CDS.
4.1.1 Single Credit Binary CDSA single 
redit binary CDS with maturity T is an instrument paying 1 · e−rτ if time ofdefault τ < T . We are therefore interested in the time to default distribution for thereferen
e entity. In a redu
ed form model, this is exponentially distributed with hazardrate λ(t) and pdf f(t) = λ(t)e−λ(t), so we 
an state the CDS value as:

VCDS =

∫ T

0

e−rtf(t)dt

=

∫ T

0

λ(t)e−(r+λ(t))tdtIn the 
ase of 
onstant λ we get the simpler expression:
VCDS =

∫ T

0

λe−(r+λ)tdt

=
−λ

r + λ

[
e−(r+λ)t

]T
0

=
λ

r + λ

(
1− e−(r+λ)T

)If we 
onsider a one year 
ontra
t with risk free rate r = .05 and λ = .10, thepri
e VCDS = 0.0928613. This 
an provide a ben
hmark for the simulation program inAppendix C.2. With 50,000 simulations using this program, we get VCDS = 0.09276 witha standard error 1.27e − 04, whi
h seems reasonable; the answer is right to the fourthdigit when rounded o�. Figure 4.1 shows a sample path of 
onvergen
e for this problemfor the number of simulations varying from 1,000 to 200,000 with the absolute pri
ingerror1 along the ordinate axis.1Analyti
al pri
e minus simulated pri
e. 60
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Figure 4.1: The 
onvergen
e of the redu
ed form simulation model for a simple singleasset pri
ing problem.
4.1.2 Counterparty RiskConsider the same CDS, now relaxing the assumption that the issuing entity is risk free.We now wish to a

ount for this 
ounter party risk. There are three possible out
omesof the transa
tion:

• Neither entities default - zero 
ash �ow from the CDS.
• The referen
e entity defaults - unit 
ash �ow from the CDS.
• The issuing entity defaults prior to the referen
e entity - zero 
ash �ow from theCDS.Figure 4.2 illustrates the relationship between the one year CDS pri
e and the 
ounter-party hazard rate and the 
orrelation between the 
ounter-party and the buyer of theprote
tion 
ontra
t. As we would expe
t, with zero 
orrelation and 
ounter-party hazardrate, the CDS pri
e equals the pri
e from the last example. Furthermore, as the 
orrela-tion in
reases, the impa
t of the hazard rate on the 
ontra
t value in
reases too. All ofthese results seem quite intuitive. 61
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Figure 4.2: Value of a one year CDS with 
ounterparty risk.
4.1.3 Binary Basket CDSIn the previous se
tion, we demonstrated a simulation based redu
ed form model anddid an informal 
omparison with the analyti
 result for a very simple pri
ing problem.Next we 
onsider a more 
omplex problem with a binary basket2 CDS that pays a unit
ash �ow at the time of default for the �rst �ve entities in a portfolio of 100 assets.Figure 4.3 
ontains the 
opula simulation se
tion of the MATLAB implementation ofthis model from Appendix C. It will provide an illustration of a simulation algorithmusing a Gaussian 
opula.1 vMat=randn( noAssets , noSims ) ;vMat=Rho∗
hol (Rho) ' ;3 uMat=norm
df (vMat) ;defTimes=−log (uMat) /lambda ;Figure 4.3: Code from Copula Example.The �rst line generates a matrix vMat of independent Φ(0, 1) random variates whosedimensions are the number of assets in the portfolios times the number of simulations2This is similar to the �rst n of N to default se
urities 
onsidered later on in this 
hapter.62



4.1. BINARY CREDIT DERIVATIVESof ea
h portfolio. Then the matrix is multiplied by the lower Cholesky matrix (seeAppendix B) of the 
orrelation matrix Rho to 
reate a 
orrelated set of random Φ(0, 1)matrix. The last two lines apply the normal 
df to generate the 
opula uMat before theinverse exponential 
df is applied to generate the times to default defTimes that are nowexponentially distributed a

ording to the 
orrelation matrix Rho. This is the 
entralpart of the simulation algorithm for the Gaussian 
opula model whi
h is the same forvaluing any instrument in a Gaussian 
opula redu
ed form model. The only parts of theprogram that need to be modi�ed to value di�erent instruments are more of an 
ash �ow"a

ounting" nature.
Illustration I - Gaussian CopulaTo illustrate the te
hnique, we 
onsider two binary basket CDS's on a portfolio of 100assets; one that pays a unit 
ash �ow for ea
h of �rst �ve referen
e entities to default ifthis o

urs prior to maturity in one year and one that provides 
redit prote
tion for the�rst 20 assets. As before, λ = .10 and the risk free rate r = .05.Figure 4.4 illustrates the relationship between pri
e asset 
orrelation. Note that pri
eshere are quoted in absolute values; ie. with zero 
orrelation, the pri
e of the �rst �vebasket is about 4.8804. This refers to the expe
ted NPV of 
ash �ow to the buyer ofprote
tion is 4.8804.The results are as expe
ted; the higher the 
orrelation, the lower the value of thebasket. If defaults are 
ompletely independent, we would expe
t 10 defaults on theaverage over the 
ourse of one year with λ = .10 and portfolio size 100. If 
orrelationin
rease, we expe
t to see defaults that are less s
attered, and more 
lustering will o

ur.In the extreme 
ase, if assets are perfe
tly 
orrelated, we will on average see all assetsdefault during the �rst year in 1 out of 10 simulations.
Illustration II - Comparing Copula ModelsTo see the e�e
t of the 
hoi
e of 
opula model, we 
an 
ompare the Gaussian to the t-
opula for various degrees of freedom holding the other parameters of the model 
onstant.Figure 4.5 shows the 
omputed basket values for 20,000 simulations in the t-
opulamodel for varying number of degrees of freedom. In 
omparison, the normal 
opulagives the value 4.3740 for the same basket. While the numbers are somewhat impre
isedue to the low number of simulations (the standard error is around .010), the generalpi
ture is 
lear. A model with a low number of degrees of freedom gives a higher 
ostof prote
tion (
ontra
t value) for an otherwise similar portfolio. When the number ofdegrees of freedom goes to in�nity the t-distribution, as is well known from mathemati
al63
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Figure 4.4: Pri
es of a �rst of 5 and �rst of 20 to default binary basket CDS as a fun
tionof asset 
orrelation.Degrees of Freedom 1 2 3 4 5 6 7 8 9Basket Value 2.11 2.87 3.27 3.51 3.67 3.78 3.85 3.92 3.96Figure 4.5: Basket values for di�erent degrees of freedom in a 
opula model.statisti
s, 
onverges to the standard normal distribution.Now, how are we to interpret these results? In fa
t they are quite similar to theanalysis of the impa
t 
orrelation in the previous example. In this appli
ation we 
anview the number of degrees of freedom as a measure of how "s
attered" the data is. Ahigh number of degrees of freedom means the data is more 
on
entrated around the meansu
h as is the 
ase for the normal distribution. For a low df. number, the tails of thedistribution are fatter, and we see more 
lustering.The value of a small basket, whi
h is similar to an CDO equity tran
he (
f. Se
-tion 4.4), is positively related to the default 
orrelation of the underlying assets. More
lustering (higher 
orrelations) in
reases the probability of no defaults as well. In the 
aseof independen
e, the average long-run portfolio default rate is the a

umulated hazardrate on the time interval 
onsidered.
4.1.4 Binary Collateralized Debt ObligationThe 
on
ept of a CDO is presented in some detail in Se
tion 4.4. Here we de�ne a binaryCDO tran
he on a portfolio of 100 referen
e entities as a se
urity that pays 1 unit 
ash64



4.1. BINARY CREDIT DERIVATIVES�ow for ea
h default o

urring from the n'th asset to default to the N'th asset to default.We use the senior tran
he as an illustration. This tran
he pays a unit 
ash �ow for ea
hdefault from the 30th asset to the last asset to default. We use pre
isely the same s
riptas before and analyze the impa
ts of asset 
orrelation and hazard rate on the pri
e of aone year 
ontra
t.
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Figure 4.6: Senior CDO tran
he values agains ρ and λ.Figure 4.6 and the 
orresponding table in Figure 4.7 shows how the senior CDOtran
he value varies with the 
orrelation 
oe�
ient ρ and the hazard rate λ. By the termtran
he value, I mean the 
ost of prote
tion for the parti
ular tran
he. A higher tran
hevalue would therefore mean a lower value of the underlying assets, as these would bemore exposed to loss. This is a somewhat un
onventional pri
e quotation; the standardbeing in basis points per quarter. The advantage of this quotation is that the number isan estimate of the expe
ted loss in a parti
ular tran
he whi
h 
an be used dire
tly forinstan
e in risk management and is simpler to verify.As we would expe
t, a higher default probability in
reases the 
ost of the 
ontra
t thusin
reasing the value of the prote
tion 
ontra
t. We also see that the 
ost of prote
tion fora senior tran
he in
reases when asset 
orrelation in the referen
e portfolio is very high asthis in
reases the probability of large default 
lusters where the default rate is su�
ientlyhigh to a�e
t the senior tran
he. 65



4.2. CREDIT DEFAULT SWAPSAn important point here is how the sensitivity to asset 
orrelation varies with thehazard rate. The 
ost of prote
tion as a fun
tion of 
orrelation in
reases at a steeperrate when the hazard rate is high 
ompared to when it is low. This seems intuitivelyreasonable; for a portfolio of high 
redit quality assets, a default 
luster o

urs veryrarely, even with high 
orrelations. For a portfolio of junk bonds, on the other hand, alarge default 
luster is very likely to o

ur when 
orrelations are high.
λ,ρ 0 .1 .2 .3 .4 .5 .6 .7 .8 .9.05 0 0.000 0.033 0.152 0.266 0.561 0.776 1.253 1.710 2.123.10 0 0.043 0.261 0.662 1.204 1.677 2.230 2.928 3.714 4.599.15 0 0.230 0.943 1.565 2.361 3.279 4.091 4.985 5.822 6.858.20 0.0052 0.809 1.862 2.902 3.897 5.004 5.919 7.160 7.850 9.261.25 0.0897 1.793 3.162 4.389 5.473 6.684 7.951 8.921 10.497 12.038.30 0.6172 3.145 4.870 6.267 7.609 8.941 10.151 11.416 12.721 14.296Figure 4.7: Binary CDO pri
es for various hazard rates and 
orrelation 
oe�
ients.In the se
tions to 
ome we will expand upon these examples by introdu
ing slightlymore realisti
 assumptions on 
ash �ow stru
tures and re
overy values. We will see,however, that many of the 
on
lusions drawn in the simpler examples we have seen sofar still hold.
4.2 Credit Default SwapsA 
redit default swap is a 
ontra
t between two parties, where where one party pays a�xed leg in return for 
redit prote
tion (also known as a �oating leg) against the default(or more generally, the o

urren
e of 
redits events) of a third party referen
e entity,
orporate or sovereign.The �xed leg is usually paid until the o

urren
e of a 
redit event or the end of theCDS's life. For the CDS to break even, the expe
ted NPV of the two 
ash �ows mustequate. Prote
tionBuyer Prote
tionSellerFixed premium δ

L(τ) if τ < TFigure 4.8: Cash �ow stru
ture of a CDS.Let L(τ) denote the amount lost given default at time τ , ps(ti) the risk neutral prob-ability of no default o

urring up to time ti, r the assumed 
onstant interest rate, δ the�xed leg payments and [t0, t1, ...tN ] the premium payment dates, the break-even equationtakes the following form: 66



4.3. BASKET CREDIT DEFAULT SWAPS
N∑

i=1

δps(ti)e
−rti = E

[
L(τ)e−rτ

] (4.2.1)De�ning Pfloating as the value of the prote
tion payments (the right hand side of theabove equation), the �xed leg premium is given by:
δ =

Pfloating∑N
i=1 ps(ti)e

−rti
(4.2.2)The pro
edure for valuation is therefore to generate N independent default timesa

ording to the model of 
hoi
e (either redu
ed or stru
tural) and approximate theexpe
ted time to default and expe
ted �oating payment by the averages.For single CDS instruments the whole 
on
ept of 
orrelation is irrelevant whi
h greatlysimpli�es the valuation algorithm3.

4.2.1 Numerical Example - Valuing a CDS Using a Reduced Form ModelConsider a CDS on a bond with a 6% 
oupon rate paid semi-annually, fa
e value 100 andmaturity 3 years. Let the risk free rate r = .05 and λ = .10. The loss given default isassumed to be 
onstant equal to 40.Assuming that �xed leg premia are paid semi-annually, this valuation model gives aprote
tion leg value of approximately 10.35 and a 
ds spread of 0.0445. A MATLABs
ript implementing this example is in
luded in Appendix C.
4.3 Basket Credit Default SwapsNext 
onsider a 
ontra
t where an agent holds a portfolio of K assets wishes to buy apartial prote
tion against 
redit risk, that is the �rst κ < K assets to default4.By 
onsidering two extreme 
ases of asset interdependen
e, we 
an note some prop-erties about the pri
ing of these assets. First, if assets are perfe
tly 
orrelated, eitherall or no assets default, with probabilities equal to the individual default and survivalprobability, respe
tively. This means that the insuran
e would be the same for ea
h �rm,ie. the 
ontra
t pri
e a linear fun
tion of the number n of �rms prote
ted. With perfe
tindependen
e between defaults, insuran
e against the �rst default will be more expensivethan the se
ond and so forth, as the probability of m defaults is smaller than that of3This is a
tually not quite the 
ase. This example ignores the problem of 
ounter-party risk, ie. therisk of the prote
tion seller defaulting. To properly a

ount for this, we need to know the 
orrelationbetween the referen
e entity and the 
ounter-party4This is also sometimes referred to as an "�rst n of N to default CDS".67



4.4. COLLATERALIZED DEBT OBLIGATIONS
m+ 1 defaults.Assume that the loss given default L(τ) is equal a
ross �rms, ps(ti) the 
umulativesurvival probability up to date ti and [t0, t1, ..., tN ] are the premium payment dates asbefore. The pri
ing equation by equating the expe
ted value of the �xed leg (representingthe fair value of the prote
tion 
ontra
t) and the �oating leg (under the risk neutralmeasure):

N∑

i=1

δe−rtips(ti) =

K∑

k=1

E
[
L(τk)e

−rτk
] (4.3.1)Denote the right hand side of the previous equation as Pfloating, the basket premium

δ is:
δ =

Pfloating∑N
i=1 e

−rtips(ti)
(4.3.2)As we are now interested in 
redit events a�e
ting a set of assets, we need to a

ountfor default 
orrelation as well. As we shall see in the next se
tion, this type of 
ontra
tis a
tually similar to a CDO equity tran
he.

4.4 Collateralized Debt ObligationsCollateralized debt obligations fun
tion in a manner similar to that of the basket instru-ments dis
ussed above. The holder of a portfolio seeks to buy prote
tion against lossesdue to default. But rather than buying prote
tion for the �rst n assets, prote
tion is nowbought for all assets in the portfolio. However, for several reasons5, the portfolio is soldin di�erent tran
hes or sli
es, rather than as a whole. The buyer of a tran
he a
ts as aseller of prote
tion, and re
eives a �xed 
ash �ow for prote
tion against losses within aparti
ular per
entage range of the portfolio fa
e value.Tran
he Lower Bound Upper BoundSenior .15 1.0Mezzanine 2 .12 .15Mezzanine 1 .08 .12Junior .03 .08Equity 0 .03Figure 4.9: A simple CDO stru
ture.As an illustration, 
onsider the equity tran
he from the CDO in Figure 4.9 that5A dis
ussion on the rationale for tran
hing is found in Du�e (2007).68



4.4. COLLATERALIZED DEBT OBLIGATIONSprovides prote
tion against the �rst 3% of losses in the portfolio. If the total portfolioloss is 1.5%, this amounts to a loss of 50% in the equity tran
he, while the more seniortran
hes su�er no loss.The loss in ea
h tran
he i, Li(t), ie. the �oating leg 
ash �ow from the holder of thattran
he is a fun
tion of the upper and lower deta
hment points of the tran
he, denoted
Ki

L and Ki
U respe
tively, and the total losses on the portfolio, L(t), all measured asper
entages of total initial value, P .

Li(t) =






0 if L(t) < Ki
L

(L(t)−Ki
L)P if Ki

L ≤ L(t) ≤ Ki
U

(Ki
U −Ki

L)P if L(t) > Ki
U

(4.4.1)Let δi(tj) be the �xed leg premium for tran
he i. These are usually paid on a dis
reteset of dates tj for j ∈ {1, 2, ..., T}. The �xed leg payments for tran
he i 
an then beexpressed as:
T∑

j=1

e−rtjδi(tj)The premium δi for the i'th tran
he is 
hosen so that �xed leg payments equal theexpe
ted loss.
4.4.1 Numerical Example - Merton ModelTo illustrate 
onsider a simple example. A CDO is written on a portfolio of 100 riskyzero-
oupon bonds with a one year horizon. The risk free interest rate is assumed to be
onstant (r = .03). Ea
h asset has a fa
e value 100, and the re
overy rate for ea
h assetis 
onstant 40% of fa
e value. Ea
h asset has a default probability of .07, and the assetpri
e volatility, σ is 20%.Appendix C 
ontains a MATLAB s
ript implementing this example.Figure 4.9 on page 72 illustrates the expe
ted values of the di�erent tran
hes for var-ious values of the 
orrelation 
oe�
ient under the Merton model with 20,000 simulationsas tabulated in Figure 4.10.It is quite 
lear that for the given set of parameters (individual default probabilityof .07 and .20 annual volatility) that the equity tran
he bene�ts from in
reased default
orrelation in terms of a de
reasing expe
ted loss rate. For the more senior tran
hes, thee�e
t is opposite and more pronoun
ed for the most senior tran
he where expe
ted lossrate is 
learly a 
onvex fun
tion of ρ. These results are very mu
h as expe
ted and arequite in line with what we see in the simpler binary CDO example. A low 
orrelationmeans that the loss rate will be 
lose to the individual default probability, so that the69
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ρ Tran
he 1 Tran
he 2 Tran
he 3 Tran
he 4 Tran
he 50 94.714 16.407 0.971 0.000 0.000.1 39.152 3.003 1.525 0.145 0.00360.2 23.169 3.084 2.930 0.795 0.0420.3 16.573 3.690 3.960 1.860 0.184.4 13.189 4.358 4.480 2.665 0.377.5 11.041 5.143 5.380 3.730 0.709.6 9.616 5.571 5.715 4.650 1.110.7 8.769 6.028 6.235 5.345 1.629Figure 4.10: Expe
ted losses in CDO tran
hes under various asset 
orrelations. N=20,000simulations.equity tran
he will likely su�er some losses. If assets are perfe
tly 
orrelated, it is an "allor nothing" s
enario, whi
h means that in some 
ases all assets will default thus makingthe more senior tran
hes equally exposed.

4.4.2 Correlation TradingBe
ause of the sensitivity of the CDO tran
hes to the underlying asset 
orrelations, CDOtran
hes have been used for hedging and betting against 
orrelations. To see how this isdone, 
onsider a trader who believes that the 
orrelations implied by the market pri
e ofa parti
ular CDO is too low. That would mean that the equity tran
he is under-pri
ed(as expe
ted losses in this tran
he are overestimated). Similarly, the market pri
e of amore senior tran
he is too high (as the pri
e of these tran
hes depend negatively on asset
orrelations). An appropriate trading strategy in this situation would then be to take ashort position in the senior tran
he and a long in the equity tran
he.
4.4.3 Implications for Risk ManagementClearly, another important aspe
t of the 
orrelation issue pertains to risk management.As dis
ussed previously, defaults o

ur in 
lusters; in terms of the models here, thismeans a time varying default 
orrelation. If defaults under normal 
ir
umstan
es arelargely un
orrelated but 
orrelations in
rease during e
onomi
 downturns, 
rises, and soforth, it 
an be argued that using average 
orrelations for risk management purposes, atleast in a 
onstant 
orrelation model, is negligent of an important risk fa
tor. Intuitively,there is reason to believe that 
orrelations and hazard rates are 
orrelated. Figure 4.6illustrates the impa
t of this on a senior CDO tran
he; when both 
orrelations and hazardrates in
rease, the value of a senior tran
he plummets.The parallels to the re
ent e
onomi
 
risis is not hard to draw; su
h e�e
ts should be70



4.4. COLLATERALIZED DEBT OBLIGATIONSmore pronoun
ed for low quality 
redits, su
h as sub-prime mortgage loans. These areborrowers with low 
redit quality, with high leverage, low wages and highly exposed tounemployment in the 
ase of a re
ession. In addition, when mortgages are issued withinitial "teaser rates" that are subsequently in
reased, we 
an also expe
t a deterministi
,time-dependent in
rease in hazard rates.
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Chapter 5

Summary and ConclusionEvents in the �nan
ial world the last few years have made the importan
e of 
reditrisk modeling and resear
h abundantly 
lear. These models are 
riti
al to the valuationpro
ess for 
redit derivatives, an asset 
lass that has seen an explosive growth in thepast two de
ades, and are an intri
ate part of risk management systems for �nan
ialinstitutions.This thesis has studied the two key 
lasses of 
redit risk models that appear in thea
ademi
 literature and in pra
ti
e. Emphasis has been put on various methods of mod-eling 
orrelation, issues of model implementation as well as estimation. Problems relatedto the spe
i�
ation and measurement of 
orrelation in the various models have also beendis
ussed. It has been argued that default probabilities vary over time, whi
h in a re-du
ed form mode framework 
orresponds a non-
onstant term stru
ture of hazard rates.Three standard methods of estimating these term stru
tures have been 
onsidered; asimple option theoreti
al approa
h using It�'s lemma, using histori
al data from ratingagen
ies and implying the probabilities from the pri
es of risky assets (here bonds and
redit swaps).Chapter 4 has explored the properties of many of the models presented in Chapters2 and 3 by examples of 
redit derivative valuation. The examples 
learly illustrate theimportan
e of hazard rates and 
orrelation for asset values. A key issue in most anytype of risk measurement and management is interdependen
e. In the 
ontext of 
reditrisk, this means default 
lustering or default time 
orrelation. It is important for valuingmulti-name 
redit derivatives su
h as basket 
redit default swaps and CDOs, whi
h are, asshown in several of the examples in this thesis, su
h as the CDO illustration in Se
tion 4.4.Correlation 
an also be important when a

ounting for 
ounter-party risk as illustratedin Se
tion 4.1.Finally, this thesis has also dis
ussed the many possible extensions of the basi
 modelsthat have been the fo
us of this presentation. As of now, while there are no industry73



standard 
redit risk models, some theoreti
ally very impressive models have been pro-posed that in
orporate a high level of detail, in parti
ular within the stru
tural 
lass.Still, there will always be a 
ertain trade-o� between the simpli
ity, with respe
t to bothimplementation and estimation, and the degree of detail to be in
luded. In 
on
lusion,
redit risk modeling is likely to remain an important �eld of resear
h in the years to 
ome,in a
ademia and �nan
ial institutions alike, as there are still problems to be solved, boththeoreti
ally and empiri
ally.
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Appendix A

The Black-Scholes-Merton Framework

A.1 A Model of UncertaintyThis appendix is a brief overview over some of the mathemati
al assumptions and resultsfundamental to the models above. It is largely based on Harrison and Pliska (1980), Hull(2006), Shreve (2004) where the topi
s are treated more thoroughly.To model the un
ertainty fa
ed by e
onomi
 agents about the future state of quantitiesof interest su
h as asset pri
es or interest rate, we 
onsider a probability spa
e denoted
(P,Ft,Ω) where Ft is a �ltration on the sample spa
e Ω. In this thesis, Ω is assumed tobe a non-
ountable or 
ontinuous set.The �ltration F(t) ≡ Ft is the model of the set of information about the marketvariables that is available to e
onomi
 agents at time t. An important property to noteis that Ft ⊆ FT ⇐⇒ t ≤ T , that is that all previously revealed information is available;as we will see later on, the primary importan
e of this (in the models 
onsidered here) isfor the statisti
al purpose of parameter estimation.To illustrate this somewhat abstra
t 
on
ept, 
onsider the binomial 
redit risk modelof Se
tion 2.1.1. Let's say we do not know the out
ome ω in the �nal period (T = 3).Without any information, we know still know that ω 6= ∅ and ω ∈ Ω. We denote this by
F0 = {∅,Ω}. After the �rst period, we know whether or not the �rm has defaulted by T =

1, so we add an additional pie
e of information, ω(1), to the �ltration, F1 = {∅,Ω , ω(1)}.The pro
ess 
an be 
ontinued up to the �nal period preserving the relationship F0 ⊂ F1 ⊂
F2 ⊂ F3. This 
on
ept 
an be generalized to 
ontinuous probability spa
es as in Shreve(2004) and Øksendal (2002).We de�ne asset or se
urity pri
es Ai(t) as fun
tions of future un
ertain 
ash �ows;thus random variables measurable with respe
t to F(t). In a stru
tural model, equityand debt are 
onsidered 
ontingent 
laims on asset pri
es, that is, the value of the 
laimsare fun
tions of the Ai's. 75



A.2. THE WIENER PROCESS
A.2 The Wiener ProcessSo far, the dis
ussion has 
entered on abstra
t notions of un
ertainty and information,hen
e the next obje
tive is to suggest a 
on
rete model of the how un
ertainty a�e
tsasset pri
es, so we introdu
e the notion of a sto
hasti
 pro
ess, ie. a 
olle
tion of randomvariablesX1, X2, ..., XT , subs
ripts denoting the time dimension. A 
ommon 
lassi�
ationof sto
hasti
 pro
esses is between dis
rete and 
ontinuous time pro
esses. A 
ontinuouspro
ess is de�ned at any point in time on an interval, whereas a dis
rete pro
ess is de�nedonly for a parti
ular set of times. Similarly, a distin
tion is made between 
ontinuousand dis
rete range pro
esses, referring to the set possible values the pro
ess 
an attain.A standard one-dimensional Wiener pro
ess denoted W (t) ≡ Wt, often referred to asa Brownian motion, is a parti
ular sto
hasti
 pro
ess satisfying:

• W (0) = 0.
• Wt is almost surely 
ontinuous.
• In
rements WT −Wt ∼ Φ(0, T−t) for t < T are normally distributed, a

umulatingone unit of varian
e per time unit.
• Over non-overlapping intervals [t0, t1] and [t2, t3], in
rements W (t1) − W (t0) and
W (t3)−W (t2) are independent.
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tory of a Brownian motion.76



A.2. THE WIENER PROCESSFrom the latter it is 
lear that the Wiener pro
ess is stationary. It 
an be shown thata symmetri
 random walk1 pro
ess will have the Wiener pro
ess as its s
aling limit; thatis the random walk 
onverges to the Wiener pro
ess as the time step be
omes arbitrarilysmall.
A.2.1 Asset Price DynamicsThe Wiener pro
ess W (t) does not satisfy our requirements for a model of asset pri
edynami
s. Firstly, it 
an be negative with a stri
tly positive probability and se
ondly, weneed a ri
her model of the drift and volatility of pri
es. The solution is to use a so-
alledIt� pro
ess, X(t) des
ribed by the following sto
hasti
 di�erential equation:

dX(t) = σ(t, X(t))dW (t) + µ(t, X(t))dt (A.2.1)The above equation states that the 
hange in the quantity X is the sum of a deter-ministi
 part µ and a sto
hasti
 part 
ontaining a di�erential of the Wiener pro
ess. It isimportant to note that while the notation here is quite similar to that of 
lassi
al 
al
u-lus, the mathemati
al 
on
epts di�er as W (t) is nowhere di�erentiable with respe
t to t.This also mean that the integral with respe
t to W (t) is not a Riemann integral and thatseveral standard te
hniques 
annot be applied here. However, using a 
hange-of-variableformula known as It�'s lemma (
f. se
tion A.3.1), we 
an arrive at most of the resultsthat required for the purposes here.An important spe
ial 
ases of A.2.1 is the geometri
 Brownian motion (GBM) pro
esswith time 
onstant 
oe�
ients given by:
dX(t)

X(t)
= σdW (t) + µdt (A.2.2)Now X has a 
onstant drift and volatility as illustrated in �gure ?? for 
oe�
ientsfor µ = .05 and σ ∈ {.20, .25, .30, .35, .4}. Another important parti
ular 
ase is the meanreverting Ornstein-Uhlenbe
k pro
ess (sometimes referred to as the Vasi
ek pro
ess in�nan
ial appli
ations due to its appearan
e in the term stru
ture model of the samename):

dX(t) = σdW (t) + α(β −X(t))dt (A.2.3)This pro
ess is mean reverting towards the level β where α is a fa
tor measuring thespeed of reversion.1A symmetri
 random walk pro
ess is a dis
rete time, dis
rete range sto
hasti
 pro
ess that 
an eitherin
rement or de
rement by 1 for ea
h time step. Su
h pro
esses 
an be used in simulation models, butusually generating 
ontinuous random variables are more e�
ient.77
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Figure A.2: Geometri
 Brownian Motion PathsBefore going into some of the standard results that we will need later, I will summarizesome of the properties of the pro
ess given by equation A.2.1 that are important for itsappli
ation to problems in �nan
e.
• On a partition P = {0 ≤ t0 < t1 < ... < tn}, the in
rements (X0, Xt1−Xt0 , ..., Xtn+1−
Xtn) are simultaneously independent. This means that asset returns are indepen-dent of past returns and the 
urrent asset pri
e.

• X(t) is 
ontinuous for all t ≥ 0 and stri
tly positive for allt ≥ 0 if x0 > 0.
• When σ(t) = σ and µ(t) = µ, that is, the parameters are 
onstant over time,
X(t) = x0e

µ−1/2σ2+σW (t), and sin
e W (t) ∼ φ(0, t), X(t) is log-normally distributed;this is a simple exer
ise to show using It�'s lemma.
• Taking the expe
ted value of this we �nd that E[X(t)|F(0)] = x0e

µ−1/2σ2 .
• Asset pri
es have the Markov property; whi
h loosely means that the expe
tationwhen 
onditioning on the entire past history of pri
es equals the expe
tation when78



A.3. SOME KEY RESULTS AND ASSUMPTIONS
onditioning on the 
urrent pri
e (ie. all relevant information is re�e
ted in the
urrent asset pri
e).2The above properties are not in 
on�i
t with �nan
ial theory and the e�
ient mar-ket hypothesis, and is therefore a 
oherent framework pre
luding arbitrage. There isa 
orresponden
e between the 
on
ept of markets that are e�
ient with respe
t to theinformation available at any point in time, and the randomness in the model. When allavailable information about 
ausal fa
tors relevant to the pri
ing of the assets in ques-tion, only future events 
an a�e
t pri
es - and these of 
ourse, will appear random unlessagents have some kind of foresight.This is not to say that it repli
ates the observed (dynami
) behavior of asset pri
es.For instan
e, the assumption of normally distributed returns has long been 
riti
ized,as a
tual asset returns, in parti
ular for longer time series, exhibit both ex
ess kurtosisand skewness signi�
antly di�erent from that of the normal distribution. In "normal"
ir
umstan
es, however, the normality assumption seems quite appropriate. By introdu
-ing "jumps", sto
hasti
 volatility and so forth, it is a simple matter to 
ir
umvent theseproblems3.
A.3 Some Key Results and Assumptions

A.3.1 Itô’s LemmaIt�'s Lemma is, a fundamental tool for studying fun
tions of Wiener pro
esses whi
h ishow derivatives are modeled in this framework.Lemma A.3.1. (It�) Let X(t) denote a It� pro
ess, and f(X(t), t) be a C2 fun
tion4 of
X and C1 of time t, then (letting subs
ripts denote partial derivatives) we have:

df = ftdt+ fXdX + 1/2fXXσ
2dt

=
(
ft + µfX + σ2

2
fXX

)
dt+ fXσdW

(A.3.1)As simple illustrations of the above equation we 
an show that returns are normallydistributed when pri
es follow a GBM. Letting dSt = µStdt+σStdWt be the equation forthe asset pri
e pro
ess, and f(S) = ln(S) so that fX = 1/X and fXX = −1/X2, the byIt�'s lemma: df = (µ− 1/2σ2)dt+ σ2dWt. f(S) is here the instanvtaneous rate of returnpro
ess on an in�nitesimal time interval.2In the notation established earlier: E[X(t)|F(0)] = E[X(t)|x0].3This applies in parti
ular to simulation based models, where su
h modi�
ations are mu
h simplerthan analyti
al models.4A fun
tion is Ci if it has 
ontinuous i'th derivatives.79



A.3. SOME KEY RESULTS AND ASSUMPTIONS
A.3.2 Arbitrage Free PricingThe �nal 
on
ept explored in this 
hapter is the 
on
ept of arbitrage. We begin by thede�nition of a self-�nan
ing trading strategy:De�nition A.3.2. Self-�nan
ing strategyLet θ be (the 
ash �ow from) a trading strategy, ie. some 
ombination of se
urities:

θ(t) = ω1(t)A1(t) + ω2(t)A2(t) + ...+ ωn(t)An(t)where ωi denotes the number or portfolio weight of asset i. A trading strategy ω issaid to be self-�nan
ing if
dθ(t) = ω1(t)dA1(t) + ω2(t)dA2(t) + ...+ ωn(t)dAn(t)Basi
ally, this means that the only thing that 
an 
hange over time is the values Aiof the assets and the allo
ation of wealth ωi between assets. No 
ash is added to theportfolio or taken out from it.De�nition A.3.3. ArbitrageLet θ be a self �nan
ing trading strategy. θ is said to be an arbitrage if θ(0) = 0 and

P(NPV (θ(T )) > 0) = 1 for t ≥ 0.The above de�nition of an arbitrage is a trading strategy that has zero 
ost initiallyand is set up so that it yields a risk free, positive 
ash �ow at some future time.Under the assumption that agents 
an take any position in the set of traded assets, amodel would be 
ontradi
tion if it would allow for an arbitrage; if su
h a trading strategywould exist, it would be possible to take a position so as to obtain an in�nite 
ash �ow.This would 
learly lead to a in
oherent pri
ing framework. Therefore we wish to spe
ify amarket model that pre
ludes arbitrage. To summarize, we have the following assumptionsthat underly the Bla
k-S
holes-Merton model:
• Existen
e of a risk free asset.
• Trading, both of the underlying asset and the risk free, takes pla
e in 
ontinuoustime, ie. the asset pri
e A(t) 
an at any time be ex
hange for the same amount ofmoney.
• Investors 
an take any position in any traded asset.
• Assets are perfe
tly divisible.
• Absen
e of arbitrage. 80



A.3. SOME KEY RESULTS AND ASSUMPTIONSAn impli
ation of the above assumptions is that any derivative instrument on anytraded asset 
an be hedged by 
onstru
ting a portfolio of the primitive assets, whosepri
e must equal the pri
e of the derivative. A market in whi
h any future 
ash �ow 
anthusly be hedged is termed a 
omplete market. Under all but 
ertain te
hni
al 
onditions,this 
an be shown to be equivalent to the existen
e of a unique risk neutral probabilitymeasure.Under this probability measure, expe
ted 
ash �ows are be valued by dis
ounting atthe risk free rate (rather than at a risk-adjusted rate). This key result is known as thefundamental theorem of arbitrage-free pri
ing. It follows from it that there exists a statepri
e or a single pri
e for an Arrow-Debreu 
laim5 that 
an be used for dis
ounting 
ash�ows for any possible event or state future of the world. This notion plays a key rolein redu
ed form 
redit risk models used in 
orporate �nan
e (see for instan
e Leland(1994)).The equivalent risk neutral measure P̃ is 
hara
terized by the following properties:
• Letting P denote the a
tual or physi
al probability measure, P̃(ω) = 0 ↔ P(ω) = 0.This is the equivalen
e part; the two measures agree on whi
h events have zeroprobability.
• The present value g(t) of a 
laim to 
ash �ow g(T ) at a future date T is given bythe produ
t of the risk free dis
ount fa
tor (or zero 
oupon bond pri
e), P (t, T )and the expe
ted 
ash �ow under P̃:

g(t) = P (t, T )Ẽ(g(T )) (A.3.2)This key 
on
ept is also used extensively in the redu
ed form models developedlater on as it does not require any parti
ular assumptions on asset dynami
s; it willalso hold for latti
e (bi- and multinomial) dis
rete time models as well.
• The above 
an also be stated in terms of the pri
ing kernel of the e
onomy orsto
hasti
 dis
ount fa
tor whi
h is te
hni
ally the Radon-Nikodym derivative of P̃with respe
t to P:For a 
omplete dis
ussion of the topi
s of this appendix, the reader is referred to the
lassi
 arti
le on the subje
t by Harrison and Pliska (1981) or textbooks by Du�e (2001),Shreve (2004) or Hull(2006).5An Arrow-Debreu state 
ontingent 
laim is a �nan
ial instrument that pays a unit 
ash �ow giventhe realization of a parti
ular future state of the world. This is a theoreti
al 
on
ept that is 
omparable,but not equivalent to a digit option. 81
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Appendix B

Monte Carlo SimulationThis se
tion will brie�y des
ribe the numeri
al methods that are used to implement anextended version of the stru
tural model developed earlier to allow features su
h as for�nite maturity debt, more sophisti
ated stru
tures of 
orrelation and interest rate risk.A 
entral result in sto
hasti
 
al
ulus, Girsanov's theorem, states that a sto
hasti
di�erential equation have an equivalent representation as a partial di�erential equation(PDE). This is an important te
hnique in �nan
ial theory; it is for instan
e the te
hniqueused by Bla
k and S
holes to derive their option pri
ing formula. Furthermore it is oftenused for 
losed form solutions to stru
tural models.There are however 
ertain problems with this approa
h. Both deriving and solvingthese equations is quite demanding. With respe
t to the solutions part, there are ahandful of numeri
al methods available, but these are often di�
ult to implement, inparti
ular when dealing with problems of higher dimensionality su
h as when dealingwith multi-name 
redit derivatives. A mu
h simpler and more intuitive approa
h forsu
h problems is to use Monte Carlo simulation.
B.1 The Basic ConceptMonte Carlo simulation is a te
hnique for approximating the solution y to a problem that
an be stated on the form y = E[X ] where X is some random quantity whi
h means thatthe solution 
an be rea
hed using arti�
ial sampling experiments.So while a sto
k option 
an (usually) be pri
ed faster by solving the BSM PDE withthe appropriate boundary 
onditions, this method provides little information about thedistribution of returns whi
h is of key interest in portfolio and risk management problems.To illustrate the 
on
ept, 
onsider a European 
all option C(St, t, K) = max(St−K, 0)on a geometri
 Brownian motion St = S0 exp[(µ − 1/2σ2)t + σWt] with Wt =

√
t Z0,1.The approa
h is then to simulate a ve
tor of standard normal variates, 
ompute the pri
e83
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Figure B.1: Pri
ing error (relative to Bla
k S
holes pri
e) in a naive Monte Carlo method.
Si
t for ea
h realization i a

ording to the above formula, then the option pri
es C i forea
h realization. The estimate of the option pri
e V (C) is then given as the arithmeti
average over the set of option pri
es:

V (C) =
1

n

n∑

i=1

Ci ≃ E[C] (B.1.1)
B.1.1 Error Bounds and Rate of Convergence for Monte Carlo AlgorithmsMonte Carlo algorithms di�er in an important way from other simulation algoritms. AsMonte Carlo methods rely on random sampling, it is not possible to give pre
ise the errorbounds as a fun
tion of the number of operations performed. Instead we have to relyon probabilisti
 statements about the error bounds based on what we know about thesampling distribution. Alternatively, if we are 
onsidering a parti
ular implementation,it is of 
ourse possible to store the mean value (whi
h is what we are usually interestedin) and the deviations from the mean in ea
h simulation for an error estimate.Using the 
entral limit theorem from probability theory, it is not hard to see that thestandard Monte Carlo method has square root 
onvergen
e, in the sense that in order to84



B.1. THE BASIC CONCEPTredu
e the standard deviation of the solution, a quadrupling of the number of simulationsis ne
essary. Square root 
onvergen
e is 
onsidered slow, so usually varian
e redu
tionte
hniques su
h as sampling antitheti
 paths or low-dis
repan
y sequen
es are employed.For a dis
ussion of su
h methods, see Brandimarte (2006).
B.1.2 Correlation in Monte Carlo SimulationOne of the attra
tive features of the Monte Carlo method is that it allows for a largenumber of ways, ranging from the simple and intuitive to the highly sophisti
ated, totreat the of 
ovariation between the pro
esses of interest.The perhaps most obvious way of simulating 
orrelated sto
hasti
 pro
esses is tospe
ify the varian
e-
ovarian
e matrix Σ of the assets in the portfolio whose entries σijis the 
ovarian
e between assets i and j, and σii is the volatility from the SDE governingthe dynami
s of asset i. We note that Σ is positive de�nite, symmetri
 and diagonallydominant. This is important for an algorithm used later on.
Factor ModelsClearly, any given stru
ture of interdependen
e between the assets of a portfolio 
anthusly be spe
i�ed by a listing of all the σij 's, but this is often in
onvenient, and onewould instead be in
lined to explain 
orrelation through a set of systemi
 fa
tors. Thereare at least two good reasons for this; �rstly, the assets may be of su
h a nature thatit is hard to obtain a good estimate of the σij , su
h as may be the 
ase if the portfolio
onsists of non-traded assets. Se
ondly, the systemi
 fa
tors often lend themselves to ameaningful e
onomi
 interpretation as they 
an often be identi�ed as interest rates, GDP,and so forth. Of 
ourse, this will also mean that the number of parameter estimates 
anbe redu
ed.In a general fa
tor model, with Yi denoting the realizations of the systemi
 fa
tors,
ρi, j a 
onstant that gives the exposure of asset j to fa
tor i, and ǫj an idiosyn
rati
fa
tor, the realization of a random variable Xj is on the form:

Xj = ρ1Y1 + ρ2Y2 + ... + ρnYn + ǫj (B.1.2)The next se
tion 
onsiders some methods for determining the weights a

ording tothe 
orrelations of an asset j to the set of fa
tors {Yi}.85
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Generating Correlated PathsCorrelated random variates 
annot be generated dire
tly from the varian
e-
ovarian
ematrix using most standard random number generators. We therefore develop a simplealgorithm for solving this.Let Σ = [ρi,j] be the N×N 
orrelation matrix. For simpli
ity we assume that ρi,j = ρif i 6= j and 1 otherwise. The Cholesky de
omposition1 of Σ is given by:

Σ = U ′UHere U is an upper triangular matrix and U ′ denotes its transpose whi
h is of 
ourselower triangular. Consider a standard normal random ve
tor Z ∈ R
N . We 
an transformthis to a Φ(µ,Σ) random ve
tor X∗ where µ denotes the mean ve
tor, by the followingpro
edure

X∗ = µ+ U ′
Z (B.1.3)

B.2 Longstaff and Schwartz’s Algorithm for American OptionsThe Longsta� and S
hwartz method, sometimes referred to as least-squares Monte Carlosimulation (LSMC), 
an be thought of as a parti
ular dynami
 programming approa
hthat simpli�es pri
ing of Ameri
an derivatives. The problem of valuing Ameri
an deriva-tives is re
urring in many appli
ations of mathemati
al �nan
e outside of sto
k optionpri
ing hereunder stru
tural 
redit risk models under some assumptions on the defaultthreshold and real options valuation.Dynami
 programming involves the breaking up of a large problem into smaller sub-problems for whi
h we have simple solution methods. The key problem in Ameri
anoptions valuation is determining the optimal exer
ise boundary. In the LSMC method,we determine the optimal 
ourse of a
tion (exer
ise vs. 
ontinue) ba
kwards (in time)along the set of pri
e paths to determine the option value. In this respe
t the LSMCapproa
h is similar to the the other numeri
al methods su
h as �nite di�eren
es, andbinomial and multinomial (latti
e) methods.What separates the LSMC method is the 
omputation of the 
ontinuation value;whereas this is a trivial issue in the binomial model, a 
ontinuous time setting requiresa more sophisti
ated approa
h. This is of 
ourse where the least squares part of the1When a matrix A is symmetri
 positive de�nite, it 
an be shown that there is a unique matrix
U satisfying A = U ′U . There are other general de
omposition algorithms that hold for matri
es thatare not positive de�nite. See Cheney and Kin
aid (2007) for a ba
kground on the Cholesky and otherde
omposition methods. 86



B.2. THE LSMC ALGORITHMalgorithm 
omes in. When the pri
e paths are simulated under the risk neutral measure
P̃, we estimate the 
ontinuation value at ea
h point in time t as a fun
tion of the set ofstate variables at time t− 1 using the least squares method.
IllustrationTo illustrate the above, 
onsider an option on a single asset S and let

St−1 = [S1(t− 1), ..., Sn(t− 1)]be the ve
tor of pri
es generated for the time t−1. Similarly, we denote the option valuesat time t
Xt = [X1(t), X2(t), ...,n (t)]that may 
ome either from the boundary 
onditions or the pre
eding step of this algo-rithm. Assume f is the ve
tor valued fun
tion des
ribing the relationship between optionpri
es and the pre
eding pri
es of the underlying asset: X(t) = f(S(t − 1)). For sim-pli
ity, assume is on the form f(S) = 1 + S + S2 + ... + Sm. The following expressionresults:




X1

X2...
Xn



=




1 S1 S2
1 · · · Sm

1

1 S2 S2
2 · · · Sm

2... ... ... . . . ...
1 Sn S2

n · · · Sm
n







a0

a2...
am




(B.2.1)Or in shorthand ve
tor notation: Xt = St−1A where A is the unknown ve
tor of
oe�
ients for the polynomial fun
tion f . If m > n the above system is overdetermined.Due to perturbations in the data, the system is likely to be in
onsistent. Hen
e, insteadof trying to the system as stated above, we instead solve the 
orresponding system ofnormal equations for the least squares problem whi
h always has a unique solution:
S
T
SA = S

T
XThere are routines for this in most software pa
kages. The result is a ve
tor of
oe�
ients A = [a1, ..., am] that are the 
oe�
ients in the fun
tion f(St) that is thepredi
tor fun
tion for the 
ontinuation value. So for ea
h simulated pri
e Si(t), the
ontinuation value is 
omputed as f(Si(t)) = a0 + a1Si(t) + ...+ an(Si(t))

m.
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Appendix C

MATLAB Code from ExamplesThis appendix in
ludes MATLAB s
ripts implementing some of the models used in theexamples. They are in
luded to provide a di�erent statement of the models presentedhere and are thus prototype models not illustrations of how these models would be im-plemented in pra
ti
e. For some ba
kground on the implementation of pri
ing models,see Joshi (2008). Some of the s
ripts must be split into two separate m-�les in the samefolder for them to run.
C.1 Defaults Distribution%% s t a r t defProb .m2 fun
tion probs = defProb (N, p , rho )% 
omputes the p r o b a b i l i t i e s o f x d e f a u l t s4 % where x runs from 0 to N in a p o r t f o l i o o f N a s s e t sprobs=zeros (N, 1 ) ;6 yva l s =−100: .01:100;
ondProbs=norm
df ( ( norminv (p)−sqrt ( rho ) ∗ yva l s ) /sqrt(1− rho ) ) ;8 for x=1:Nbin=n
hoosek (N, x ) ;10 i n t e g r a l=bin∗trapz ( yvals , ( 
ondProbs .^x ) .∗((1− 
ondProbs ) .^ (N−x ) ) .∗normpdf ( yva l s ) ) ;probs ( x )=i n t e g r a l ;12 endend14 %% end defProb .m%% s t a r t por t fRa te s .m2 % g i v e s a few p l o t s from the prev ious fun
 t i on defProb89



C.2. BINARY CDS EXAMPLE% with var i ous rho ' s4 
lear a l l ; 
lose a l l ;6 format longhold on ;8 grid on ;p=.10;10 N=50;12 rho=0;14 plot ( defProb (N, p , rho ) , ' LineWidth ' , 2 ) ;rho =.2;16 plot ( defProb (N, p , rho ) , '−rx ' , ' LineWidth ' , 2 ) ;rho =.5;18 plot ( defProb (N, p , rho ) , '−go ' , ' LineWidth ' , 2 ) ;rho =.7;20 plot ( defProb (N, p , rho ) , '−kv ' , ' LineWidth ' , 2 ) ;22 legend ( ' \ rho=0 ' , ' \ rho=.20 ' , ' \ rho=.50 ' , ' \ rho=.70 ' ) ;xlabel ( 'Number o f De fau l t s ' )24 ylabel ( ' P r obab i l i t y ' )26 %% end por t fRa te s .m
C.2 Binary CDS Example1 %baske t 
ds s 
 r i p tfun
tion p r i 
 e=basketCDS( rho )3 %randn ( ' seed ' , 0 )format long ;5 lambda=.1;T=1;7 s t eps =1000;r =.05;9 noAssets =100;noSims=1;11 basketLimit=20;13 tVe
=linspa
e (0 ,T, s t eps ) ;d i s
ount=exp(−r∗ tVe
 ) ;15 Rho = repmat ( rho , noAssets , noAssets ) ;90



C.3. CDS EXAMPLE17 for i =1: noAssetsRho( i , i ) = 1 ;19 endRho = 
hol (Rho) ' ;21 vMat=randn( noAssets , noSims ) ;23 vMat=Rho∗vMat ;uMat=norm
df (vMat) ;25 defTimes=−log (uMat) /lambda ;
 f s =0;27 for i =1:noSimsth i sPath=defTimes ( : , i ) ;29 th i sPath=sort ( ( th i sPath ( thisPath<T) ) ) ;th i sPath=thi sPath ( 1 :min( length ( th i sPath ) , basketL imit ) ) ;31 thisCF=sum(exp(− r∗ th i sPath ) ) ;
 f s=
 f s+thisCF ;33 endp r i 
 e=
 f s /noSims35 end
C.3 CDS Example% 
ds p r i 
 i n g s 
 r i p t2 T=3; % matur i ty4 timeSteps =1000; % po s s i b l e d e f a u l t da t e sdt=T/ timeSteps ;6 tVet=dt : dt :T;r =.05; % r i s k f r e e ra t e8 
ouponTimes= [ . 5 , 1 , 1 . 5 , 2 , 2 . 5 , 3 ℄ ; % premium payments da t e slambda=.10; % hazard ra t e10 f a 
 e =100;lgd =40; % l o s s g iven d e f a u l t12 N=500000; % number o f s imu la t i onsdefT=ones (N, 1 ) ∗T; % time o f d e f a u l t in ea
h s imu la t i on14 % ( se t to matur i ty i f no d e f a u l t o

urs )16 pd=1−exp(−lambda∗ tVet ) ;18 x=rand (N, 1 ) ; 91



C.4. DEFAULT BASKET20 % 
ompute d e f a u l t p r o b a b i l i t i e s and p r i 
 e p r o t e 
 t i on l e gprote
t ionCF=zeros (N, 1 ) ;22 for i =1:Ni f x( i )<pd (end)24 t=find ( x ( i )<ps , 1 ) ;defT ( i )=t ∗dt ;26 prote
t ionCF ( i )=lgd ∗exp(−r∗ t ∗dt ) ;end28 end30 p ro t e 
 t i on=mean( prote
t ionCF )ps=exp(−lambda∗
ouponTimes) ;32 d i s
ount=exp(− r∗
ouponTimes) ;34 % pr i 
 e f i x e d l e g and ge t 
ds spreadf i x ed=pro t e 
 t i on /(sum( d i s
ount .∗ ps ) ) ;36 
dsSpread=2∗ f i x ed / f a 
 e
C.4 Default Basket1 % Simple CDO tran
he /N−th to d e f a u l t CDS Gaussian 
opu la p r i 
 i n g s 
 r i p t .% Returns f l o a t i n g l e g 
ash f l ow f o r the tran
he s t a r t i n g at ' a t ta
h ' andending3 % at ' deta
h ' .5 randn( ' seed ' , 0 ) % re s e t random va r i a b l e generator7 
 =.05; % 
oupon ra t er =.05; % r i s k f r e e ra t e9 rho =.9; % as s e t 
 o r r e l a t i o nN=5; % Number o f f i rms11 NoSims=10000; % Number o f s imula ted pathslambda=.1; % de f a u l t i n t e n s i t y13 atta
h =.0; % atta
hmentdeta
h =.03; % deta
hment15 T= 5 ; % Time to matur i tydt =.5; % Coupon da te s17 n=100; % Not iona l p r i n 
 i p a lRe
=60; % Re
overy19 lgd=n−Re
 ; % Loss g iven d e f a u l t21 tVe
=0:dt :T; % ve
 tor o f 
oupon da t e s92



C.4. DEFAULT BASKETdis
ount=exp(− r∗ tVe
 ( 2 :end) ) ; % r i s k neu t r a l d i s 
oun t ve
 to r23 allCTs=repmat ( tVe
 ,N, 1 ) ; % matrix o f 
oupon da t e s25 %
o r r e l a t i o n matrix , 
 h o l e s k y de
omposi t ionrhoMat=rho∗ones (N,N)+diag ((1− rho∗ones (N, 1 ) ) ) ;27 rhoChol=
hol ( rhoMat ) ' ;29 % i n i t i a l i z e v a r i a b l e s to ho ld ' a

umulated ' l o s s f o r ea
h s imu la t i onto tF loa t =0;31 % simu la t e 
 o r r e l a t e d d e f a u l t t imes33 nCorr=norm
df ( rhoChol∗randn(N, NoSims ) ) ; % use 
d f to 
 rea t e 
opu latDef=−log(1−nCorr ) /lambda ; % use in v e r s e exp . d i s t 
d f to ge t d e f a u l t t imes3537 for i =1:NoSims39 th i sPath=tDef ( : , i ) ; % get r e s u l t s from s imu la t i on i from tDefthisMod=repmat ( thisPath ,1 , 2∗T+1) ; % matrix to 
ompare41 % de f a u l t t imes to 
oupon da t e slossMat=thisMod<allCTs ; % binary matrix o f d e f a u l t i n d i 
 a t o r s43 % at ea
h 
oupon date ( v e 
 t o r s ) : %per
entage l o s t45 % the per
entage o f l o s s e s taken by ea
h tran
he% ab so l u t e l o s s e s , and remaining tran
he no t i ona l :47 p
tLoss=sum( lgd∗ lossMat ) /(n∗N) ;tran
heLossP
t=max( p
tLoss−atta
h , 0 )−max( p
tLoss−deta
h , 0 ) ;49 tran
heLossAbs=tran
heLossP
t ∗n∗N;no t i ona lL e f t=n∗N∗( deta
h−atta
h−tran
heLossP
t ) ;51 % temporary 
 a l 
 u l a t i o n s53 tempP
tloss =tran
heLossP
t ( 2 :end)−tran
heLossP
t ( 1 :end−1) ;temp =n∗N ∗ tempP
tloss ;55 % add va lue f o r t h i s s imu la t i on to t o t a l57 to tF loa t = totF loa t + sum( d i s
ount .∗ temp) ;end59 % 
ompute average61 f l o a t i n g=totF loa t /NoSims
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C.5. CDO EXAMPLE
C.5 CDO Example%% s t a r t runTest .m2 S0=100; pd=.07; mu=.05; sigma=.2; r =.05; T=1; N=100; rho =.7; re
overy =.4;4 noSims=20000;t ran
heLoss0=t e s t ( S0 , pd ,mu, sigma , r ,T,N, 0 , noSims , re
overy ) ;6 tran
heLoss1=t e s t ( S0 , pd ,mu, sigma , r ,T,N, . 1 , noSims , re
overy ) ;t ran
heLoss2=t e s t ( S0 , pd ,mu, sigma , r ,T,N, . 2 , noSims , re
overy ) ;8 tran
heLoss3=t e s t ( S0 , pd ,mu, sigma , r ,T,N, . 3 , noSims , re
overy ) ;t ran
heLoss4=t e s t ( S0 , pd ,mu, sigma , r ,T,N, . 4 , noSims , re
overy ) ;10 tran
heLoss5=t e s t ( S0 , pd ,mu, sigma , r ,T,N, . 5 , noSims , re
overy ) ;t ran
heLoss6=t e s t ( S0 , pd ,mu, sigma , r ,T,N, . 6 , noSims , re
overy ) ;12 tran
heLoss7=t e s t ( S0 , pd ,mu, sigma , r ,T,N, . 7 , noSims , re
overy ) ;14 t l s =[ tran
heLoss0 ; t ran
heLoss1 ; t ran
heLoss2 ; t ran
heLoss3 ; t ran
heLoss4 ;t ran
heLoss5 ; t ran
heLoss6 ; t ran
heLoss7 ℄16 for i =1:5figure ( i ) ; grid on ;18 plot ( [ 0 , . 1 , . 2 , . 3 , . 4 , . 5 , . 6 , . 7 ℄ , t l s ( : , i ) , '−x ' , ' l i n ew id th ' , 2 ) ;xlabel ( ' Cor r e l a t i on Co e f f i 
 i e n t \ rho ' ) ;20 ylabel ( ' Expe
ted Loss ( per
ent ) ' ) ;end22 %% end runTest .m%% s t a r t t e s t .m2 fun
tion t ran
heLoss=t e s t ( S0 , pd ,mu, sigma , r ,T,N, rho , noSims , re
overy ) ;4 % re
overy= presen t va lue o f re
overed fa
e va lue6 deta
hments=[ .03 , . 0 8 , . 1 2 , . 1 5 , 1 ℄∗100 ; % deta
hment po in t s ( upper )8 k=norminv (pd ) ;Y=randn( noSims , 1 ) ;10 tran
hes =[3∗ones ( noSims , 1 ) 8∗ones ( noSims , 1 ) 12∗ones ( noSims , 1 ) 15∗ones (noSims , 1 ) 100∗ones ( noSims , 1 ) ℄ ;12 for i =1:noSimsep s i l on=randn(N, 1 ) ;14 noDefau l t s=0;for j =1:N16 x=sqrt ( rho ) ∗Y( i )+(1−sqrt ( rho ) ) ∗ ep s i l on ( j ) ;94



C.5. CDO EXAMPLEi f x<k18 noDefau l t s=noDefau l t s +1;end20 end % 
a l 
 u l a t e d e f a u l t s22 %% tran
hes :24 i f noDefau l t s∗(1− re
overy ) < deta
hments (1 )t ran
hes ( i , 1 )=tran
hes ( i , 1 )−noDefau l t s∗(1− re
overy ) ;26 e l s e i f noDefau l t s∗(1− re
overy ) < deta
hments (2 )28 tran
hes ( i , 2 )=tran
hes ( i , 2 )−noDefau l t s∗(1− re
overy )+deta
hments (1 ) ;t ran
hes ( i , 1 ) =0;30 e l s e i f noDefau l t s∗(1− re
overy )<deta
hments (3 )32 tran
hes ( i , 3 )=tran
hes ( i , 3 )−noDefau l t s∗(1− re
overy )+deta
hments (2 ) ;t ran
hes ( i , 1 ) =0;34 tran
hes ( i , 3 ) =0;36 e l s e i f noDefau l t s∗(1− re
overy )<deta
hments (4 )t ran
hes ( i , 3 )=tran
hes ( i , 3 )−noDefau l t s∗(1− re
overy )+deta
hments (3 ) ;38 tran
hes ( i , 1 ) =0;t ran
hes ( i , 2 ) =0;40 tran
hes ( i , 3 ) =0;42 e l s e i f noDefau l t s∗(1− re
overy )<deta
hments (5 )t ran
hes ( i , 5 )=tran
hes ( i , 5 )−noDefau l t s∗(1− re
overy )+deta
hments (4 ) ;44 tran
hes ( i , 1 ) =0;t ran
hes ( i , 2 ) =0;46 tran
hes ( i , 3 ) =0;t ran
hes ( i , 4 ) =0;48 end50 end %fo r52 tran
heLoss=(1−mean( t ran
hes ) . / deta
hments ) ∗100 ;% re turns l o s s e s in p
t o f i n i t i a l va lue s54 end56 %%end t e s t .m
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