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Summary 
VaR has emerged as the industry standard for risk reporting, applicable for virtually all 

corporations which are exposed towards market prices, but is especially relevant for 

banks and other speculative parties which are regulated under the Basel II accord. The 

Nord Pool electricity derivative market is extensively applied by hedgers as well as 

speculators, thus the necessity of estimating VaR for portfolios including such contracts. 

The model presented in this thesis is based upon the RiskMetrics approach, but is 

ultimately somewhat adjusted due to the special characteristics of the electricity markets. 

Moreover, because the calculations and amount of data required for this thesis are 

extensively, it has resulted in the development of an application written in C#.Net, 

complemented by SQL commands for easier and faster calculations. A great deal of the 

workload of this thesis has been in the development of this application. 

 The validity of the model has been examined by back testing 12 real-world 

portfolios over year 2009 as the sample period. The null hypothesis of the back test is that 

the expected exception ratio is equal to the actual exception ratio. The results of the back 

test has been failure to reject the null hypothesis for any of the 12 real-world portfolios, 

thus this thesis cannot present any statistical evidence that the model is faulty.  
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1 Introduction 
The Nord Pool exchange has over the years become the largest electricity derivative 

exchange in world, whereas the participants being hedgers and speculators. Because 

Value at Risk (VaR) has emerged as an industry standard of market risk measurement, its 

application toward Nord Pool electricity derivatives should not be limited. However, 

because electricity derivatives in general are considered more complex (continuous 

delivery, non-storability1, seasonality etc) than regular commodity derivatives, multi 

factor simulation models are often the preferred choice.  

 

This thesis investigates whether an analytical VaR model can be utilized for Nord Pool 

electricity derivatives, applying the RiskMetrics approach developed by J.P. Morgan in 

the early nineties with some adjustments due to the characteristics of electricity market. 

 

The scope of this thesis is limited to Nord Pool System exchange traded electricity 

derivatives only. Although there are more available products from brokers, which could 

have been applied as additional input for a “richer” model. 

 

The first section discusses risk and risk management, emphasizing on how closely related 

analytical VaR is to the earliest models of modern finance, types of risk and the 

necessitate for corporate risk management. Section 3 presesents VaR methodology in a 

general perspective, benefits and criticism. The following section presents concepts 

concerning Nord Pool electricity derivatives. The main part of this thesis is Section 6 

which concerns the methods applied, firstly presenting RiskMetrics approach for standard 

commodity derivatives. Second, adjustment to the RiskMetrics approach and theory of 

arbitrage free pricing and splitting the electricity derivatives exposed cash flows. Third, 

theory and application of the back test which will be used for evaluating the model. The 

last part concerns practical implication of the necessary calculations needed for this 

thesis. Section 7 presents chosen parameters, a simple example of the model and 

discussions of the results of the back test for 12 real-world portfolios.  

                                                   
1 This creates a major obstacle for extenting the notion of convenience yield (Eydeland and Geman 1998) 
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2 Risk  
Although there is no exact definition for risk, the word can be traced back to ancient 

Greece from the word (riza) meaning root. The word did later appear in Latin and Italian 

vocabulary (risicare), translated from Italian; “to dare”. 

In modern time Knight (1921: 231) defined “risk” as measurable uncertainty, i.e. 

the physical probabilities are known, while “uncertainty” being defined as subjective 

probabilities. Knight did however not take into account the outcomes associated with the 

physical probabilities in his definition of “risk”. Markowitz (1952) suggested that in a 

financial context the variance of return could serve as a very close proxy for “risk”, 

where the return of each security is a random variable. On the other hand, this approach 

distanced itself from physical probabilities such as Knight had proposed, because in order 

to find the variance(s) Markowitz (1952: 89) suggested; 

“…should combine statistical technique and the judgement of practical men”. 

 

The reason for this suggestion is that the physical (and true) probabilities in the financial 

markets are not known, since prices and subsequent returns are ultimately decided by 

man. Thus, applying statistical techniques on historical datasets can only serve as the best 

estimate of the physical (and true) probabilities.  

In Markowitz’ model, the portfolio variance stems only from the variances and 

covariance of the returns of the securities, implying that all financial risk originates from 

price changes. Jorion (2007) expands the definition of financial risk by taking into 

account other sources which would increase the variance of the portfolios change in 

value. Table I exhibits the Jorion’s classifications of financial risks, note that the main 

category Market Risk, is essentially the same as Markowitz’ suggestion. 
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Table I : Categories of Financial Risk 

Market Risk 
The risk of losses due to price movements of such as security prices, interest rates 

and currency exchange rates. Value at Risk is a risk measurement of market risk. 

Liquidity Risk 

Can be split into two subcategories, first being asset-liquidity risk which is how 

much the trades affect the market prices. If the security is not heavily traded such 

as OTC securities, then one or very few trades may significantly affect prices. 

Second, which is funding-liquidity risk is the risk of not meeting future 

obligations. A usual tool for this is a close relative of VaR; CFaR (Cash Flow at 

Risk) 

Credit Risk 

Losses which are associated with counterparty not being able to fulfil they’re 

contractual obligations. This type of risk also includes sovereign risk which 

occurs when governments facilitate such circumstances that it is not possible for 

the counterparty fulfil they’re obligations. 

Operational Risk Risk from internal processes, individuals or systems which result in losses. 

 

2.1 Risk Management 
Under Markowitz definition of risk, risk management is in its simplest form the 

identification and control of the variance according to the owner’s preferences. Whereas 

the first step can be viewed as passive risk management, while incorporating both steps 

can be considered as active risk management. Because variance is just a number, it yields 

very limited information. More extensive information could be obtained by assessing the 

entire distribution of the stochastic returns or P&L2. 

In a corporate finance perspective, there are several aspects of incorporating a risk 

management program, whereas the ultimate question is if risk management adds value. 

Now considering only passive risk management, it is arguable that the owners 

understanding of the corporation’s risk will somewhat add value. However, when risk is 

reported by the management to the owners, it does not include correlations with other 

business entities or securities. This leads to the fact that such risk reporting is of no use 

for the investor who holds a diversified portfolio. Moreover, it is arguable that the owners 

could measure their risk themselves, something which is typically done by large 

investors, mutual funds and so on. However, in some businesses the measurement of risk 

                                                   
2 P&L : Profit and Loss: return in a monetary unit 
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can be extremely complex, requiring information that the owners may not have available. 

Also, the process of measurement can require a substantial amount of resources, 

consequently the rationale for keeping it on a corporate level rather than an individual. 

Legal concerns can also be one of the reasons for passive risk management, such as VaR 

reporting under the Basel legislations (see section 3.1.2)     

Because this thesis focuses on VaR, which is a passive form for risk management, 

it will not go into discussions regarding active risk management. 

 

3 Value at Risk 
From Jorion (2007: 17) Value at Risk is defined as; 

VaR summarized the worst loss over a target horizon that will not be exceeded 

with a given level of confidence. 

In the context of passive risk management, (1- α)VaR is the α percentile of the estimated 

future P&L distribution. VaR has developed into an industry standard and is often 

considered synonymous with the word “risk” (Dowd 1999, Jorion 2007) 

 

3.1 Benefits of VaR 
The predominantly advantage of using VaR as risk reporting is its simplicity. It is 

relatively easy to understand and is summarized and interpreted by a single number.   

 

3.1.1 Internal Control Mechanism 

During the 1990s, several banks and other large corporations went bankrupt due to 

extensive exposure in financial and commodity derivatives. Barings Bank, 

Metalgesellschaft and Proctor & Gamble U.S. were some of these entities, in some cases 

had the bankruptcy been caused by a single trader. Obviously, the internal control 

mechanism of these corporations had failed, and the higher levels of management as well 

as the shareholders had been given a misleading image of the company’s risk. VaR can 

typically be used as a control tool for traders, presenting each trader with a VaR limit. 

However this does not say anything about the aggregate VaR, because it will be affected 

by correlations between all positions. Making it is possible that all traders are within their 

limit, while the overall VaR is extensive. On the other hand, all traders may breach their 
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limits; however the overall can be very low or even non-existing (typically if all traders 

were doing arbitrage strategies3 where some traders were buying while others selling). 

 

3.1.2 Social Welfare 

Bankruptcies or bailouts of large corporations are in general costly for the society. Most 

recent, during the financial turmoil of 2008-2009 several financial and insurance 

institutions have gone bankrupt or been bailed out by the government. The associated 

bailout cost for the U.S. is the substantial estimate of $ 89 Billion (‘U.S. bailout cost seen 

lower at $89 billion: report’, 12/4/2010) 

Other associated costs are loss of potential future taxation, welfare expenditure for 

the employees who have lost their jobs and insurance claim for deposits (if banks). These 

costs will ultimately have to be paid by the taxpayers, thus it is in the societies interest to 

avoid bankruptcies or bailouts. Thereby the government will have an incentive to pass 

legislations which reduces the probability for such cases.  

 Per today, commercial banks are regulated under the Basel II accord4, which 

amongst others emphasize on an internal model approach, meaning in this context that 

banks are free to choose their VaR model. Briefly explained concerning market risk, the 

banks will have to keep a higher level of capital than the total risk charge, which is 

constructed by credit, market and operational risk charge. Where capital is divided into 

two subcategories; Tier 1 and 2 capital, being adjusted book value of equity and other 

“inferior” capital respectively. Market risk charge can be either a standardized approach 

or the 99% 10-Trading day VaR times a penalty multiplier. The penalty multiplier is set 

by the numbers of VaR breaches over the last 252 trading days, whereas an exceptionally 

high number of breaches indicate a faulty model. The reason behind the Basel II 

legislations is that the capital held should serve as safeguard against huge losses, 

reducing the probability for bankruptcy and following its associated costs. 

 

                                                   
3 See Hull (2007: 14-15) 
4 For a more extensive description of the Basel II legislations see www.bis.org/publ/bcbsca.htm 
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3.2 VaR Methods 
Because VaR is taken from an estimated future P&L distribution, there are numerous 

ways of getting the VaR. The most popular being analytical VaR, which is probably due 

to the fact that RiskMetrics major influence on VaR development. 

 

Table II : VaR Methods 

Analytical 

Assumes that securities or risk factors which the securities are exposed to follow 

some statistical distribution (usually Gaussian). Thus the portfolio P&L’s α 

percentile can be found by a closed form solution. If assuming a Gaussian 

distribution such as RiskMetrics, VaR is simply the variance times the 

confidence multiplier, thus being virtually the same as Markowitz’ definition of 

risk. 

Historical Simulation 

The  percentile of the historical P&L or return distribution given the report 

day’s positions. Whereas the sample usually being a rolling window. This 

method is however not very eligible for forward contracts since historical prices 

may not be available. 

Monte Carlo 

Simulation 

Simulates future prices, by drawing random numbers where the correlations 

between securities are taken into account. For each simulation, each security is 

completely re-evaluated by the simulated price (and change in time), thus 

yielding a far more accurate distribution than analytical methods regarding non-

linear securities. 

 

3.3 Criticism 
Although VaR has reaped an increasing popularity for more than a decade, it has met 

some scepticism among practitioners as well as academics; whereas some has signalled 

that it is a right out dangerous measurement of risk. One of the sharpest criticisers Taleb 

(1997) points out; 

“…VaR is like a Maginot line. In other words, there is a tautological link between 

the harm of the events and their unpredictability, since harm comes from surprise” 

 

Because VaR does not yield any information regarding losses exceeding the level of 

confidence, extreme negative outcomes may be underestimated. As mentioned in Section 

2.1, assessing the entire estimated P&L distribution should provide superior information.  
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An extension of VaR is Conditional VaR (CVaR), which is the expectation of losses 

exceeding the α percentile of the distribution. However, CVaR is restricted to Historical 

and Monte Carlo Simulation. As for analytical VaR applying the Gaussian distribution, 

assessing CVaR and the future estimated P&L distribution, does not yield any additional 

information because the shape of the distributions is always Gaussian. It follows that 

CVaR is then just a function for the CDF5 . 

 Moreover, VaR only emphasise on the loss part of the estimated P&L distribution, 

telling nothing of potential upsides that comes with a given VaR. Remember that the 

actual (and true) future P&L distribution is not known, statistical methods on historical 

data are applied as the best estimate. If one were to forget this fact, by treating VaR as an 

exact science, the measurement and interpretation of risk can be significantly misleading. 

 

4 The Nord Pool Electricity Market 
4.1 General 
Nord Pool is a multi national electricity, carbon emission and gas exchange. Whereas 

being the largest electricity derivative exchange in the world (‘Nasdaq OMX buys Nordic 

power bourse Nord Pool’, 17/3/2010). The Nord Pool participants (more than 3856), 

consists of generators, retailers, power consuming manufacturing corporations, market 

makers, brokers and financial participants such as hedge funds and banks.  

The financial market of Nord Pool is applied by its members to either hedge their 

future exposure against the spot price (generators, retailers …) or pure speculation (hedge 

funds, banks …) . Moreover, Nord Pool also facilitates OTC trades between its members 

by running all settlements by the Nord Pool Clearing House. Note that this and the 

following sections are somewhat simplified, but should give a general overview of the 

Nord Pool electricity market. 

 

                                                   
5 Cummulative Densitiy Function  
6 By 31/4/2010; www.nordpool.com 
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4.2 Brief History 
In the early 1990s Norway and Sweden were among the first countries which formed a 

deregulated electricity market. In 1996, the two countries formed the common electricity 

exchange; Nord Pool ASA. Two years later, Denmark and Finland joined the exchange; 

during this period the financial contracts traded at Nord Pool grew in scale and scope. In 

1999, standardized financial options became applicable for trading. From 2000 until 

today, Nord Pool has introduced a range of new commodities such as contract for 

difference (CfD), carbon emissions, gas and green certificates. Fall 2008 Nasdaq OMX 

acquired the clearing and consulting parts of Nord Pool and on March 17 this year 

Nasdaq OMX also acquired the remaining parts of Nord Pool ASA, which consisted of 

amongst other all power derivative and carbon emission trading. However, these deals 

did not include the physical market (ELSPOT and ELBAS) which was carved out into a 

separate company (Nord Pool Spot AS) in 2002.  

 

4.3 Products 
The Nord Pool power exchange consists predominantly of two types of trading; physical 

and financial. 

 The spot market (ELSPOT) is the day-ahead market for physical delivery because 

the non-storability of electricity. For the next day ahead Nord Pool participants can place 

bids for buying or selling electricity down to an hourly level. For each hour, the spot 

price is settled by the price equilibrium. The spot price for the entire day is simply the 

average of the hourly spot prices. The Nord Pool spot price is also known as the System 

Price. Figure 1 exhibits how the spot price is found in equilibrium by the aggregate 

supply and demand curves (Ask and Bid). Note that the spot price is subject to a 

minimum and maximum price, which is currently (- € 200) and € 2000 respectively.  
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Figure 1 : System Price Equilibrium 

System Price

MW

EUR/MWh

ASKBID

Turnover at System Price

Price Cap € 2000

Price Floor - € 200

 
Source : Adapted from www.nordpoolspot.com 

 

The physical market also includes an intra-day market (ELBAS), which trades can be 

made until one hour before the delivery; this market is mainly used for balancing the 

power grid.  

The second type of trading is financial derivatives, primarily consisting of forwards 

and futures as well as some options7. The Nord Pool forward/future market offer 

contracts with delivery from day after tomorrow up six years ahead. The short end 

consisting of futures on days and weeks, followed by forward contracts on months, 

quarters and years in the long end. The main difference between the futures and forwards 

is the settlement agreement. 

 Regarding Futures, the change in value, i.e. the change in closing prices from one 

trading day until the next (before last trading day) is settled in full, meaning for the total 

quantity of the delivery period. During the delivery period, the difference between spot 

and last trading day’s closing price is settled multiplied by the number of hours on the 

given day. While remaining hours in delivery period will be mark-to-market by the last 

closing price. 

                                                   
7 See Eydeland and Wolyniec (2006): 34-46 for more detailed descripitons of electricity forwards, futures 

and options 
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Forwards do not settle anything before the delivery period, but will instead mark-to-

market the difference between the forward price and the purchase price (B). In the 

delivery period the settlement will be the difference between the spot price and the 

purchase price on a daily basis8. 

Figure 2 exhibits the development of the spot price in the period 1/12/2009 to 

31/1/2010 (Left Y-axis) and the cash settlements for one January 2010 forward contract 

(Right Y-axis). 
 

Figure 2 : Example Nord Pool System (Base) M1-10 Forward (purchase price = 50 EUR/MWh) 
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Although Futures and Forwards differ from each other in terms of settlement, the 

exposure with respect to relative price changes is virtually the same if assuming 

deterministic interest rate9, making the difference an issue of liquidity rather than market 

risk. For this reason and practical purposes this thesis will treat futures as forwards. 

                                                   
8 For a more detailed explenation about Nord Pool Futures/Forwards settlment, see Nord Pool (2008) 
9 See Hull (2003: 126-127) 
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Moreover, System contracts can have two types of load; the first which is Base, covers 

the entire delivery period, while Peak load offers delivery each weekday from 08:00 to 

20:00. Also, in addition to System contracts, Nord Pool offers CfD’s for different areas; 

which is basically a two legged contract; first leg consisting of a long position in a given 

area, while the second leg is a short position in System (Base). 

 

4.4 Nord Pool and VaR 
VaR is primarily used by commercial banks and investment firms, some of the Nord Pool 

speculative parties fall directly within this category. However, there may be reason to 

believe that the speculative parties are accountable for a great deal of the financial trading 

at Nord Pool. This is due to the fact that in 2008 the exchange traded financial contracts 

was about four times the total generation in the Nord Pool area (Nord Pool 2008: 23).   

Nevertheless, it is also applicable among participants such as generators and 

retailers; reason being that these firms often have their own trading desks, thus VaR could 

be used as an internal control mechanism. Moreover, because VaR has developed into an 

industry standard, it is most common as the reporting of risk for virtually all major 

corporations which are exposed to some factors which are sensitive to market price 

changes10. 

 Because, the Nord Pool forward contracts significantly differ from standardized 

commodity contracts (such as crude oil etc), the most well-established methodologies 

require some adjustment in order to be compatible. 

Bjerksund et. al. (2000) proposes a three-factor model, arguing that the model is 

better suited for risk management purposes opposed to their single factor model for 

contingent claims. This model is applied for Monte Carlo simulations, whereas under 

each simulation a forward curve is generated by the function of the (correlated) three 

random factors. Under each simulated curve, all the contracts in the portfolio are re-

evaluated by the arbitrage free pricing formula (see section 6.3). Although such a method 

is considered superior to any analytical method concerning non-linear instruments, it has 

                                                   
10 By market prices including: currencies, interest rates, raw material and so on.  
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the drawback of being time consuming when the portfolio is large and the instruments are 

complex (for example customized load profile contracts).  

In the empirical work of Koekebakker and Ollmar (2005), which analyzed the 

forward curve dynamics at Nord Pool from 1995 to 2001, found that a two factor model 

explained 75%, while needing more than 10 factors in order to explain 95%. However, 

the analysis performed was under the assumption that the dynamics where constant over 

the time-series, but as the authors themselves pointed out; the volatility seemed non-

stationary and exhibited a seasonal pattern, thus the possibility of a missing time-

dependent component. Although these findings could be applied in a VaR model, one 

would still run into the same time-consuming issues as for Bjerksund et. al. (2000)’s 

model.  

On the basis of the time-consuming issues regarding Monte Carlo simulation, this 

thesis proposes the use of an analytical VaR model, which would be considerably faster 

than any multifactor models. The analytical model, utilizes the RiskMetrics methodology 

such as EWMA and Cash Flow Mapping methods, but is adjusted somewhat in order to 

be in line with the Nord Pool financial market. 

 

5 Data 
5.1 Historical Closing Prices 
Historical closing prices for Nord Pool System (Base and Peak) futures/forwards for the 

period 1/9/2008 – 30/12/2009 were downloaded from the Nord Pool FTP server. The 

purpose of these closing prices is to construct smooth forward curves (see Section 6.3.1). 

Where the forward curves are applied for: firstly, pricing of Time Buckets in order to 

calculate VCV estimates. Second, calculate daily forward prices from the forward curve 

in order to map exposure for portfolios into Time Buckets, which is in crucial when 

closing price does not exists for a given contract, for example when it is in delivery.  

 The reason for applying closing prices, opposed to for example bid/ask is because 

in the existence of closing prices, MtM value is based on these while in the opposite case 

MtM value is calculated from the forward curve.  
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5.2 Portfolios 
In order to back test the analytical VaR model presented in this thesis, a total of 12 

portfolios have been subjected for back tests over year 2009. All these portfolios are 

managed by “Company”. However, in order to keep anonymity, the actual names of the 

portfolios will not be disclosed. Also, keeping further discretion the positions over the 

sample period in these portfolios will not be disclosed in detail apart from the content 

being exchange traded System contracts at Nord Pool. Moreover, trading has been 

ongoing over the sample period. Also, to exclude the additional complication of currency 

risk, it is assumed that all portfolios reports in Euros. 

 

6 Method 
6.1 Value at Risk Methodology 
Applying the RiskMetrics Technical Document (1996) framework for analytical VaR 

(also known as the Variance-Covariance method), following the assumption that return 

or relative changes in portfolio value is a stochastic variable in discrete time, being 

essentially the same as Markowitz’s portfolio model. Also assuming this stochastic 

variable is Gaussian, the α percentile of the P&L distribution (VaR) can then be defined 

as; 
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Moreover, when assuming the return of the individual securities or risk factors of the 

securities to be Gaussian distributed ensures that the portfolio return will be Gaussian as 

well. Because the timeframe (h) is considerably short (usually one to 10 days) it is most 
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common to assume that the mean return is zero, thus profit or loss will be equally likely, 

hence VaR can be written as; 

   , ,(1 )t h P t P hVaR W z     (1b) 

 

Under this assumption the only estimation concern is the standard deviation or variance 

of the return of the portfolio.  

By definition, a portfolio will contain more than one security, which leads to the 

fact that the variance of the portfolio is not only subject to the variance of each of its 

securities, but also the covariance (or correlations) between the securities or risk factors.  

 For a portfolio containing three or more securities, the variance can be more 

easily expressed in matrix form; 
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6.2 The RiskMetrics Approach  
6.2.1 Returns: The Basis for VCV Estimation 

The basis for all Variance or Covariance (VCV) estimate is returns. RiskMetrics (1996:  

46) argues that log returns (r) are more preferable than simple returns (R) because they 

have more attractive statistical properties than simple returns or prices. Firstly, log returns 

can be time-aggregated by an additive process; also empirical evidence suggests that log 

returns tend to have a closer fit towards the Gaussian distribution than simple returns.  

When aggregating returns over time, log returns are additive opposed to simple 

returns which is calculated by a geometric process; 
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However applying VCV estimates from log returns for a portfolio raises some issues of 

consistency. Assuming Gaussian distributed log returns for the individual securities or 

risk factors does not ensure that the portfolio’s log return to be the weighted average 

return of the securities as it is for simple returns. 

For simplicity consider a two security portfolio (P), each securities log return is 

Gaussian distributed, thus the securities prices will be log normal. However the log return 

of the portfolio is not Gaussian distributed because: 
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When the security prices are log normally distributed, the sum of the prices are not 

lognormal, thus the log return of the sum of prices can not by definition be Gaussian. As 

for RiskMetrics, even though VCV estimates stems from log returns it is assumed that 

future value of the securities are characterized by returns in discrete time. RiskMetrics 

(1996: 8) argument for this is that continuous and discrete returns does not differ much 

from each other when the return is relatively small, thus security prices and portfolio 

value will be Gaussian by approximate. 
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6.2.2 EWMA 

RiskMetrics (1994) suggests Exponentially Weighted Moving Average (EWMA) method 

for estimating the variances and covariances, thus implying that the VCV estimates are 

heteroskedastic (time-varying) and autocorrelated (history dependent)11.  

Also, because the time horizon is very short it is assumed that the mean return is 

zero. Variance or Covariance can under this assumption be defined as; 
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 (3a) 

 

It follows from Equation 3a that the squared or joint returns for time t, is somewhat 

correlated with returns with time less than t.  EWMA variance, covariance and 

correlations estimates are defined by;  
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Alternatively, the EWMA estimates is expressed in matrix form, thus the VCV Matrix 

can be calculated by; 
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11 See Woolridge (2003: 333-334) 
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Following the relationship between correlations and covariances, the correlation matrix 

() can easily be found by; 
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The EWMA estimate for time t, is the sum of the previous trading day’s (t-1) squared or 

joint return plus the previous day’s VCV estimate. The decay factor  determines the 

weights assigned to each past observation. From Equation (3c), EWMA variance can also 

be expressed as; 
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 (5) 

 

Table III, exhibits some of the weights for past observation when using a decay factor of 

0.94. 

 

Table III : EWMA Weights   = 0.94 

Time t-1 t-2 t-3 t-4 t-T 
(1-) (1-) (1-)2 (1-)3 (1-)T-1 Assigned Weight 

0.06000 0.05640 0.05302 0.04984 … 
 

One could theoretically assign an infinite number of past observations to the EWMA 

estimator, thus ensuring a weight sum of one. This is of course not possible; normally one 

would have T observations available. The efficient number of observations can be defined 

by tolerance level (), i.e. the weight sum of observations beyond a given threshold of 

observations (l) will not count as efficient observations. RiskMetrics (1996) shows that 

the efficient number of observations for a given tolerance level is given by; 
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 (6) 

 

For example, with  = 0.94, the efficient number of observations are 74 days at a 1% 

tolerance level, thus the 74 past squared or joint returns explain 99% of the EWMA 

estimate.  

 

RiskMetrics argues that EWMA is preferable because firstly returns are more affected by 

recent returns (or shocks) than past returns, thus they should be weighted accordingly. 

This feature will not be captured if using a rolling sample, which weighs each past 

observation in the sample equally. Second, EWMA is a special case of IGARCH12, i.e. a 

GARCH(1,1) without the constant term and where the parameters sums up to one. Under 

these restrictions, the model will only have the parameter (). With only one parameter, 

optimizing a maximum likelihood function to find the optimal parameter becomes 

considerably simpler than for GARCH or IGARCH models. RiskMetrics used RMSE13 as 

the maximum likelihood function, which is essentially the same as any squared residual 

function. In RiskMetrics findings of the optimal decay factor consisted of time series for 

more than 480 different securities, whereas each security was given an optimal decay 

factor. Following, the optimal overall optimal decay factor was the average optimal 

decay factor weighted by individual RMSE by total RMSE. Note that RiskMetrics took 

only into account variances or volatilities and not covariances in finding the optimal 

                                                   
12 (I)GARCH – (Integrated) Generalized Autoregressive Conditional Hetroscedisic, for more on these 

models see Engle (1982) 

 
13 Root Mean Squared Error, see RiskMetrics(1996: 98) 
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decay factor. The results from this optimization were an optimal  of 0.94 for 1-day 

volatility and 0.97 for monthly volatilities.  

 

6.2.3 Mapping 

General Concept 

Various securities can have several cash flows, where each cash flow (CF) will occur at a 

specific time. This is a somewhat different concept than for simpler securities such as 

stocks, because in a liquid market one could at any time turn in the stocks in exchange for 

cash. However, securities such as bonds or forward contracts will have CF’s occurring at 

specific future time points or periods. Having each CF at a given time for a given security 

as unique would ultimately require VCV estimates for all of these CF’s. This is of course 

quite unfeasible, considering the number of VCV estimates as well as computational 

time. The general idea is therefore to map each cash flow for all the securities in the 

portfolio to a set of risk factors, thus aggregating the exposure on risk factors. In general 

each cash flow is mark-to-market (MtM), due to the fact that it’s a measurement of 

market risk. Also, CF’s can be discounted at the risk free rate to reflect Present Value 

(PV).  

In general, the mapping concept is just another way of viewing the value of the 

portfolio or MtM value. Thus, weighting the (present value) of the exposure of the risk 

factors rather than on individual securities. Also, one could view a single security as 

portfolio with weights in multiple risk factors. 
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RiskMetrics (1996: 118) describes three following conditions to hold when mapping the 

CF’s 

1. Market value is preserved. The total market value of the two RiskMetrics cash 

flows must be equal to the market value of the original cash flow. 

2. Market risk is preserved14. The market risk of the portfolio consisting of 

RiskMetrics cash flows must also be equal to the original cash flows. 

3. Sign is preserved. The RiskMetrics cash flows have the same sign as the original 

cash flow. 

 

Moreover, Jorion (2007) states that mapping is the only solution when the characteristics 

of the security changes over time. This is especially true for securities which cash flows 

occur at a specific date(s), such as bonds or forward/future contracts.  

For example consider a long position in a 3-month Crude Oil Forward today, in 

two months time the purchased Forward will no longer have a 3-month maturity, but a 1-

month maturity, thus it is not really comparable and the contract cannot be assigned a 

specific VCV estimate.  

RiskMetrics (1996: 169) points out that the solution to this problem is to construct 

a term structure i.e. construct contracts with constant maturity independent of trading day. 

VCV coefficient estimates can be obtained by for example linear interpolation to define 

constant maturity.  

The problem which arises from any mapping procedure is that it is possible that 

some of the risk information will be lost. 
 

                                                   
14 This only concerns bonds or interest related securies. See RiskMetrics (1996: 119-120) 
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Figure 3 : Example of VaR Mapping 
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Figure 3 exhibits an example of how four securities with a total of eight unique cash 

flows can be assigned to three risk factors. With a VCV Matrix for the three risk factors 

VaR can be estimated as in Equation 1, with weights equal the exposure in the risk 

factors.  

 

Commodity Forward Contracts 

Forward contracts offer either physical or financial settlement upon delivery. Although 

physical delivery can not directly be translated into a CF, it does offer an implied benefit 

to buy or sell at given price (B), thus creating a benefit which is equivalent to a CF. 

Moreover, if one were to enter into M forward contracts at current market price at time t 

with bulk delivery at time T, and the continuous compounded deterministic interest rate r 

the present MtM value of the position is zero. 
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However, this does not indicate the market risk of the position is zero, because the MtM 

value will change accordingly with the market price. Assuming zero interest rate15, the 

change in MtM value with respect to the forward price can from Equation 8a be 

expressed as; 

 

( , )
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t
t

t

MtMMtM F t T
F t s
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 (8a) 

 

Meaning the MtM value of an M position in the contract F(t,T) changes by M monetary 

units by the absolute change in price in terms of present value when assuming zero 

interest rate. Because the VCV estimates are based on the returns or relative price change 

this expression can be slightly rewritten;  
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Note that when convenience yield is non-existing; the forward price can be directly 

linked to the spot price in absence of risk free arbitrage, such that the forward price is 

only exposed to the spot and interest rate changes. However, because storable 

commodities are subject to convenience yield, this will not be possible. Here, exposure 

Ex() will be defined as underlying values of the position which is exposed against the 

relative market price changes, thus;  

  ( , ) ( , )t tEx F t T M F t T M  (8c) 

 

Furthermore, the exposure of the given contract can be mapped to different risk factors as 

shown in Figure 3. Forward contracts on storable commodities offer bulk delivery at a 

                                                   
15 Section 6.3 explains the reasons for assuming zero interest rate 
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given time. However this point may fall between two of the fixed maturity contracts (Risk 

Factors), thus the contract must be mapped to these factors. 

 

The RiskMetrics Approach for commodity forwards consists of the following steps: 

1. Calculate VCV estimates from the constant maturity contracts by linear 

interpolation. 

2. Discount the contracts(s) CF to PV if zero-interest is not assumed. 

3. Map the PV of the contracts into the same term structure as the fixed maturity 

contracts. 

4. Calculate VaR; include interest rate CF volatilities and correlations if zero-interest 

is not assumed. 

 

Example:  

Consider the one month constant maturity to be 30 days; today the 1-month contract 

expires in 24 days while the 2-month contract expires in 55 days. By linear interpolation 

the contract maturing in 30 days would then equal weight sum of the two contracts thus; 

 24 6( ,30) ( , 24) ( ,55)
30 30

F t F t F t    

 

Consequently, the log can be found by the log difference from the previous trading day’s 

(t-1) constant maturity price;   

   30, ln ( ,30) ln ( 1,30)tr F t F t    

 

Under this framework one could easily estimate the VCV of the term structure i.e. 1M, 

2M and 3M constant maturity contracts. A problem which arises from this method is that 

the constant maturity contract can not be assessed as a risk free arbitrage valuation due to 

the fact that the convenience yield for the constant maturity is unknown. 

As for mapping, consider an M position in a T day maturity contract (where 30 < 

T < 90) with VCV estimates of the term structure Vi , i = (30, 60, 90, …), the exposure of 

the contract can be expressed as:  
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Thus the VaR of this contract can then be expressed as; 
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Options 

Because options are non-linear instruments, their returns will not be identical to their 

respective underlying when applying the option valuation models of Black and Scholes 

(1973) or Black (1976), referred to as B&S and B-76 from here. Both these models 

demonstrate under a set of assumptions and absence of risk free arbitrage, that the options 

cash flow could be replicated by a self-financing portfolio of a position in the underlying 

and in a risk free interest bearing security.  

The underlying of the Nord Pool electricity options are forward contracts and not 

spot prices. The standard valuation method used for forward contracts is the B-76 

model16, which for a European Call can be expressed by; 
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16 See Section 6.3.2 for the assumptions made of applying this model to contingent claims of electricity 

forward contracts 
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The change in the options value can be found by taking a Taylor series expansion of the 

B-76 model17.  
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However, for short time frames it can be assumed that the only significant subject to 

change is the underlying. Thus the change in the options value can be roughly 

approximated by its first order partial derivative with respect to the underlying;  
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 (10b) 

 

It turns out that the first order derivative is equal to the options delta (t), which is also 

equivalent to position in the underlying when replicating the cash flow of the contingent 

claim. It is therefore arguable the options risk with respect to the underlying is equal to 

the risk of the underlying times the delta. Because the B&S and B-76 argument of a self 

financing replicating portfolio is in continuous time, the delta will as well change 

continuously. Thus a delta approximation of the change in the options value will 

therefore be somewhat inaccurate for larger changes in the price of the underlying.  

Figure 4 exhibits the P&L (Y-Axis) by changes in the forward price (X-Axis) for 

one at-the-money call option with purchase price equal the market price. The price of the 

forward, volatility, time to maturity and continuous compounded interest rate are 45, 

20%, 1Y and 5% respectively. In this case, the P&L from delta opposed to full valuation 

does not differ much for price changes in the underlying of 2. However, as expected, for 

larger price changes of the underlying, the delta approximation is far less accurate. 

 

                                                   
17 See Jorion (2007: 299) 
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Figure 4 : Delta vs Full Valuation P&L : one call 
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Jorion (2007: 258) points out that it is fairly easy to construct a delta-neutral portfolio 

which VaR number is close to nil (Such as the Short Straddle Strategy18). However for 

large unfavourable price movements such a portfolio would generate substantial losses. 

RiskMetrics (1996) suggests a delta-gamma-theta approximation for options, however 

implementing this into options on electricity derivatives is rather complex and is 

therefore forfeited. 

From Equation 8d and 10a, the exposure of M options can by delta-normal 

valuation be expressed as;  
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 (10c) 

 

                                                   
18 See Hull (2008 : 231-232), note that in order to be completly delta-neutral the put to call ratio cannot be 

one. 
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6.3 Applying the RiskMetrics Framework to the Nord Pool electricity 

derivative market 
The Nord Pool forward market, consists of contracts of risk free arbitrage average future 

prices for given time intervals (could also be referred to as swaps), such as weeks, 

months, quarters and years. In the delivery period; the difference between the spot price 

(NP System Base/Peak) is settled financially for each day in the delivery period. 

Bjerksund et. al. (2000) shows that the price of the contracts can be expressed as; 
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 (11a) 

 

Where the weight function; w(s;r) is an adjustment to exclude risk free arbitrage if the 

interest rates is not equal to zero. However, in this thesis, it is explicitly assumed that the 

interest rate is zero. This is because firstly, the yield curve movements has a quite 

insignificant effect on the Nord Pool contracts, considering that the typically price 

movement is ± 2-3% on a daily basis. Benth et. al. (2007) also proposes this assumption 

arguing among others that seasonality has a greater impact than interest rate levels. 

Moreover, interest rates have been extremely low for the last years, both in Europe and 

the Nordic countries. Also, incorporating interest rates complicates both the VCV 

estimations (because the interest rate component will have to be excluded) and when 

mapping the positions which are to be assigned to different Time Buckets. Furthermore, 

if the zero interest rate assumption is left out, one will have to estimate VaR from the 

interest rate risk as well, thus incorporating covariance between the forward and yield 

curve. 

Bjerksund et. al. (2000) also shows that the when the interest rate is zero the price 

of the contract can be expressed by; 
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6.3.1 VCV Estimates 

General 

The electricity market differs from standard commodity forwards in the way that 

electricity contracts offer a continuous flow of delivery over a time interval while a 

standard commodity forwards offers only a bulk delivery at a given time. Thus it makes 

more sense to construct fixed maturity contracts which span over a period (Time Bucket) 

rather than points as well as a maturity structure which resemblance the actual traded 

contracts. Moreover, because the Nord Pool contracts are written on the arbitrage free 

average price of the continuous forward prices in a time interval, linear interpolation is 

considered to be inadequate. There are several reasons for this assessment. Firstly that 

several contracts can span over a given Time Bucket, such as three calendar months, 

making linear interpolation more complicated. Second, the existence of perfectly 

overlapping contracts such as the three first calendar month as well as the first quarter, 

which results in a sorting dilemma (although it is common to exclude the longest contract 

due to the fact that including a greater number of contracts will increase market 

information). Moreover, seasonality i.e. high prices during the winter and low during the 

summer can make linear interpolation to under or overestimate the price of the Time 

Bucket. 

This results in the necessity of extrapolating dynamic forward prices from t to the 

end of the delivery period for the contract with longest maturity, such that the prices for 

the time buckets in absence of risk free arbitrage can be found. 
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Figure 5 : Pricing of Time Buckets 
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Pricing of Time Buckets 

The price of a Time Bucket for a given date can be found by arbitrage free pricing from 

the forward curve. In the electricity market there are traded contracts for given time 

periods such as weeks, months, quarters and years. The forward curve is a curve which 

spans from the given date until (at least) the end of the tradable longest contract. In 

general the forward curve can be expressed as a mathematical function which among 

others depends on time to maturity and is subject to the arbitrage free valuation of 

tradable contracts to equal the observed prices. This function can be found by numerous 

different optimization algorithms. 

 

In this thesis, the forward curves are generated by Elviz Curve Server19 10.1 (ECS). ECS 

generates forward curves based on the maximum “smoothness” principle along with a 

sinusoidal Prior function which models seasonality where there are missing market 

information, typically long end contracts such as quarters or years can not by themselves 

                                                   
19 For additional information on Elviz Curve Server; www.viz.no 
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model the markets seasonality. Firstly, now ignoring the Prior function, ECS forward 

curve is a polynomial Spline function. Consider the total of N tradable forward contracts, 

where the contracts cover the entire timeline [ t , TN+1 ] . Moreover each observed 

contract, with maturity ( Ti ,Ti+1 ) has its own set of the coefficients a, b and c; 

 

4

1

( , )

( , )

i i i

i i

f t s a b s cs
where
i F T T 

  


 (12a) 

 

This is showed by Stensland (2008) and is the same as Adams and Deventer (1994) 

applied for yield curves. Adams and Deventer (1994) showed that a forward curve for the 

interval ( t, TN+1 ) based on the maximum “smoothness” principle is the set of coefficients 

which minimizes the integral of squared second order derivative with respect to time (s) 

of the Spline function. Adams and Deventer (1994: 54) also notes that “This expression is 

a common mathematical definition of smoothness used in engineering application”.  
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However, Forsgren (1998) proved that Adams and Deventer’s Spline function was not the 

optimal solution to the minimization problem. Instead, the optimal solution (smoothest) is 

given by natural Splines, thus including the quadratic and cubic terms20. On the other 

hand, incorporating these terms would considerably complicate the optimization problem. 
                                                   
20 Note that this would require Constraint III (See page 38) to be extendend to the second and third order 

derivative as well. While in the Adams and Deventer case, the second and third derivative conditions are 

fulfilled by the first order condition by design.  
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Thus, it is believed that these terms would substantially change the solution given by 

Adams and Deventer (1994).  

 

Furthermore, Stensland (2008) shows that the Target function is subject to the following 

constrains (I-IV)21. Also, Adams and Deventer (1994) and Benth et. al. (2007) presents 

similar constraints to the Target function.  
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Where 

I. The arbitrage free valuation from the forward curve of observed contracts has to 

equal its observed price. 

II. The curve’s connecting points between contracts have to be equal, i.e. the forward 

curve has to be continuous. 

                                                   
21 These constraints are somewhat simplefied oposed to ECS algorithm, but should demonstate the general 

concept.  
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III. The right and left first order derivative with respect to time has to be equal in the 

preceding and following intervals shared connecting points. Thus ensuring 

smoothness of the curve in the connecting points. 

IV. The second order derivative with respect to time has to equal zero, thus the cN  

coefficient has to be zero.  

 

In order to solve this minimization problem in ECS, it is required as input a set of N 

contracts, which spans over time s from t to TN+1 i.e. from trading day until the last day of 

delivery of the longest contract. Note that all the contracts have to cover the entire 

timeline perfectly (although a solution is feasible with some adjustments to the 

constraints) and perfectly overlapping contracts (such as Jan, Feb, Mar and Q1) is not 

possible, because it would hinder a unique solution. ECS has a build in sorting algorithm 

which drops the longest contracts in such cases (i.e. Jan, Feb and Mar would be chosen 

over Q1). Moreover ECS also adjusts for Daylight Savings Time, the last week in March 

will be treated as 167 hours, while the last week in October as 169 hours.  

 Now taking the Prior function into account, Stensland (2008) explains that the 

algorithm consists of three steps; 

1. Subtract the prior function from all observed contracts. 

2. Construct the Spline function described above. 

3. The Forward curve will now consist of two parts: Spline function + Prior function 

 

Figure 6 exhibits the effect of the prior function, as mentioned earlier and also 

commented by Benth et. al. (2007) that the short end of the curve is literally unaffected 

by adding the Prior function, reason being that observed contracts will override the Prior 

function. Here, the two curves are virtually identical until end 2012, thereafter it only 

exists annual contracts. Observe that the season profile from the prior function is 

relatively similar to the season profile for 2012. 
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Figure 6 : Prior vs No Prior 
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From the forward curve, represented by the Spline function it is possible to extract an 

arbitrage free average forward price for any given maturities (represented by time 

intervals), where the end-maturity is less than the last delivery date for the longest 

contract. If the desired maturity (V1,V2 ) falls within one Spline, the average forward price 

can be expressed as;  
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Similarly, if the desired maturity falls between several Splines, the price can be expressed 

as; 
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Peak and Off-Peak 

The Nord Pool forward market consists of two types of contracts; Base and Peak Load, 

consequently Peak-Base or Peak-Off-Peak covariance is required. Recall that Base is just 

the sum of Peak and Off-Peak hours. Fundamental (co)variance calculus illustrates the 

relationship between Base (B), Peak (P) and Off-Peak (OP) returns; 
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It follows that these relationships are valid if and only if the ratio between Peak and Off-

Peak hours are constant for all Time Buckets independent of trading days. Constructing 

Time Buckets on a weekly granularity ensures a (60/108 hours) constant ratio22.  

Following, when traded Base contracts are split between buckets they will typically not 

have this constant ratio in first and last bucket which the contract is exposed to, thus the 

Base variance and Base/Peak covariance estimates of these buckets are biased. It is 

therefore believed that applying Peak/Off-Peak Time Buckets is a better procedure than 

Base/Peak. Because, the VCV coefficients and mapping ensures that the volatility of 

these Time Buckets are correct, because they are weighed by the actual Peak and Off-

Peak hours, and not the constant ratio. 

 Moreover, if the portfolio also consists of contracts with customized load profiles, 

it is impossible to map according to Base/Peak Time Buckets, thus further justification 

for applying Peak/Off-Peak. 

ECS will generate two individual forward curves (Base and Peak) based on the 

described optimization problem due to the fact that Base and Peak hours are semi 

overlapping over the entire curve23. This results in the need of calculating Off-Peak prices 

                                                   
22 By ignoring Day Light Saving Time. 
23 Although a solution is possible which results in a single curve, however this is not possible without a 

Price Profile which complicates the optimization problem considerable. For more information regarding 

Price Profiles see ECS Manual. 
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for Time Buckets and days (for mapping). Consider a contract maturity (V1,V2 ), under 

the zero interest rate assumption and in absence of risk free arbitrage, Equation 13b 

illustrates the arbitrage free relationship between Base (B), Peak (P) and Off-Peak (OP) 

prices; 
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Log Returns 

RiskMetrics (1996) suggests the basis for log returns of constant maturity contracts is the 

log difference between a contract with same maturity (in days) for a given day and 

previous day. For simplicity consider a bulk forward contract with the arbitrary constant 

maturity V; 

    ln ( , ) ln ( 1, ) ,Vr F t V F t V t V     (14a) 

 

Note that there are two timelines here, t which is in trading days, while maturity V is in 

calendar days. If t where a Monday, then (t-1) would be previous Friday, thus the 

difference t-(t-1) would equal three calendar days. The problem which arises from 

Equation 14a is that comparison of constant maturity contracts are not directly 

comparable because if one were to enter into for example a 30 day (V) contract yesterday 

(t-1), and hold to t, the contract would then be a 29 day contract (if (t-(t-1)) = 1 day) and 

not a 30 day contract.  

 To address this issue one will instead compare the constant maturity (V) contract 

for trading day t by the previous trading day’s (t-1) with maturity (V + (t-(t-1))). Which 

then yields the return of entering into a contract on previous trading day, which on the 

given trading day will have the maturity (V). In other words, defining the constant 
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maturity for a given trading day in calendar time and comparing it with the same calendar 

time on previous trading day; 

    ( , ) ln ( , ) ln ( 1, ( ( 1)) ,r t V F t V F t V t t t V        (14b) 

 

The length of the Time Buckets are set to increase with time to maturity, because there 

are more contracts in the short end (weeks, months) than in the long end (annual 

contracts) in order to be similar to the actual maturity structure. A Time Buckets interval 

is defined from a given Day-Ahead to a given Day-Ahead (DA) on the forward curve. 

The length of the Time Buckets is weekly, because it ensures a constant Peak to Off-Peak 

ratio and avoids the complications of intra-week price variations. 

 
Table IV : Example of Time Buckets (ui)  

   Continuous time Discrete Time Bucket Length 
Time Bucket From DA To DA s (Start) s (End) Vbi (Start) Vei (End) (in days) 

u0 1 7 V0 V1 Vb0 Ve0 7 
u1 8 14 V1 V2 Vb1 Ve1 7 
u2 15 42 V2 V3 Vb2 Ve2 28 
... ... ... … … … … ... 
u19 841 1008 V19 V20 Vb19 Ve19 168 

 

Under the zero interest assumption the log returns are calculated by comparing today’s 

integral ( Vi , Vi+1 ) of the forward curve on date t by last trading day (t-1) forward curve 

over the integral (Vi +(t-(t-1)), Vi+1 +(t-(t-1))).  
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6.3.2 Mapping 

Forward Contracts 

Because it is assumed that each Time Bucket has distinctive VCV coefficients, a contract 

which spans over two or more Time Buckets for a given valuation date will have to be 

mapped between these. In absences of risk free arbitrage, a contract can be viewed as a 
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portfolio of two or more Time Buckets. Formally when a contract has constant delivery 

throughout the maturity ( T1 ,T2 ) and which also spans over two Time Buckets u1 and u2. 

When ignoring the existence of Peak hours and, the Exposure for M such contracts are; 
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Contracts can also offer a specific quantity of delivery upon specific future time intervals 

(such as peak contracts which offer 12 hours of delivery on weekdays and nil during 

weekends) which is generalized by a specific load contracts; L(T1 ,T2). By discretionizing 

Equation 15a and adding the variables q(i) and F(t,i,i+1) which indicates the delivered 

quantity and the daily forward price on the i.th day in delivery. Vbi and Vei is the first and 

last forward date in time bucket i respectively. The Exposure can as following be written 

as; 
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 (15b) 

 

Ex(uz) denotes the exposure, which is the sum of all market prices times quantity for a 

given Time Bucket (z). Note that here the Time Buckets for a given interval are split 

between Off-peak and Peak hours, which together form the exposure for base contracts.  
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Now, consider a Base contract with equal amount of delivery throughout its entire 

delivery period, it is also subject to two Time Buckets thus the exposure for M such 

contracts equals; 
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Options 

Options on Nord Pool forward contracts can be priced by the B-76 model, however due 

to the fact that most commodity forwards does not exhibit constant volatility as 

Bjerksund et. al. (2000: 2) points out for most commodities “Typically the implicit 

volatility is a decreasing and convex function of time to maturity”. Thus, the volatility 

must be approximated in some manner in order to be compatible with the B-76 model. 

Bjerksund et. al. (2000) proposes the following single factor model for forward contracts 

with the following price process under the equivalent martingale measure and delivery at 

time s, where the volatility is a function of time to maturity (s).  

 

( , ) ( , ) ( )
( , )

( )

df t s t s dW t
f t s

a c dW t
s t b



     

 (16a) 

 

Where a, b and c are positive constants. In this model it is assumed that dynamics of all 

the forward prices for the same security is only subject to one Wiener Process, thus the 

correlations between forward prices with maturities are implicit in the volatility function. 

This leads to the approximation of the price dynamics of an electricity contract, which 

offers a continuous flow of delivery between the maturities (T1 , T2), under the zero 

interest assumption; 
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Following, considering a European option, with maturity (), less than the beginning of 

the delivery of the forward contract (i.e.  < T1). Because it is assumed that the price 

dynamics from Equation 16b is only subject to one Wiener Process it is applicable in the 

Black 76 model.  Bjerksund et. al. (2000) shows that for such an option that the B-76 

annualized fixed volatility can be estimated by a plug-in volatility; 
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Thus,  
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Note that Nord Pool only offers European Call and Put options; hence from Equation 

16d, the value of put options can be found by for example put-call parity24. 

 

Following RiskMetrics approach in a discrete Peak and Off-Peak setting, the exposure for 

one call option, given that the contract spans over only one Time Bucket, is simply the 

exposure for the underlying (Equation 15c) multiplied by the delta for time t; 

                                                   
24 See Hull (2008: 331) 
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Thus, exposure can now be defined as Delta-Adjusted Exposure, because for the forward 

contracts Delta is by definition 1. 

 

6.3.3 Calculating VaR 

Having defined exposure, the weight in a given Time Bucket equals the aggregate 

exposure for the Time Bucket.  

 ( ) ( ) ,P P OP OP
i i i iw Ex u and w Ex u i    (18a) 

 

From Equation 2 it follows that the portfolios VaR((1-α)) equals: 
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6.4 Back Testing 
6.4.1 General 

A common way of testing whether the model is adequate is Back Testing. Jorion (2007: 

139) states that Back Testing is a formal statistical framework that consists of verifying 

that actual losses are in line with projected losses (VaR). Furthermore, this method of 

validating the model is a way to check whether the assumptions, parameters and methods 

needs to be further calibrated. 

 With a VaR(1-α) estimate, losses should only exceed the VaR(1-α) estimate  α  N 

of N observations. Observations of Losses exceeding the VaR estimates are defined as 

exceptions (e). However, the number of actual exceptions are likely to somewhat differ 
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from expected exceptions (α  N) for N which is not considerably large. This could occur 

because for example bad or good luck. In the opposite case where N is large, one could 

perform back tests by straightforward statistical inference; nevertheless such cases are 

seldom, because it is unlikely that a portfolio has been using the exact same model, 

assumptions and methods over a longer time. 

 

6.4.2 Theoretical P&L 

The necessitate for Theoretical P&L rather than Actual P&L is due to the fact that 

VaRt+h(1-α) is an estimate of the maximum loss which should occur for a given level of 

confidence (α), time horizon h and also given the positions held at time t. Actual P&L for 

time t+h originates from MtM value from the positions held at time t+h less the MtM 

value of positions held at t. Thus Actual P&L will be affected by changes in positions 

from time t to t+h. Actual P&L will also consist of trading P&L, fees and interest income 

or expenses. Although, these additional components could be relatively small when h is 

short. Theoretical P&L (*
t+h) is then MtM value at t+h given the positions held at t less 

the MtM value at t. 

Concerning forward contracts, which MtM value is determined of contract prices 

(B) as well as generalized forward prices F(t,T), the actual nor the theoretical P&L are 

affected by the contract price. Consider the VaR portfolio to consist of only one forward 

contract F(t,T) at contract price B with position M assuming zero interest rate. 
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6.4.3 Kupiec Test 

Kupiec (1995) proposes a likelihood ratio (LR) test for back testing the exceptions in a 

given sample. 

Firstly, defining the actual exception and expected exception ratio; 

 ,ep p
N

   (20) 
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Under the null hypothesis that actual exception ratio is equal to the expected exception 

ratio, Kupiec (1995: 79) shows that the LR test statistics is chi-squared distributed with 

one degrees of freedom; 
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Kupiec (1995) also points out that for small samples; this test has poor power 

characteristics, by having relatively large acceptance regions for the null hypothesis when 

the sample size is small. 

 

6.5 Practical Implications  
Although forward curves for the Nord Pool Base and Peak curves can be calculated and 

exported on an hourly granularity in ECS, there are no known applications that could 

firstly calculate VCV estimates from continuous forward curves based on the basis of the 

methodology presented in this thesis. Nor are there any known applications which can 

map Peak and Off-Peak exposure into Time Buckets and calculate the VaR estimate. The 

solution for the calculations necessary in this thesis has therefore been to develop an 

application for the calculations needed.   

Jorion (2007) exhibits a flowchart on the highest level of how an Analytical VaR 

System could be constructed. The system Jorion (2007) describes is split into two main 

procedures which together form the input for the VaR calculation. The VaR calculation is 

performed by the Risk Engine. The first procedure, showed on the left hand side of 

Figure 7 which maps all positions for a given trading day into positions of Exposure. On 

the right hand side, VCV matrices are calculated by a given model and historical prices.  
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Figure 7 : Delta-normal VaR System 
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Source: Jorion (2007: Figure 10-9) 

 

The application named AVAR for further references, which is written in C#.NET, 

following the Model-View-Controller software-architecture25, making it easy to run VaR 

reports for a range of dates by Batch Processing which is needed for Back Testing. 

AVAR’s objective is firstly to calculate VCV estimates for each Time Bucket within the 

time series, and then storing them in a SQL Database. Second, calculate VaR for each 

portfolio for each day in the time series, by extracting delta-adjusted future volumes on a 

daily granularity from the Datawarehouse. The data in the Datawarehouse is from dumps 

done by Elviz Risk Manager (ERM). The daily volume will then be split into Peak and 

Off-Peak hours. From ECS, daily Peak and Off-Peak prices will be extracted as showed 

in Equation 13, applying the same curves settings as for the VCV estimates, in order to 

keep consistency. From there, AVAR will utilize SQL commands in order map the 

exposure into Time-Buckets. AVAR’s calculation engine will, by extracting the coherent 

VCV estimates from the internal database calculate VaR for the entire time series, as well 

as theoretical P&L by the next trading days forward curve. Thus from there it is fairly 

easy to extract the exceptions over the time series and running the Kupiec Test. 

 

                                                   
25 For more about the M-V-C architecture see Larman (2002) 
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Figure 8 exhibits the flowchart of AVAR, on a higher level of detail than Jorion’s 

example, exhibiting the dataflow from prices to curves to coefficients and exposure. Note 

that AVAR is utilizes DAO (Data Access Objects) and Services in order extract future 

delta adjusted volumes and forward prices.  

 
Figure 8: AVAR Flowchart 
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Appendix 10.1 will provide the core calculation code applied for the EWMA and Value 

at Risk Engine. 
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7 Results 
7.1 Choice of Time Bucket Structure 
In this thesis, the Time Bucket structure chosen is exhibited in Figure 9. As discussed in 

Section 6.3.1 the structure is constructed to resemblance the actual traded contracts on the 

Nord Pool exchange. The reason for the first Time Bucket to start one day ahead of the 

report date is because VaR is from the next trading day’s estimated P&L distribution, 

thus the given report dates exposure is irrelevant for the next day’s P&L. However, this is 

not entirely true, considering weekends and other holydays where the next trading day is 

not one day ahead. Nevertheless, it is considered sufficient because the VCV estimates 

cannot be consistently constructed from a dynamic Time Bucket Structure.  

 
Figure 9: Time Bucket Structure 

Bucket Number Bucket Name From Days Ahead To Days Ahead Bucket Length in Days 
1 1W 1 7 7 
2 2W 8 14 7 
3 3W 15 21 7 
4 4W 22 28 7 
5 2M 29 56 28 
6 3M 57 84 28 
7 4M 85 112 28 
8 5M 113 140 28 
9 6M 141 168 28 
10 Q3 169 252 84 
11 Q4 253 336 84 
12 Q5 337 420 84 
13 Q6 421 504 84 
14 Q7 505 588 84 
15 Q8 589 672 84 
16 Y2.5 673 840 168 
17 Y3+ 841 2016 1176 

 

7.2 VCV Estimates 
Having set a tolerance level at 1% and the decay factor () of 0.94, the first EWMA 

estimates start from 2/1/2009, which is the first trading day of 2009. The sample period 

for the back tests, year 2009 (249 trading days) resulted in 148,155 Peak and Off-Peak 

VCV estimates26. Obviously, because of the sheer number of coefficients, they cannot be 
                                                   
26 Excluding the symetrical coefficients  
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presented in any fashionable way in paper. However, presenting a volatility surface and 

Peak/Off-Peak Time Bucket correlations over the sample period is feasible. Here it is 

chosen to present the volatility surface in Base27. This because short end Peak and Off-

Peak Time Buckets may give an impression of unnatural high volatility, however these 

Time Buckets also exhibit a strong negative correlation. Following, viewing Base 

volatiles should provide a better understanding of volatility term structure. One can easily 

see from the surface chart that the volatility is typically decreasing with time to maturity, 

although there are some spikes which occur for reasons unknown. Furthermore, the 

surface seems to exhibits a seasonal pattern, i.e. increasing volatility curves during 

fall/winter and decreasing during spring/summer. This supports the proposition of 

Koekebakker and Steen (2001) that the volatility exhibits a seasonal pattern. Thus it 

seems like the EWMA volatility estimates captures the seasonal pattern. However one 

cannot exclude the possibility that it is somewhat lagging. 

 

                                                   
27 From Equation 13a, the volatilty of Base Time Buckets can be derived from Peak/Off-Peak volatility and  

Peak/Off-Peak covariance when Peak to Off-Peak hours is a constant ratio. 
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Figure 10 : Volatility Surface 2009 (Base) 
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Figure 11 exhibits the correlation estimates between Peak and Off-Peak Time Buckets 

over the sample period. In general the correlations seem fairly stable over the sample 

period. The correlations from the very short end Time Buckets being strongly negative, 

moving to very positive until the end of the first two months. The following Time 

Buckets seems to be somewhat unstable and uncorrelated. Furthermore, the correlations 

increases from the first year and afterward steady moving towards a strong negative 

correlation again, with exception of spring time, whereas the long end seems to be a bit 

uncorrelated. 
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Figure 11 : Correlation Surface Peak/Off-Peak Time Buckets 
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7.3 Mapping and VaR Example 
This section will present a simple example of how to map a single forward contract into 

four Time Buckets and following its VaR calculation. The motivation for this is to show 

how VaR is calculated on a very small scale. Regarding the real-world portfolios which 

hold a range of contracts, the calculations are far more extensive than presented here. 

Nevertheless, the essence is very much the same, apart from some of the calculation 

methods which are optimized in AVAR, by avoiding duplicate calculations.  
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Relevant information   

Date (t) 01/10/2009  

Horizon (h) One trading day  

   

Assessed Contract ENOMDEC-09  

Total Hours 744  

Total Exposure  €24,403.2  

   

Closing prices  

ENOMDEC-09 (Dec 09 Base) €32.80  

ENOMPLDEC-09 Jan 10 (Dec 09 Peak) €38.15  

   

Time Buckets  
Bucket Name From Days Ahead To Days Ahead 

3M-Peak (u3M
P) 57 84 

4M-Peak (u4M
P) 85 112 

3M-Off-Peak (u3M
OP) 57 84 

4M-Off-Peak (u4M
OP) 85 112 

 

Firstly, smooth continuous forward curves are constructed for Base and Peak as discussed 

in Section 6.3.1. Second, daily Base and Peak prices for the delivery period are calculated 

from Equation 12c-d, and following Off-Peak prices from Equation 13b. These prices are 

exhibited in Table V, along with the daily Peak/Off-Peak volume in MWh which is 

simply 12/12 during weekdays and 0/24 during weekends.  
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Table V : Relevant Forward Prices / Quantity 
 DA 

(i) 
Forward Date 

 
Day 

 
Base Price 
FB(t,i,i+1) 

Peak Price 
FP(t,i,i+1) 

Off-Peak Price 
FOP(t,i,i+1) 

Peak Vol. 
qP(i) 

Off-Peak Vol. 
qOP(i) 

  

61 01/12/2009 Tue 32.7439 37.9359 27.5518 12 12 

62 02/12/2009 Wed 32.7317 37.9419 27.5216 12 12 

63 03/12/2009 Thu 32.7209 37.9486 27.4932 12 12 

64 04/12/2009 Fri 32.7114 37.9560 27.4668 12 12 

65 05/12/2009 Sat 32.7033  32.7033  24 

66 06/12/2009 Sun 32.6965  32.6965  24 

67 07/12/2009 Mon 32.6913 37.9825 27.4001 12 12 

68 08/12/2009 Tue 32.6876 37.9928 27.3823 12 12 

69 09/12/2009 Wed 32.6854 38.0040 27.3668 12 12 

70 10/12/2009 Thu 32.6848 38.0160 27.3536 12 12 

71 11/12/2009 Fri 32.6859 38.0289 27.3430 12 12 

72 12/12/2009 Sat 32.6888  32.6888  24 

73 13/12/2009 Sun 32.6934  32.6934  24 

74 14/12/2009 Mon 32.6999 38.0732 27.3265 12 12 

75 15/12/2009 Tue 32.7082 38.0899 27.3265 12 12 

76 16/12/2009 Wed 32.7185 38.1077 27.3294 12 12 

77 17/12/2009 Thu 32.7309 38.1266 27.3352 12 12 

78 18/12/2009 Fri 32.7453 38.1466 27.3440 12 12 

79 19/12/2009 Sat 32.7619  32.7619  24 

80 20/12/2009 Sun 32.7807  32.7807  24 

81 21/12/2009 Mon 32.8017 38.2137 27.3898 12 12 

82 22/12/2009 Tue 32.8251 38.2386 27.4117 12 12 

83 23/12/2009 Wed 32.8510 38.2648 27.4371 12 12 
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85 25/12/2009 Fri 32.9102 38.3214 27.4989 12 12 

86 26/12/2009 Sat 32.9437  32.9437  24 

87 27/12/2009 Sun 32.9799  32.9799  24 

88 28/12/2009 Mon 33.0189 38.4175 27.6204 12 12 

89 29/12/2009 Tue 33.0608 38.4527 27.6689 12 12 

90 30/12/2009 Wed 33.1057 38.4896 27.7218 12 12 
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The exposure of the four Time Buckets follows from Equation 15c, along with the 

relevant estimated VCV matrix forms the foundation for the 95%VaR calculations 

presented in Equation 18b. The actual numbers and a summary are presented in Figure 

12. 

 



  57/68 

Figure 12 : 95%VaR Example (ENOMDEC-09) 
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Date (t) 01/10/2009      
Horizon (h) One trading day     
Total Hours 744      
       

Contract Closing Price Total Exposure  St. Dev Annualized St.Dev(Return)28 95%VaR Relative 95%VaR 

ENOMDEC-09 32.8 24403.2 386.91 25.17% 636.41 -2.61% 
 

 

7.4 Back Test Results 
Having applied the methodology discussed in this thesis, 95%VaR and theoretical P&L 

has been calculated for 12 real-world Nord Pool portfolios over the sample period of year 

2009. The reason for choosing 95%VaR opposed to 99% as the Basel legislations suggest 

is that the sample is rather small (249 trading days), thus increases the possibility for 

having zero actual exceptions if assuming the model is not faulty. In such case the Kupiec 

Test will not yield any test statistics.  

Kupiec Test with 95% (k) confidence has been performed on all the portfolios. In 

order of keeping the holder of the portfolios anonymous, they will be referred as Portfolio 

A-L. Keeping further discretion and yielding a better picture of VaR against returns, the 

results will be presented in 95%VaR actual exceptions, relative VaR and theoretical 

return29. 

                                                   
28 By 252 trading days pr annum 
29 Relative VaR =  - (VaR / Absolute Total Exposure) 

Theoretical Return = Theoretical P&L / Absolute Total Exposure 
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The results have been most encouraging due to the fact that the null hypothesis has not 

been rejected for any of the portfolios. Thus this thesis cannot yield any statistical 

evidence that the VaR model presented here is faulty based on the Kupiec Test.  

 

Table VI exhibits the actual exceptions and Kupiec Test statistics for the for portfolios. 

The actual exception ratio corresponds remarkably well with the expected ratio (5%) for 

virtually all portfolios, apart from Portfolio A and J. The actual exception ratio is for 

Portfolio A somewhat higher than expected (6.82%) while Portfolio J is lower (2.81%). 

However, these deviations are not significantly sufficient to reject the null hypothesis at a 

95% (k) confidence. 

 
Table VI : Back Test Results Portfolio A-L 

 N e p̂   p* LR(e,p*) CV(k=95%) Conclusion 
Portfolio A 249 17 0.0682 0.05 1.5788 3.841459 Cannot Reject H0 

Portfolio B 249 12 0.0481 0.05 0.0173 3.841459 Cannot Reject H0 

Portfolio C 249 11 0.0441 0.05 0.1847 3.841459 Cannot Reject H0 

Portfolio D 249 11 0.0441 0.05 0.1847 3.841459 Cannot Reject H0 

Portfolio E 249 12 0.0481 0.05 0.0173 3.841459 Cannot Reject H0 

Portfolio F 249 12 0.0481 0.05 0.0173 3.841459 Cannot Reject H0 

Portfolio G 249 15 0.0602 0.05 0.5175 3.841459 Cannot Reject H0 

Portfolio H 249 13 0.0522 0.05 0.0252 3.841459 Cannot Reject H0 

Portfolio I 249 14 0.0562 0.05 0.1956 3.841459 Cannot Reject H0 

Portfolio J 249 7 0.0281 0.05 2.9632 3.841459 Cannot Reject H0 

Portfolio K 249 11 0.0442 0.05 0.1847 3.841459 Cannot Reject H0 

Portfolio L 249 11 0.0442 0.05 0.1847 3.841459 Cannot Reject H0 

 

Further details of portfolios can be viewed in Figure 13 and Figure 14, which illustrates 

the relative returns (red dots) and the relative 95%VaR (black line) over the sample 

period. The relative 95%VaR of the majority of the portfolios is typically around 

-(2-5)%. The exception is Portfolio A, J and K, which for shorter time periods exhibits 

substantial relative 95%VaR. The explanation is that in these time periods, the portfolios 

shift their exposure extensively against products in the very short end of the curve. 

Following, the theoretical returns in these periods are also extensive (especially 

concerning Portfolio J and K), however the drastically increase in relative 95%VaR 

results in few breaches in these periods.  
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Figure 13 : Relative 95%VaR (Black Line) and Theoretical Return (Red Dots) Portfolios A-J 
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Figure 14 : Relative 95%VaR (Black Line)  and Theoretical Return (Red Dots) Portfolios I-L 
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Portfolio J
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8 Conclusions 
This thesis has investigated the application of an analytical VaR model for Nord Pool 

exchange traded electricity derivatives. Although building on the RiskMetrics approach 

the model has been given some adjustments due to the special characteristics of the 

electricity market. 

Firstly opposed to linear interpolation for constructing constant maturity contracts 

in order to calculate log returns, this thesis advocate arbitrage free pricing by smoothed 

forward curves to price constant maturity intervals (Time Buckets). Also, the Time 

Buckets are split between Peak and Off-Peak prices. However, the VCV coefficients 

from the log returns are estimated in the same manner as RiskMetrics, utilizing the time-

varying and autocorrelated estimator EWMA with the suggested decay factor. 

Second, the exposure from the Nord Pool electricity derivatives are not performed by 

linear two-way splitting as RiskMetrics suggests for commodity derivates. Instead they 

are mapped into Time Buckets by daily Peak and Off-Peak prices and delta adjusted 

volumes over the delivery period. 
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The model has been evaluated by back-testing 12 real-world portfolios, where the actual 

numbers of exceptions are tested against the expected exceptions. The test statistics of the 

Kupiec test has not yielded rejection of the null hypothesis that the actual exception ratio 

is equal to the expected exception ratio for any of the portfolios. Thus, these tests cannot 

present any statistical evidence that the model is inadequate.  

Finally, emphasizing on the fact that analytical VaR models are closely related to 

Markowitz’ portfolio optimization model; VaR is virtually the same as the estimated 

variance of portfolio returns. However, the failure of rejecting the null hypothesis does 

not conclude that the model is the perfect predictor of future variance. Instead, based 

upon the results from back tests, one cannot reject to possibility that the model is able 

keep projected losses in line with expected losses, thus in this perspective the model does 

not require any further calibration.  

 

Although, scope of this thesis is limited towards exchange traded Nord Pool electricity 

derivatives, the exact same methodology could in theory be applied for OTC contracts as 

well as other electricity markets. Note if MtM were calculated on an hourly granularity, 

this model would not support contracts with an intraday load profile other than Peak or 

Off-Peak. Reason being that in such case the MtM value could differ (violation of 

RiskMetrics CF mapping principles). 

 

In suggestion of further work, firstly concerning non-linear derivates it is possible that the 

delta valuation is too inaccurate due to the larger price changes which are common for 

electricity derivatives. Thus, the model could be improved by delta-gamma valuation. 

Also, it would have been most interesting to perform a similar back test as presented in 

this thesis, but including several markets as well as more “complex” contracts.  
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10 Appendixes 
10.1 Code Snippets 
Matrix Calculus 
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using System; 
 
namespace AVAR.Model.Domain.Calculus 
{ 
    class MatrixCalc 
    { 
        public static double[,] MatrixMult(double[,] matrixA, double[,] matrixB) 
        { 
            if (matrixA.GetLength(1) != matrixB.GetLength(0)) 
            { 
                throw new ArgumentException("Matrix A and B have invalid dimensions to perform matrix multiplication"); 
            } 
 
           double[,] resultMatrix = new double[matrixA.GetLength(0), matrixB.GetLength(1)]; 
            for (int i = 0; i < resultMatrix.GetLength(0); i++) 
            { 
                for (int j = 0; j < resultMatrix.GetLength(1); j++) 
                { 
                    for (int z = 0; z < matrixA.GetLength(1); z++) 
                    { 
                        resultMatrix[i, j] +=  matrixA[i, z] * matrixB[z, j]; 
                    } 
                } 
            } 
 
            return resultMatrix; 
 
        } 
 
        public static double[,] Transpose(double[,] matrix) 
        { 
            double[,] resultMatrix = new double[matrix.GetLength(1), matrix.GetLength(0)]; 
            for (int i = 0; i < resultMatrix.GetLength(0); i++) 
            { 
                for (int j = 0; j < resultMatrix.GetLength(1); j++) 
                { 
                    resultMatrix[i, j] = matrix[j, i]; 
                } 
            } 
 
            return resultMatrix; 
 
        } 
 
        public static double[,] ScalarMult(double[,] matrix, double scalar) 
        { 
            double[,] resultMatrix = new double[matrix.GetLength(0), matrix.GetLength(1)]; 
            { 
                for (int i = 0; i < resultMatrix.GetLength(0); i++) 
                { 
                    for (int j = 0; j < resultMatrix.GetLength(1); j++) 
                    { 
                        resultMatrix[i, j] = matrix[i, j] * scalar; 
                    } 
                } 
            } 
            return resultMatrix; 
        } 
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        public static double[,] MatrixAdd(double[,] matrixA, double[,] matrixB) 
        { 
            if(matrixA.GetLength(0)!= matrixB.GetLength(0)|matrixA.GetLength(1) != matrixB.GetLength(1)) 
            { 
                throw new ArgumentException("Matrix A and B must have equal dimensions"); 
            } 
             
            double[,] resultMatrix = new double[matrixA.GetLength(0), matrixA.GetLength(1)]; 
            { 
                for (int i = 0; i < resultMatrix.GetLength(0); i++) 
                { 
                    for (int j = 0; j < resultMatrix.GetLength(1); j++) 
                    { 
                        resultMatrix[i, j] = matrixA[i, j] + matrixB[i, j]; 
                    } 
                } 
            } 
            return resultMatrix; 
        } 
      } 
} 
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EWMA Engine 
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using System; 
 
namespace AVAR.Model.Domain.VCV 
{ 
    class EwmaEngine 
        
         /// <summary> 
        /// Runs the EWMA VCV Analysis, will return output in a DataTable of Correlation and Volatility Coefficients 
        /// which can be BulkInserted into a Database 
       /// </summary> 
       /// <param name="corrVolAnalysis">The Analysis, stores parmaterers such as Decay Factor (Lambda)  
       /// and Tollerance level</param> 
      /// <param name="logRetMatrixOutPut">The Log Return Matrix Object</param> 
        public void RunEwma(CorrVolAnalysis corrVolAnalysis,LogRetMatrixOutPut logRetMatrixOutPut) 
        { 
            if(corrVolAnalysis.Method!=CorrVolMethod.EWMA) 
                throw new ArgumentException("CorrVolAnalysis Must BE EWMA"); 
 
            if(corrVolAnalysis.TolleranceLevel==null) 
                throw new ArgumentException("CorrVolAnalysis does Not have Tollerance Level"); 
             
            decimal tolleranceLevel =(decimal) corrVolAnalysis.TolleranceLevel; 
            decimal lambda = corrVolAnalysis.MethodVariable; 
            decimal oneMinusLambda = 1m - lambda; 
            int analysisID= corrVolAnalysis.AnalysisID; 
 
            int matLength = logRetMatrixOutPut.LogRetMat.GetLength(1); 
            DateTime[] reportDateVector = logRetMatrixOutPut.ReportDateVector; 
            double[,] logRetMatrix = logRetMatrixOutPut.LogRetMat; 
            int[,] marketBucketArray = logRetMatrixOutPut.MarketBucketArray; 
 
            //k is the first observation which will be stored 
            int k = (int)Math.Floor((Math.Log((double)tolleranceLevel) / Math.Log((double)lambda))); 
 
            double[,] prevEwmaMatrix = new double[matLength, matLength]; 
 
            double[,] inverseVolDiagonalMatrix= new double[matLength, matLength]; 
 
            for (int dateIndex = 0; dateIndex < reportDateVector.GetLength(0); dateIndex++) 
            { 
                //Copies the The Log Return Vector for the previous report date 
                double[,] logRetVector = CopyLogRetVectorRow(logRetMatrix,dateIndex ); 
 
                //Calcualtes the EWMA VCV Matrix 
               double[,] ewmaMatrix = MatrixCalc.MatrixAdd(MatrixCalc.ScalarMult(MatrixCalc.MatrixMult(logRetVector,   
                                                       MatrixCalc.Transpose(logRetVector)),(double) oneMinusLambda),   
                                                       MatrixCalc.ScalarMult(prevEwmaMatrix,(double) lambda)); 
 
                //Extracts the inverse volatility trace in order to store the coefficients as correlations and volatilities rather than VCV  
                for (int i = 0; i < matLength; i++) 
                { 
                    for (int j = 0; j < matLength; j++) 
                    { 
                        if (i == j) 
                            inverseVolDiagonalMatrix [i, j] = 1/Math.Pow(ewmaMatrix[i, j],0.5); 
                        else 
                            inverseVolDiagonalMatrix [i, j] = 0; 
                    } 
                } 
 
                double[,] ewmaCorrelationMatrix = MatrixCalc.MatrixMult(inverseVolDiagonalMatrix, 
                                                                        MatrixCalc.MatrixMult(ewmaMatrix, 
                                                                                              inverseVolDiagonalMatrix)); 
 
                //Stores the Coefficients if the Date Index is greater than the Mininium numbers of observations requiered by        
               //tollerance level 
                if (dateIndex > k) 
                { 



  67/68 

71 
72 
73 
74 
75 
76 
77 
78 
79 
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                    DateTime reportDate=reportDateVector[dateIndex];  
 
                    StoreCoefficients(matLength,reportDate, inverseVolDiagonalMatrix, analysisID, marketBucketArray,   
                    ewmaCorrelationMatrix); 
                } 
 
                prevEwmaMatrix = ewmaMatrix; 
            } 
        } 
} 
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VaR Engine 
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using System; 
 
namespace AVAR.Model.Domain.VaR 
{ 
    class ValueAtRiskEngine 
    { 
        public static double CalculateSigma(VcvMatrix vcvMatrix,ValueExposureVector valueExposureVector) 
        { 
            double[,] matrix = vcvMatrix.Matrix; 
            double[,] exposureVector = valueExposureVector.Vector; 
 
            if(exposureVector.GetLength(0)!=vcvMatrix.Matrix.GetLength(0) 
            |exposureVector.GetLength(0)!=vcvMatrix.Matrix.GetLength(1)) 
                throw new ArgumentException("VCV Matrix and Exposure Vectors Dimensions are Mismatch"); 
 
            if(exposureVector.GetLength(1)!=1) 
                throw new ArgumentException("Invalid dimensions for ExposureVector"); 
 
 
            ////Returns the Variance of the portfolio by the following matrix operation 
            ////   _______________________________    |                       |     |Exp.     | 
            ////  |  Exposure Vector Transposed   | x |         | VCV Matrix  | x  |Vector | 
            ////                                                                     |                       |     |            | 
 
            double[,] variance = MatrixCalc.MatrixMult(MatrixCalc.Transpose(exposureVector), 
                                             MatrixCalc.MatrixMult(matrix, exposureVector)); 
 
            //Calculates the sigma  
            double sigma = Math.Pow(variance[0, 0], 0.5); 
 
            return sigma; 
 
        } 
 
    } 

 


