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Abstract 

This study analyses forward-spot relationships at two of the world’s largest hubs for natural gas 

(Henry Hub and NBP). We find that spot and forward prices are covariance-stationary. Testing 

the theory of storage shows that inventories are highly significant in explaining the basis. In 

particular, we find evidence of a positive cost-of-carry in both markets. Furthermore, in both 

markets, forward prices have on average exceeded subsequent spot prices. Under the assumption 

of rational expectations, this indicates a negative risk premium. In fact, the premium appears to 

be time-varying. Finally, expected inventories at a contract’s maturity seem to be a more 

important determinant of the risk premium than the contractual length in the UK. 
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1 Introduction 

This paper investigates whether well-established theories concerning the relationship between 

spot and forward prices in the natural gas market hold up to empirical scrutiny. We consider two 

of the world’s most central hubs for trading gas, namely NBP in the UK and Henry Hub in the 

US. We use prices dating back to 1999 up to the most recent data available. More importantly, as 

opposed to similar studies, we perform a comparative analysis using the same sample length for 

both markets. 

 

We find that the theory of storage in its original form performs rather poorly. In particular, we 

observe that the role of the cost of capital is nonessential. However, the level of inventory is 

highly significant in explaining the basis. We detect a high forward-spot spread in the early 

autumn when inventories are plentiful, whereas the basis is deteriorating in the heating season 

when inventories are scarce. Moreover, a concave relationship between inventories and the basis 

is deemed appropriate in both markets. As opposed to other authors, we observe that not only 

shocks to the level of storage works to increase the basis, but rather that these add to the effect of 

absolute inventory levels. 

 

Furthermore, we find the basis to be positive on average, implying a positive cost-of-carry in both 

markets. Much to our surprise, we find that the mean spread is larger in the UK than in the US. 

Intuitively, we would expect the opposite due to the higher variability in UK inventories, 

suggesting a higher convenience yield and hence a lower cost-of-carry. However, the large UK 

basis could be justified by the relatively higher concentration of suppliers in the UK, seeking 

economic rent by keeping forward prices “artificially” high. In addition, there could be a lack of 

arbitrageurs exploiting the price differential. 

 

Through extensive testing of the unbiasedness hypothesis we find that forward prices are not 

unbiased predictors of subsequent spot prices in the UK. Instead they contain a significant time-

varying bias. We argue that the bias inherent in forward prices reside heavily on the supply and 

demand for hedging. In particular, the UK market structure, with a pronounced hedging-demand 
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for forward contracts and supply-side market power, dictates that forward prices are consistently 

above expected spot prices. Under the assumption of rational expectations, the bias may be 

interpreted as a negative forward risk premium. 

 

The US market on the other hand, is more balanced in terms of hedging pressure. The supply-side 

is more competitive and large purchasers are subject to strict regulatory restrictions. 

Consequently, rejecting the unbiasedness hypothesis is somewhat harder in the US. Still, we are 

in fact able to detect a negative risk premium in the forward price. This is surprising, considering 

that most previous studies come to the opposite conclusion. We argue that this contradiction 

could be related to the emergence of index speculators in the recent decade, imposing an upward 

pressure on the demand for forward contracts. Moreover, the increased importance of shale gas 

could have altered the historical spot-forward relationship. 

 

Finally, we discover a strong link between the market price of risk and the level of inventory at 

delivery in the UK. In fact, we find that inventories at a contract’s maturity appear to be a more 

important determinant of the UK risk premium than the contractual length. This suggests that the 

risk premium may be interpreted from an insurance perspective; risk-averse agents’ willingness 

to pay a premium depends on the level of anticipated price risk at maturity, which is mainly 

determined by the expected level of inventory. In the US however, it seems that the storage level 

at delivery is a less important factor in explaining the market price of risk. This is probably due to 

US inventories being less seasonal. 

 

The paper is organised as follows. In the next section, we briefly introduce the most important 

market centres and the instruments traded. We then proceed by examining the data at hand and 

conducting unit-root tests for stationarity. Section 4 investigates the relationship between the 

forward-spot spread using the traditional theory of storage. This is followed by an extended 

analysis of the unbiasedness hypothesis. Section 6 presents a stochastic modelling approach in 

which we link the size and direction of the risk premium to the level inventory. Finally, the 

insights from previous sections are put into practise when examining the relationship between 

inventories at delivery and the risk premium.  
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2 The natural gas market 

Trading points for natural gas are located at onshore terminals/hubs where gas is delivered to the 

pipeline network, with infrastructural capabilities such as storage and concentration of buyers and 

sellers. The most important market centre of natural gas in the US, with the highest daily trading 

volumes, is the Henry Hub located in Louisiana. Henry Hub is used as delivery point for the New 

York Mercantile Exchange’s (NYMEX) natural gas futures contracts, and is a pricing reference 

point for virtually the entire North American natural gas market (Augustine et al., 2006). 

Equivalently, the UK’s most important market centre, the National Balancing Point (NBP), is 

merely a notional hub, where all UK gas flows through, and is the pricing and delivery point for 

ICE structured natural gas futures. Futures are traded for a wide range of maturities, namely 

weeks, months, quarters and even years for both markets. Most of the trade in futures takes place 

in the over-the-counter market (OTC), however some exchanges also offer futures with physical 

delivery trough a hub. Furthermore a market for short-term delivery exists, commonly referred to 

as the spot market. Nevertheless, this is not an organised market in the sense of standardised spot 

contracts traded with publicly available prices (Benth et al., 2008). Hence, short-term trading is 

also mostly OTC. Still, several well-known objective day-ahead indexes are available, 

functioning as proxies for the actual spot price. The index for a given day is the volume-weighted 

average of transaction prices for gas to be delivered the following day. 
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3 Data  

The study uses several sets of data. For the British market, the data covers daily spot and forward 

prices for the National Balancing Point (NBP) over the period from January 1999 through August 

2010, although earlier data is available. This is because in 1998, a large interconnector pipeline 

between Bacton and Zeebrugge established a link between UK gas prices and the oil-indexed 

prices in continental Europe. This structural change means that pre-1998 data will no longer be 

relevant to the current market.  

 

All the UK forward prices we analyse come from Heren Energy Ltd. The spot prices are day-

ahead and weekend-ahead prices from the NBP ICIS Day Ahead Heren mid index. The 

equivalent US forward prices are obtained from NYMEX quotations for Henry Hub (henceforth 

referred to as HH). Furthermore, US spot prices come from the Louisiana Onshore South Henry 

Hub Platts mid index. All the spot and forward prices analysed are price assessments due to the 

lack of closing prices. Moreover, both UK and US forward contracts are delivered as a 

continuous flow over the delivery month. In the UK, gas is typically denominated in British 

thermal units (Btu) and contract prices are quoted in pence per therm, whereas in the US, gas 

transactions are denominated in USD per MMBtu.  

 

The use of price assessments rather than actual close prices can potentially induce measurement 

errors. As long as these errors are unbiased, they will average out to zero. On the other hand, a 

bias in either direction will affect the validity of our estimates. Obviously this matter must be 

taken into account when interpreting the results.  

 

We consider monthly forward contracts with delivery up to 6-months ahead. We omit longer 

contracts from the analysis due to their rather poor liquidity. Prices on forward contracts are 

chosen instead of futures for the same reason. The data series contain 127 and 94 missing values 

(constituting 4.7 percent and 3.1 percent of the total amount of data) for HH and NBP, 

respectively. The missing values where set equal to the average of the two closest observations. 

Furthermore, following the lead of the literature, the daily forward prices are made monthly by 

choosing the prevailing price from the weekday closest to the 20th each month. Hence, we 
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always use a day close to the end of the month that exists for all months of the year. Spot prices 

are aggregated to monthly resolution by computing monthly arithmetic means in order to 

facilitate comparison between spot and forward prices. This is because monthly forward contracts 

have delivery over a month rather than at a particular date.  

 

Some of the models require additional data such as interest rates and storage levels. The former 

include monthly (annualised) data on 1, 3 and 6 month LIBOR money market interest rates 

quoted in GBP and USD. Another pertinent question is which type of storage data ought to be 

applied. We use the sum of monthly base and working storage figures for the US market obtained 

from the Energy Information Administration (EIA, 2010a). This is consistent with the approach 

taken in previous literature (see e.g. Modjtahedi and Movassagh, 2005). We argue that due to 

interconnector pipelines, and hence strong link to the continental markets, storage data from 

continental Europe should also be included in the UK case. Moreover, Haff et al. (2008) find that 

using aggregate European storage numbers improves the results. Therefore, despite the relatively 

questionable quality of data for some countries, UK inventory data consist of monthly storage 

numbers from Europe provided by PIRA Energy Group.  

 

 

3.1 Preliminary look at the data 

In this section we analyse our data by considering numerous plots of the various time series. 

Although casual inspection does have its perils, visual patterns could indicate whether stationarity 

tests are needed to substantiate any first impressions. Furthermore, we look for key features such 

as trends, seasonality, large price spikes and tendencies towards volatility clustering. Fig. 3.1 

plots the monthly spot price in addition to the 1-month and 6-months ahead forward prices on 

log-scale for NBP and HH. Note that the contracts have the same delivery date. 
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Fig. 3.1 Monthly spot and forward prices on log scale from January 1999 till August 2010 

 

Several features are noteworthy. Firstly, there appears to be a positive trend in all the series. This 

immediately raises the question of whether the series are trend stationary or random walks with 

drifts. Obviously formal testing is warranted. Secondly, the 1-month forwards seem to trace the 

spot prices reasonably well and appear to be as volatile in both graphs. The 6-month forwards, 

however, miss the target quite often and, at least for the NBP case, appear to be somewhat more 

volatile. The former is naturally a characteristic we would expect to find in any forecast series. 

Following a relatively stable period from 2003 to 2007 with overall economic growth and less 

uncertainty, the volatility of the HH series has increased in recent years. The same pattern is 

evident in the UK where the volatility seems to be on the rise throughout the whole time span.  

 

Furthermore, we observe a prominent seasonality in the prices. Because natural gas consumption 

is seasonal while production is not, we tend to find higher prices in the winter than in the 

summer. Inventories are built during the summer for use in the winter, putting an upward 

pressure on prices during periods of cold weather due to increased scarcity of gas. Although 

apparent in the US, this pattern seems to be more pronounced in the UK, probably a result of 

natural gas playing a more important role for heating there. Residential consumption (mainly 

used for heating) accounts for approximately 36 percent of total consumption in the UK in 2009 

(Department of Energy and Climate Change, 2010). The US equivalent is approximately 21 

percent (EIA, 2010b). The difference in seasonality is further emphasised in Fig. 3.2, showing 

monthly median spot prices from January 2000 to August 2010 for HH and NBP. 
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Fig. 3.2 Monthly median spot prices 

 

Finally, we could possibly be dealing with a structural break in both our series due to the 

emergence of low-cost unconventional gas, especially shale gas. In 2008, shale gas production 

constituted approximately 8 percent of North American gas production and its share has been 

growing ever since due to advances in hydraulic fracturing and horizontal completions (Cohen, 

2009). Not surprisingly, this has depressed natural gas prices, a feature that is evident in both 

markets. Moreover, large investments in LNG capacity have further increased the fall in the 

wholesale price of natural gas. Today, the US natural gas market is quite self sufficient. 

Therefore LNG, originally intended for North American consumers, is redirected to Europe, 

thereby establishing a closer link between the two markets. Reduced costs of transportation have 

strengthened the interconnection between the markets even further. Combined, these features 

could have a permanent influence on the prices of natural gas in both markets.  

 

Fig. 3.3 plots the difference between forward and spot prices with the same delivery date from 

January 1999 through August 2010. From now on this difference is referred to as the market 

forecast error.  
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Fig. 3.3 Difference between 1- and 6-months ahead forward and spot price on log scale 

 

As expected, the above figure shows that the 1-month ahead market forecast errors are closer to 

zero and less volatile than the 6-months ahead forecast errors. In addition, we find that the 

volatility of the forecast errors in the UK seem to have accelerated throughout the period. The 

same pattern is not evident in the US.  

 

 

3.2 Unit-root test 

Casual inspection of the time-series plots in Fig. 3.1, accompanied by a slowly decaying 

autocorrelation function (not reported here), call for formal unit-root testing1. Determining 

whether a series is trend-stationary rather than a random walk with drift by visual examination is 

difficult, if not to say impossible in some cases2. The seemingly innocuous difference between 

the two has profound consequences. For the former, shocks reflect only temporary departures 

from the trend, whereas for the latter, each shock will have a permanent effect on the mean.  

 

Fig. 3.1 indicates that our time-series exhibit positive trends. Therefore our unit root tests are also 

carried out by including a drift, as well as a drift and a deterministic time trend. Moreover, we 

also test whether the forecast errors are stationary. Visual inspection of the forecast errors gives 

no indication of a trend and hence the tests do not include one. The Phillips-Perron test is a 

particularly relevant unit root test in the presence of moving-average error terms as it is robust 

                                                             
1 Unit root tests are used as a means of testing whether a series of data is stationary. 
2 A formal definition of the term covariance-stationarity is provided in Appendix 1. 
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with respect to autocorrelation and heteroskedasticity (Modjtahedi and Movassagh, 2005). The 

augmented Dickey-Fuller test (ADF) handles autocorrelation by adding lags of the first 

difference of the dependent variable, but is unable to cope with a non-constant variance. Table 

3.1 present the results from the unit-root tests on NBP data. 

 

 

 

Table 3.1    Unit-root test for NBP 

Unit-root tests for t-kFt Unit-root tests for (tFt  - t-kFt)

k

ADF p-value                  

for t-statistics      

(No time trend)

ADF p-value                 

for t-statistics 

(Drift)

ADF p-value                        

for t-statistics 

(Time trend)

ADF                                    

p-value                      

(No time trend)

Phill ips-Perron                      

p-value                       

(No time trend)

0 0.840 0.014** < 0.01***

Φ3 = 5.93*

1 0.801 0.013** < 0.01*** < 0.01*** < 0.01***

Φ3 = 5.28

2 0.961 < 0.01*** < 0.01*** < 0.01*** < 0.01***

Φ3 = 7.67**

3 0.951 0.012** < 0.01*** < 0.01*** < 0.01***

Φ3 = 7.28**

4 0.807 < 0.01*** < 0.01*** < 0.01*** < 0.01***

Φ3 = 9.15***

5 0.755 < 0.01*** < 0.01*** < 0.01*** 0.014**

Φ3 = 7.91**

6 0.706 < 0.01*** < 0.01*** < 0.01*** 0.037**

Φ3 = 11.97***

Critical values ( Φ3)

1% 8.43

5% 6.49

10% 5.47

The data used for testing are monthly spot and forward prices over the period from January 1999 to August

2010. One, two and three asterisks indicate rejection of the null hypothesis of a unit root at 10%, 5% and 1% 

significance levels, respectively. The number of lags of the first difference included in the ADF tests is based

on the Schwartz-Bayesian Criterion. All prices are in natural logarithms. The Φ 3 test statistic tests the null

hypothesis of a random walk with drift against the alternative that the data contain an intercept and/or a 

unit root and/or a deterministic time trend. We reject the null hypothesis for values of Φ3 larger than the 

critical values. The lag truncations for the Phill ips-Perron test for the forecast errors equal the order of the 

MA-process, k-1.
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The ADF tests without a drift and deterministic time trend fail to reject the null hypothesis of 

non-stationarity for all lags k. However, adding a drift and a time trend dramatically alters this 

conclusion. We are now able to reject the null hypothesis of non-stationarity for all our series at 

the 1 percent significance level. Furthermore we find that both the trend and intercept terms are 

individually significant for all lags k (not reported here). To further investigate the issue of 

whether the series are trend-stationary or contain a unit root plus a drift term we apply the Φ3 test 

statistic. We reject the null hypothesis of the latter model and conclude that our spot and forward 

prices are trend-stationary. This finding is consistent with the widely-held view that commodity 

prices should be mean-reverting, the “mean” being the real marginal cost of production. If this is 

indeed the case, we regard the observed trend as the real marginal cost related to the extraction 

and production of natural gas. An interesting suggestion by Modjtahedi and Movassagh (2005) is 

that the observed trend could also reflect Hotelling’s theory of the evolution of the prices of 

exhaustible resources. However we will not dwell on this theory.  
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Table 3.2 present the results from our unit-root tests on HH data. 

 

 

 

Table 3.1    Unit-root test for HH 

 

The spot and forward price series from HH paint a somewhat different picture. Again, the initial 

ADF test fails to reject the null hypothesis of non-stationarity for all lags k. Following the above 

procedure, we add an intercept and a deterministic time trend to the test. For all lags k except for 

Unit-root tests for t-kFt Unit-root tests for (tFt  - t-kFt)

k

ADF p-value                  

for t-statistics      

(No time trend)

ADF p-value                 

for t-statistics 

(Drift)

ADF p-value                        

for t-statistics 

(Time trend)

ADF                                    

p-value                      

(No time trend)

Phill ips-Perron                      

p-value                       

(No time trend)

0 0.771 0.016** 0.024**

Φ3 = 3.05

1 0.849 < 0.01*** 0.017** < 0.01*** < 0.01***

Φ3 = 3.51

2 0.856 0.014** 0.017** < 0.01*** < 0.01***

Φ3 = 3.34

3 0.837 0.030** 0.058* < 0.01*** < 0.01***

Φ3 = 2.47

4 0.856 0.047** 0.093* < 0.01*** < 0.01***

Φ3 = 2.07

5 0.909 0.064* 0.135 < 0.01*** < 0.01***

Φ3 = 1.79

6 0.995 0.058* 0.071* < 0.01*** 0.018**

Φ3 = 2.14

Critical values ( Φ3)

1% 8.43

5% 6.49

10% 5.47

The data used for testing are monthly spot and forward prices over the period from January 1999 to August

2010. One, two and three asterisks indicate rejection of the null hypothesis of a unit root at 10%, 5% and 1% 

significance levels, respectively. The number of lags of the first difference included in the ADF tests is based

on the Schwartz-Bayesian Criterion. All prices are in natural logarithms. The Φ 3 test statistic tests the null

hypothesis of a random walk with drift against the alternative that the data contain an intercept and/or a 

unit root and/or a deterministic time trend. We reject the null hypothesis for values of Φ3 larger than the 

critical values. The lag truncations for the Phill ips-Perron test for the forecast errors equal the order of the 

MA-process, k-1.
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k = 5, we are now able to reject the null at the 10 percent significance level or less. Nevertheless 

we find that the time trend is not different from zero for any conventional significance level. 

Moreover, the Φ3 test statistic fails to reject the null hypothesis of a random walk with drift. 

Accordingly, we now run the ADF test adding only a drift term. As shown in Table 3.2, we are 

now able to reject the null of a unit root also for lag 5.  

 

These results are somewhat surprising to the authors. Corresponding results from previous 

research come to the opposite conclusion. However, our data span over a longer time-horizon 

than that of Haff et al. (2008). Furthermore, we cover a different period, although overlapping, 

than that used by Modjtahedi and Movassagh (2005). Our results are nonetheless consistent with 

the findings of Wei and Zhu (2006) in their study of the US market. As an obvious consequence 

of the above results, we find that all the forecast error series are stationary.  

 

Our findings suggest that there has been a positive trend in natural gas prices, probably a result of 

the period from 2003 to 2007 being one of high economic growth. Moreover, price volatility 

appears to be time-varying, a feature often found in financial markets. Particularly, the 

emergence of unconventional gas has served to increase volatility in recent years, possibly 

imposing a structural break in both markets. We also observe a pronounced seasonality in the 

prices of natural gas. Not surprisingly, this feature is more evident in the UK where natural gas, 

to a larger extent, is used for heating. Our unit-root tests show that all the series are covariance- 

stationary. This implies that no data transformations are needed to perform the subsequent 

regressions. In particular, we find that the UK series are trend-stationary, i.e. exhibiting reversion 

to an upward trend. 
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4 The spot-forward parity in the natural gas market 

A forward contract is an agreement to buy or sell an asset at a certain future time at a 

predetermined price (Hull, 2008). It is mostly traded in the OTC market, and usually between two 

financial institutions, or between a financial institution and client. The one selling the forward is 

said to hold a short position, while the buying counterparty is said to hold a long position. 

Forward contracts on storable assets in efficient markets are priced according to the no-arbitrage 

argument. This is easy to verify. Letting   be the riskless k-period interest rate observed at time t, 

St the current spot price, and tFt+k the price at time t of a k-period forward contract, we must have 

that 

 

         
             (1) 

 

If Eq. (1) does not hold, say, for instance, that the left-hand side is bigger than the right-hand 

side, we could short the forward contract and simultaneously borrow an amount S t in the bank to 

buy the asset. At maturity, after paying off the loan, we would receive a risk free profit          

          
    . As more and more arbitrageurs short the forward contract, the price will 

converge to the no-arbitrage price in Eq. (1).  

 

The no-arbitrage argument that underpins Eq. (1) requires that the underlying asset can be stored 

at no benefit nor cost. This is typically not true for a wide range of commodities. Hence, when 

pricing forward contracts, a clear distinction must be made between investment assets and 

consumption assets. Investment assets are held for investment purposes (e.g. a stock index), while 

consumption assets are primarily held for consumption (e.g. natural gas). The fact that the owner 

of a consumption asset might be reluctant to sell his commodity in the spot market, and secure 

future access by purchasing a forward on the same asset, implies that Eq. (1) is not necessarily 

applicable to pricing consumption assets. Hull (2008) exemplifies this with an oil refinery that 

might not be willing to sell oil and buy forward contracts on oil, since a shortage could 

potentially shut down production. Another example would be the convenience of having an 

inventory to meet unexpected demand. Such direct benefits from holding the physical asset are 

often referred to as a convenience yield. On the other hand, consumption assets are often subject 
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to significant storage costs. Therefore the holder of the asset requires a compensation for storing 

the asset from one period to another. These costs are typically related to rent of storage space, 

insurance and shrinkage.  

 

The theory of storage was initially put forth by Kaldor (1939), Working (1949), Brennan (1958) 

and Telser (1958). It attempts to explain the difference between contemporaneous spot and 

futures prices in terms of interest foregone, storage costs and the convenience yield (Fama and 

French, 1987). Despite the presence of the latter two factors in consumption asset markets, it is, 

under the assumption that the market is sufficiently competitive, and that investors and 

speculators can short the underlying asset, possible to obtain a no-arbitrage price for the forward 

contract. In such an informationally efficient market any attempt to deviate from the equilibrium 

price, will quickly be eliminated by arbitrageurs exploiting the price differential. Assuming that 

both the convenience yield and the storage cost can be expressed at a constant rate, the arbitrage-

free price of a forward contract at time t with delivery at time T, can be written as  

 

          
                          (2) 

 

Taking the logarithm and rewriting Eq. (2) we obtain  

 

                                           (3) 

 

The left-hand side of Eq. (3) is the logarithmic difference between the current price of a forward 

contract with delivery k-months ahead and the contemporary spot price   . This forward-spot 

spread is the so-called basis. Moreover, in Eq.(3)       is the k-month nominal interest rate at 

time t,       is the marginal cost of storing the commodity until delivery is due, and       is 

the marginal convenience yield accrued during the holding period. All the variables on the right-

hand side in Eq. (3) are continuously compounded. From Eq. (3) we see that the basis is 

increasing with the interest rate      . This should come as no surprise, as the gain from selling 

the asset in the spot market and placing the proceeds in a bank account is increasing with the rate 

earned on the deposit. Therefore the holder of the commodity requires a larger compensation to 

store the asset when interest rates are higher. In addition to the interest foregone, the holder of the 
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asset also faces storage costs       which drive up the basis even further. On the other hand, the 

benefits provided by ownership of the asset, i.e. the convenience yield      , dampens the 

upward pressure on the basis.  

 

The convenience yield and storage costs are both relatively hard to measure explicitly. However, 

they should be related to the level of inventory. In particular, the theory of storage suggests a 

negative relation between the convenience yield and inventories, whereas the cost of storage is 

increasing in the level of inventory. In effect, the “net” storage cost               will be an 

increasing function of the current inventory level. Intuitively, the higher the level of storage, the 

lower the value of marginal storage will be. Because of the fear of shutting down production, 

producers will never allow the inventory to reach zero. Thus, the convenience yield becomes very 

large as the inventory is depleted. Moreover, the convenience yield, by definition a benefit, 

cannot turn negative. When inventories are plenty, the market does not expect any shortages in 

the near future, and hence the convenience yield will tend towards zero. Therefore, the 

convenience yield is a highly convex function of inventories as recognised by several authors, 

e.g. Pindyck (1990). This relationship is depicted in Fig. 4.1 below. 

 

Fig. 4.1 The marginal convenience yield 

 

In order to build storage facilities for natural gas, large investments are required. However, once 

such inventories are built, we assume, equivalent to Brennan (1958), that the marginal cost of an 
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additional unit of storage is fairly constant. This is typically the case for commodities with 

continuous production (Gjølberg & Johnsen, 2004). Nevertheless, as soon as the inventory is full, 

producers of the commodity will face a runup in storage costs because the demand for a place to 

store the commodity greatly increases. This is because any excess supply not met by the demand 

of consumers will be lost in the sense that it must be handed away. For many goods, producers 

would, in such a situation, simply halt production until demand picks up or storage capacity is 

relieved. However, several economic factors are preventing gas producers to ease production. For 

instance, if production of natural gas from a well is halted, it may not be possible to restore the 

well's production due to reservoir and wellbore characteristics (Natural Gas Supply Association, 

2010). In addition, natural gas is in many occasions a byproduct of oil production where 

extraction might be profitable despite very low gas prices. Consequently, the marginal storage 

cost per unit must equal the value of the lost proceeds from not being able to sell that unit, i.e. the 

prevailing spot price. Thus, there is a very high opportunity cost related to nearly full inventories. 

Therefore, when inventories are abundant, the net storage cost is highly positive, implying a large 

positive basis. On the other hand, when the aggregate inventory reaches a dangerously low level 

in relation to short-term expected demand, the value of holding an inventory greatly increases. As 

a result, the net storage cost drops and the basis should become negative3. This is illustrated in 

Fig. 4.2. 

 

                                                             
3 This will of course also depend on the cost of capital. 
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Fig. 4.2 The basis in relation to the level of inventory 

 

As we can see from Fig. 4.2, the basis is increasing at a decreasing rate in the level of inventory. 

I* denotes the inventory level that equates the marginal convenience yield and the marginal cost 

of storage adjusted for the cost of capital. Moreover, when inventories are full, the basis reaches 

its maximum as the spot market, which balances real-time supply and demand, becomes a 

substitute for storage. 

 

The above relationship between the convenience yield and inventories is easy and intuitive, but 

has led to some debate regarding the precise way in which inventory levels reveal information 

about the convenience yield (Volmer, 2009). Cartea and Williams (2007) entertain the idea of a 

dynamically updated optimal stocking policy and the facility owner’s ability to smooth the 

marginal convenience yield over time. They stress that the convenience yield is influenced by 

deviations from average inventory levels rather than the actual levels which merely reflect 

seasonal changes in the stock. The rationale behind this train of thought is that such seasonal 

changes are already incorporated in the optimal stocking policy. While we are convinced that 

shocks in the level of storage will indeed impact the marginal convenience yield, we also believe 

that the absolute inventory level is important. We think that the value of holding the commodity 

will be larger in times of low inventories, regardless of shocks, because a completely drained 

inventory is likelier. Shocks will, however, further increase the value. We know that the total 
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storage capacity is limited, especially in the UK where, until recently, inventories only covered a 

fortnight of average winter demand (Volmer, 2009). Therefore, even without shocks, there is a 

very real chance of dangerously low inventories, which according to theory would increase the 

convenience yield. 

 

 

4.1 Empirical testing of the theory of storage 

As proposed by Modjtahedi and Movassagh (2005), we begin by assuming a linear relationship 

between the net storage cost and the level of inventory: 

 

                             (4) 

 

By adding a coefficient to the interest rate we obtain the following estimable linear storage model 

 

                                          (5) 

 

If the theory of storage holds, we expect to find that the coefficient on inventory h1 is greater than 

zero. Furthermore, as pointed out by Fama and French (1987), after controlling for the variation 

in the net storage cost, the k-period basis should vary one-for-one with the k-period interest rate. 

Thus we should find that the interest rate coefficient g equals unity. Also, if the model is fully 

specified, the intercept h0 should be statistically insignificant. 

 

In order to entertain the possibility of a concave relationship between the basis and the level of 

inventory, as illustrated in Fig. 4.2, we also estimate a concave storage model  

 

                                           (6) 

 

From an econometric point of view, one could argue that a polynomial model would be 

preferable because it does not add any constraints with the respect to the curvature. However, 

when plotting the basis against the level of inventory, we find no pronounced turning point and 

hence we choose to estimate a model without one. 
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Finally, to address Cartea and Williams’ (2007) view that the effect of storage on the basis is 

determined by the deviation from the expected seasonal storage level rather than the absolute 

level, we also propose a model using deseasonalised storage data.  We deseasonalise our 

inventory data by loess as suggested by Cleveland et al. (1990)4. Loess is a nonparametric 

procedure that applies progressive smoothing and differencing to decompose data consisting of 

sums of curves. Denoting the actual inventory level for a particular month by   and the 

deseasonalised level by   , we compute a standardised measure of the “normal” inventory level 

by taking the logarithmic difference between the two. When substituting the actual storage levels 

in Eq. (5) by the normalised inventory series we obtain 

  

                         
  

  
                    (7) 

 

The theory of storage omits several variables possibly influencing the basis. Before continuing to 

the results, we briefly discuss two variables left to the error term   . The first is the spot price 

volatility. Intuitively, demand for storage as a means of buffering fluctuations in production and 

consumption should depend positively on price volatility as higher uncertainty calls for a larger 

buffer. When price volatility is high, the value of insurance in the form of holding the underlying 

asset becomes greater. Thus, the basis is likely to be decreasing with the level of spot price 

volatility.  

 

Another example of a variable potentially present in the error term is the price of crude oil. There 

are two explanations for why the price of crude oil may influence the basis. One straightforward 

explanation is that due to the interconnection in production between the two goods, demand for 

crude oil should affect natural gas prices. Empirical observations in the UK market confirm that 

the price of natural gas reacts to changes in the crude oil price with a lag of approximately 9 

months (Volmer, 2009). Another possible explanation is that if prices on longer-term oil contracts 

drop, say for instance that a new cost-saving technology becomes available in the future, oil 

forwards will be relatively cheaper than natural gas forwards, reflecting lower expected 

production costs. Now, consumers with the ability to switch to oil will exploit the forward price 

                                                             
4 We used the “stl” function in R. 
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differential, resulting in decreased demand for natural gas forwards. The gas spot market on the 

other hand, is not likely to be influenced by such technological advances in the future.  Hence the 

basis will decrease. Historically, several industries have switched between natural gas and 

residual fuel oil, using whichever energy source is available at the lowest price. It should be 

noted however, that over the last decade the number of facilities able to switch quickly between 

natural gas and refined petroleum products has declined (Brown & Yucel, 2007).  

 

 

4.2 Results 

We begin this section by briefly investigating the estimated basis for both markets. We restrict 

the analysis to the basis for 1-month ahead forward prices shown in Fig. 4.3. 

 

  

Fig. 4.3 One-month ahead logarithmic basis from January 2000 through June 2010 

 

As emphasised by the red circles, there appears to have been some influential events the last 

decade resulting in large spikes in the basis. We begin by considering the historical basis in the 

UK. The cold winter of 2006 resulted in surging spot prices. In addition, interruptions to gas 

supplies from Russia transiting Ukraine further increased the pressure on UK spot prices since 

the European markets are highly interconnected. As a consequence, the basis deteriorated. When 

inventory levels are low, the convenience yield rises fast because inventories are used to meet the 

increase in demand. Therefore the inventory cannot properly act as a buffer, and a shock has a 

large impact on the current spot price. The change in forward prices is smaller because they 

incorporate the market’s predictions of future supply responses to the increased demand.  
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Furthermore, we observe a large positive spike in the basis in the late autumn of 2006. We 

believe that seasonally mild weather conditions and an abundance of storage, combined with the 

fact that the Langeled pipeline from Norway started operating, reduced spot prices significantly 

below long-term contract prices (ICIS Heren, 2007).  

 

We now proceed with an equivalent review of the US basis. In January 2003 the basis plunged. 

The reason for the sudden drop was the cold US winter season of 2002-2003. Hence, prices of 

natural gas skyrocketed due to a vast increase in demand. As a result, monthly volatility rose 

above 100 percent. Moreover, due to producers’ limited ability to increase supply in the short 

run, storage levels fell to 44 percent below the 5-year average (EIA, 2007). All the above factors 

explain a convenience yield runup resulting in a large drop in the basis.  

 

In late 2006, US inventory levels were significantly higher than the previous year and five-year 

averages. Simultaneously, forward prices rallied on expectations of a cold winter, even though 

the gas storage level was approaching an all-time high, and most analysts anticipated a downward 

pressure on the price (Pirog, 2006). Consequently, the basis in the US skyrocketed. In fact, these 

abnormal market conditions led to the downfall of the major hedge fund Amaranth in September 

2006, who suffered huge losses on their long winter/short summer trading strategy. In particular, 

their poor bet on the March and April 2007 forward spread led to an immediate liquidity crisis 

due to higher margin calls to maintain other positions (Chincarini, 2007).  

 

Finally, we find a large positive spike in the US basis in late 2009. Following the financial crisis, natural 

gas consumption contracted in most major global markets, falling by 4.7 percent in Europe and 

1.8 percent in the US in 2009 (Economist Intelligence Unit, 2010). Spot prices dropped to their 

lowest level in 7 years. Contributing to the decline in prices were the reduced heating demand as 

well as higher than usual production. Moreover, at the end of November 2009, working natural 

gas in storage hit its highest monthly level on record and additions to storage continued past the 

official close of the injection season (EIA, 2010c). All the above factors contributed to an 

abnormally low convenience yield throughout the autumn of 2009 resulting in a surging basis. 
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In addition to the aforementioned influential events, a noteworthy feature stands out in the above 

graphs, namely that the mean basis appears to be positive in both markets. This would imply that 

on average, storage costs, adjusted for the cost of capital, exceed the value of the benefits of 

holding an inventory. In fact, the 1-month average basis amounts to approximately 3.6 percent 

(s.e. 0.013) and 1.8 percent (s.e. 0.006) in the UK and US, respectively.  

 

We also observe that the UK basis reaches approximately 25 percent or more several times 

throughout the sample period. Due to the relatively high frequency of negative forward-spot 

spreads in our sample it might be objected that the positive average could be a result of outliers. 

Nevertheless, we find the sample median basis to be roughly 2 percent in the UK and 1 percent in 

the US. We know that price spikes occur more frequently in the UK. This feature should result in 

a relatively higher convenience yield in the UK, driving down the basis. Thus, our finding that 

the average UK basis is larger than its US counterpart is somewhat surprising. One explanation 

could be the relatively higher concentration of suppliers in the UK seeking economic rent by 

keeping forward prices “artificially” high. Moreover, there could be a lack of arbitrageurs 

exploiting the forward-spot price differential. Lastly, healthy scepticism is warranted as the 

findings could be influenced by the aforementioned issue regarding measurement errors. 
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Before moving on to the results from our regression models, we investigate how the basis varies 

throughout the year. Fig 4.4 shows the average monthly logarithmic basis and average monthly 

storage levels from January 2000 till June 2010. 

 

  

Fig. 4.4 One-month ahead average monthly logarithmic basis and average monthly inventories from January 2000 

through June 2010. The left y-axis shows the basis and the right y-axis shows the inventory level  

 

Fig. 4.4 shows that the basis is negative during periods of peak demand and increases as 

inventories are being filled for both markets. For the UK, the basis reaches its minimum level in 

March when inventories are scarce and peaks in October when inventories are at their highest 

level. Although less pronounced, the US basis seems to follow a similar pattern. Contrary to our 

expectations, for both markets, the basis declines in the late summer when a shortage of stock is 

unlikely. When replacing the sample average with the median, we come to the same conclusion, 

and hence this finding is not a result of outliers. 

 

We now move on to analysing our regression models for NBP. We estimate the models for lag    

k = 1, 3 and 6. However, we believe that for longer-term contracts, the basis is mainly determined 

by the seasonality in the price levels rather than the inventory several months before delivery. For 

instance, consider estimating the net storage cost on a 6-months ahead forward contract in June. 

We know that prices are on average lower in the summer than in the winter. Therefore, the basis, 

as given by Eq. (3), will be very high, not because the net storage cost is particularly large, but 

rather because prices vary systematically throughout the year. We argue that the above reasoning 
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is not sufficiently emphasised in the existing literature. Obviously, we therefore attach less 

importance to the results for lag k = 6. The results for NBP are reported in Table 4.1.   

 

 

 

Table 4.1     NBP regression models 

 

Let us begin by investigating the results from the linear storage model. Firstly, we observe that 

the storage level is highly significant for all lags. Consistent with theory, the estimates for the 

coefficient on inventory, h1, are all positive. Hence, the basis is increasing with the net storage 

costs, albeit the magnitudes are very small. The latter is due to the lack of scaling of the inventory 

data. Furthermore, because inventories may be replenished in the future, current inventory levels 

should have a stronger effect on the shorter-term forward prices. Consequently, the t-ratios 

should be decreasing with time to maturity. Although not provided in the table, we find that the t-

ratio is highest for lag     and lowest for lag k = 6. One possible explanation could be that 3 

months is not enough time to resupply a severely depleted inventory, whereas 6 months is. 

Therefore, the 3-months ahead forward price could be as sensitive to the level of storage as the 

Estimate P-value Estimate P-value Estimate P-value Estimate P-value

1 -0.21 < 0.01*** 5.96E-06 < 0.01*** 12.04 0.075* 0.34

3 -0.46 < 0.01*** 1.58E-05 < 0.01*** 0.21 0.956 0.54

6 -0.17 0.134 9.54E-06 < 0.01*** 0.20 0.959 0.11

1 -0.40 < 0.01*** 2.19E-03 < 0.01*** 12.05 0.074* 0.34

3 -0.95 < 0.01*** 5.72E-03 < 0.01*** 0.27 0.945 0.53

6 -0.49 < 0.01*** 3.60E-03 < 0.01*** 0.19 0.960 0.11

1 0.03 0.153 0.22 < 0.01*** 11.22 0.086* 0.39

3 0.17 < 0.01*** 0.53 < 0.01*** 0.05 0.990 0.52

6 0.21 < 0.01*** 0.32 < 0.01*** 0.20 0.957 0.10

The sample period extends from January 2000 through June 2010. One, two and three asterisks indicate

rejection of the null hypothesis on the 10%, 5% and 1% level, respectively.

k

Intercept Storage Level Root Storage Level Interest Rate

R2

ln(  𝑡 𝑡+𝑘 )  ln( 𝑡) =  0 +  1 𝑡 +    𝑡 𝑡+𝑘 +  𝑡   

ln(  𝑡 𝑡+𝑘 )  ln( 𝑡) =  0 +  1  𝑡 +    𝑡 𝑡+𝑘 +  𝑡   

ln(  𝑡 𝑡+𝑘)  ln( 𝑡) =  0 +  1ln(
 𝑡

 𝑡
+ ) +    𝑡 𝑡+𝑘 +  𝑡  
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one-month ahead contract. Secondly, the interest rate is only significant for the first lag, 

suggesting that, contrary to theory, the cost of capital does not affect the basis for longer-term 

contracts. Nevertheless, although not statistically significant, the estimates for the remaining lags 

are not terribly far from unity. Moreover they are all positive. In fact, testing the hypothesis of the 

interest rate coefficient g being equal to unity shows that the estimates are not significantly 

different from one. Quite surprisingly, the same holds for     on the 10 percent significance 

level. Note that these tests are not given in the above table. Finally, the intercept h0 appears to be 

significantly different from zero. Our results are generally consistent with the findings of Haff et 

al. (2008) for the UK market.  

 

Moving on to the concave storage model, the estimates of the interest rate are equivalent to those 

of the linear storage model. Moreover, we note that the intercept h0 is still significantly different 

zero. Again, we find that the inventory is highly significant in determining the basis. This 

indicates that a concave relationship between inventories and the basis could be appropriate.  

 

Finally, we consider the results from the deseasonalised storage model. Our first discovery, 

although not very surprising, is that using a standardised inventory series gives estimates that are 

more sensible with respect to the magnitude. Furthermore, since this model is a log-log 

regression with respect to the inventory variable, the interpretation of its coefficient is somewhat 

different than the other models. Now, a 1 percent increase in the normalised inventory level 

yields, ceteris paribus, an increase in the basis of 0.2 percent for lag k = 1. Recall that the theory 

of storage posits that the intercept term h0 should be insignificant, the coefficient on inventory h1 

positive and the interest rate coefficient g not significantly different from unity. For most lags, the 

deseasonalised model does not appear to yield more appropriate results than the previous models. 

However, for    , the deseasonalised model gives the best overall fit according to theory. Fig. 

4.5 attempts to graphically illustrate the relationship between the basis, the inventory level and 

the interest rate using the latter model. 
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Fig. 4.5   Graphical presentation of the theory of storage on NBP data 

 

Let us define the variable   as the logarithmic basis and    as the normalised inventory. Fig. 4.5 

confirms that         , i.e. the basis is increasing in the cost of capital  . We also observe that 

          and            (concavity). Therefore, the curvature of the basis with respect 

to inventories is concave regardless of whether we control for a trend and seasonality. 

Consequently, we must have that                   . This supports our suggestion that spot 

markets work as a substitute for storage.  

 

Having analysed the results from the UK, we now turn to the equivalent analysis for the US 

market. The results from running the above regressions on our HH data are shown in Table 4.2 on 

the next page. Note that for the first two models the estimated storage coefficients are not directly 

comparable to those from the UK since the US storage figures are measured in million cubic feet 

rather than million cubic metres.  
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Table 4.2    HH regression models 

 

We will restrict the following paragraph to similarities and contradictions between the two 

markets. Equivalent to our results for NBP, we find the storage level to be highly significant for 

all the estimated models. Moreover, the intercepts are significantly different from zero. 

Surprisingly, in stark contrast to what theory dictates, all the estimated interest rate coefficients 

are negative and generally insignificant for the first two models. One possible explanation to the 

odd interest rate coefficients could be the recent financial turmoil resulting in non-functioning 

money markets. Thus, the extent to which LIBOR rates reflect the actual cost of capital after 

2008 is questionable. In contrast to what we observed for NBP, we now also find that the interest 

rate is significantly different from unity for several lags for all three models (not reported here). 

In fact, all the three models seem to suffer from some degree of functional form misspecification.  

 

Our findings suggest that there have been several historical events resulting in abnormal values of 

the basis. These are typically a result of extreme weather conditions and interruptions to supply. 

Moreover, the basis has been positive on average in the period analysed, reflecting a positive 

Estimate P-value Estimate P-value Estimate P-value Estimate P-value

1 -0.22 < 0.01*** 3.80E-08 < 0.01*** -3.24 0.450 0.18

3 -0.56 < 0.01*** 1.00E-07 < 0.01*** -3.12 0.153 0.41

6 -0.40 < 0.01*** 9.14E-08 < 0.01*** -4.85 < 0.01*** 0.22

1 -0.46 < 0.01*** 1.91E-04 < 0.01*** -3.30 0.443 0.17

3 -1.19 < 0.01*** 5.05E-04 < 0.01*** -3.20 0.147 0.40

6 -0.99 < 0.01*** 4.65E-04 < 0.01*** -4.87 < 0.01*** 0.22

1 0.05 < 0.01*** 0.24 < 0.01*** -7.90  0.070* 0.15

3 0.15 < 0.01*** 0.58 < 0.01*** -7.08 < 0.01*** 0.29

6 0.24 < 0.01*** 0.32 0.026** -6.43 < 0.01*** 0.11

The sample period extends from January 2000 through June 2010. One, two and three asterisks indicate

rejection of the null hypothesis on the 10%, 5% and 1% level, respectively.

R2k

Intercept Storage Level Root Storage Level Interest Rate

ln(  𝑡 𝑡+𝑘 )  ln( 𝑡) =  0 +  1 𝑡 +    𝑡 𝑡+𝑘 +  𝑡   

ln(  𝑡 𝑡+𝑘 )  ln( 𝑡) =  0 +  1  𝑡 +    𝑡 𝑡+𝑘 +  𝑡   

ln(  𝑡 𝑡+𝑘)  ln( 𝑡) =  0 +  1ln(
 𝑡

 𝑡
+ ) +    𝑡 𝑡+𝑘 +  𝑡  
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cost-of-carry. However, in both markets a negative basis occurs rather frequently, indicating a 

relatively high convenience yield. Surprisingly, we find the average basis to be higher in the UK 

than in the US, possibly a result of a larger concentration of suppliers. The theory of storage 

suggests that the cost of capital should serve to increase the forward-spot spread. However, we 

find that it is not particularly relevant in predicting the basis. The level of storage is, on the other 

hand, very important. Indeed, it seems that a concave relationship between the basis and the level 

of inventory is appropriate. Finally, we confirm that not only shocks to inventories, as posited by 

Cartea and Williams (2007), but also absolute storage levels are important determinants of the 

basis. 

 

Contrary to our beliefs, we find that the monthly average basis tends to drop mid-summer when 

scarcity of gas should be unlikely. In addition, the UK basis appears to be larger than any 

reasonable cost of carry would predict. One explanation for this is that agents in the natural gas 

market do not behave rationally. We have mentioned that the arbitrage-free forward price given 

by Eq. (2) only holds under the assumption that the market is sufficiently competitive. Hence, our 

finding may be a result of market participants not exploiting potential mispricing. Alternatively, 

we may argue that our theory does not hold because only a few agents are in fact able to take 

advantage of the arbitrage opportunities available to them. Finally, forward prices could exceed 

spot prices as a result of the interaction between buyers and suppliers in terms of hedging 

pressure and the role of speculators in providing insurance to these market players. Therefore, we 

now turn our focus to forward contracts’ ability to predict future prevailing spot prices.  
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5 The unbiasedness hypothesis  

The theory of storage attempts to explain the difference between spot and forward prices quoted 

on the same date, i.e. the contemporaneous basis. We now consider the difference between 

forward prices and the prevailing spot prices by investigating the well-known, yet heavily 

debated, unbiasedness hypothesis. The theory of unbiasedness postulates that forward prices are 

unbiased predictors of future spot prices (Haff et al., 2008). This raises the question about how 

forward prices are determined in the market. If the forward prices are set to match the expected 

future spot price, then on average, forward prices are unbiased estimates of future spot prices. 

Consequently, the payoff from a forward contract is a result of unexpected deviations in the spot 

market. These are by definition unpredictable, and hence will be zero on average.  

 

As recognised by several authors, there are however arguments for either an upward or a 

downward bias distorting this relationship. Under the assumption of rational expectations such a 

bias can be interpreted as a risk premium. Here, we denote a situation where the forward price is 

below the expected future spot price as a state of normal backwardation. On the other hand, we 

refer to a situation where the forward is above the expected future spot price as contango (Hull, 

2008). However, it should be noted that these terms are sometimes used in relation to the basis. 

Fig. 5.1 is meant to illustrate a situation of normal backwardation.  

 

 

Fig. 5.1   Normal backwardation in the forward market 
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Here we display a situation where the forward price is initially set below the expected spot price. 

Thus, the long position is rewarded a risk premium in the sense that the predetermined price is 

lower than what a buyer is expected to pay in the future spot market. Obviously, the opposite is 

true when markets are in contango. The existence of a bias can have important practical 

implications. A large body of economic agents, not necessarily players in the forward market, 

base their production and consumption decisions on forward prices being estimates of future spot 

prices. Furthermore, a bias, in either direction, will greatly influence the costs and benefits of 

hedging. 

 

A well-known hypothesis concerning the bias in futures prices as predictors of future spot prices 

is the traditional risk-management view. Keynes (1930) is perhaps its most famous advocate, 

stating that the market works as an intermediator facilitating the transfer of price risk from 

hedgers to those who are willing to bear it for compensation. However, Keynes only argued in 

favour of normal backwardation. As a response to the lack of empirical support for the forward 

market being backwardated at all times, a hedging-pressure view emerged. Intuitively, producing 

agents should hold a short position in forwards, whereas consuming players should hold a long 

position, both attempting to avoid future price uncertainty. In a balanced market, i.e. when the 

hedging demand of the two parties match, the unbiasedness hypothesis should hold. In an 

unbalanced market however, the party least compelled to hedge will receive a compensation in 

the form of a risk premium. 

 

The hedging-pressure hypothesis implies that the market structure is highly relevant in predicting 

the size and direction of a potential risk premium. The UK gas market is characterised by a few 

large producers seeking exposure towards spot market fluctuations. This is, in part, due to the fact 

that their shareholders encourage such exposure in their presumably otherwise well-diversified 

portfolio. In addition, the produced volumes are far greater than what is being traded in the 

forward market, limiting the hedging possibilities available. The supply side has seen further 

consentration in recent years through consolidation, resulting in increased market power among 

the suppliers (UK Parliament, 2008). Therefore, it could be suggested that UK producers keep 

forward prices higher than the price that would prevail in a more competitive market. On the 

demand side, numerous purchasing agents are unable to pass on their potentially high energy 
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costs related to spot price exposure to the end-user (Haff et al., 2008). In effect there is a great 

demand for forward contracts. However, the fact that forward prices are too high for many buyers 

to participate in this market somewhat mitigates the demand for these contracts. In contrast to a 

more competitive market where we would expect this to depress prices, we believe that the 

supply side market power is sufficiently large to maintain forward prices above the expected spot 

price (contango). The hedging demand from buyers able to partake in the forward market further 

adds to this expectation. 

 

In the US market on the other hand, buyers are mostly regulated local distribution companies 

(LDCs) able to pass on any cost increases to the end-user, whereas production is spread on 

several small companies (Haff et al., 2008). The LDCs are regulated by state legislation and thus 

unable to exploit any market power. Their main objectives are to ensure reliable delivery of gas 

and to minimise costs for end-users. Hence, their participation in the forward market is limited to 

times when they cannot solely rely on the spot market to ensure availability of gas. Furthermore, 

the LDCs are only allowed to partake in the shorter-term bidweek forward market (Borenstein et 

al., 2007)5. As a result, in contrast to the UK, we do not expect any pronounced hedging pressure 

from the largest purchasers of natural gas. Finally, the US market is more transparent than the 

UK market in the sense that more information concerning prices is made publicly available (The 

National Petroleum Council, 2007). Consequently, it is more likely that arbitrageurs will exploit 

any systematic mispricing. We therefore believe that rejecting the unbiasedness hypothesis is 

unlikelier in the US compared to the UK.  

 

 

5.1 Statistical issues  

There are many statistical issues present when testing the unbiasedness hypothesis that may 

severely affect the outcome. Firstly, if futures prices are indeed unbiased predictors of future spot 

prices, the expected value of the forecast errors is zero (              ). Hence, any 

deviation will translate into a risk premium. Note that for lag    , time to maturity exceeds the 

sampling interval, and consequently the forecast error follows a moving-average process of order 

    (see Appendix 2 for a general proof of this statement). We verify this by examining the 

                                                             
5 “Bidweek” refers to the last five trading days of each month and the contracts traded there have delivery in the upcoming month. 
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empirical ACF and PACF plots of the market forecast errors, the former showing significant 

spikes up to lag     and the latter displaying an oscillatory decaying pattern6. Indeed, this was 

the case for both markets.  

 

Secondly, an interesting observation by Williams and Wright (1991) on previous testing of 

unbiasedness is that the very nature of storable commodities imposes a statistical difficulty. 

Wooldridge (2009) defines the time series analogue of the zero conditional mean assumption as 

follows 

 

            𝑡                    (8) 

 

where ut is the error term and   denotes the explanatory variables for all time periods t. This 

assumption requires more than just contemporaneous exogeneity; u t must be uncorrelated with 

both past and future values of the explanatory variables (and obviously present values). To return 

to the problem of storable goods, consider a regression of the prevailing spot price on lagged 

forward prices. Suppose now that current production of the good is unusually high. This 

abundance of supply will depress the current spot price and the error term. The possibility of 

storage enables producers to store some of their production and rather sell it in the forward 

market. Now the forward prices will decline as well. Consequently the error term in our initial 

regression will be correlated with future values of the explanatory variable, thus violating the 

above assumption and invalidating inference. We confirm that this is the case for both markets by 

investigating empirical cross-correlations between the error terms and future forward prices. As 

expected, these are all positive. 

 

We will perform our tests of the unbiasedness hypothesis on log-scale. There are several reasons 

for doing so. To begin with, it is common practice in the existing literature (e.g. Modjtahedi and 

Movassagh (2005), Cartea and Williams (2007) and Haff et al. (2008)). Moreover, we wish to 

compare our results to those of other authors. Finally, a log transformation palliates the effect of 

the price spikes often found in natural gas prices. However, because the logarithm is a concave 

                                                             
6 ACF and PACF are short-hand notations for the autocorrelation function and the partial autocorrelation function, respectively. 
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function, our results cannot be directly translated into linear space due to Jensen’s inequality 

(Haff et al., 2008).  

 

 

5.2 Forward prices as unbiased predictors 

Obviously expected spot prices cannot be directly observed. The approach in numerous studies is 

therefore to compare the forward price at time t (with delivery at time t + k) to the subsequent 

spot price. The challenge with this approach is to distinguish between differences due to non-

rational expectations or inefficiencies in the pricing of forward contracts and actual risk premia 

(Gjølberg & Brattested, 2010). Examining the unbiasedness hypothesis is usually carried out by 

testing the null hypothesis that the mean forecast error is zero, where a rejection translates into a 

risk premium. Nevertheless, the null’s assumption of a zero risk premium is problematic and 

several studies have disputed the unbiasedness hypothesis. In addition to the possibility of non-

rational behaviour, the forward price may also be a biased forecast of prevailing spot prices due 

to changes in the market’s perception of risk, including changes in the net hedging demand 

(Gjølberg & Brattested, 2010).  

 

We now proceed to describing our first test of unbiasedness. From the section on statistical 

issues, we know that our forecast errors follow a moving-average process of order     when 

time to maturity exceeds the sampling interval. To overcome the overlapping observation 

problem, we estimate the following equation 

 

                        
   
          (9) 

 

where   is the intercept and    is a white noise process. Formally, a sequence        
  is a white 

noise process if each value in the sequence has a mean of zero, a constant variance, and is 

uncorrelated with all other realisations (Enders, 2009). Thus the expected forecast error has an 

unconditional mean equal to   regardless of the presence of moving-average errors. However, 

due to the possibility of a seasonal component in the forecast error variance, we could have 

unconditional heteroskedastic errors. For example, the variability in gas prices typically increases 

in the winter when inventories are scarce. Thus, it is likely that the forecast errors will display a 
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similar pattern. Whenever the standard errors are heteroskedastic, inference will be invalid. By 

estimating the above equation as an appropriate moving-average process we account for the 

autocorrelation in the error term. Hence, having rendered the issue of autocorrelation obsolete, 

we may then solely direct our focus towards the unconditional heteroskedasticity problem. We 

will therefore estimate Eq. (9) by using heteroskedasticity-robust standard errors7. As usual, we 

start out by analysing the results from NBP given in Table 5.1 below.  

 

 

 

Table 5.1     NBP market forecast errors 

 

From Table 5.1, we observe that the standard errors increase with the lag length. The mean 

market forecast errors follow a similar pattern. This is, of course, to be expected since forecasts 

should improve as relevant information arrives. The closer we are to maturity, the more 

information is available. Interestingly, the market forecast errors are all negative and statistically 

                                                             
7 We used the “robust” command in Stata. 

NOB Mean error Standard error P-value

Spot price forecasts

St - t-1Ft 128 -0.033 0.0161 0.039** -0.043

St - t-2Ft 128 -0.077 0.0271 < 0.01*** -0.047

St - t-3Ft 128 -0.107 0.0406 < 0.01*** -0.074

St - t-4Ft 128 -0.123 0.0482 < 0.01*** -0.085

St - t-5Ft 128 -0.134 0.0585 0.022** -0.067

St - t-6Ft 128 -0.139 0.0672 0.039** -0.087

1-month-ahead price forecasts

t-1Ft - t-2Ft 128 -0.042 0.0130 < 0.01*** -0.037

t-1Ft - t-3Ft 128 -0.070 0.0231 < 0.01*** -0.051

t-1Ft - t-4Ft 128 -0.086 0.0356 0.016** -0.048

t-1Ft - t-5Ft 128 -0.094 0.0435 0.031** -0.046

t-1Ft - t-6Ft 128 -0.099 0.0538 0.066* -0.043

The sample period extends from January 1999 through August 2009. One, two and three asterisks 

indicate rejection of the null hypothesis of zero unconditional means at 10%, 5% and 1% significance 

levels, respectively. The reported standard errors are made robust to heteroskedasticity by applying 

Stata's "robust" command.

Market forecast error

Intercept Median 

error
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significant – a clear sign of contango, also on the original scale. Therefore we reject the null 

hypothesis of unbiasedness, in favour of the alternative, namely the existence of a risk premium. 

Since the prevailing spot prices are consistently below the price “predicted” by the forward 

contracts, producers of natural gas seem to be at the receiving end. This does not come as a 

surprise in a market where producers have market power and there is a vast demand for forward 

contracts. Because forward prices are relatively expensive, anyone interested in the physical 

commodity will on average purchase gas at a lower price by solely relying on the spot market. 

These results are consistent with the findings of previous authors such as Haff et al. (2008) and 

Cartea and Williams (2007). We arrive at the same conclusion for forecasts of the 1-month ahead 

forward price, strengthening the evidence of contango. We observe that the forecast errors appear 

to be larger for predictions of the spot price than for the 1-month ahead price. The same seems to 

hold for the standard errors. This is probably a result of the spot market being more volatile than 

the forward market. 

 

We may suspect that the above conclusion could be due to outliers. When considering a time 

series with several outliers the median error forecasts could be more representative of “typical” 

forecast errors. For the spot forecast errors in Table 5.1, the medians seem to follow the same 

pattern as the means. However, as shown explicitly in Fig. 5.2, they are generally smaller than the 

means, which could mitigate our rejection of the null hypothesis.  

 

 

Fig. 5.2 NBP mean and median forecast errors 
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Having analysed the results from the UK, we now turn to the corresponding results from the US, 

which are found in Table 5.2 below. 

 

 

 

Table 5.2    HH market forecast errors 

 

Again we observe that both the standard errors and the mean forecast errors increase with the lag 

length. Furthermore, equivalent to our findings from NBP, the mean forecast errors are all 

negative. The standard errors are roughly the same for both markets. However, the forecast errors 

are much smaller, in fact only about half the size. As a result, none of the HH forecast errors are 

significantly different from zero. Thus, we fail to reject the unbiasedness hypothesis. This is 

indeed what we expected due to the US market being more efficient in the sense that arbitrageurs 

to a larger extent exploit misprising. In addition, we believe that the US market is more balanced 

with respect to hedging pressure.  

 

NOB Mean error Standard error P-value

Spot price forecasts

St - t-1Ft 128 -0.013 0.0129 0.302 -0.012

St - t-2Ft 128 -0.034 0.0252 0.184 -0.028

St - t-3Ft 128 -0.050 0.0383 0.193 -0.032

St - t-4Ft 128 -0.054 0.0439 0.215 -0.051

St - t-5Ft 128 -0.060 0.0598 0.320 -0.041

St - t-6Ft 128 -0.056 0.0612 0.362 -0.023

1-month-ahead price forecasts

t-1Ft - t-2Ft 128 -0.020 0.0134 0.141 -0.023

t-1Ft - t-3Ft 128 -0.034 0.0252 0.177 -0.036

t-1Ft - t-4Ft 128 -0.039 0.0355 0.268 -0.017

t-1Ft - t-5Ft 128 -0.039 0.0440 0.372 -0.022

t-1Ft - t-6Ft 128 -0.039 0.0585 0.505 -0.004

The sample period extends from January 1999 through August 2009. One, two and three asterisks 

indicate rejection of the null hypothesis of zero unconditional means at 10%, 5% and 1% significance 

levels, respectively. The reported standard errors are made robust to heteroskedasticity by applying 

Stata's "robust" command.

Median 

errorMarket forecast error

Intercept
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Our results are largely consistent with earlier research. Modjtahedi and Movassagh (2005) also 

fail to reject the null, withal there is a dramatic difference. They find that the mean forecast errors 

are positive. It should however be pointed out that Modjtahedi and Movassagh considered market 

data from 1993 through 2004, while we consider more recent data. This could indicate that the 

US market has undergone significant changes during the last decade.  For instance, the number of 

participants in the natural gas forward market has increased dramatically following the entrance 

of index speculators around 2002 (Wray, 2008). They are typically pension funds, university 

endowments, life insurance companies, sovereign wealth funds, and banks. Most importantly, 

index speculators only take long positions. They turned their attention to commodity markets 

after discovering that the performance of commodities was not correlated with the return on 

equities and thus could be used as means of diversification. The volume held by these speculators 

has surged. Indeed, the value of open interest was approximately 23.6 billion USD in 2002, 

whereas the value had increased to roughly 87.3 billion USD in 2008 (Wray, 2008)8. As a result, 

the demand for forward contracts has risen quite significantly during the last decade. Another 

explanation as to why our results deviate from those of Modjtahedi and Movassagh could be that 

the US price series seem to exhibit a structural break following the emergence of shale gas. As 

the cost of extracting shale gas fell, the supply curve shifted to the right, resulting in greater 

quantities available at lower prices. It is however, unclear whether the introduction of shale gas 

has affected spot and forward prices differently, i.e. if it has influenced the forecast errors. 

 

Yet again, the median spot forecast errors seem to be increasing with time to maturity. 

Nevertheless, another difference between the two markets is noteworthy. As opposed to our 

results from the UK, where the medians were generally smaller than the means, the medians are 

now largely equal to the means. Thus, on the contrary, our conclusion that we fail to reject the 

unbiasedness hypothesis does not risk being invalidated by outliers. 

 

 

                                                             
8 The open interest is the number of long positions or, equivalently the number of short positions. 
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5.3 Cointegration tests 

The cointegration tests of this section will allow us to study features of the spot-forward 

relationship beyond unbiasedness, namely whether a potential bias is varying over time. Consider 

now the following linear regression 

 

                             (10) 

 

Under the null hypothesis of unbiasedness we must have that     
 
    . Suppose that the 

beta coefficient does not equal unity, in particular that beta is lower than one. Every time a 

change in the forward price occurs, the spot price will change by a smaller amount according to 

Eq. (10). The market forecast error for that particular contract will also change by 1 -  
 
 for every 

one-unit change in the forward price. Thus, rejecting the null of unbiasedness will not only imply 

a risk premium, but one that is time-varying. 

 

Earlier we stressed that the error term in Eq. (10) will be correlated with future values of      . 

We deal with this by defining a variable      as suggested by Stock and Watson (1993) 

 

                             (11) 

 

Now,      will be correlated with both current and future values of     , allowing us to consider a 

linear projection of the form 

 

                   
 
            (12) 

 

where, by construction,      is uncorrelated with        for all          . Substituting Eq. (12) 

in (10) gives 

 

                       
 
                 (13) 
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For regressions on the 1-month ahead forward we simply substitute    by      . After having 

transformed our initial model,      is uncorrelated with the explanatory variables. Hence our 

model no longer violates the zero conditional mean assumption, thereby allowing us to find 

consistent estimates of the regression parameters. Nevertheless, the issue regarding 

autocorrelated error terms remains; because      follows a moving average process of order  

   , by implication,      behaves in the same manner. Therefore we estimate Eq. (13) by OLS 

and adjust the t and F-statistics with a Newey-West correction. This procedure works by 

computing HAC standard errors which attempt to overcome autocorrelation and 

heteroskedasticity in the error term. The lag length used in the correction equals the order of the 

moving average process. Stock and Watson (1993) term the approach dynamic OLS (henceforth 

known as DOLS). 

 

In order to properly estimate Eq. (13), we must also choose an appropriate lag length for our      

terms. One possible procedure is to start out using     lags in our regression, continuing to add 

lags until the last added coefficient    is insignificant. As it turns out, no additional lags are 

needed. Furthermore, from Eq. (13), a discovery that      is stationary will imply that the error 

term,     , is also stationary. If this holds, it follows that the spot and forward prices are 

cointegrated with cointegrating vector      . Therefore, a simple unit-root test on      will 

suffice. From our preliminary studies, we already know that      is stationary for all lags  . 

However, for the sake of argument, the results from our unit-root tests of       will still be 

reported. Yet again, we proceed by first considering the results from NBP, given in Table 5.3. 
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Table 5.3    NBP cointegration test 

 

We find that both   and   start with values close to zero and one for lag    , respectively. The 

deviations from these values become larger as the lag length increases. The joint hypothesis 

    
 
     is rejected for all lags for the regressions on both the spot price and the 1-month 

ahead forward prices, giving rise to the rejection of our null hypothesis of unbiasedness. The 

conscious reader will now recall that these results are equivalent to what we found in section 5.2. 

Furthermore, we find that the p-values for the joint hypothesis     
 
     are increasing 

with the lag length k, although we reject the hypothesis for all lags. Thus, it seems that the risk 

premium inherent in forward contracts mainly originates from the final months before delivery. 

One possible explanation to this could be that the risk premium is tied to the prevailing inventory 

level. Intuitively, as more information about future inventories becomes available, market 

participants can better assess the risk of price spikes at maturity. Finally, the cointegration test’s 

rejection of unbiasedness does not only imply a risk premium, but a time-varying one. 

Lead 

Price

Lagged 

price

Estimate 

of α

Estimate 

of β α=0 β=1 α=0 & β=1

PP-statistic 

on residuals

ADF-statistic 

on residuals

S t t-1Ft 0.068 0.968 0.301 0.137 0.012** < 0.01*** < 0.01***

t-2Ft 0.160 0.927 0.166 0.045** < 0.01*** < 0.01*** < 0.01***

t-3Ft 0.254 0.889 0.123 0.030** < 0.01*** < 0.01*** < 0.01***

t-4Ft 0.385 0.845 0.079* 0.025** < 0.01*** < 0.01*** < 0.01***

t-5Ft 0.607 0.778 0.041** 0.019** 0.013** 0.014** < 0.01***

t-6Ft 0.774 0.728 0.040** 0.022** 0.030** 0.072* < 0.01***

t-1Ft t-2Ft 0.145 0.943 0.04** < 0.01*** < 0.01*** < 0.01*** < 0.01***

t-3Ft 0.227 0.909 0.069* 0.019** < 0.01*** < 0.01*** < 0.01***

t-4Ft 0.402 0.853 0.036** 0.014** < 0.01*** < 0.01*** < 0.01***

t-5Ft 0.542 0.810 0.033** 0.018** 0.022** 0.044** < 0.01***

t-6Ft 0.682 0.768 0.034** 0.022** 0.044** 0.080* < 0.01***

The sample period extends from January 1999 through August 2009. One, two and three asterisks indicate

rejection of the null hypothesis at the 10%, 5% and 1% significance levels,  respectively. The number of

lags of the first differences included in the ADF tests is based on the Schwartz Bayesian Criterion. The lag 

truncations for the Phill ips-Perron test for the forecast errors equal the order of the MA-process, k-1.

P-values for the regression results are computed using the Newey-West adjusted t and F-statistics.

P-values
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Having examined the results from NBP, we now investigate our results from the US found in 

Table 5.4 below. 

 

 

 

Table 5.4     HH cointegration test 

 

Equivalent to what we found for NBP, both   and   start with values close to zero and one for lag 

k = 1. Once more the deviations from these values become larger as k increases. Again, we reject 

the unbiasedness hypothesis for all leads and lags, strongly indicating a risk premium that varies 

over time. We recall that we failed to reject our initial test of unbiasedness for HH in section 5.2, 

but that all the market forecast errors were negative. Hence, there seem to be some similarities 

between our test results. A rejection of the null is likelier for the cointegration test because we 

have added a new restriction, namely that the forward price coefficient   must equal unity to 

ensure unbiasedness. Overall, the results from the US market tell the same story as those from the 

UK. Nevertheless, our results are somewhat different than those of Modjtahedi and Movassagh 

(2005) who fail to reject the unbiasedness hypothesis for equivalent lags using DOLS. However, 

Lead 

Price

Lagged 

price

Estimate 

of α

Estimate 

of β α=0 β=1 α=0 & β=1

PP-statistic 

on residuals

ADF-statistic 

on residuals

S t t-1Ft -0.019 1.002 0.611 0.924 0.029** < 0.01*** < 0.01***

t-2Ft 0.073 0.934 0.288 0.104 0.033** < 0.01*** < 0.01***

t-3Ft 0.127 0.892 0.227 0.066* 0.025** < 0.01*** < 0.01***

t-4Ft 0.218 0.836 0.08* 0.014** < 0.01*** < 0.01*** < 0.01***

t-5Ft 0.349 0.760 0.016** < 0.01*** < 0.01*** 0.020** < 0.01***

t-6Ft 0.488 0.681 < 0.01*** < 0.01*** < 0.01*** 0.069* < 0.01***

t-1Ft t-2Ft 0.096 0.930 0.070* 0.027** 0.037** < 0.01*** < 0.01***

t-3Ft 0.152 0.888 0.094* 0.028** 0.023** < 0.01*** < 0.01***

t-4Ft 0.259 0.824 0.02** < 0.01*** < 0.01*** < 0.01*** < 0.01***

t-5Ft 0.389 0.749 < 0.01*** < 0.01*** < 0.01*** 0.014** < 0.01***

t-6Ft 0.527 0.670 < 0.01*** < 0.01*** < 0.01*** 0.025** < 0.01***

The sample period extends from January 1999 through August 2009. One, two and three asterisks indicate

rejection of the null hypothesis at the 10%, 5% and 1% significance levels,  respectively. The number of

lags of the first differences included in the ADF tests is based on the Schwartz Bayesian Criterion. The lag 

truncations for the Phill ips-Perron test for the forecast errors equal the order of the MA-process, k-1.

P-values for the regression results are computed using the Newey-West adjusted t and F-statistics.

P-values
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when estimating Eq. (13) by dynamic GLS adding GARCH to the error processes (controlling for 

conditional heteroskedasticity) their results are more in line with our findings.  

 

 

5.4 Martingale tests 

Another alternative, rendering the moving-average error problem obsolete, is to consider 

martingale tests 

 

                              (14) 

 

The forward price series are said to have a martingale property if the forward price at time 

       is an unbiased predictor of the prevailing forward price at time    , when both have 

the same end date (Haff et al., 2008). Note the subtle difference between this expression and the 

above test of unbiasedness in section 5.3. Since the price increments now only cover one time 

period, time to maturity no longer exceeds the sampling interval. Therefore, the price increments 

in the regression below will be white noise processes if Eq. (14) is fulfilled. 

 

                                 (15) 

 

Thus, martingale tests do not require HAC standard errors to ensure valid inference. However, 

the Stock-Watson correction of     , to correct for the aforementioned violation of the zero 

conditional mean assumption, is still warranted. Moreover we can now possibly detect a 

Samuelson effect in our series. Samuelson (1965) demonstrates that the variance of a forward 

price may not be constant over the contractual life, specifically that it should increase as the 

contract approaches delivery. In economical terms, the rationale behind the effect is that as a 

contract gets closer to maturity it is further influenced by the arrival of information. This is 

because the market lacks time to adjust before delivery takes place. Table 5.5 confirms that the 

Samuelson effect is indeed present in the natural gas market.  
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Table 5.5     Standard deviations of price changes 

 

We observe that the standard deviation of the price changes is growing as a contract approaches 

delivery. Not surprisingly, the Samuelson effect appears to be somewhat less pronounced in the 

US, where the price volatility in both the spot and forward market is generally lower. 

 

Before we continue to the results, an additional note on the martingale regression is necessary. As 

posited by Movassagh and Modjtahedia (2005), due to the possibility of a time-varying risk 

premium, the martingale property is not a sufficient condition for unbiasedness. Imagine a time-

varying risk premium     so that the forward price at time t – k – 1 is given by  

 

                                  (16) 

 

Hence, the expected forward price materialising one period from now (i.e. t – k) is 

 

            
 
                                      (17) 

 

Now, substituting Eq. (16) in (17) yields 

 

                                                (18)  

 

which is identical to Eq. (14) when a time-varying risk premium is present. Therefore, the change 

in the forward price from one period to the next is given by the expected change in the risk 

Price change NOB NBP HH

St - t-1Ft 128 0.182 0.146

t-1Ft - t-2Ft 128 0.147 0.152

t-2Ft - t-3Ft 128 0.129 0.146

t-3Ft - t-4Ft 128 0.114 0.132

t-4Ft - t-5Ft 128 0.106 0.116

t-5Ft - t-6Ft 128 0.096 0.106

The sample period extends from January 1999 through August 2009.

Standard deviation
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premium. Thus, if a risk premium exists but is constant or slow-moving, Eq. (15) will fail to 

reject the null hypothesis of unbiasedness. Nonetheless, if we are in fact able to reject the null, we 

will have direct evidence of a bias that varies over time (both on log-scale and in linear space). 

Table 5.6 shows the results from the martingale regressions given by Eq. (15) for NBP. 

 

 

 

Table 5.6    NBP martingale regression 

 

First we note that all the estimates of the intercept coefficient a are positive and insignificant. 

However, except for the first and last series, the estimates of the forward price coefficient b are 

significantly different from one. Because the martingale test is not particularly good at 

distinguishing between unbiasedness and the case of a constant or slow-moving risk premium, it 

has a rather low power. Formally, the power of a test is equal to the probability of rejecting a 

false null hypothesis. Even so, looking at the p-values for the joint test             we are 

in fact able to strongly reject the null for the first four series, meaning that we have direct 

evidence of a bias that varies over time. This is consistent with our findings in section 5.3. 

Moreover, it is interesting to observe that we are unable to reject the null of the 6 and 5-months 

ahead forwards being unbiased predictors of the 5 and 4-months ahead forwards, respectively. 

This could be due to the relatively low liquidity of these longer-term contracts.  

 

Lead 

Price

Lagged 

price

Estimate 

of a

Estimate 

of b a =0 b =1 a =0 & b =1 R2

S t t-1Ft 0.068 0.968 0.333 0.150 < 0.01*** 0.942

t-1Ft t-2Ft 0.145 0.943 0.101 0.015** < 0.01*** 0.942

t-2Ft t-3Ft 0.102 0.960 0.203 0.054* < 0.01*** 0.958

t-3Ft t-4Ft 0.112 0.962 0.151 0.032** 0.041** 0.967

t-4Ft t-5Ft 0.099 0.969 0.170 0.053* 0.135 0.972

t-5Ft t-6Ft 0.077 0.977 0.191 0.108 0.272 0.977

The sample period extends from January 1999 through August 2009. One, two and three

asterisks indicate rejection of the null hypothesis on the 10%, 5% and 1% level,

respectively.

P-values
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Our results are not particularly consistent with those of Haff et al. (2008) who fail to reject the 

null hypothesis for most of their series. However, due to their smaller data set yielding a lower 

power of the test, they also perform the analysis by regressing all price change series at the same 

time, treating them as a single data set. Their rejections of the null hypothesis were then stronger 

for that set, but still not in accordance with the above results as they were only able to reject the 

null for two of their five forward price series. The results from HH are reported in Table 5.7 

 

 

 

Table 5.7    HH martingale regression 

 

For all but one of the series, we strongly reject the null hypothesis of unbiasedness in favour of a 

time-dependent risk premium, confirming the results from section 5.3. We are now also able to 

reject the unbiasedness hypothesis for 6 and 5-months ahead contracts, as opposed to NBP. One 

possible explanation is that US long-term contracts are more liquid than their UK counterparts. 

Modjtahedi and Movassagh (2005), on the other hand, fail to reject the null hypothesis for all the 

lags we are considering. By modelling the regression residuals as GARCH-processes they are, 

however, able to reject the null for all the series reported in Table 5.7, with the exception of 

    .  

 

Our findings suggest that forward prices are not unbiased predictors of subsequent spot prices in 

the UK, but rather that they contain a significant risk premium. In particular, the UK market 

structure with a pronounced hedging-demand for forward contracts and supply-side market power 

Lead 

Price

Lagged 

price

Estimate 

of a

Estimate 

of b a =0 b =1 a =0 & b =1 R2

S t t-1Ft -0.019 1.002 0.790 0.889 0.055* 0.977

t-1Ft t-2Ft 0.096 0.930 0.108 0.021** 0.025** 0.903

t-2Ft t-3Ft 0.080 0.943 0.112 0.054* 0.082* 0.915

t-3Ft t-4Ft 0.090 0.945 0.058* 0.040** 0.117 0.933

t-4Ft t-5Ft 0.098 0.943 0.018** < 0.01*** 0.035** 0.951

t-5Ft t-6Ft 0.098 0.945 0.018** < 0.01*** 0.021** 0.958

The sample period extends from January 1999 through August 2009. One, two and three

asterisks indicate rejection of the null hypothesis on the 10%, 5% and 1% level,

respectively.

P-values
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dictates that forward prices are consistently above expected spot prices. Moreover, we find that 

rejecting the unbiasedness hypothesis is somewhat harder in the US. We believe that this is a 

result of the US market being more competitive on the supply side as well as strict regulatory 

restrictions on large purchasers. Nevertheless, although not statistically significant, the US 

market forecast errors are all negative, indicating the notion of contango. Furthermore, we argue 

that due to the emergence of index speculators, the demand for forward contracts has increased 

significantly in the recent decade, possibly changing the direction of US risk premia. Our 

cointegration tests provide strong evidence of a time-varying risk premium in both markets. The 

martingale tests in the final section confirm that this is indeed the case. Finally, we find evidence 

of the Samuelson effect in both markets. 
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6 Modelling the gas forward price 

So far we have found evidence favouring the existence of contango in both markets. However, 

the very existence of markets for derivative securities indicates that future gas prices are 

uncertain, and thus should be modelled as a stochastic process. The purpose of this section is 

therefore to apply stochastic modelling as an alternative approach to estimating the risk premia. 

Moreover, by properly modelling the true price dynamics as a stochastic process we are able to 

incorporate the distinct characteristics of the natural gas market such as seasonality and sudden 

price spikes. These characteristics provide useful insights in exploring the size and direction of 

the risk premia. Particularly, we investigate the effect of the prevailing inventory level at a 

forward contract’s delivery date. 

 

A widely-held view regarding commodity prices is that they should be mean-reverting, the 

“mean” being the real marginal cost of production. As such, an Ornstein-Uhlenbeck process, i.e. 

a stochastic process which exhibits reversion to mean, could appropriately imitate the price 

dynamics of natural gas. This model has been used extensively by other authors (e.g. Vasicek 

(1977) and Schwartz (1997)) to model both interest rates and commodity prices such as oil and 

copper. Schwartz’ one-factor model is an extension of a geometric Brownian motion, where the 

logarithmic spot price is assumed to follow an Ornstein-Uhlenbeck process. In this paper we have 

seen that the natural gas market is highly seasonal, particularly in the UK. We therefore believe 

that the Schwartz model in its simplest form will come out short as prices are systematically 

changing throughout the year. In addition, Schwartz (1997) models the dispersion term as a 

Brownian motion. This implies that the price fluctuations are normally distributed. We argue that 

this assumption is flawed when considering the natural gas market because of the relatively high 

frequency of sudden price spikes. We will therefore need a distribution accentuating this feature. 

The normal-inverse Gaussian distribution (NIG) is a continuous probability distribution with tails 

decreasing more slowly than the normal distribution. Consequently, by accounting for fat tails, 

the NIG distribution yields a superior fit for the noise increments compared to that of a Gaussian 

distribution. Therefore we analyse the empirical risk premia in the UK and US using a geometric 

model with NIG-distributed noise.  

http://en.wikipedia.org/wiki/Continuous_probability_distribution
http://en.wikipedia.org/wiki/Normal_distribution
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We calibrate the model using spot prices and conventional time series econometrics. Because the 

stochastic model is intended to replicate the actual evolution of prices, we attune the model on 

daily spot price data, rather than the previously used aggregated monthly prices. The model is 

based on the model presented by Benth et al. (2008, pp. 129:146). 

 

 

6.1 Deriving the model 

Let the dynamics of the spot price be described as 

 

      
             (19) 

 

Taking the natural logarithm we write Eq. (19) as 

 

                    

 

where  

 

     𝑡        𝑡          
        

   
        (20) 

 

and 

 

         𝑡               (21) 

 

Formally, Eq. (21) is an Ornstein-Uhlenbeck process with a long-run mean equal to zero and 

dispersion term modelled as a Lévy process9. Hence,   expresses the speed of mean reversion. 

Eq. (20) represents the average level gas prices revert to, assuming 260 trading days per year. 

Hence, Xt is the remainder of the log spot price after deducting the mean, trend and seasonal 

effects. Really, Xt can be interpreted as the remaining “noise” in the log spot prices.  

 

                                                             
9 The definition of a Lévy process is provided in Appendix 3. 
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We now turn to the estimation procedure using daily logarithmic spot prices ranging from 1 

January 1999 till 13 September 2010. Our sample contains 3047 price quotes. Fig. 6.1 shows the 

logarithm of the daily gas spot prices. In order to reduce the impact of different units of 

measurement, the NBP prices are on the left y-axis while HH prices are on the right y-axis. 

 

 

Fig. 6.1 Daily log spot prices from 1 January 1999 through 13 September 2010 

 

Fig. 6.1 shows that the series contain large price spikes. Moreover, the price spikes are fairly 

symmetrical in both markets. The positive spikes amount to 52 percent and 55 percent of the total 

number of spikes for NBP and HH, respectively. As pointed out by Benth et al. (2008), the 

presence of outliers may strongly influence the estimation of the mean level function      . 

Therefore, we choose to remove these outliers before proceeding to the estimation of the 

parameters of      . Using a Kolmogorov-Smirnov test on the daily changes in the log spot 

prices, we strongly reject the null hypothesis of normality. We use the following procedure to 

check for outliers when data are not normally distributed; Let Q1 and Q3 be the lower and upper 

quartiles, and IQR be the difference between Q3 and Q1. An outlier is defined as an observation 

smaller than Q1 – 3 x IQR, or larger than Q3 + 3 x IQR. Applying this filter to the series, we 

obtain 29 and 86 outliers for HH and NBP, respectively. We replace the outliers in the series by 

0

0.5

1

1.5

2

2.5

3

3.5

0

1

2

3

4

5

6

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

lo
ga

ri
th

m
 o

g 
ga

s 
sp

o
t 

p
ri

ce

The logarithm og gas spot prices from the UK and US 

NBP Log Spot HH Log Spot



52 
 

the average of the two closest observations. Table 6.1 shows the results from estimating the mean 

level function      
10. 

 

 

 

Table 6.1     Parameters of the mean level function         

 

All the estimated parameters are significant at the 1 percent level. Therefore we conclude that 

there has been significant seasonality and a steady increase in spot prices throughout the period. 

Fig. 6.2 shows the original logarithmic spot prices series after subtracting the mean level function 

    .  

 

 

Fig. 6.2    The remainder of the log spot price (Xt) 

                                                             
10 We applied the “nls” function in R. 

Estimate P-value Estimate P-value

a0 1.18 <0.01*** 2.51 <0.01***

a1 2.71E-04 <0.01*** 4.59E-04 <0.01***

a2 -0.04 <0.01*** -0.18 <0.01***

a3 143.00 <0.01*** 133.20 <0.01***
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From Fig. 6.2, we observe that the remainder of the log spot price Xt is centred around zero. 

When prices deviate from zero, they revert back with the speed of mean reversion  . However, 

the speed of mean reversion appears to be very low. In fact, prices can deviate for several years. 

This seems reasonable as gas supply is relatively price inelastic. Producers require long lead time 

to increase capacity, varying somewhere between six months and ten years (Natural Gas Supply 

Association, 2010). Also, several economic factors are preventing producers to ease production in 

spite of falling prices. As mentioned earlier, if production of natural gas from a well is halted, it 

may not be possible to restore the well's production due to reservoir and wellbore characteristics 

(Natural Gas Supply Association, 2010).  

 

We now turn the procedure of fitting an appropriate time-series model to the detrended and 

deseasonalised logarithmic spot prices Xt. Box and Jenkins (1976) develop a methodology for 

estimating autoregressive integrated moving-average (ARIMA) models. In this procedure, the 

ACF and PACF serve as essential tools in indentifying and estimating the appropriate ARIMA 

model. Fig. 6.3 shows the ACF and PACF for the detrended and deseasonalised logarithmic spot 

prices, DNBP (UK) and DHH (US).  
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Fig. 6.3    ACF and PACF plots for the remainder of the log spot price (Xt) 

 

The slowly decaying pattern of the ACF indicates an AR-coefficient close to unity for NBP. 

Combined with one large spike at lag 1 in the sample PACF, an AR(1) process seems to be a 

reasonable choice. However, several spikes in the PACF are in fact significant, also suggesting 

the presence of a moving-average component in the series. Indeed, for the AR(1) we fail to reject 

the null hypothesis of zero autocorrelation in the residuals, strengthening the latter argument. 

Albeit the ACF plot for HH is fairly similar to that of NBP, the PACF is somewhat different. The 

PACF has three significant lags suggesting an AR(3) process. However, the oscillatory decaying 

pattern of the PACF starting at lag 1 favours an ARMA process. We therefore choose to estimate 

an ARMA(1,2) process. Conveniently it turns out that an ARMA(1,2) model fits both the series, 

i.e. we fail to reject the null hypothesis of autocorrelated residuals.  



55 
 

We now need to link the ARMA (1,2) process to the presumed dynamics of the remainder of the 

log spot price Xt. We perform a first order Euler discretisation of Eq. (21) to obtain 

 

                          (22) 

 

                      

 

where          and        
  is a sequence of uncorrelated random variables. We recognise 

Eq. (22) as an AR(1) process where ρ1 is equal to the first order autocorrelation coefficient. In 

order to obtain an expression for the speed of mean reversion   we solve for the first order 

autocorrelation coefficient of the fitted ARMA(1,2) process. After some tedious algebra it is 

possible to show that  

 

   
  

  
              (23) 

 

                            

 

       
                                          

    
   

 

where    is the variance of the error term, a is the autoregressive coefficient and    and    are 

the moving-average coefficients from the estimated ARMA(1,2) process. After solving for ρ
 
, we 

obtain the following estimates of the speed of mean reversion in Eq. (22)  

 

             

             

 

Next, we consider the residuals from the estimated ARMA(1,2) models. When performing a 

Kolmogorov-Smirnov test for normality, we strongly reject the null hypothesis of the residuals 
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being normally distributed. Fig. 6.4 compares the density function of the estimated residuals to 

that of the normal distribution with the same mean and standard deviation. 

 

 

Fig. 6.4  Density function of the estimated residuals vs the normal distribution 

 

Fig. 6.4 confirms that the residuals are far from normal. In particular, they exhibit significant 

leptokurtic behavior. Following Benth and Saltyte-Benth (2004) we therefore proceed with the 

Lévy process It where I1 is NIG distributed, i.e.     NIG(ζ,      ). Here, ζ,            denotes 

tail-heavyness, skewness, scale and location, respectively. We fit the NIG distribution to the 

residuals by using maximum likelihood estimation (MLE)11. Hence, we take the leptokurtic 

behavior of the residuals into account. Table 6.2 reports the ML estimates of the parameters. 

 

 

Table 6.2     NIG parameters  

                                                             
11 We applied the nigFit function in R. 

Parameter HH NBP

ζ 19 4.91

β 0.6604 0.1972

δ 0.03078 0.04856

μ -0.00109 -0.00191
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Finally, we derive the theoretical forward price. In order to do this, we must first solve the 

stochastic differential equation given in Eq. (21). First, we define 

 

      
              (24) 

 

Using Eq. (24) and (21), by Itô’s lemma we have that 

 

                    𝑡                      (25) 

 

Yt is now given by 

 

             
 

 
           (26) 

 

Thus, we obtain the solution to Eq. (21) as 

 

      
                

 

 
         (27) 

 

Assuming that a buy-and-hold strategy is possible and the absence of arbitrage, we must have 

that 

 

                              (28) 

 

Using the conditional expectation operator    and substituting Eq. (19) into (28) we get the 

following expression for the forward price     

 

            
             (29) 

 

At time T, Eq. (27) becomes 

 

      
                    

 

 
         (30) 
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Now, substituting Eq. (19) and (30) in (29) yields 

 

            
    

  
    

                      
 
         (31) 

 

                  
  

    
 
        

    
            
 
     

 

By calculating the conditional expectation using Baye’s formula, it is possible to show that Eq. 

(31) can be written as    

 

          
  

    
 
        

                (32) 

 

where 

 

                             
 

 
        (33) 

 

Proving Eq. (33) is beyond the scope of this paper. Interested readers can turn to Benth and 

Saltyte-Benth (2004). In Eq. (33)   is the cumulant function and               becomes the 

logarithm of the moment generating function.  Finally, by the NIG Lévy process we have that 

 

                              ζ           ζ                     (34) 

 

where   is the implied market price of risk to be estimated. We solve for the theoretical forward 

price given by Eq. (32) by integrating Eq. (33) numerically12.  

 

 

                                                             
12 Because T appears both inside the integral and in the upper limit we had to make a change in the variable to solve Eq. (40). We define a new 
variable x = T-u so that dx = -du. Hence we have that                 

 

 
               

 

   
  .  
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6.2 Results 

We now wish to compare the theoretical forward prices to the actual forward prices observed in 

the market. To facilitate comparison with actual prices, we use spot prices aggregated to monthly 

resolution in Eq. (32). Moreover, in order to compute the theoretical forward price, we need to 

decide on a value for the market price of risk  . Fig. 5.5 compares the theoretical 1-month ahead 

forward prices to the actual observed prices by choosing   equal to zero. Hence, a finding that the 

deviations between the two series are large will imply that forward prices are not unbiased 

predictors of future spot prices. 

 

  

Fig. 6.5  Comparison of theoretical prices with a market price of risk equal to zero and actual observed prices 

 

Our estimated forward prices seem to trace the observed prices rather well in the US. Thus, the 

risk premium seems to be very small, which can explain why we failed to reject our initial test of 

unbiasedness for HH in section 5.2. Nevertheless, we see that the theoretical prices are 

consistently below the actual observed prices, indicating the existence of a risk premium. Clearly, 

the differences between actual and estimated forward prices are too large to be explained by any 

reasonable risk premium for NBP. Most likely, our simple one-factor model is unable to capture 

the complex relationship between spot and forward prices. Without putting too much emphasis 

on the results for NBP, we still find that the observed forward prices are larger than the estimated 

risk-neutral prices throughout the whole period. Because a long investor pays more than what the 

risk-neutral price dictates, the short position is rewarded the premium. Hence, these findings are 

consistent with the notion of contango found in most of the tests in section 5.  
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Healthy scepticism is warranted when comparing the deviations in the US to those in the UK. 

Firstly, we have just argued that our model seems to perform poorly on UK data. Secondly, the 

model involves several estimation procedures, all subject to potential estimation errors. Although 

the deviations in the two markets are not directly comparable, we still find it noteworthy that the 

spread is systematically larger in the UK. This and previous findings indicate that the risk 

premium could be greater in the former market. We know that UK inventories are more seasonal 

than their US counterparts. This is also reflected by the probability of sudden price spikes being 

higher in the UK than in the US as measured by the number of outliers. Moreover, from our 

investigation of the theory of storage we know that inventories are highly significant in 

explaining the contemporaneous basis. Because of its significant effect on spot prices we argue 

that the variation in storage levels is likely to be an influential factor in determining risk premia 

as well. When inventory levels are high, the spot price tends to be low, and the inventory will act 

to even out variations in the spot price. On the other hand, when inventories are low, they 

obviously cannot act as a buffer against price variations, causing price volatility to increase, 

thereby driving up a potential risk premium. When commodity forwards are used to insure 

against price volatility, the cost of insurance should be increasing in the amount of risk 

(volatility). The lower inventory levels are, the higher the probability of sudden price spikes, and 

thus higher downside risk for the speculator providing insurance. Consequently, the speculator 

should on average require a higher risk premium on contracts that expire when the inventory is 

expected to be low.  

 

We now wish to examine whether the size of the market price of risk   is directly related to the 

variation in storage. To investigate this we calculate the implied values of   by requiring that the 

theoretical risk-neutral forward price, given by Eq. (32), must equal the actual forward price for a 

given point in time. We solve the equation using Newton’s search algorithm for zero points with 

Matlab’s fsolve function. For simplicity we restrict the analysis to only two months, namely 

October 2009 and March 2010. These months are chosen to reflect the difference in the market 

price of risk due to seasonality in inventory levels. In particular, we analyse whether contracts 

maturing in the winter when inventories are low are associated with a higher market price of risk 

than contacts with delivery in the summer months. The results are shown in Table 6.3. 
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Table 6.3     Implied market price of risk 

 

We observe that all the implied  s have the same sign. Because these are the market prices of risk 

necessary to equate actual and theoretical risk-neutral forward prices, we are again able to 

confirm the notion of contango for these particular months. Interestingly, we find that contracts 

maturing when inventories are expected to be low yield a relatively higher risk premium, 

reflected in the higher market price of risk, supporting the above reasoning. Note that the market 

price of risk   does not have a meaningful unit-interpretation, but still provides essential 

information about the risk premium. Firstly, a positive market price of risk implies that forward 

contracts trade at a premium compared to the expected future spot price (contango). Secondly, 

everything else equal, a higher market price of risk dictates a higher forward risk premium. 

 

However, for all but the far left series, the market price of risk is decaying with time to maturity. 

Intuitively, we would expect the opposite because a speculator requires a higher compensation 

the longer he is exposed to risk. For contracts with delivery in the summer months we believe this 

contradiction stems from inventory levels being much more important in explaining risk premia 

than the time to maturity. Still, we would expect to find a market price of risk increasing with 

time to maturity for contracts with delivery in the winter when inventories are relatively lower. 

One possible explanation to this is that although the NIG distribution fits the residuals in the spot 

price dynamics quite well, it might not be able to appropriately model the jump risk. Obviously, 

the risk of large jumps increases with the contract length. The jump frequency measured by the 

amount of outliers is approximately 3 times larger at NBP than at HH. Consequently, the 

estimated market prices of risk for the UK are less reliable. Furthermore, when choosing only two 
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observations from the sample, the risk of picking abnormal market situations must be taken into 

account.  

 

In this section, disregarding the possibility of model misspecification, we have again found 

evidence of contango in both markets. Moreover, by choosing two arbitrary dates from our data 

sample, we find a strong link between the market price of risk and the expected level of inventory 

at delivery. In fact, we find that inventories at a contract’s maturity seem to be a more important 

determinant of the risk premium than the contractual length. 
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7 Inventory levels and risk premia 
 

We conclude this paper by further examining the relationship between inventories and the risk 

premium. Ekern (2009) defines the risk premium as the difference between the expected payoff 

and the certainty equivalent. In other words, the risk premium is the payoff which makes a person 

indifferent between accepting an uncertain payoff and a guaranteed amount. To earn a risk 

premium when markets are in contango, an investor without interest in the physical commodity 

can short a forward contract at time t – k with delivery at time t. At time t – 1, he locks in his 

payoff by entering a long forward position with the same delivery date t. This strategy yields a 

payoff of              at time t for a month          . The payoff at time t has an interesting 

interpretation. In fact, it is the maximum value a risk adverse market participant is willing to pay 

to eliminate his price risk, i.e. the k -1 risk premium. The payoff can therefore be considered the 

compensation, paid by a hedger, to a speculator for providing him with insurance. The price of 

insurance is the exact value making the hedger indifferent between a certain and an uncertain 

outcome. In other words, it is the definition of the certainty equivalent.  

 

We now proceed by comparing the risk premium from the aforementioned trading strategy for 

lag k = 6 and the inventory level. As previously posited, we expect to find a negative relationship 

between the risk premium on forward contracts maturing when storage is scarce and the expected 

level of inventory at delivery. Obviously, as maturity approaches, more information will be 

available to the investor. Hence, we choose to apply the longest forward contracts in our sample 

because preliminary studies show that the relationship between the risk premium and inventories 

is less clear cut for shorter contracts.  

 

The risk premium is calculated as the annualised 5-month return earned at delivery by a 

speculator following the above trading strategy, i.e.                       . The results are 

shown in Table 7.1 below. 
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Table 7.1     Annualised mean and median 5-month risk premia 

 

Clearly, the mean return is heavily skewed due to the presence of large outliers. Hence, we 

choose to proceed with the median returns rather than the mean returns. In order to facilitate 

comparison with the inventory level at delivery we compute a normalised measure of the 

inventory (henceforth knowns as NDI). This is because we want to disregard any growth in the 

storage capacity. The NDI is computed by dividing the detrended inventory level by the average 

detrended inventory level. The trend was removed by running a linear regression of the inventory 

level on time. Fig. 7.1 plots both the annualised median 5-month risk premium and the estimated 

NDIs at delivery for NBP. The former is given by the left y-axis, whereas the latter is found on 

the right y-axis. 

 

Delivery month NBP HH NBP HH NBP HH

January 46% 22% 10% 1% 68% 79%

February 71% 45% 19% 27% 64% 70%

March 130% 38% 46% 8% 83% 64%

April 67% 13% 36% -8% 143% 48%

May 55% -3% 8% -30% 75% 53%

June 17% 1% -15% -35% 85% 59%

July 12% -27% -11% -42% 56% 70%

August -4% -11% -19% -24% 50% 71%

September 11% 33% 3% 19% 55% 49%

October 16% 66% 9% 46% 39% 89%

November 36% 35% 24% 21% 47% 62%

December 49% 53% 10% 56% 49% 67%

The sample period extends from January 2000 through December 2009.

Standard Deviation p.a.Arithmetic Mean p.a. Median p.a.
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Fig. 7.1 UK 5-month median risk premium and normalised inventory levels 

 

From Fig 7.1 we find that contracts maturing in the winter, when inventories are generally low, 

contain a relatively high risk premium. Moreover, the prices of forward contracts with delivery in 

the summer when inventories are full contain lower risk premia. Hence, we are able to confirm 

that the UK risk premium is indeed negatively correlated with the level of inventory at delivery. 

Again, we argue that this pattern is more pronounced for longer-term forward contracts because 

of greater uncertainty with respect to future inventory levels. Moreover, it is interesting to 

observe that the risk premium seems to change sign for some months. This indicates a complex 

structure of the risk premium and that it is highly variable. Fig. 7.2 shows the same trading 

strategy applied to the US market. 
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Fig. 7.2 US 5-month median risk premium and normalised inventory levels 

 

From Fig. 7.2 we immediately find that the proposed relationship between the risk premium and 

inventories at delivery does not seem to hold in the US. In fact, it is hard to observe any intuitive 

pattern between the two at all. However, we know that the NDIs have been approximately 4 

times as volatile in the UK as in the US during the last decade. Higher variability in inventories 

reflects both a higher price and delivery risk. Thus, the risk inherent in US forward contracts with 

respect to the inventory is lower in the US than in the UK. In particular, it seems that the level of 

inventory at delivery is a less important factor in explaining the US forward risk premium.  

 

An interesting feature in Fig. 7.2 is that the risk premium becomes highly negative from April till 

August. One possible explanation could be related to the US market structure. US inventories 

reach their lowest level in April which marks the start of a period of net gas inflow. Since the US 

supply side is highly fragmented, one could argue that producers might be willing to sell forward 

contracts maturing in the summer below the expected future spot price to ensure delivery in a 

period of relatively low demand. 
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8 Concluding remarks 

 

8.1 Reliability of results 

Throughout this paper we have made several assumptions regarding our models, some of which 

may be flawed.  A small paragraph discussing the most essential assumptions is therefore 

warranted.   

 

It is well-known that economies experience sporadic unexpected changes. Some of these have 

significant effects on the state of the economic system. Such changes not only lead to difficulties 

in economic forecasting, but also in the formulation of economic models. One recent example is 

the financial crisis. Another is the emergence of shale gas. Both events could have induced 

structural breaks implying that earlier data is no longer relevant to the current market situation. 

As such, the reliability of our results may be lowered trough our use of data both prior to and 

after these events. 

 

The stochastic model in section 6 relies on the assumption that the mean reversion coefficient is 

constant over a period of 11 years. This is clearly erroneous.  Moreover, we would expect the 

mean reversion coefficient to be different during periods of frequent price spikes and periods of 

relative tranquillity. The latter could be circumvented by estimating a multifactor model which 

allows for various speeds of mean reversion using the Kalman filter. 

 

Finally, this study applies a large body of statistical tests and software. It is possible that 

calculation mistakes are present. Furthermore, we cannot rule out that mistakes were made when 

writing scripts used in Matlab and R.  
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8.2 Conclusion 

Our findings suggest that there has been a positive trend in natural gas prices, probably a result of 

the period from 2003 to 2007 being one of high economic growth. Moreover, price volatility 

appears to be time-varying. In particular, the emergence of unconventional gas has served to 

increase volatility in recent years, possibly imposing a structural break in both markets. We also 

observe a pronounced seasonality in the prices of natural gas. Not surprisingly, this feature is 

more evident in the UK, where natural gas, to a larger extent, is used for heating. Our unit-root 

tests show that all the series are covariance-stationary. In particular, we find that the UK series 

are trend-stationary, i.e. exhibiting reversion to an upward trend. This finding is consistent with 

the widely-held view that commodity prices should be mean-reverting, the “mean” being the real 

marginal cost of production.  

 

We find that the basis has been positive on average in the period analysed, reflecting a positive 

cost-of-carry. However, in both markets a negative basis occurs rather frequently, indicating a 

relatively high convenience yield. Moreover, the average basis is higher in the UK than in the 

US, possibly a result of a larger concentration of suppliers keeping forward prices “artificially” 

high.  

 

We only find partial support for the theory of storage, where the cost of capital is not particularly 

relevant in predicting the basis. On the contrary, the level of storage is very important. Indeed, we 

find that a concave relationship between the basis and the level of inventory seems appropriate, 

implying that the basis is increasing at a decreasing rate as inventories are being filled.  

 

We argue that the UK basis seems to be larger than any reasonable cost of carry would predict. 

We believe that such a disparity would be eliminated in an efficient market. This could indicate 

that only a few agents are in fact able to take advantage of the arbitrage opportunities available to 

them. We therefore proceed by testing whether the markets are efficient in the sense that forward 

prices are unbiased predictors of future spot prices, i.e. the unbiasedness hypothesis. Our findings 

suggest that UK forward prices are biased. In particular, the UK market structure, with a 

pronounced hedging-demand for forward contracts and supply-side market power, dictates that 
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forward prices are consistently above expected spot prices (contango). Moreover, the bias 

appears to be time-varying. 

 

The US market is more balanced in terms of hedging pressure. The supply-side is more 

competitive and large purchasers are subject to strict regulatory restrictions. Consequently, 

rejecting the unbiasedness hypothesis is somewhat harder in the US. Still, we are able to infer the 

notion of contango. This is surprising, considering that most previous studies find the market to 

be backwardated. We argue that the emergence of index speculators has increased the demand for 

forward contracts in the recent decade and possibly altered the direction of US risk premia. 

Moreover, the increased importance of shale gas could have changed the historical US spot-

forward relationship. 

 

Finally, we discover a strong link between the market price of risk and the expected level of 

storage at delivery in the UK. In fact, we find that the level of inventory at a contract’s maturity 

appears to be a more important determinant of the UK risk premium than the contractual length. 

In the US however, it seems that the expected storage level at delivery is a less important factor 

in explaining the risk premium, probably due to US inventories being less seasonal. 
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10 Appendices  

 

Appendix 1 

Enders (2009) defines a stochastic process with a finite mean and variance as covariance-

stationary  if for all t and t – s 

 

                        (1) 

 

                                              (2)  

 

where  ,   
  and    are all constants. From Eq. (2) we also have that, for s = 0, the variance must 

be constant over time.  

 

 

Appendix 2 

It is possible to derive forecasts of any ARMA(p,q) model by means of an iterative technique. In 

order to keep the algebra simple, consider the ARMA(2,1) model along the lines of Enders (2009, 

p.83): 

 

                                    (1) 

 

Assuming that all coefficients are known and that          for all    , the conditional 

expectation of      is: 

 

                            

        

The one-step-ahead forecast error is: 

 

                                



77 
 

By forward iteration we can in a similar manner find the two-step-ahead forecast error: 

 

                                 

       

                          

       

                                                               (2) 

 

When using multi-step-ahead forecasts, the forecasts may exhibit serial correlation. Updating Eq. 

(2) by one period yields the two-step-ahead forecast error for     : 

 

                                (3) 

 

It is now obvious that the two forecast errors in Eq. (2) and (3) are correlated. In particular we 

have that: 

 

                                                            

 

                                     
   

 

since      is a white noise sequence, i.e. having a mean value of zero, a constant variance and is 

uncorrelated with all other realizations. The point is that due to the presence of      in both the 

prediction of      and      from the perspective of period t and t+1 respectively, both contain an 

error. Note however that for 𝑘   ,                      since there are no overlapping 

forecasts. Hence the autocorrelations of the 2-step-ahead forecast errors is reduced to zero after 

lag 1. It is the general version of this result that causes the j-step-ahead forecast errors to act as an 

MA(j-1) process. 
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Appendix 3 

A Levy process       
       

, is a stochastic process on a probability space (Ω, Ƒ, P) with the 

following properties       

 

I. I0 = 0 

II. Independent increments 

III. Stationary increments 

 

 

 

 


