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Abstract

Theories of market microstructure suggest that large transactions can reveal information and
hence impact prices. Extensive research finds support for such a price impact. However, we
are not aware of any similar studies at Oslo Stock Exchange (OSE). Other studies have
typically been conducted at hybrid markets, e.g. New York Stock Exchange, where there are
specialists that facilitate trading. OSE, on the other hand, is a fully electronic limit order
market, thus the price dynamics may be different. The implication of a price impact for a
trader who plans to submit multiple orders in a stock is that the first trades affect the price of

the later trades.

We analyze the temporary and permanent impact on security prices from large buy-initiated
and sell-initiated transactions. We find that large trades are associated with significant price
impacts 5 seconds and 10 minutes after the transactions for most of the stocks in the sample.
There are significant intraday differences in the estimated price impacts. Furthermore, we
study the aggregated difference between buy-initiated and sell-initiated turnover, i.e. order
flow. We analyze a model where returns over 15 minute intervals are explained by the past
order flows. Normalized order flow has a significant effect on returns, but it explains little of

the variance.
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Chapter 1: Introduction

1.1. Market microstructure

A basic assumption in financial economics is that individual buying or selling of a security
does not change its price. One solid argument for this assumption is that trading a security
cannot change the firm’s underlying cash flows. Since investors presumably agree that the
share price should reflect the discounted value of all future cash flow, we do not expect that
the trading of a share can change the price permanently. E.g. a positive deviation from the true

value, which is caused by a large buy transaction, is expected to be offset by others selling.

The theory of microstructure’ on the other hand, argues that the more informed traders trade
larger quantities than uninformed traders. Hence, there may be price impacts from larger
trades, because the transactions contain information. For a trader who is paying more today,
there is little comfort in an assumption stating that the stock price eventually will return to the
true price. E.g. if a trader submit a series of buy orders, the first transactions may increase the

prices for the future transactions.

To measure the price impact of transactions and order flows we use a high frequency dataset
from Oslo Stock Exchange. These types of datasets grant the researcher with more
possibilities than with daily data, but they also contain challenges from a data processing and
econometric perspective. Processing the raw data is an extensive task that made it necessary
to acquire certain skills in programming. To ease the effort for future scholars of market
microstructure, we have enclosed a stylized example in Appendix E that shows how one can

extract similar data.

In the first research question we study the price impact of large buy-initiated and sell-initiated
transactions. Like other empirical studies we measure the price impact in two time
dimensions, temporary and permanent. We define the temporary and permanent price impacts
as five seconds and ten minutes returns respectively. For most of the stocks in the sample we
find significant price impacts. There are also significant intraday differences in the estimated
price impact. In the second research question we study a model of returns in 15 minute

intervals explained by the past aggregate buy-initiated and sell-initiated transactions, i.e. the

" The term for studies on the trading mechanisms in the financial securities markets is market microstructure
(Hasbrouck, 2007).



order flows. We find that a positive (negative) normalized order flow is associated with a
positive (negative) return the next 15 minute interval. We also control for differences in
intraday return and reject the null hypothesis that they are equal. However, the R-squared is

low compared to similar studies performed with indices.

1.2. Oslo Stock Exchange

Oslo Stock Exchange (OSE) is a fully electronic limit order market located in Oslo, Norway.
Relative to other exchanges has OSE an overweight of commodity industries, such as energy
producing, oil-service, and aquaculture. The market capitalization March 2007 and March
2010 was NOK 1835 (USD 301) and NOK 1324 (USD 223) billions respectively”. The
continuous trading session last from 09:00 Central European Time (CET) to 17:20° CET
(henceforth, all hours are in CET). Before the continuous trading session begins there is an
opening auction where traders can submit orders. Crossing of these orders are done at a point
in time between 09:00 to 09:05 at a price that maximizes the nominal value traded. The
opening auction starts at different times for each stock (the most liquid first). Since the start
for the continuous trade session can vary both for securities and different days, we
conveniently define the continuous trade session to start 09:05 in our analysis. During the
continuous trade session orders are crossed automatically according to a strict price-time
priority rule. The continuous trade session ends 17:20 and after there is a closing auction

equal to the opening auction.

Limit orders have both a price and a quantity limit, usually limit means the price limit
(henceforth, limit is price limit, unless otherwise stated). Most fully electronic limit order
markets follow a similar strict price-time priority rule as OSE. This means that an
unconditional® buy (sell) limit order is crossed if the limit is equal or higher (lower) than a
previous submitted sell (buy) order (in this chapter we assume orders are unconditional).
OSE allows traders to submit orders that “walk the book™, i.e. buy (sell) orders are crossed to
the best available prices given the price and quantity limit of the order. Traders can also

submit market orders that we can interpret as limit orders with an infinite limit. The order

2 http://www.world-exchanges.org/statistics/monthly-reports (accessed 29.11.2011)

* OSE extended trading hours by one hour the 1* of September 2008 (Oslo Bors ASA, 2008).

4 Traders can also submit orders that are canceled if there are not enough offers to fill the order immediately (fill
or kill). Alternatively the trader can submit orders that are canceled after it is filled with the maximum number of
shares given the limit (fill and kill).



book consists of asking (ask) and bidding (bid) quotes, which are offers to sell and buy a
given quantity of shares. A hypothetical order book is illustrated below.

Figure 1 - Hlustration of an order book before and after an order

Orderbook Orderbook
Depth Bid Ask Depth Depth Bid Ask Depth
' ( Buy limit order ' | '
10000 50 51 9000 P: 52 Q: 14000 1000 52 53 3000 |
5000 49 52 4000 10000 50 54 2000
4000 48 53 3000 5000 49 55 3000

The quotes are usually referred to as levels, where the first level consists of the best ask price
and bid price. The figure only shows the upper three levels. After a trader buy or sell all
shares offered at a level, the lower levels are pushed up and thus the best quote change. We
consider the buy order illustrated in Figure 1, and see that the quantity limit is larger than the
available quantity at the first two levels. The remaining quantity enters the order book as best
bid quote. This illustrates that one order can result in several transactions, in this case
minimum three if the last part is filled. However, quantity offered at each level may consist
of several orders and each crossing of two orders is recorded by the exchange as one

transaction.

In this thesis we study the price impacts of large trades and some might suggest that one
should consider the price impact from buy and sell orders. This is generally rejected in
literature, because of the implication that traders can manipulate the share price by first
submitting a limit order and afterwards submitting a cancel order. In this study we consider
only the first level of the order book, and do not consider the volume offered. One might
argue that a weighed price of the offers would better reflect that the traders of large quantities
face different average prices than the traders of small quantities. However, the volume

available in the order book is not always the true quantity available since traders can submit



orders with partially hidden volume’. Quoted prices, on the other hand, are accurate since the

order book always shows a part of the hidden volume submitted by traders.

Chapter 2: Literature

2.1. Theory

2.1.1. Prices
In economics, prices are determined by the equilibrium between supply and demand. How the
prices actually reach the equilibrium is metaphorically referred to as the “invisible hand” or
the “black box™ of trading. It is not obvious when and how this equilibrium actually occurs,
neither does it seem that the general economic literature is concerned with this issue. Theories
of market microstructure, on the other hand, provide possible answers by describing and
analyzing the trading of assets under explicit rules, i.e. how the specific trading mechanism

affects the price (O'Hara, 1995).

According to Hasbrouck (2007) there are no comprehensive and realistic models for limit
order markets. The theory of market microstructure has traditionally been developed with
regards to the traditional dealer market. Since we study a market without dealers, specialists
or market makers one might argue that theories for dealer markets do not apply for limit order
markets. However, the basic insights are relevant for the empirical analysis, and hence we

review some of these theories.

2.1.2. Informed and uninformed traders
A common assumption in financial economics is that the security prices reflect all publicly
available information. The oft-quoted paradox is that for the share prices to reflect all publicly
available information someone has to analyze the securities, and why should anyone bother to
do so when the prices already reflect all information? The theory of market microstructure
analyzes some of the traders’ game theoretical issues. One class of models is information-
based that allow for the presence of individual traders with superior information, i.e.

asymmetric information. Superior information may be private information that is not publicly

> Orders with partially hidden volume (iceberg order) have a maximum public volume that is shown in the order
book and the rest of the volume is hidden. When the public volume is crossed a new equivalent part of the
hidden volume is revealed, with a new time priority.



available, and the ability to interpret information better or faster than the other market

participants.

An important question when analyzing the market participants is why uninformed traders
willingly would transact with informed traders. One might compare it to a novice poker player
entering a game against a world champion. It may be realistic that they would do so just for
the mere entertainment, but not with the expectation to win and certainly not to participate in
a series of games. A possible explanation was proposed by Bagehot®(1971), he argues that
uninformed traders confuse trading gains with market gains. By attributing profits to trading
skills rather than realizing that the market tends to move upwards, traders may perceive that
they have an edge and trade more frequently than they should. According to Bagehot, traders
are seduced by the random walk argument and believe that even an idea or hunch will give
them a return over time. Furthermore, he assumes that there are another group of traders that

in fact have superior information.

The market makers’ role is to provide liquidity by transacting with anyone wishing to trade,
this includes trading with both uninformed and informed traders. Given that the market
makers have no private information about the true value of the firm, they will on average lose
against the informed traders. For market makers to survive in the long run, the profits they
make from uninformed traders must exceed the losses inflicted by informed traders. Since
market markers typically are obliged to provide quotes at all times the only way to balance
profits and losses is by setting the difference between bid and ask quotes large enough. The
important notion for all models of auctions with market makers is that the presence of
asymmetric information will result in a positive bid ask spread, even with a risk neutral
market maker that makes zero profits (Glosten and Harris, 1988). Trading is a zero sum game
where the informed traders have an expected positive gain and the market makers none, this
implies that uninformed traders on average lose on their trading activities. Uninformed traders
are also called noise traders in the market microstructure literature (see Black (1986) for a

general discussion on noise).

Milgrom and Stokey (1982) show that private information is valueless given that all the
participants have rational expectations and the initial allocation is Pareto optimal. The latter
condition is true in reality at OSE, because each trading day starts with an opening auction.

Since the largest possible nominal value is crossed in the opening auction it is reasonable to

® Bagehot is a pseudonym, the real Walter Bagehot died in 1877.
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assume that the initial distribution of stocks 09:05 is Pareto optimal. Milgrom and Stockey
(1982) argue that after an initial auction the only reason to trade would be an advantageous
bet, i.e. private information that is not reflected in the share price. However, if everybody
knows that other traders only trade given that they have private information, there would be
no reason to buy or sell the stock. Because of this it is a general assumption that some
investors trade for pure liquidity reasons, e.g. pension funds that needs to convert securities to

cash to pay retirees.

Kyle (1985) propose a dynamic model for sequential auction equilibrium. He considers a
market with multiple market makers, informed and noise traders (i.e. liquidity traders). Noise
traders are assumed to have a distribution independent from the informed traders quantities at
all times. In the model Kyle assume that there is one informed trader, who is profit
maximizing and risk neutral, i.e. an intertemporal monopolist. This is a strict assumption and
it seems reasonable that there can be more than one informed trader. Furthermore, he assumes
that market makers earn zero profits on average and have no private information. Hence, price
changes are always a consequence of the observed aggregated order flow. One of the key
insights from the model is that the informed trader must consider the price impact of
transactions on future prices to maximize his monopoly profits, i.e. divide their total demand
into smaller trades. The oft-quoted Stealth trader hypothesis suggests that this would make the
informed traders concentrate their trading in medium sizes, because of the cost associated

with small trades (Barclay and Warner, 1993).

Due to the normality assumption for noise traders, Kyle’s sequential auction model converges
to a Brownian motion process for prices when the time between the sequential auctions goes
towards zero. This model relies on the crucial assumption that the informed traders submit
orders in such a way that the information is gradually reflected in the security prices, i.e. if
there is more noise trading one period there is also more informed trading. However, if there
are more informed traders there would clearly be incentives to trade before other informed
traders increase (decrease) the price. It may also be restrictive to assume that noise traders are

submitting pure random orders, regardless of order flow and time.

Admati and Pfeiderer (1988) consider a more realistic model, building on the framework
proposed by Kyle (1985). The model differs from Kyle’s by allowing for multiple informed
traders and strategic behavior for noise traders. The rational for the latter is that in reality we

observe volumes that are typically larger early and late in the continuous trading sessions. The



informed traders (minimum one) are assumed to observe part of future public information one
period ahead. Furthermore, there are two kinds of liquidity traders, nondiscretionary and
discretionary. The latter have flexibility to split their orders over periods restricted to a
quantity traded within a given time. Admati and Pfeiderer (1988) show that noise traders will
buy relatively more in the period prior to their given time limit. However, the model lacks as

the private information only is useful for one period.

The models suggest that market makers will change prices as a function of net order flow and
that prices gradually will reflect the information. They both assume that there is no way to
distinguish informed trading from uninformed. Another perspective is that the trade size of
each transaction can reveal information (Easley and O'Hara, 1987). Easley and O'Hara argue
that an informed investor would trade larger quantities at any price, given that he knows that
the price do not reflect the true value. Since the uninformed do not have this quantity bias, one

should expect relatively larger trades to contain more information than small.

Neither of the models (Kyle, 1985; Admati and Pfeiderer, 1988) considers the choice between
limit and market order, i.e. traders could submit a limit order within the spread. This trade-off
between waiting for a better price and the cost of trading now with certainty is defined as the
implementation shortfall (Perold, 1988). Almgren and Chriss (2000) quantify this relationship

in an efficient frontier for optimal execution strategy.

An important question is whether we should expect the same dynamics in a limit order market
as predicted by these theories or not. The absence of market makers can conceptually be
solved by interpreting limit orders as market maker quotes. Furthermore, it is reasonable to
sustain the assumption that some traders are more informed than others and that some traders
trade for liquidity reasons. The market maker’s inclination to buy (short) stocks on his own
account and short the stocks to satisfy take sell (buy) orders, may impact the results of studies
of market impact. Hence, studies at e.g. the New York Stock Exchange may differ from our
findings because of the organization of the market. Nevertheless, the most critical assumption
for our thesis is that larger trades contain an information component. We claim that the
informed traders’ preference for large quantities still apply without a dealer, hence it is

reasonable to test for a price impact from large trades.

There may also be traders that passively submit both bid and ask orders to profit of the spread,
thus acting as temporary market makers. Hasbrouck and Schwartz (1988) divided traders into

two groups; active and passive traders. Passive traders can avoid execution cost imposed by

7



the bid-ask spread by waiting for the contra side of the market to take their offers. Thus, they
provide liquidity for other traders and may reduce the bid-ask spread. Active traders want
immediate transactions, e.g. a trader that wants to buy will rather pay a price that is rounded
up than waiting. By this definition active traders are the ones that affect the traded prices and

initiate the transactions.

2.2. Empirical studies

There is extensive research on price impacts of large trades. However, we are not aware of
any studies performed with data from Oslo Stock Exchange (OSE). Holthausen, Leftwich and
Mayers (1987) study the effects of large block transactions on the New York Stock Exchange
(NYSE). Their results suggest that buy-initiated block transactions are associated with a
permanent increase in the stock price. However, sell-initiated block transactions seem to have
temporary effect on prices, but only weak evidence of permanent effects. In later work
Holthausen, Leftwich and Mayers (1990) analyze how quickly prices reach a new equilibrium
after large block transactions. They find that prices adjust within at most three trades after the
block transaction. Another study at NYSE, conducted by Chakavarty (2001), analyzes which
trade sizes that move prices. He finds that medium-size trades are associated with the largest

cumulative price impact.

Chan and Lakonishok (1995) analyze sequences of trades (packages) that they interpret as
one order. The study uses data of orders and trades submitted by investment management
firms at the New York and American Stock Exchanges. These orders are in most cases
submitted over several days. They find that the weighted average price impact is higher when
orders are considered as a package and claim that it is naive to consider one order or trade
isolated. We argue that if one considers multiple orders as a sequence, the results might
depend on the investment manager’s reactions on the stocks return after the initial order.

Hence, we believe it is reasonable to consider individual transactions.

Koski and Michaely (2000) study the information content of different sized transactions
during periods with varying degree of asymmetric information. They find that large trades
have the largest price impacts during periods when asymmetric information is at its highest.
Furthermore, they find that the spread increase and depth decrease significantly after large

trades, but not after small trades. Another interesting finding is that the effect of the trade size



is non-linear. Hasbrouck (1991) also find that the relationship for the permanent price impact

1S concave.

Order flow is a term used in many empirical studies related to return and variance, i.e. the
aggregate of buy-initiated and sell-initiated transactions. Relative order flow (Blume, et al.,
1989) is a measurement for the imbalance between the value of buy-initiated and sell-initiated
transactions. A positive (negative) result from this calculation indicates a net buying (selling)
pressure. An alternative measures for this imbalance is the normalized order flow
(Lakonishok, Shleifer and Vishny, 1992). Blume, MacKinlay and Terker (1989) finds that the
relative order flow has a positive and significant effect on returns in 15 and 30 minute
intervals. Other studies have found similar conclusions and that various order flow
measurements describe much of the variation in stock returns (e.g. Chordia and

Subrahmanyam, 2004; Moberg, 2008; Dunne, Hau and Moore, 2010).

Chapter 3: Framework and hypotheses

The common assumption from the theories we have described is that there are informed and
uninformed traders. Traders can observe the transactions (but not other traders’ identities) at
the exchange and may be influenced by other market participants’ trades. Hence, traders’
reactions to large transactions may cause price impacts. Basically there are two views traders
can have on anonymous transactions. The first view is that only the large trades contain
information and can cause a price impact. The rationale for this view is that informed traders
have a demand for larger quantities of shares, regardless of the price (Easley and O'Hara,
1987). In Research Question 1 (RQ1) we analyze this price impact from large trades. The
second view is that informed or smarter traders split their orders (Barclay and Warner, 1993)
and that we cannot distinguish between informed and uninformed trades. Then traders may
analyze the aggregated order flows, and interpret an overweight of buy-orders (sell-orders) in
a period as an indicator of a future price increase (decrease). This is analogous to the market
makers’ behavior in models of informed and uninformed trading (Kyle, 1985; Admati and
Pfleidere, 1988). In Research Question 2 (RQ2) we analyze the price impact from the
aggregated order flow. The two views are complementary in the sense that traders can both

take large trades and the order flow into account.



3.1. Modeling the price impact

3.1.1. Temporary and permanent impact
The temporary price impact is a liquidity shock due to the trade which results in a short term
disequilibrium. E.g. when a trader buys all stocks offered at the best ask price it may take
some time before new orders arrive at this level. If the deviation persists, we define it as a

permanent impact, i.e. information related.

Bertsimas and Lo (1998) propose a model where the temporary impact is the difference
between the transaction price and the quote midpoint’ (q,) and the permanent impact is the
difference between the present and a future quote midpoint. Our measurement differs from
Bertsimas and Lo (1998) since we measure both temporary and permanent impact as the
difference in quote midpoints, for increased comparability. Hasbrouck (1991) estimate the
return as the change in the quote midpoint®. Because we estimate models for multiple stocks a

percentage measure is more suitable.

We define the temporary and permanent impact as five seconds and ten minutes percentage
returns (ry):

r'tl‘emp — log <qt+5 sec) I'Eerm — lOg (qt+10 min)
qdt dt

By estimating the mid quote returns we avoid autocorrelation caused by the bid-ask bounce.
This phenomenon occurs when a trade at the ask (bid) price is followed by a trade at the bid
(ask) price and hence the quoted price change regardless of changes in the bid and ask prices.

The bid-ask bounce causes an expectation of the return series to be negatively autocorrelated.

3.1.2. Trade size
There is no single definition of what constitutes a small or large transaction. In order to
determine whether a trade is a small or large it is necessary with a benchmark that is

comparable across securities. One alternative is to use the number of shares traded, e.g.

NG )

dt 2

8
Iy = Q¢ — Qe—1 = Aqg
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Chakravarty (2001). This definition lacks comparability because the value per share and total
outstanding differs between stocks. One alternative would be to use the value of the
transaction as measurement. However, this ignores that some stocks may have different levels
of trading activity, which may affect the price impact. We find a more suitable measure to be

percentage of the total daily traded volume (S,) as done in Kissell and Malamut (2005).

3.1.3. Buy-initiated and sell-initiated transactions
The size of a transaction is a strict positive variable. For there to be any meaningful
interpretation of the price impact we make a distinction between buy-initiated and sell-
initiated transactions. Otherwise, one could argue that for every buyer there is a seller. Active
traders demand immediate transactions and hence submit market orders. Presumably active
traders have an urgent need for buying (selling) the stock that may indicate an expectation of
positive (negative) short term return. If the trader have no expectations about the short term
return he will know that submitting limit buy (sell) orders with a limit lower (higher) than the
current ask (bid) are associated with lower average execution cost. We also realize that there
are other reasons to submit market orders, such as an urgent hedging need. Passive traders, on
the other hand, submit limit orders lower (higher) than the current ask (bid) quotes and the
order may not be crossed. Passive traders may also submit orders on both bid and ask like a
market maker, and profit from the spread. From this we have that an transaction at the current

ask (bid) quote is buy-initiated (sell-initiated).

3.1.4. Expected return
Incorporating expected return is a crucial part when modeling asset prices and returns. In our
case the intervals are diminutive, thus adding a drift term to our model will most likely disturb
more than it explains’. This measurement error comes before choosing the actual expected
return, e.g. CAPM or another factor model. Hasbrouck (2007) analyse the removal of
expectation and identify a negative bias, but a significant reduction in estimation error. We
consequently believe that omitting the expected return and the dividend rate will give a more

parsimonious model for describing the data generating process.

? Assuming 250 trading days, 8.5 hours trading sessions, evenly distributed returns, and 10 % annual returns give
an expected 10 second (10 minute) return of 0.00001 % (0.00075%).
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In order to model price impact of large trades we assume a drift term (B) that is conditional on
trade size (Almgren, Thum and Hauptmann, 2005). Since we are only measuring the returns
and over such a small time span, the difference between the arithmetic and the more complex

geometrical Brownian motion will be trivial (Almgren and Chriss, 2000).

3.2. Research questions and hypotheses

3.2.1. Research question 1
Are large stock transactions followed by temporary and permanent price impacts, and are

there intraday differences?

We assume that the temporary price impact of a trade is liquidity related. Traders of large
transactions may consume large parts of the available quantity offered, and hence it may take
some time for other traders to submit new orders. However, the price is expected to return to
its equilibrium after new orders arrive. For measuring the temporary impact (r; **?) from large

trades we use a linear model.

Other empirical studies find that the impact is greatest for medium sized trades (e.g. Barclay
and Warner, 1993; Chakravarty 2001). This could suggest that an information component is
declining for some trade sizes. We use the square root of trade size(VS,) to model the
permanent impact. The reason for this is that other empirical studies (e.g. Hasbrouck, 1991;
Koski and Michaely, 2000) find a concave relationship for the permanent impact, i.e.

increasing, but diminishing with trade size.

We measure the permanent impacts (rf®™) in ten minute intervals, and it is reasonable to
assume that there are more factors influencing returns compared to the temporary impacts.
Therefore, we take a more comprehensive approach by including two additional variables in
our model. We include normalized order flow (vNermalized) to account for the omitted small
trades. Lakonishok, et al. (1992) propose normalized order flows as a measurement of the
imbalance between buy-initiated and sell-initiated trades. Positive normalized order flow
means that there are an overweight of buy-initiated transactions, i.e. net buying pressure.
Hence, we would expect that a positive (negative) normalized order flow is related to a
positive (negative) return the next 10 minutes. The normalized order flow is calculated for the

interval ten minutes before the transaction to one second before the transaction. The reason
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for the one second lag is that including the same second mean that normalized order flow also

contains the value of the transaction (T,).

We also include the lagged return (r[*"™'*%) in case there are momentum or mean reversal

effects in returns.

Perm la (o1 t—15 min BUY __ v't—15 min Sell
I'¢ = log( ) yNormalized _ Zt-l sec Tt Zt—l sec It
9t-10 min t Zt—lSmin TBUY + Zt—ls min Sell
t—1sec t t—1 sec t

Theory, e.g. Admati and Pfleidere (1988), suggests that trading will be concentrated in certain
periods of the day. Because informed traders are likely to trade when volume is high (Kyle,
1985; Admati and Pfleidere, 1988), we will test for differences in the impact during intraday
trading. Moberg (2008) find that the volume pattern is U-shaped on OSE, i.e. more volume
traded at the start and at the end of a trading day. Other studies (e.g. Andersen and Bollerslev,
1997; Almgren, et al., 2005) find the same U-shaped pattern for the volatility. We identify the
same volume characteristic in our sample and the result is shown in the data chapter. There
may be several reasons for increased volume parts of the day, e.g. passive funds that trade at
the end of the day because they track an index that is measured by closing prices. We test for
intraday differences by including slope dummies for each hour of continuous trading for both
the buyer and seller initiated trades, resulting in 16 dummies. The base case is trading from
0905 to 0930, then one slope dummy (D;) for each trading hour'’. Sell-initiated transactions
are modeled with a slope dummy (D§e!h), i.e. the price impact for a buy-initiated (sell-initiated)
transaction is B,(B; + B,) multiplied with the square root of trade size in percentage of daily

traded volume.

1D, (09:30 — 1030) = 1,D,(10:30 — 1130) = 1, ..., Dg(16:30 — 1720) = 1| other hours D; = 0
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Table 1 - Models and hypotheses for research question 1

Model 1, temporary impact
re ™ = B,S, + BoSDF! + T8, §,D;S, + T, ¢;D;S D! + g

Ho:B1 < 0,82 =0,[By +B2] =0,61,8;,.,85 b1, by, pg =0
Hy:B1>0,B,<0,[By +B2] <0,84,8,,.,88 ¢y, by, g # 0

Model 2, permanent impact
ré’erm — Bl\/gt + BZ\/gthell + B3VtNormalized + B4rtperm lag + 21821 Sij\/gt

+ 21821 d)] D]\/gt Dgell + €

}[O:Bl < O,Bz = 0! [Bl + BZ] Z!BS < 0!84 = 0!61'62""88!(1)1’(])2!"’4)8 = 0
Hi:B1 > 0,8, <0,[By +B2] <0,B3>0,Bs #0,81,8,,..,85 d1, by, ., bg # 0

1. Alternative hypothesis: Large buy-initiated (sell-initiated) trades are followed by a
positive (negative) temporary price impact. The temporary price impact from large
trades varies intraday.

2. Alternative hypothesis: Large buy-initiated (sell-initiated) trades are followed by a
positive (negative) permanent price impact. The lagged return coefficient is different
from zero. Normalized order flow coefficient is positive. The permanent price

impact from large trades varies intraday.

3.2.2. Research question 2
Will an overweight of buy-initiated (sell-initiated) transactions be followed by positive

(negative) returns, and are there intraday differences?

It may be more reasonable that traders make interference from the aggregated order flow
rather than single traders, because of the difficulty associated with interpreting a single trade.
Empirical studies finds that order flow explain a large part of return variation in indicies (e.g.
Blume, MacKinlay and Terker,1989; Chordia and Subrahmanyam, 2004; Moberg, 2008;
Dunne, Hau and Moore, 2010). Hence, we test if order flow is able to explain return in

individual stocks.
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The model we study has the aggregated sell-initiated (Te") and buy-initiated (T") turnover
in a 15 minute interval as the independent variable, i.e. normalized order flow (vNormalized),
Normalized order flow is always between -1 and 1, where 1 (-1) mean that all trades in a
period are buy-initiated (sell-initiated). We measure normalized order flows’ effect the effect
returns (r,) in the next 15 minute interval.

dt+15 min
r = log q—
t

t—15 min Buy t—15 min Sell
Zt Tt - Zt Tt

t—15min pBuy t—15 min pSell
Zt Tt +Zt Tt

V{\Iormallzed —

Given that individual trades contain information, we expect that the difference between buy-
initiated transactions and sell-initiated transactions in a period to contain more information
than individual trades. Furthermore, we expect traders with private information to split their
orders to disguise their private information (Barclay and Warner, 1993). The order flow may
capture this effect better than large individual transactions. When normalized order flow is
greater than zero the value of buy-initiated transactions are greater than the value of sell-
initiated transactions, i.e. a net buying pressure. Hence, we expect the impact on the future

price (B,) to be positive.

Moberg (2008) measure how imbalance in the order flows explains OBX return. He find that
foreign market return and local order flow jointly explains a large part of OBX return
variation. His result suggests that return in the continuous trading session are affected by the
return during opening auction. To capture this effect we include the overnight return

(r?"e”‘ight) as a separate variable. We calculate overnight return as the difference between the
last mid quote of the previous continuous trading session and first mid quote of the current
continuous trading session. Overnight return is included as a slope dummy variable in the first
interval, i.e. 09:05 to 09:20. We also include seven intercept dummies'' to model intraday
differences in return.

qt-15 min

"D, (10:05 — 11:05) = 1,D,(11: 05 — 12: 05) = 1, ..., Dg(16: 05 — 17: 05) = 1| other hours D; = 0
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Table 2 - Model and hypotheses for research question 2

. j=7
= Normalized Overnight Lag
re = oo + Byve + Bzrt + Bgrt + _ O(ij + &

7_[0: Bl SO,BZ =0,B3 =0,O(0 =0,O(1 = 0,..,0(7 =0
:}'[1:81 >O'BZ ¢0,83 ¢0,O(0 ¢0,0(1 ¢0,..,O(7 ¢0

Alternative hypothesis — Positive (negative) normalized order flows are followed by positive
(negative) returns the next 15 minutes. The overnight return and lagged return coefficients are

different from zero.

Chapter 4: Data

4.1. Datasample
The data material is extracted from the OBI'? Continuous Data Feed (OCDF) and includes all
trades and orders at Oslo Stock Exchange in the period the 1% of March 2007 to the 30™ of
March 2010". We use the Perl programming language for parsing of the raw data. For each
continuous trade session, we first track all changes of the best bid and ask quotes, and make a

temporary series with the last mid quote for each second.

To facilitate the first step, the time for each observation is calculated in seconds from
midnight, i.e. 09:05 and 17:20 (16:20) are 32700 and 62400 (58800) seconds after midnight
respectively. For each 29700 (26100) seconds in the continuous trade session we save the best
bid and ask quotes. In the same operation we also save each transaction with the best bid and
ask quotes available at the same time, this means the last update of the best bid and ask quote
before the transaction. Thereafter we extract the dependent and independent variables for each
transaction in the temporary series. We use the open source program R to perform the
econometric analysis (R Development Core Team, 2011). The R-packages used can be found

in the references.

In the OCDF stocks are identified by ISIN numbers. Some stocks change ISIN number during
our sample period. For this reason we select stocks that have the same name from March 2007
to March 2010. This excludes some stocks that may have gone bankrupt, merged with other

companies or for some other reason are not listed under the same name. By selecting only

2 Oslo Bers Information AS.
P The days; 04.07.2007, 15.03.2009, 08.05.2009, 04.06.2009, 16.06.2009, 21.06.2009 and 24.01.2010 was
removed due to incomplete files. We have a total of 766 continuous trade sessions in our sample.
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survivor stocks the average return may be higher than a sample including all stocks, this is
called a survivorship bias. The price impacts we analyze are assumed to be both positive and
negative. Thus, higher return in our sample cannot mean that we find price impacts because of
survivorship bias, but the dynamics we find may not be representable for stocks in distress.
Hindsight bias is possible in an analysis of price impacts, ergo when one includes information
that is not available at the time of the trade. However, in our data processing we have only
included explanatory variables that according to the OCDF occurred before the price impact
we measure. Because this is a fully electronic market, it is reasonable to assume that the

sequential data is correct.

We find 147 stocks that fulfill the name criteria. We extract all trades and changes of the
order book for these stocks from the OCDF data. After excluding stocks which are traded on

less than 70 % of the 766 days, we have 112 stocks available for analysis.

4.2. Data processing
We analyze high frequency data and therefore is market microstructure noise an important
aspect. Microstructure noise is a term that describes all price movements in the trading
process, inter alia the bid-ask bounce, information of trades and discreteness (price ticks) (Ait-
Sahalia and Yu, 2009). The ratio between the noise and the information added when reducing
the intervals is called the noise to signal ratio, this ratio is lower for more liquid stocks (Ait-
Sahalia and Yu, 2009). Much microstructure noise present in the series make it difficult to
find any relationships about the price impact. Thus, it is important to control for and to reduce
the noise in the dataset. We reduce this noise through both data handling and through our
variables. Returns are calculated as the difference in the quote midpoint in order to remove
the bid ask bounce. This reduces a large part of negative autocorrelation and hence noise in

the return series.
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Table 3 - Descriptive statistics for the 112 stocks in the dataset

Ten most traded Ten least traded Sample
Description — daily figures Average Median Average Median Average Median
Trade value (in 1000 NOK) 471830 392091 290 298 54666 1466
Number of trades 2 461 2175 8 7 367 65
Trade volume (in 1000 shares) 192 180 35 43 149 58

Trade size of total daily volume 0.04 % 0.05% 12.24% 1437 % 0.27% 1.54%

The 112 stocks in our sample have considerable different characteristics. Descriptive statistics
are presented in Table 3. We see that the data has a positive skewness in terms of trade size
and number of trades. For comparability of the results we prefer stocks with relatively
homogenous characteristics. Furthermore, modeling stocks with large differences in
frequency of trading require different time-series models. Ideally we would utilize as much of
the dataset as possible, but since similar models and individuals make the estimation and
interpretation more convenient we exclude less traded stocks. The OBX'* index include the
25 most liquid stocks in the Oslo Stock Exchange Benchmark Index (OSEBX) and is a natural
starting point for the selection. We include 19 stocks that both fulfill the name criteria and are
included in the OBX index in the beginning of the sample period. Additionally, we include 11
additional stocks which are in the same turnover range. Hence, our analyses are limited to the
30 most traded stocks of the 112 stocks, measured by the total NOK turnover. Due to
infrequent trading in certain periods for some stocks, we include the 20 most traded stocks in

the panel data analysis.

We remove the opening and closing auction from the sample as Nas (2004) and Moberg
(2008). In the opening and closing auctions all trades are executed at the same price,
consequently there is no measurable price impact. Table 4 shows how many of the trades that

are removed due to the opening and closing auctions.

Table 4 - Decomposition of when trades occur

Trades Opening auction Closing auction Continuous auction

29959576 819305 721419 28418852
100 % 3% 2% 95 %

1 Tickers for the 25 stocks in the OBX index the 1 of March 2007; ACY, AKER, AKVER, AWO, DNBNOR,
DNO, FOE, FRO, MHG, NHY, NSG, OCR, ORK, PGS, PRS, SDRL, STL, STB, SUB, TAA, TAT, TEL, TGS,
TOM and YAR.
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The data is arranged as one long return series from the continuous trading period for each
stock. E.g. the last trade before 16:20 (17:20 from the 1** September 2008) is followed by the
first trade after 09:05 in the next trading session as in Moberg (2008). The variables for price
impacts do not contain overnight returns. The transactions where the quote midpoint cannot
be observed the next 5 (10) seconds (minutes) will be treated as missing observations and
hence excluded. We also require the mid quotes in the dependent and independent variables to
be within the continuous trade session. Thus, the number of observation included in the

temporary and permanent impact model differs.

Figure 2 - Intraday distribution of turnover in fifteen minute intervals
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Figure 2 shows the turnover for each 15 minutes intraday calculated for the 30 most traded
stocks, measured in percentage points of the total turnover. We see that it has the
characteristic U-shape with higher turnover at the beginning and end of the day. Theory of
market microstructure predicts that informed traders will trade more when there is higher
trading activity (Kyle, 1985; Admati and Pfleidere, 1988). With the observed volume pattern
in our dataset we assume that informed trading is more frequent in the opening and closing
hours. The 30 stocks total turnover for the first and the second period is NOK 2987 and NOK
1741 billion respectively.
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In all the models we make distinction between buy-initiated and sell-initiated transactions and
hence we must classify each transaction. Transactions at the current ask (bid) quote is buy-
initiated (sell-initiated). The problem is related to classifying executed at a price between the

bid and ask quotes.

Table 5 - Transactions in our sample

Bid Ask # Bid, #Ask®®

46 % 47 % 7%

As Table 5 shows, most of the transactions in our sample are traded at the current ask or bid
price. Some studies identify the sell-initiated or buy-initiated trades by simply comparing the
price of the trade with the last trade, this is known as the “tick test” (Lee and Ready, 1991).
This test is typically used by researchers who do not have quote data, only transaction data.
The most robust method to determine if a transaction is buy-initiated or sell-initiated, is to
track all orders and find which of the orders participating in a transaction that was submitted
last. As an example, if the last submitted order is a sell order, the transaction is classified as
sell-initiated. Trades between the bid and ask quotes are mainly caused by internal trades
within member firms of OSE (Moberg, 2008). Hence, there are no corresponding orders in the
order book. Odders-White (2000) studies various classification methods and find that the tick
and midpoint method misclassifies 21.4 % and 9.1 % respectively. Because we cannot
classify these transactions as buy-initiated or sell-initiated with certainty, we discard these

observations.

15 Some trading sessions have different closing hours, e.g. Christmas Eve, resulting in more trades in this
classification.
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Figure 3 - The average deciles of the trade size in percentages of daily volume
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We measure the price impact from large trades, disturbances from small trades are considered
to be microstructure noise. We therefore exclude small trades in the estimation of the models
in RQ1. Removing small trades reduces noise in the data and allow for better analysis of the
price impact from large trades. Almgren, et al. (2005) exclude small trades and define trades
larger than 0.25% of daily traded volume as large, we use 0.2%. The measure is
approximately the average of the 9" deciles for the stocks in our sample. The drawback with
this measure is that we keep a higher percentage of the trades in the least liquid stocks,

resulting in more microstructure noise.

Table 6 - Sample after removing small trades and trades between bid and ask quotes

Continuous auction Undetermined <0.02% Sample size
28418852 1984951 25033668 1400233
100 % 7 % 88 % 5%

Tick size is the minimum increment traders can offer over (under) the current bid (ask).
Therefore, the smallest price change possible is one tick and hence the minimum bid ask
spread. Discreteness is present in the data due to the tick sizes and affects the future outcomes
of the price series. This result in a distribution concentrated around zero with a high kurtosis

(Engle and Russel, 2010). Related studies (e.g. Nes, 2004; Moberg, 2008) exclude stocks
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with a low nominal share price, because the tick size will cause the percentage price changes
to be larger than for other shares. We do not exclude these stocks, but since we select the most

traded stocks most of them are removed indirectly.

Chapter 5: Empirical analysis

5.1. Research question 1

5.1.1. Time dimension
The transactions are by nature irregularly spaced in time because the time between trades can
occur at any fraction of a second. Thus, we should consider the time dimension in the models.
Wall clock time and event time are two alternative methods for arranging of the data

(Hasbrouck, 2007).

Wall clock time means that the researcher arranges the return series in intervals based on the
time of registration. An example of the use of wall clock time is 15 and 30 minute intervals.
In order to make these intervals, the researcher typically calculate the difference in mid quote
from a point in time and the mid quote 15 or 30 minutes later. The observations in this
interval are omitted, just as the intraday observations are in daily return series. One advantage
of applying wall clock time in a study is that microstructure noise can be reduced through the
use of longer intervals. Furthermore, all observations have the same interval length which

means it is more convenient to estimate models and to compare results.

Event time, on the other hand, enables the use of all the observations regardless of when they
occur. Including all the observations increases the presence of market microstructure noise in
the sample compared to wall clock time. However, there is a trade-off between reduction of
noise and actually measuring the price impact. E.g. in RQ1 we measure the price impact from
large trades, predefined intervals may omit many large trades and hence event time is better to
capture all of the large trades. We use event time for registering large trades, but to measure
the price impacts (r; ™, rfe™) from the transaction we use wall clock time. Measuring the
price impact a certain number of transactions forward in time decrease comparability, because

of the differences in frequency of trading. The use of event time for the transactions is another

argument for exclusion of the small trades, because this reduces the microstructure noise.

Since price impact coefficients are the difference in mid quote over an interval and the

transactions occur in event time, some of the price impact observations are overlapping. E.g.
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we measure the temporary impact as the mid quote return the next five seconds, this give a
perfect overlap for trades the same second and an imperfect overlap for the trades the next
four seconds. Overlapping observations result in persistent and non-converging
autocorrelation in the dependent variable and is more present in the model of the permanent
impact. If not controlled for the overlapping problem can give a persistent moving average
specification in the models’ residuals (Harri and Brorsen, 2009). Alternatively we could
measure the temporary and permanent price impact over a longer horizon and reduce the
microstructure noise. However, increased length of the price impact also increases the

overlapping problem.

5.1.2. Estimated models
With shorter intervals in financial time-series there are often autocorrelation present, but due
to the overlapping problem the autocorrelation is larger than for a normal return series. In
order to model the autocorrelation in our data we apply the Box-Jenkins methodology. We
explain the methodology and show some graphical output from our model fitting process in

Appendix C.

We estimate the following models for each stock (i):

T T
1) Ar ™ = Bi1ASic + Bi2AS; DY + XL, 8;AD;S; + T, bijAD;S; DS + Auy P

it
2) ArfE™ = B AS; + Bi2AS; DI + By sAvNOrmalized Bi,4A1"i}_)term Lae i, 8iAD;S; +

8 Sell Perm
Zj=1 q)i,]'AD]'Si,t Di,t + Aui_t

Temp __ 3 Perm _ .. 6 el
U, =&t Xg=1DbigEit—q Ui = &r + Xg=1DbiqEit—q

We have assumed that the stocks in the sample have similar characteristics after testing on a
selected sample. Our conclusion is that MA (3) and MA (6) specifications, integrated at level
one, for temporary and permanent impact models respectively. These specifications remove
most of the autocorrelation present in the residuals. Although by studying the squared
residuals from MA specifications we identify autocorrelation which indicate volatility

clustering in the series. Alternatively we could model the conditional heteroscedasticity with a
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generalized autoregressive conditional heteroscedasticity model (GARCH) (Bollerslev, 1986).
However, we do not believe heteroscedasticity to be a severe problem in our data at large and

uneven spaced observations make estimation of conditional volatility problematic.

5.1.3. Summary results
Coefficients with their significance level from model 1 and 2 can be found in Appendix A.
We estimate one model for each of the stocks and this give a total of 480 estimated dummies.
To test for intraday differences in price impact we use a likelihood ratio (LR) test'®. The
results from the LR test are shown in Appendix B (Wooldridge, 2008). We use maximum
likelihood to estimate the models and hence we use a LR test instead of an F-test. In Table 7

we present a summary of the hypotheses. We use a standard significance level of 5 %.

Table 7 - Result summary

Model Explanatory variables Alternative hypotheses  Sum of H, rejections

1 Sit B, >0 27
1 Sy, D" B, <0 28
1 Sit) Si,tDiS,teH B1+B, <0 29
1 D;Si¢, D;SiD7e" 81,6,,.,08, 1, Py,., bg # 0 30
2 \/gi,t B, >0 25
2 \/gitD?fH B, <0 30
2 Sit, SicDfe! B1+B, <0 21
2 VNtormalized 83 >0 29
1,
2 r.il-"term Lag 84- =0 30
2 D;Si¢, D;S; D! 81,85,..,88, &1, by, g # 0 27

The results support the alternative hypotheses, for most of the stocks, that large trades are
associated with a temporary impact and a permanent impact, i.e. large buy-initiated (sell-

initiated) transactions are associated with a positive (negative) return the next 5 seconds and

' Test statistics: LR = 2(Ly, — L) L is the log-likelihood for the unrestricted (L,,) and restricted (L,) model.
Reject Hy if LR > X3 05.16
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10 minutes. The results also supports that there are intraday differences for these price

impacts.

5.1.4. Temporary impact
The estimated temporary impact coefficients indicate that a large buy order affects the price
positively the next five seconds, with a coefficient ranging from -0.0085 to 0.0901. The
negative coefficient may seem puzzling, but there is only one stock with a negative
coefficient. This particular stock (Norwegian Property) has a very sharp decline (-86.6 %) in
the share price during the sample period. A large sell-initiated transaction is associated with a
negative return (B;, + B;,), the sum of the coefficients range from -0.1217 to -0.0046 for the

stocks in the sample.

Figure 4 - Expected temporary impact
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Average of the estimated coefficients. S;; = 0.2 %

In Figure 4 we see that the average estimated temporary impact is larger in the first 25
minutes and the last 50 minutes of the continuous trade session. In a part of the sample the
continuous auction close 16:20. The intraday differences cannot be a result of generally

higher or lower return in these hours, because buy-initiated and sell-initiated price impacts
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have opposite directions. However, turnover is generally higher in opening and closing hours

which might suggest that these differences are related to the volume and volatility.

The results for the temporary impact are what we would expect from a liquidity perspective,
since a large trade might temporary consume a large part of the current available supply or
demand. Furthermore, a trade can be a part of a larger order that “walk the book™ and
consume available quantities at multiple levels. This can mean that each part of the order a

partial impact on return.

5.1.5. Permanent impact
For the permanent impact the estimated buy coefficients (51,1) ranged from 0.0022 to 0.0231
and the sell coefficients (B;; + B;,) ranged from -0.0258 to 0.0053. In general the permanent
impact has the same direction as the temporary impact. However, estimated price impacts for
sell-initiated transactions are positive for 4 stocks. This clearly contradicts the alternative

hypothesis that sell-initiated transactions are followed by a negative return the next 10

minutes.

Figure 5 - Expected permanent impact

0.05%
H
£ 003%
-
[}
2
g 001% I
£
k b
g
T -001% [— —
B
-1
8 503% |— —
-0.05%
09:05 | 09:30 | 10:30 | 11:30 | 12:30 | 13:30 | 14:30 | 1530 | 16:30
| 09:30 | 10:30 | 11:30 | 12:30 | 1330 | 1430 | 1530 | 1630 | 17:20
' SELL | -0.00041 | -0.00037 | -0.00031 | -0.00030 | -0.00032 | -0.00029 | -0.00029 |-0.00034 | -0.00040
EBUY | 0.00049 | 0.00035 | 0.00035 | 0.00033 | 0.00034 | 0.00031 | 0.00035 | 0.00028 | 0.00035

Average of the estimated coefficients. S; = 0.2 %

26



Perm Lag
it

In Figure 5 we assume that the lagged return (r ) and the normalized order
flow (viermalized) are zero. The estimated ten minute lagged return coefficient ranged from
-0.5247 to -0.0296, i.e. positive return in a ten minute period is associated with negative
return the next ten minutes. Figure 5 has an upward bias if large buy-initiated (sell-initiated)
transactions are associated with positive (negative) return the previous ten minutes. This bias
makes us reluctant to interpret the relatively larger permanent impacts in comparison with the
smaller temporary impacts. Nevertheless, the interval from 09:05 to 09:30 differs from the
rest of the day as buy-initiated and sell-initiated transactions have a larger estimated price
impact than all other hours of the continuous trade session. However, the differences seem

smaller than for the temporary impact.

The normalized order flow and the estimated coefficient range from 0.0001 to 0.0004. This
mean that an overweight (underweight) in buy transactions is associated with a positive
(negative) return the next 10 minutes. These results are significant for 29 of the 30 stocks, and

indicate that not only the large trades impact prices.

The permanent impact is consistent with microstructure theories that suggest that there is an
information component in large transactions (Easley and O'Hara, 1987). However, there is no
way to separate the information components when measuring the impact, thus we do not

claim that the estimated impact is solely information related.

5.1.6. Economic significance
An important question is how to interpret the economic significance of the coefficients. In our
case this is dependent on the size of trades and the current shape of order book. To illustrate
how the coefficient can be interpreted we provide an example. Recall from Chapter 1.2 how a
trader at OSE can submit limit orders that “walk the book”. Assume that we wish to buy a
large quantity (TQ) of stocks. We can either buy all the stocks we want with a market order
immediately. Assume that we alternatively can buy equal quantities at the first level (P3%1) in
fixed number (N) of 10 minutes intervals. This might not be optimal, e.g. Bertsimas and Lo
(1998) propose a solution to an analogous optimization problem that give different quantities
for each period, given a fixed price impact. Multiple orders may also be associated with an
additional fixed cost to the broker («) per transaction. Given that we are risk neutral the
preferable alternative is that with the lowest expected average share price, i.e. buy now if the

following condition is true:
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The left side of the above expression is the average share price if we buy all stocks at the first
level or we “walk the book” immediately, i.e. we pay P¢ski at each level (i) where we buy Q;
stocks. If we can buy all the stocks at the first level now the average share price is equal to the
current best ask price. Hence, we should buy all the stocks now because our estimated price
impacts are positive and submitting multiple orders are associated with a fixed cost. On the
other side, if we have to submit an order that “walk the book” i levels and hence the average
price is higher than the current best ask and the solution to the optimization problem is not
straight forward. The current order book is known, but the expected ask quote is uncertain.
Given that the spread is fairly constant, the estimate percentage change of the ask price can be
approximated by the percentage change in the mid quote. Thus, we estimate the change in the
ask quote with model 2 (rf erm = B,/S, + B,VSDFe! + BvNormalized g (FEMIAE 4§68  §D./S, + et).
We ignore the time dummies and assume that the normalized order flow and lagged return are

zero, hence we can estimate the future ask price conditional on our past trades:

E(Plask 1) — P(?Sk 1631\/50

E(P2sk1) = E(P3%1)ePrVSna

Where S, is a transaction n 10 minutes periods after the first trade (S,) as a fraction of the
estimated total volume during this trade session. As we see from the decision problem above,
economic significance depends on the quantity required and the shape of the current order
book. Furthermore, future prices are conditional on our current and future trades and hence
the price impact should be considered during execution of large orders. It is clear that if the
estimated price impacts are correct, the optimization problem has a solution for all quantities
and stocks. However, to determine whether this approach to execution gives better outcomes
would require out-of-sample empirical analysis. This would be to extensive for this thesis and
are left to future research. Nevertheless, lower values for the estimated price impacts
(B1VS,_.) associated with our trades, favors splitting the order if there is insufficient volume

available at level one.
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5.2. Research question 2
Panel data has both a cross sectional and a time dimension. There are alternative methods
available that can be used if there are unknown individual factors that affect the residuals. We
use a pooled regression because there are no significant fixed effects. After we include the
lagged return there is no autocorrelation present in the residuals. We use heteroscedasticity
robust standard errors to account for differences in variance. Relevant tests that support these

approaches are given in Appendix D.

Some of the stocks are not traded in each 15 minute interval of the continuous trading
sessions. The reason for this is that some of the most traded stocks do not have a constant
volume in the sample period. We observe that some stocks are traded infrequently in the
beginning of the period and hence we get an unbalanced panel. Other reasons for missing
observations might be trading halts imposed by the exchange because of suspicious trading
activity or news announced by a company. These periods are treated as missing observations.
However, we have arranged the data in such a way that the lagged return and order flow
always corresponds to the return the next 15 minutes, i.e. the first return variable each day is
the return from 0920 to 0935, with explanatory variables from 0905 to 0920, i.e. the last

explanatory variable for each continuous trading session is order flow from 16:50 to 17:05.

Table 8 - Results from the panel data regression model

Unbalanced Panel: n=20, T=20298-22900

N=451704

Estimate Std. Error*  Coeff.  P-value
Qg -0.0001 0.0000 Bo 0.0000
yNormalized 0.0002 0.0000 B1  0.0000
rovernient -0.0028 0.0018 B2 0.1186
r %8 -0.0183 0.0104 B3 0.0798
D; (10:05-11:05)  0.0001 0.0000 61 0.0242
D, (11:05-12:05)  0.0001 0.0000 ) 0.0026
D5 (12:05-13:05)  0.0001 0.0000 a3 0.1142
D, (13:05-14:05)  0.0001 0.0000 Oy 0.0534
Ds (14:05-15:05)  0.0001 0.0000 s 0.0099
D¢ (15:05-16:05)  -0.0001 0.0001 Ae 0.0780
D, (16:05-17:05)  0.0000 0.0001 a7 0.6301
R-squared 0.0007 * White heteroscedasticity robust std. errors
Adj. R-squared 0.0007
P-value 0.0000
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Table 9 - Hypotheses for research question 2

H, Hy Result

B; <0 By >0 Reject H
B2=0 B,#0 Fail to reject
B3=0 Bs#0 Fail to reject H,

o =0, =0,..,0;, =0 ay# 0,04 #0,..,a; # 0 Reject H

In Table 9 we see that we fail to reject the hypothesis that overnight return and the lagged
return coefficient are different from zero. Normalized order flow is significant and support
that positive (negative) normalized order flows are associated with a positive (negative) return
the next 15 minutes. We test the jointly significance of the time dummies with an F-test of a
restricted model without the dummies over an unrestricted model. We reject the null
hypothesis which states that there are no intraday differences in returns. The results indicate
that returns are higher at the middle of the day. The dependent variable is 15 minutes after the
explanatory variable which means that the estimated higher return is between 10:20 and
15:20. However, the coefficients are not all individually significant and we cannot claim that

they are positive or negative.

The R-squared is very low for this regression compared to the regressions on the OBX index
in Moberg (2008). This seems reasonable to some extent, since an index will have a lower
standard deviation, due to correlations between securities. However, the low R-squared
compared to studies at indices (e.g. Blume, et al., 1989; Chordia and Subrahmanyam, 2004;
Dunne, et al., 2010), may suggest that modeling individual stock returns at such a short

horizon is less sensible than modeling an index.

5.3. Robustness

We have only considered securities with a high turnover in the sample period, thus the results
cannot be generalized for illiquid securities. It is reasonable to assume that volatility in our
sample period differs from normal market conditions due to the financial crisis starting in
2008. We have not modeled volatility and hence this might influence our results. However,
our sample is in microstructure terms relatively large, and the squared residuals seem

acceptable.
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Omitted variables are an important issue that can cause bias in a model. One might suggest
that security prices are influenced by the general economic outlook, which might be measured
by including an index in the model. However, calculating the index returns for each five

seconds are considerably more complicated and hence not prioritized.

Figure 6 shows the root mean squared error (RMSE) for each of the 30 stocks in RQ1. The
stocks are arranged descending after turnover. A large RMSE means that the in-sample
predicted returns have large average deviations from the observed return. We see that the

models for temporary and permanent impact have a better fit for the most trades stocks.

Figure 6 - Root mean squared error

0.025

B RMSE Permanent impact RMSE Temporary impact
0.02

0.015

0.01

0.005

Chapter 6: Conclusions and further research

In the empirical analysis we find support for a temporary and permanent price impact from
trades larger than 0.2 % of daily traded volume. Theory suggests that impacts from large
trades are related to private information (Easley and O'Hara, 1987). However, we cannot
know if the impact is due to private information or not. We observe that large buy-initiated
(sell-initiated) transactions are positively (negatively) correlated with returns the next 5
seconds and 10 minutes. This observation of price impact is consistent with several studies at
other exchanges (e.g. Holthausen, et al., 1987; Hasbrouck and Schwartz, 1988; Almgren, et
al., 2005).
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The test for intraday differences support the alternative hypothesis that price impacts do vary.
This finding suggest that optimization of excution costs, such as proposed by Bertsimas and
Lo (1998), should take into account the differences in the intraday price impacts. Intuitivly

these results seem reasonable because the intraday volume has a characteristic u-shape.

We find that normalized order flows are positivly correlated with returns. The interpretation is
that a positive (negative) imbalance between the value of buy-initiated and sell-initiated
transactions in a 15 minutes interval, are assosiated with positive (negative) returns the next
15 minutes. The R-squared is very low compared to similar studies preformed with indicies,
and may suggest that its difficult to explain short term returns in individual stocks. This is
what we would expect form a random walk perspective. On the other hand, all our models

suggest that there are a negative correlation in returns, which indicate mean reversal.

If we had more time available we would consider conducting a panel data analysis of large
transactions. E.g. we could take the largest daily trade in each stock and estimate the price
impact. Then we might better control for any differences in the stocks’ characteristics. In
further empirical research it would be interesting to see if the price impacts are different in
periods with more or less asymmetric information. An example can be before and after
financial statements are issued from companies. More comprehensive theories of limit order
markets are also an area of research with several possibilities. New theories could shed light

over the market dynamics without the presence of market makers.
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Appendix A: Estimated coefficients research question 1

Estimated coefficients from research question 1 Temporary Permanent

Alternative hypotheses B, >0 B, <0 B1+B, <0 B, >0 B, <0 Bz>0 Ba#0 B1+B, <0
Explanatory variables 2 Obs. Sit S; DN Sit, SieDiE" | Obs. VSi VS Dfe!t  yNormalized rf omag s VS, Dfe!
Stocks:

Acergy 36174  0.0641***  -0.0937***  -0.0296*** 34083  0.0092***  -0.0109***  0.0004*** -0.2869***  -0,0018
Acta Holding 44470 0.067*** -0.0874%**  -(0.0203*** 42265 0.0173***  -0.0315%**  0.0001*** -0.4409%**  -0.0142%**
Crew Gold Corporation 57650 0.0476***  -0.1271%**  -0.0795%** 54928 0.0195%**  -0.0453***  (0.0001*** -0.4771%*%*  -0.0258***
Fred. Olsen Energy 59614  0.0404***  -0.0533***  -0.0129%** 56288  0.0087***  -0.0104***  0.0002*** -0.3827***  -0,0017
Frontline 49728  0.0277***  -0.0632%**  -0.0355%** 46956  0.0171***  -0.0199***  (0.0002*** -0.0297***  -0.0027*
Golden Ocean Group 49109 0.0848***  -0.1372%**  _0.0523*** 47014  0.0198***  -0.0175***  0.0003*** -0.3961%**  0,0022
Marine Harvest 52371  0.0901***  -0.2118***  -0.1217*** 49677 0.0145***  -0.0222***  (0.0003*** -0.3842%**  _0.0077***
Norsk Hydro 20665 0.0305***  -0.0788***  -(0.0483*** 19635 0.0180***  -0.017*** 0.0004*** -0.3184*** 0,001
Norske Skogindustrier 55405  0.0894%***  .0,1928***  .(.1034*** 52706  0.0096***  -0.0257***  0.0001*%** -0.3546%**  -0.0162***
Norwegian Property 48005 -0.0085 -0.0133 -0.0219%** 45197 0.0025 -0.0274***  0.0001* -0.4359%**  -(0.0249%***
Orkla 29138  0.0471***  -0.0796***  -0.0325%** 27463  0.0037** -0.0086***  0.0002*** -0.3393***  _(0.0049***
PA Resources 46205 0.0793***  _0.1197***  -0.0405%** 43848 0.0118***  -0.0293***  (.0001** -0.3436%**  -0.0175%**
Petroleum Geo-Services 34347  0.0511***  -0.1292%**  -0.0781*** 32636  0.0231%**  -0.0179%**  0.0003*** -0.3099***  0,0053
Prosafe 50034  0.0653***  -0.1284***  -0.0631*** 47150  0.0119***  -0.0234***  (0.0002%%** -0.3235%**  _0.0115%**
Questerre Energy Corporation 54830 0.031*** -0.0612%**  -0.0303*** 52407 0.0121***  -0.0271***  0.0002%%** -0.3777%*%*  -0.015%**
Renewable Energy Corporation 21610 0.0616***  -0.1155%**  -(0.0539*** 20521  0.0052* -0.0078** 0.0003*** -0.3327***  -0,0026
Royal Caribbean Cruises 56410  0.0276***  -0.1464%**  -(0.1188*** 53008 0.0076***  -0.0314***  0.0002%%** -0.3622%**  _(,0238***
Schibsted 61093  0.0152%**  -0.0893***  -0.0741*** 57584  0.0123***  -0.0273***  0.0002*** -0.375%** -0.0149%**
Scorpion Offshore 26858  0.0203***  -0.045%** -0.0247%** 25125  0.0086***  -0.0205*%**  0.0001** -0.4896***  -0.0119%**
Seadrill 33657 0.0173** -0.0635%**  -(0.0463*** 31774 0.0058***  -0.0146***  0.0003*** -0.3083***  -(0.0087***
Sevan Marine 54522 0.0014 -0.006* -0.0046%* 51800 0.0088***  -0.0228***  0.0002*** -0.375%** -0.0139%**
Songa Offshore 65316  0.0284***  -0.0442%**  -.0.0158%** 61792  0.0167***  -0.0297***  0.0002*** -0.3967%*%*  -0.013%**
Statoil 16237  0.0235%**  -0.045%** -0.0215%** 15476 0.0083***  -0.0102***  0.0001** -0.2844***  -0,0019
Storebrand 46409 0.0116 -0.0823%**  _0.0708*** 43499 0.0033 -0.0173***  0.0003*** -0.3935%**  _0.0141***
Subsea 7 52805 0.0526***  -0.0907***  -0.038*** 49721 0.0136***  -0.0201***  0.0001*%** -0.3118%**  -0.0065%**
Tandberg 40485  0.0059** -0.0242%**  -0,0182*** 38313  0.0056***  -0.0122***  0.0002*** -0.3145%*%*  _0.0066***
Telenor 31071 0.0158** -0.0736%**  -0.0578*** 29479  0.0022 -0.0112%**  0.0001** -0.342%** -0.009%**
TGS-NOPEC Geophysical Company 49162  0.0054** -0.0114***  -0.006* 46400 0.0142%**  -0.0235%**  (0.0002*** -0.3244***  -(0.0093***
Tomra Systems 56024 0.0336*%**  -0.1091***  -0.0755%** 52613  0.0119%**  -0.0105***  0.0003*** -0.5247***  0,0015
Yara International 23121 0.0242***  _0.0715%**  -0.0473*** 22161 0.0030 -0.0097***  (0.0001*** -0.2624***  -().0068***

P-value: *** <(0.01, ** <0.05, *<0.1
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Temporary time-dummies coefficients for buyer initiated transactions. st:l 8;;D;Si ¢

Stock 09:30 - 10:30 10:30 - 11:30 11:30 - 12:30 12:30 - 13:30 13:30 - 14:30 14:30 - 15:30 15:30 - 16:30 16:30 - 17:20
Acergy -0.056%*** -0.0507%** -0.0449%%** -0.044 1%** -0.0405%** -0.046%** -0.0386%** -0.0123
Acta Holding -0.0569%** -0.0371%%* -0.064*** -0.0635%** -0.0532%** -0.064*** -0.0526%** -0.0255%*
Crew Gold Corporation -0.0138 -0.0218 -0.0225 -0.0085 0.0002 -0.004 0.0069 0.1175%**
Fred. Olsen Energy -0.0302%** -0.0353%** -0.0266%** -0.0338%** -0.036%** -0.0318%** -0.0277*** -0.0268%**
Frontline -0.0012 -0.0053 -0.0078 -0.0058 -0.0025 -0.0028 0.034%** 0.0655%***
Golden Ocean Group -0.0256 -0.027 -0.0415%* -0.0375% -0.0486%** -0.0513%** -0.028* -0.0508%**
Marine Harvest -0.0286** -0.0763%** -0.043%*#* -0.0662%** -0.0702%** -0.0521%** -0.0526%** -0.0123
Norsk Hydro -0.0148 -0.0163 -0.0121 -0.02 -0.0264* -0.0209 -0.0183 -0.0482%*
Norske Skogindustrier -0.0341%** -0.0357%** -0.0289%* -0.042%** -0.0544%** -0.0576%** -0.0476%%* -0.0251*
Norwegian Property 0.0195** 0.0104 0.0118 0.0138 0.0183* 0.0248*** 0.0181** 0.0184*
Orkla -0.0234* -0.0326%* -0.0415%** -0.036%** -0.0277** -0.0447%** -0.0219%* -0.0198
PA Resources -0.0453%** -0.0581%** -0.069*** -0.053%** -0.0443%** -0.0592%** -0.0459%** -0.0176**
Petroleum Geo-Services -0.0197 0.0028 -0.0404%** -0.0082 -0.0288%** -0.0115 -0.009 0.0151
Prosafe -0.0554%** -0.0549%** -0.0409%** -0.0469%** -0.0598%** -0.0585%** -0.0513%** -0.0376***
Questerre Energy Corp. -0.0117* -0.0234%** -0.008 -0.0195%* -0.022%*%* -0.0136* 0.0078 0.0685***
Renewable Energy Corp. -0.0182 -0.0376* -0.0569%** -0.0169 -0.0415%* -0.0316 -0.0006 0.0119
Royal Caribbean Cruises 0.0072 0.0104 0.0062 0.0019 0.0072 -0.0046 0.0336%*** 0.0934%***
Schibsted -0.0038 -0.0011 -0.0036 0.0005 0.021%** -0.0118%* 0.0013 -0.0118%*
Scorpion Offshore -0.0159%* -0.0133 -0.0179%* -0.0151 -0.0038 -0.0061 -0.0141%* 0.005
Seadrill 0.0147 0.004 -0.0038 -0.0048 -0.0055 0.0005 0.0141 0.0057
Sevan Marine 0.0036 0.0177*%* 0.0112* 0.0085* 0.0023 0.0068 0.0078** 0.0058
Songa Offshore -0.0209%** -0.0217%** -0.0197** -0.0235%** -0.0205%** -0.021*** -0.0097 0.0046
Statoil 0.0379%** 0.0163 0.0283* -0.0074 -0.0195%* 0.0141 0.0017 0.0235
Storebrand -0.0006 -0.004 0.0166 0.0003 0.0167 -0.0062 0.0038 0.0499***
Subsea 7 -0.0222%%* -0.019* -0.0119 -0.0054 -0.0321%** -0.03371%** -0.0319%** -0.0086
Tandberg 0.0025 -0.0002 -0.0011 0.0027 -0.0014 -0.0015 0.0069* 0.0007
Telenor -0.0069 0.0259** 0.0057 -0.0063 0.0081 0.0161 0.0271*** -0.0077
TGS-NOPEC 0.0044 0.0022 0.0147** -0.0001 0.0091* 0.0053 0.0086** 0.0165***
Tomra Systems -0.0327** -0.0142 -0.0305%* 0.004 -0.0154 -0.0159 -0.02 -0.0191
Yara International 0.008 -0.0092 0.0068 -0.0038 0.0083 0.0127 0.0112 0.025

P-value: *** <0.01, ** <0.05, *<0.1
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Temporary time-dummy coefficients for seller initiated transactions. Zle ¢i;D;S; ¢

Stock 09:30 - 10:30 10:30 - 11:30 11:30 - 12:30 12:30 - 13:30 13:30 - 14:30 14:30 - 15:30 15:30 - 16:30 16:30 - 17:20
Acergy 0.0439%** 0.0699%** 0.0485%** 0.0459*** 0.0453%* 0.0238 0.0494*** -0.0009
Acta Holding 0.0729%** 0.0537%** 0.0802%*** 0.0743*** 0.0575%** 0.0805%** 0.0665%** 0.0115
Crew Gold Corporation 0.0722%** 0.0661%** 0.0818*** 0.0662%** 0.0613%** 0.053 1#** 0.0382%* -0.0902°%**
Fred. Olsen Energy 0.0227*** 0.0413*** 0.0355%** 0.0397*** 0.0314%** 0.035%** 0.0251*** 0.0237%**
Frontline 0.0198 0.0227* 0.0183 0.0159 0.0122 0.0157 -0.0329%** -0.1068%**
Golden Ocean Group 0.0386** 0.0366* 0.0793%** 0.0509** 0.0639*** 0.0535%** 0.0262 0.0266
Marine Harvest 0.1193%** 0.1548*** 0.1158*** 0.1434%** 0.1745%*** 0.1284%** 0.1216*** 0.0634***
Norsk Hydro 0.051%** 0.0442%* 0.041** 0.0658*** 0.07*** 0.0584*** 0.0529%** 0

Norske Skogindustrier 0.1053%** 0.0889%** 0.1044*** 0.1139%** 0.1508%** 0.1045%** 0.1013*** 0.0445%**
Norwegian Property -0.0122 -0.0006 0.0003 0.0013 -0.004 -0.0086 -0.005 -0.0455%**
Orkla 0.0438%** 0.0561%** 0.0426%** 0.0604*** 0.063%** 0.0446%** 0.0439%*** 0.043***
PA Resources 0.0522%#* 0.0971*** 0.0962%** 0.0336%*** 0.0752%** 0.068*** 0.0723*** 0.0363***
Petroleum Geo-Services 0.0854%** 0.0545%*** 0.0971*** 0.0464** 0.0791*** 0.0784*** 0.0417** 0.0297
Prosafe 0.1051#** 0.1168%** 0.0855*** 0.0849%** 0.1045%*** 0.1093*** 0.1004*** 0.0623***
Questerre Energy Corp. 0.0271%** 0.0275%** 0.0216** 0.0181 0.0357*** 0.0266*** -0.0103 -0.1224%%*
Renewable Energy Corp. 0.0028 0.0599** 0.0861*** 0.0551* 0.1326%** 0.0535%* 0.0051 -0.0169
Royal Caribbean Cruises 0.0708%** 0.0715%** 0.0851*** 0.0716%** 0.071%** 0.0959%** 0.0056 -0.1053%**
Schibsted 0.0682%** 0.067%** 0.0645%** 0.0583*** 0.0433%** 0.0698%** 0.0629%*** 0.046%**
Scorpion Offshore 0.0323%** 0.0371%** 0.0309%* 0.0377*** 0.0215% 0.0224* 0.0303** 0.0155
Seadrill 0.0299* 0.0171 0.0271* 0.0005 0.0408*** 0.0244* 0.0047 -0.0128
Sevan Marine -0.0064 -0.0217%** -0.0192%** -0.0073 0.0006 -0.0135%* -0.029%** -0.0582%**
Songa Offshore 0.0288*** 0.0299%#* 0.0284*** 0.0322%** 0.0314%** 0.0209** 0.0133 -0.0537%**
Statoil -0.0411%** -0.027 -0.0324* 0.0054 -0.0138 -0.0233 -0.0207 -0.0413*
Storebrand 0.0287 0.0644%** 0.0246 0.0596*** 0.0369* 0.0553*** 0.04971 *** 0.0151
Subsea 7 0.03 1#** 0.0463%** 0.0383*** 0.0339%*** 0.0595%** 0.0398%** 0.042%** 0.0085
Tandberg 0.0091 0.0109 0.0101 0.0095 0.0153%* 0.0162%** -0.0048 0.0119*
Telenor 0.0258%** -0.0084 0.0202 0.0456%** 0.0258%* -0.0016 -0.0106 0.0155
TGS-NOPEC -0.0175%* -0.0228%** -0.0222%** -0.0043 -0.0193%** -0.0264*** -0.0237%** -0.0489***
Tomra Systems 0.079%** 0.0856*** 0.0881*** 0.0627*** 0.0847*** 0.0846%*** 0.0807*** 0.0439**
Yara International 0.0305** 0.0292* 0.0096 0.0142 0.0224 0.0141 -0.0086 -0.0419

P-value: *** <0.01, ** <0.05, * <0.1
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Permanent time-dummies coefficients for buyer initiated transactions. Zle 8;;D;Si ¢

Stock 09:30 - 10:30 10:30 - 11:30 11:30 - 12:30 12:30 - 13:30 13:30 - 14:30 14:30 - 15:30 15:30 - 16:30 16:30 - 17:20
Acergy -0.0028 -0.0006 -0.0004 -0.0050 -0.0009 0.0004 -0.0059%** -0.0014
Acta Holding -0.008*** -0.0027 -0.0063* -0.0089%*%** -0.0098*** -0.0071%* -0.0109%** -0.0073*
Crew Gold Corporation -0.0031 -0.0037 -0.0092%%** -0.0097%** -0.0071%%* -0.0072%%* -0.0016 0.0144%***
Fred. Olsen Energy -0.0063*** -0.0044* -0.0023 -0.0030 -0.005** -0.0049%** -0.0084*%** 0.0015
Frontline -0.0076*** -0.0082%** -0.0059%* -0.0051%* -0.0084*** -0.0101%** -0.0088*** -0.0089%**
Golden Ocean Group -0.0104%** -0.0121%%* -0.0163%** -0.0054 -0.0102%* -0.009%* -0.0106*** -0.028%**
Marine Harvest -0.0018 -0.0011 -0.0012 -0.0042 -0.0046 -0.005%* -0.0095%** -0.0153%**
Norsk Hydro -0.0096*** -0.0137%** -0.0118%** -0.0122%** -0.0118%** -0.0121%** -0.0149%** -0.0208%***
Norske Skogindustrier 0.0030 0.0014 -0.0002 0.0027 -0.0032 -0.0027 -0.0067** 0.0003
Norwegian Property 0.0058** 0.0020 0.0027 0.0021 0.0034 0.0043 0.0044 0.006*
Orkla -0.0013 -0.0005 0.0004 0.0010 0.0033 0.0003 -0.0012 -0.0033
PA Resources -0.0008 -0.0046** -0.004** -0.0066%** -0.0019 0.0002 -0.0035%* 0.0107***
Petroleum Geo-Services -0.0124%** -0.0108%** -0.0134%%** -0.0158%** -0.0175%** -0.0124%** -0.0138%** -0.0064
Prosafe -0.0069%** -0.0059%* -0.0081%** -0.0064** -0.0069** -0.0044* -0.0055%* -0.006**
Questerre Energy Corp. 0.0001 0.0017 0.0064** 0.0008 -0.0018 0.0030 0.0047* 0.0141%***
Renewable Energy Corp. 0.0009 -0.0002 -0.0024 0.0008 -0.0034 0.0027 0.0001 0.0060
Royal Caribbean Cruises -0.0008 0.0002 -0.0014 0.0004 0.0001 0.0039 0.0033 -0.0030
Schibsted -0.0052%* -0.0023 -0.0053** -0.0034 -0.0043* -0.006*** -0.0066%** -0.0102%**
Scorpion Offshore -0.0024 0.0009 -0.0043 -0.0028 -0.0039 -0.0063** -0.0047* 0.0076**
Seadrill -0.0009 0.0021 0.0011 0.0001 0.0011 -0.0002 -0.0039* -0.0111%**
Sevan Marine -0.0037 -0.0017 -0.0018 0.0017 -0.0009 0.0008 -0.0052%* 0.0116%***
Songa Offshore -0.007*** -0.0073%** -0.0066%** -0.0083*** -0.0083*** -0.0083%** -0.0085%** -0.0016
Statoil -0.0003 -0.0037 -0.0033 -0.0059** -0.004* -0.0022 -0.0054** -0.0096***
Storebrand -0.0001 -0.0033 -0.0008 0.0007 0.0010 -0.0006 0.0044 0.007**
Subsea 7 -0.0046** -0.0048* -0.0052%* -0.0059** -0.0074%** -0.0056** -0.0066*** -0.0044
Tandberg -0.0006 -0.0012 -0.0012 0.0001 -0.0013 0.0009 0.0011 -0.0072%**
Telenor 0.0053** 0.0069*** 0.0032 0.0057** 0.0062** 0.0045%* 0.0004 -0.0051*
TGS-NOPEC -0.0041* -0.0076%** -0.0044 -0.0079%*%** -0.0089%** -0.0072%** -0.0089%*%** -0.0026
Tomra Systems -0.0112%** -0.0072%** -0.007*** -0.0039 -0.0065%** -0.0053** -0.0098%*%** -0.0089%**
Yara International 0.0047* 0.0001 0.0059** 0.0045 0.0044 0.0039 0.0023 -0.0099**

P-value : *** <0.01, ** <0.05, * <0.1
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Permanent time-dummy coefficients for seller initiated transactions. Zj8=1 ¢;;D;S; ¢

Sell
Di,t

Stock 09:30 - 10:30 10:30 - 11:30 11:30 - 12:30 12:30 - 13:30 13:30 - 14:30 14:30 - 15:30 15:30 - 16:30 16:30 - 17:20
Acergy -0.005 -0.0025 -0.0044 0.0016 -0.0051 -0.005 0.0003 -0.0083*
Acta Holding 0.0105%** 0.0061* 0.0093*** 0.0117%*** 0.0112%** 0.0148*** 0.0182%*#* 0.013%**
Crew Gold Corporation 0.014%** 0.0163%** 0.0203*** 0.0219%*** 0.021*** 0.0261*** 0.0222%** 0.0052
Fred. Olsen Energy -0.0019 0.001 0.0013 0.002 0.0009 0.0012 -0.0024 -0.0019
Frontline 0.0077*** 0.0055%* 0.0024 0.0032 0.0043 0.0021 0.0015 0.0026
Golden Ocean Group -0.0019 -0.0004 0.006 -0.004 -0.0008 0.0054 0.0006 -0.0072
Marine Harvest 0.0008 0.0026 0.0014 0.0051* 0.0061** 0.0066** 0.0063** 0.0028
Norsk Hydro 0.0035 0.0065 0.0064 0.0071* 0.0092%* 0.0061 0.0045 -0.0012
Norske Skogindustrier 0.0028 0.0085%** 0.0086%** 0.0039 0.0091*** 0.0079%** 0.008%** 0.0059*
Norwegian Property 0.0072%** 0.0133%*#* 0.0174%** 0.0171%*** 0.015%** 0.0139%** 0.0144%** 0.0116***
Orkla 0.0002 0.0008 -0.0028 -0.0009 -0.0006 0.0004 -0.0001 0.0025
PA Resources 0.006%** 0.014%** 0.014%** 0.0104%** 0.0121%** 0.0092%*** 0.0139%** 0.0029
Petroleum Geo-Services 0.0032 0.0036 0.0049 0.004 0.0021 0.0008 0.0066* 0.0045
Prosafe 0.0065** 0.0103*** 0.00971*** 0.0096%*** 0.01%** 0.0107*** 0.012%** 0.00971***
Questerre Energy Corp. 0.0025 0.0045* 0.0003 0.0044 0.0094*** 0.0002 0.003 -0.0004
Renewable Energy Corp. -0.0046 -0.0025 -0.0001 -0.0051 -0.0024 -0.0048 -0.0148*** -0.0024
Royal Caribbean Cruises 0.0142%** 0.0144%** 0.0178*** 0.0115%** 0.0148*** 0.0096*** 0.0106%** 0.0108***
Schibsted 0.0099*** 0.0094*** 0.0137%** 0.0144%*+* 0.0156*** 0.0147*** 0.0146%** 0.0196***
Scorpion Offshore 0.0054* 0.0072%* 0.0109*** 0.0139%*** 0.0134*** 0.0094*** 0.0129%*** 0.002
Seadrill 0.0041 0.0034 0.0037 0.0024 0.0031 0.0019 0.0068%** -0.0005
Sevan Marine 0.0099%*** 0.0068** 0.0095%** 0.005 0.0105%** 0.0078*** 0.0102%** 0.0029
Songa Offshore 0.0105%** 0.0135%** 0.0129%** 0.0118%** 0.0144%** 0.0129%** 0.0124%** 0.0015
Statoil 0.002 0.001 -0.0002 0.0026 -0.0003 0.0025 0.002 -0.0019
Storebrand 0.0044 0.0067** 0.0051 0.0061* 0.0064* 0.0064** 0.0056* 0.0018
Subsea 7 0.0062%* 0.0055%* 0.0057** 0.0061** 0.0081*** 0.0046* 0.0076%** 0.0015
Tandberg 0.0018 0.0034 0.002 0.0021 0.0031 0.0015 0.0007 0.0067**
Telenor -0.0007 -0.0027 0.0002 -0.0035 0 -0.001 0.0011 0.0088**
TGS-NOPEC 0.0048* 0.0089*** 0.0071** 0.0108*** 0.012%** 0.01%** 0.0112%** 0.0084**
Tomra Systems -0.0012 0.0013 0.0008 -0.0016 0.0014 0.0016 0.0018 -0.0039
Yara International -0.005* -0.0028 -0.0046 -0.0105%*** -0.0005 -0.0019 -0.0035 0.0037

P-value: *** <0.01, ** <0.05, *<0.1
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Appendix B: Likelihood ratio test

We test the unrestricted models (model 1 and 2) and the restricted models without time-
dummies. The alternative hypothesis is that the unrestricted model has a significant better fit
measured with log-likelihood. Test statistics for the Likelihood ratio test (LR):
LR = 2(Ly; — L) where “L” is the log-likelihood for the unrestricted (L,,) and the restricted (L,)

model. Reject Hy if LR > 3 ¢516. The P-value for the LR test is: Prob(LR < x3 9s,16)-

Temporary Permanent
Stock LR P-Value LR P-Value
Acergy 69 0.0000 27 0.0395
Acta Holding 99 0.0000 48 0.0000
Crew Gold Corporation 184 0.0000 143 0.0000
Fred. Olsen Energy 101 0.0000 55 0.0000
Frontline 178 0.0000 39 0.0009
Golden Ocean Group 37 0.0019 73 0.0000
Marine Harvest 155 0.0000 50 0.0000
Norsk Hydro 41 0.0005 54 0.0000
Norske Skogindustrier 235 0.0000 45 0.0001
Norwegian Property 43 0.0003 84 0.0000
Orkla 74 0.0000 14 0.6228
PA Resources 334 0.0000 151 0.0000
Petroleum Geo-Services 99 0.0000 42 0.0004
Prosafe 131 0.0000 40 0.0007
Questerre Energy Corporation 185 0.0000 50 0.0000
Renewable Energy Corporation 110 0.0000 32 0.0097
Royal Caribbean Cruises 412 0.0000 79 0.0000
Schibsted 121 0.0000 87 0.0000
Scorpion Offshore 53 0.0000 95 0.0000
Seadrill 55 0.0000 37 0.0020
Sevan Marine 74 0.0000 53 0.0000
Songa Offshore 152 0.0000 79 0.0000
Statoil 60 0.0000 40 0.0007
Storebrand 66 0.0000 28 0.0356
Subsea 7 95 0.0000 20 0.2420
Tandberg 27 0.0376 23 0.1040
Telenor 87 0.0000 38 0.0016
TGS-NOPEC Geophysical Company 50 0.0000 37 0.0019
Tomra Systems 85 0.0000 650 0.0000
Yara International 34 0.0061 36 0.0032

‘7{0: 81v62rw68!¢11¢2v'r¢8 = Ov Hl: 61182v'v68r¢1J¢21'v¢8 * 0
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Appendix C: Output from the model fitting (Acergy)

The Box Jenkins framework aims to estimate parsimonious, stationary and invertible models
with residuals that approximate a white noise process (Enders, 2010). It is proven
mathematically that the autocorrelation function (ACF) for an autoregressive (AR) of order p
process is exponentially decaying and the partial ACF dies after lag p. We also have that the
ACEF dies after lag q for a moving average (MA) process of order q and the partial ACF is
exponentially decaying. The Box-Jenkins methodology relies on these facts in order to
identify the best model. This methodology is often referred to as an art rather than a science,
since there is a balance between fit and parsimoniousness and other ad hoc choices (Enders,

2010).

Some of the output (Acergy stock) used for the model estimation is shown on the next page.
We can see that both of the temporary and permanent impact variables have high non-
converging ACF. The non-convergent series problem is solved by integrating the series at
level one. After differencing, the autocorrelation in the dependent variable has an exponential
declining partial ACF and the ACF is shortly lived. Based on the Box-Jenkins methodology
these characteristics are similar to a moving average specification (MA). ARMA
specifications for our data give unstable solutions since the lagged dependent variable is often
the same as the previous, resulting in a unit root. An MA specification is invertible and a

better fit for our data.

43



ACF

Partial ACF

ACF

ACF

04 08 08

02

02 04 06 08

0.0

ACF Temporary Impact 1(0) ACF Temporary Impact (1)

ACF Permanent Impact 1(0)

ACF Permanent Impact I(1)

44

N I S O — w S [ESRU N P N R (i —
_ § - 'wtl'-”qlﬁl» |"‘-|—I- i f‘ gt g e = ST -IHPi-fC---‘Hj‘-d“—--‘-'t“jf[
_ - - S
5 2 5 " 5,
e Z 9 < 7 < 2]
- o H e
_ o
3 I ‘
L MJUHIULMH J < o L U ““-ILIM.. -------- S 5—
_____________________________ o | - 7 g
T T T T T T T T T T T T T T T T T T T T
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
Lag Lag Lag Lag
PACF Temporary Impact 1(0) PACF Permanent Impact 1(0) PACF Permanent Impact I(1)
. s AT AFAFAR- A
(=] F T T = T
] 2 Hmmﬁﬂﬂﬂﬁﬁr i ﬂT
- = = - E v
= = = -
_ & ] T 2 g <
=) | —
u =7 | 8
Laferespeterdossss == ; 2 LU e FopsogEsodzzagss s
T T T T T T T T T T T T T T T T T T T T
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
Lag Lag Lag Lag
ACF Residuals Temp Impact ARIMA(0,1,3) ACF Squared Residuals Temp Impact ARIMA(O0,1,3)
I_l— T | L _I T }» _l I‘} T F T J T LI I 1 T I I T = —
o P .-
= = Hithr ‘WTTTT.HHTTH*H* rrrTJn.r.". ******
= T T T T T § T T T T
v] 10 20 30 40 o 10 30 40
Lag Lag
ACF Residuals Perm Impact ARIMA(O,1,6) ACF Squared Residuals Perm Impact ARIMA({O0,1,6)
s . .TrPATTT""""""""""] """" 5 = |
R L O O T e
= 4 T T T T = - - - m 4 —rm T
o 10 20 30 40 lu] 10 30 40
Laa Laa
=
=
5 E-
= =1
=
=2
=
=
s =27
=
o
2
s =
=1 =
§ _ L-ILLJ.L_] (IR Al .LI lJl J [T T l.ll Ll
= T T
2008 2009 2010
DATE



Appendix D: Panel data analysis

We include the most important tests from our panel data analysis in research question 2. We
use a 5% significance level. We initially run an F-test to test whether our panel has significant
fixed effects. The test statistic equals 1 ( F§Zi2! = 1.58), so we fail to reject the null hypothesis

of no fixed effects. This means we can run a pooled OLS.

Initially we have two alternative measures for the 15 minutes order flow, normalized

(V{\Iormalized) and relative (Vgelative):

t—15 min 2Buy t—15 min Sell
Zt Tt - Zt Tt

t—15min Buy t—15 min pSell
Zt Tt +Zt Tt

Normalized _
¢ =

Vv

_ Zg—ls min TBUY
Vilelatlve — 108( t )

First we determine whether both measures for the order flow should be included. The model
gave insignificant results for the relative order flow. Hence, we test whether relative order
flow should be included in the model or not. We use an F-test with the restricted model where
only normalized order flow is included and the unrestricted with both measures. The test
statistics is 1.45 (FSffical = 3.58), which means that we cannot reject the null hypothesis stating

that the unrestricted model has the same explanatory power as the unrestricted.

Then we test if model 3 (unrestricted) should include the seven intercept dummies. The test

statistic equals 5.57 (FSftieal = 2.01), this means that we can reject the null hypothesis.
To control for different variance across stocks and non-constant variance we use White
heteroscedasticity (not autocorrelation) robust standard errors for the pooled regressions.

Residuals pooled OLS Squared residuals pooled OLS
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Appendix E: Data processing in Perl.

We received 3 years of data from Oslo Stock Exchange. The data included all security
transactions, orders and security changes, except data that are considered private, e.g. hidden
orders. Because of the size and complexity of the dataset we use the Perl programming
language'’ to prepare the data for the econometric analyzes. Form a starting point with little
programming experience this took us a while to figure out. Therefore, to ease the effort for
future scholars that use high-frequency data we have included some of the Perl scripts.
Because the scope of this section is to guide the future researcher, the scripts are simplified to
fit in an appendix. Be aware that if you study data from another period the field codes and
data structure may be different from our sample, but the general approach may be applied. In
this example we extract on file for a selection of stocks. Each file contains all stock

transactions (price, quantity, time-stamp) and the current bid and ask quote.

We walk through the processing of the real time files from OBI OCDF. All the input and
output files are semicolon separated. The main challenge is that field codes do not have a
constant column for each trading session and hence we have to search each line for the
relevant field codes. Perl is ideal for this task, because of its effectiveness in processing one

line at a time and swiftly recognize combinations of expressions (pattern matching).
We found most effective to divide the extraction of data in a three step process:
1) Filter the data and keep security changes and security transactions

2) Extract data for each security by ISIN number to separate folders
3) Extract transactions with time and current bid and ask quotes for each stock

"We use Strawberry Perl for windows in our data processing ( http:/strawberryperl.com/ )
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Example from part of the feed the 1% of March 2007:

Sc;401642;iNO0000000021;Mc1;La375.76735784;CqNOK;t103802;1 ARt1172741882:497765;2ARt1172741882:520013
Sc;401643;iINO0007042299;Mc1;La461.87629415;CqNOK;t103802;1 ARt1172741882:518829;2ARt1172741882:583480
Sc;401644;iNO0007035376;Mc1;La365.42004334;CqNOK;t103802;1 ARt1172741882:537783;2ARt1172741882:585849
Ob;401645;0B1d33817;iNO0010112675;Mc1;XIBt1172741883:148000000;1Vb5300;1Bo5;10BCbGLI,DBL,LBI,SBN,NTF;t103802;1 ARt1172741882:67294
6;2ARt1172741882:693363
0;401646;0B1d33817;iNO0010112675;Mc1;XIBt1172741883:148000000;0BsB;MtD;0P1d20070301103705004058;01d20070301103802600955;1 ARt117274
1882:692125;2ARt1172741882:764134
Ob;401647;0B1d33817;iNO0010112675;Mc1;XIBt1172741883:148000000;1Vb8300;1Bo6;1OBCbGLI,DBL,LBI,SBN,NTF;t103802;1 ARt1172741882:69286
2;2ARt1172741882:766607
0;401648;0B1d33817;iNO0010112675;Mc1;XIBt1172741883:148000000;0BsB;MtI;0p132.5;0q3000;0cESO;01d20070301103802000279;
OCIR;1ARt1172741882:702135;2ARt1172741882:769510
;401649;0BId33817;iNO0010112675;Mc1;XIBt1172741883:148000000;TId610;t103802;DTa20070301103802;DTd20070301103802;Tp132.5;Tq100;Tgl;Tt1
;ULa;UTo;UVWp; TCbESO; TCsNON;1ARt1172741882:703064;2ARt1172741882:772175
Sc;401650;0B1d33817;iNO0010112675;Mc1;CqNOK;La132.5;t103802;TUV01034845;TUVal35431326.51999998;VWp130.98440359;1ARt1172741882:717
104;2ARt1172741882:777566
Sc;401651;0B1d15290;iNO0003074809;Mc1;CqNOK;1a90.6;2a91.2;3a91.3;4a91.4;5a91.5;t103802;1ARt1172741882:766875;2ARt1172741882:800116

For explanation of all fields we refer to the technical documentation that is enclosed with the
data (Oslo Bers Informasjon AS, 2006). For our purpose to type of lines are of relevance;
security transactions [t] and security changes [Sc] (henceforth, the field codes we search for is

embedded in []).
General approach

For each step we have an input folder with data and an empty output folder prepared in
advance. The reason for the folder structure is that we keep the filenames in the same date
format (yyyymmdd.txt). We keep the date format to check dates at later stages, and when
processing all files in a folder the data is processed in the right order. For illustration purposes

we state the folders and content that are necessary before each step.

Operators used in pattern matching | Meaning of expression
i Contain []

[1$ Ends with []

2l Starts with []

&& And

I Or

\ Either

\d Number 0-9
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Step 1: Filter the data and keep security changes and security transactions

Each time [t] the best ask [1a] or bid [1b] price changes there will be a security change [Sc]
line in the OCDF. For each stock transaction there is a security transaction [t] line where we
can find the traded quantity [Tq], the traded price [Tp] and the date and time of the transaction
[DTd]. All our Perl scripts start with the following three lines:

#!/usr/local/bin/perl
use warnings;
use strict;

Required before running script 1:
d:/inputdata/*yymmdd.txt = real time files from OSE
d:/outputstepl/ > empty folder

#Script 1 discards all lines except security changes and security transactions from input files
my $InputFolder, $file, $OutputFile, = ( "d:/inputdata", "", "d:/outputstep1" );
chdir "$InputFolder" or die;

while (<*.txt>) {

$file=§_;

print "Processing $file\n";

$outputfile = substr $file, length($file) - 12, 12;

open( INPUTFILE, "$file" ) or die "$!";

open( OUTPUTFILE, ">", "$OutputFolder$OutputFile" ) or die "$!";
while (SINPUTFILE>) {

if (/Sc;/ && /(1a|1b)\d/ && /t\d/ )| (/t;/ && /Tq\d/ && /Tp\d/ && /DTd\d/ )

{
print OUTPUTFILE "$_";

}
close INPUTFILE;
close OUTPUTFILE;

i

Step 2: Extract data for each security by ISIN number to separate folders

For each trading day there are files with fixed data. From them we extract one file for each
day placed them in a separate folder (with equivalent names as step 1), e.g. one day if there

were only 3 stocks:

Kongsberg Automotive Holding;iNO0003033102
Ekornes;iNO0003035305
Kongsberg Gruppen;iNO0003043309
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To extract stock names and ISIN numbers it is only necessary to modify the first script
slightly for it to work with the fixed data files (change the folders and if statement). However,
the fixed data files you can also import to e.g. Excel, hence we do not state the script here.

After this we made a list over stock names that we extract data for (one name at each line).

Required before running script 2:

d:/stocknames.txt = list with stocks that we want to extract data from.

d:/fixeddata/yyyymmdd.txt = one file for each trading session with stock name;ISIN for each line.
d:/outputstep1/ yyyymmdd.txt = output from Step 1

d:/securities/ = empty folder

#Scripts 2 makes one folder for each stock name and creates one file for each trading session with all
security changes and security transactions for this stock (d:/securities/stock name/yyyymmdd.txt).

my ($isin,$file,$outputfolder,Soutputfile,$stock) =("","","d:/securities","","");
open (STOCKS,"d:/stocknames.txt") or die "$!";

my @stocks = <STOCKS>;

chomp (@stocks);

close STOCKS;

foreach $stock (@stocks) {

print "Processing $Stock\n";

mkdir("$outputfolder$stock\/"); #make a folder for this stock

while (<d:/outputstep1/*.txt>) { #loop for each trading day, i.e. for each yyyymmdd.txt

$file=3$_;

$outputfile = substr $file, length($file)-12,12; #remove folder path, get yyyymmdd.txt

#Retrive the ISIN number for the stock this day:

open (FIXEDINPUTFILE, "d:/fixedfilesV$outputfile") or die "$!"; #Open file with stockname and isin
while (SFIXEDINPUTFILE>) {

if (/"$stock/) {

($stock,$isin) = split(';',$_); #save the stock name and isin from the semi colon separated file

last; #exit loop, since we have found stock name and isin

}

}
close FIXEDINPUTFILE;

open (INPUTFILE, "$file") or die "$!";
open (OUTPUTFILE, ">", "$outputfolder$stockVSoutputfile") or die "$!";

while (KINPUTFILE>){
if (/$isin/) {

print OUTPUTFILE "$_";
§

H
close INPUTFILE;

close OUTPUTFILE;

}
i
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Step 3: Extract transactions with time and current bid and ask quotes for each stock

Required before running script 3:
d:/securities/ = output from step 2
d:/r-input/ -> empty folder

#Script 3 makes one file with all trade for each stock

my $folder = "d:/securities/";

my @Stocks = ();

chdir "$folder" or die;

while (<*>) { push( @Stocks, "$ "); } #make list of stocks from names of folders
my $outputfolder = "d:/r-input/";

my ($TradedPrice, $TradedQuantity, $DateTime) = ( 0, 0, 0);

my ($ask,$bid, $Stock,$file,$field, $extention) = ("NA","NA","""" """ txt");

my @SLine = ();

foreach $Stock (@Stocks) {

print "Processing $Stock\n";

open( OUTPUT, ">", "Soutputfolder$Stock$extention" ) or die "$!";
chdir "$folder$Stock" or die;

while (<*.txt>) {

$file=§_;

open( INPUTFILE, "$file" ) or die "$!";
#New trading session, reset bid and ask:
( $ask, $bid) = ("NA", "NA");

while (KINPUTFILE>) {

if (/Sc;/ && /(1a]1b)\d/ && /t\d/ ) { #True if line is a security change
chomp; #Remove newline characters

@SLine = split(';', $_);

foreach $field (@SLine) {

if ( $field =~ /~1b\d/ && Nd$/) { #True if best bid has changed
$field =~ s/1b//; #Remove 1b from string

$bid = $field;

}

elsif ( $field =~ /~a\d/ && Nd$/) { #True if best ask has changed
$field =~ s/1a//; #Remove la from string

$ask = $field,;

h

}
}

else { #True if line is a security transaction

chomp;

@SLine = split(';', $_);

#Search for relevant fields and remove the field codes:
foreach $field (@SLine) {

if ( $field =~ /"DTd\d/ && Nd$/) {

$field =~ s/DTd//;

$DateTime = $field;

H

elsif ( $field =~ /Tp\d/ && Nd$/) {
$field =~ s/Tp//;

$TradedPrice = $field;

}
elsif ( $field =~ /N(Tq)\d/) {
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$field =~ s/Tq//;

$TradedQuantity = $field;
}
}
print OUTPUT "$DateTime;$TradedPrice;$ TradedQuantity;$bid;$ask\n";
}
}
close INPUTFILE;

§
close OUTPUT;

}

Excluding stocks outside the continuous trading session

One might want to exclude trades outside the continuous trading session in script 3. However,
logical conditions with time are not straight forward. Additionally time is given on different
format for security transactions and security changes, but they all have in common that they
end with hour, minutes and seconds (hhmmss). Hence, we do this by calculating time in
seconds after midnight from any string that ends with hhmmss. The time sub routine can be
included in any script. The following is an example of how one can exclude all trades outside

the continuous trading session in script 3:

Define the opening and closing of the continuous and trading session and a variable for time in the beginning of

the script.

my $StartTradingSession = TimeToSecAfterMidNight("090500");
my $EndTradingSession = TimeToSecAfterMidNight("172000");
my $TradeTime =0,

Add the following two line before the “print OUTPUT” statement and add a bracket after (}):

$TradeTimeSec = TimeToSecAfterMidNight ($DateTime);
if (§TradeTimeSec < $StartTradingSession || $TradeTimeSec > $EndTradingSession) {

Add the Sub routine at the end of the script:

sub TimeToSecAfterMidNight {

#Sub routine converts time (*hhmmss) and returns seconds from midnight
my SHHMMSS = shift;

my ( $hh, $mm, $ss )=(0,0,0);

$SHHMMSS =~ s/(\D)+//g;

$HHMMSS = substr S(HHMMSS, length(SHHMMSS) - 6, 6;

$hh = substr SHHMMSS, 0, 2;

$mm = substr SHHMMSS, 2, 2;

$ss = substr SHHMMSS, 4, 2;

$hh =~ s/70//;
$mm =~ s/70//;
$ss =~ s/70//;

$HHMMSS = $hh * 3600 + $mm * 60 + $ss;
return (SHHMMSS); }
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