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Abstract 

In this master thesis we study and explore the relationship between the clean spark spread 

commodities; electricity, natural gas and CO2 allowances prices in Germany, the Netherlands 

and the U.K. The time period for the analysis is based on the establishment of the EU 

Emissions Trading Scheme in 2005 and the following phases. In the statistical analysis we 

made several observations that are important for various market participants exposed to the 

markets. The analysis has also emphasized the importance of using several statistical 

techniques to explore a causal relationship. The statistical frameworks used in the analysis are 

correlation, co-integration, error-correction model and Granger causality.  

In the short-run perspective we found that prices of the same commodity at different hubs 

were strongly correlated in returns, while cross-commodity (spark spread) return correlations 

were rather weak. However, in a long-run perspective we found well-defined links between 

electricity and natural gas prices.  
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1. Introduction 

During the recent 5-10 years there has been game changing developments in the European 

energy markets. One of the most important inputs in the European energy mix is natural gas 

and one of the main uses of natural gas is production of electricity. Additionally, EU 

authorities launched the EU emission-trading scheme (ETS) aiming for price discovery on 

C02 emissions. The relationship between these commodities has considerable impact on 

stakeholders in the market. 

On the physical side, the EU energy markets have become progressively concentrated, by new 

cross-country grids and pipelines which has allowed both electricity and natural gas to flow 

with less constraints, presumed to cause tighter price linkages between different trading hubs. 

The physical markets in Western Europe countries are also experiencing a period of large 

investments in renewable energy and infrastructure. Change in the supply structure will have 

implications on price development and infrastructure decisions.  

At least in Western Europe, exchanges for electricity trading have been more mature than 

their natural gas counterparties. This implies that in many areas we have transparent and 

consistent electricity price series that could be analysed thoroughly. Contrary, for decades 

natural gas deals have been settled on a bilateral basis, often pegged to the price of oil, but 

during the recent years this has been changing. Movements towards transparent trading hubs, 

more or less physically linked, will continue. One of the main drivers for the need of liquid 

and transparent natural gas hubs is the EU legislation and the large spread in crude oil and 

natural gas prices. Therefore, natural gas price series from recent years, based on the different 

European trading hubs, have become much more interesting when analysing the relationship 

between electricity prices and actual cost of natural gas. Among others, we believe that hub 

based natural gas prices will be representing the cost of natural gas in analysis of the 

European energy markets in the future. On April 5th 2012, journalist Karel Beckman 

published an article in European energy review with the headline: 

“It´s finally coming: the great European natural gas market transformation” 

Beckman says “the old market structure, based on bilateral long-run contracts between a 

limited number of big suppliers and buyers, will be replaced by (presumably) thriving 

wholesale markets where sellers and buyers meet on trading hubs to make short-term deals.”  
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Consequently, our goal is to contribute to the field of analysing connections between 

European electricity prices, natural gas prices and CO2 allowance prices in the context of 

transparent natural gas series and the establishment and phases of EU Emission Trading 

Scheme (EU ETS) 

The key questions that we would like to explore could be summarized as follows: 

Does analysing European electricity, natural gas and CO2 allowances prices, by short-term 

and long-term statistical concepts, show evidence of market integration between the same 

commodity in different areas, and are there forces linking the prices in a way that make the 

(clean) spark spread stable? If so, is it possible to identify “leading markets” by describing 

the dynamics of the price connections? In addition, what do estimated statistical relationships 

say about the marginal effect, of price changes, to a natural gas-fired power plant? 

With this background we are first motivated to explore short-term relationships by and 

analysing return, volatility and correlation developments between the variables in the spot and 

front markets, during the 7 years gone since the EU ETS was established.  

Second, we will study long-run relationships between the prices of electricity, natural gas and 

CO2, and carefully disclose the dynamics of these relationships. The understanding of these 

relationships is of great relevance to many markets players that are exposed to the difference 

between the electricity price and the natural gas price, known as the spark spread. 

The analysis is conducted with historical data on electricity and natural gas prices from the 

Netherlands, Germany and the UK. In addition, we will include a time series representing the 

price of CO2 emission to natural gas fired power producer, and seek to understand its relation 

with both electricity and natural gas prices.  
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1.1 Framework  

1.1.1 Theoretical framework 

Market participants in energy markets are often not outright exposed to commodity prices, but 

rather to the difference of two or more commodity prices involved in the production or 

transformation process. Therefore one should believe that there is a positive correlation 

between such commodities. 

The correlations between financial quantities are notoriously unstable but correlations are 

regularly used in almost all multivariate financial problems. An alternative statistical measure 

to correlation is co-integration (Wilmott, 2009). The advantage of using co-integration is that 

it captures dynamic relationships between the variables, which could not be captured by 

correlation analysis of returns.  

Part 1 will use correlations extensively to capture short-term relationships, while Part 2 will 

describe long-run relationship by co-integration, error-correction model and Granger 

causality.  

1.1.2 Limitations of framework  

The analysis will only use price variables in the analysis. Both electricity and natural gas are 

commodities that are dependent on the capacity in the transportation network, both internal 

and cross-border. Electricity is transported through power lines and high-voltage direct-

current (HVDC) power cables.  Natural gas is transported by through pipelines or LNG 

(Liquefied Natural gas). The delivery capacity of commodities is an important price 

determinant for electricity and natural gas markets, particularly when you consider the low 

storage capacity for electricity. Throughout the analysis, we will not use capacity constraints 

as a direct variable, but as part of our interpretation.   

Natural gas storage facilities are a well-know price driver in the natural gas market. Storage 

sites across the European gas network are often filled up during the summer to meet the 

increasing demand in the winter months. It is out of the scope for this thesis to measure the 

price effect from changes in storage level in the gas network. We will limit our analysis to the 

measure the correlation and integration of the commodity prices.  
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Some argue that the natural gas market in Europe is as much shaped by political forces as by 

economical factors, especially considering the position of Russia and Gazprom1. This thesis 

will not consider political risk and security of supply associated with the natural gas market.   

Being able to generate power strategically, only when it is profitable, is a significant source of 

value. The flexibility of a natural gas-fired plant is often measured in ramping time, the 

amount of time a plant requires to ramp up and down production.  However it is out of the 

scope for this thesis to investigate the hourly flexibility of natural gas-fired plants, but 

flexibility is an important source for profitability regarding a natural gas-fired plant. 

1.2 Spark spread 

The spark spread is the basic marginal production profit relationship between output of 

electricity and input of natural gas, modelling the production profitability for a natural gas-

fired power plant across time. The spark spread is defined as the difference between the 

electricity price per MWh and the cost of generating that MWh (Hsu, 2001), as shown in 

equation (1):  

1. !"#$%  !"#$%& = !"!#$%&#&$'  !"#$% − ℎ!"#  !"#$ ∗ !"#$%"&  !"#  !"#$%  
 

Heat rate = Natural gas input/Electricity output  

The heat rate of a natural gas-fired power plant is the number of British thermal units (Btus) 

needed to generate one-kilowatt hour of electricity (CME Group, 2012). It is also possible to 

view the spark spread by means of the efficiency factor for converting natural gas to 

electricity. If the power plant uses 2 MWh of natural gas to convert to 1 MWh of electricity 

the plant has an efficiency factor of 50 per cent.  

2. !"#$%  !"#$%& = !!" −
!!"#  !"#

!"#$  !""#$#!%$&  (%)
  

PEL = Price of Electricity (EUR/MWh) 

P Natural gas = Cost of natural gas (EUR/MWh)  

                                                

1 Gazprom is the largest extractor of natural gas in the world and the largest company in Russia 
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Fuel efficiency = Standard efficiency Factor for the for natural gas conversion = 49.13 per 

cent  

The efficiency of converting natural gas to electricity is in the range of 20 to 60 per cent. In 

the UK and Germany is common market methodology to use a standard fuel efficiency factor 

of 49.13 per cent for the natural gas conversion in the spark spread (ICIS, 2012). In our spark 

spread analysis we will use that standard efficiency factor as benchmark, unless alternative 

fuel efficiency is noted. Depending on the plant efficiency, the amount of fuel required to 

produce 1 MWh of electricity varies. A new Combined Cycle Natural gas Turbine (CCGT) 

with 58 per cent efficiency (on lower heating value) requires 1.7 MWh of natural gas, whereas 

an older unit with 50 per cent efficiency requires 2 MWh of natural gas (Los, de Jong, & van 

Dijken, 2009).  

The spark spread does not take into account additional charges such as non-fuel operational 

costs for a natural gas-fired plant.  

1.3 Clean spark spread 

In Europe we can expand the simple formula for spark spread to involve the price of CO2 

emissions, called the clean spark spread. The EU Emission Trading Scheme (EU-ETS) makes 

it mandatory for all heat plants or installations in excess of 20 MW to compensate for the CO2 

pollution. Each participant is given a fixed number of allowances from EU. The National 

Allocation Plans (NAPs) set out the total quantity of greenhouse natural gas emission 

allowances that Member States grant to their companies in the first (2005-2007) and second 

(2008-2012) trading periods (European Commission, 2010). For the last trading period, from 

2013, the allocation of allowances will be determined on an EU level rather than on a national 

level. The allowances (EUA) can be traded among the participants and the price created in 

this market reflects the price of CO2 emission in Europe. A heat power generator must 

therefore consider if the given number of EUA should be used to create electricity or sell 

EUA on the market for CO2 as opportunity revenue. The UK has also proposed an additional 

tax on carbon emission. The so-called carbon price support was set at 11.5 Euro per metric 

ton for 2014 (Airlie, 2012).   

3. !"#$%  !"#$%  !"#$%& = !!" − !!"! −
!!"#  !"#

!"#$  !""#$#!%$&  (%)
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PEL = Price of Electricity (EUR/MWh) 

PCO2 =EUA (EUR/t CO2) * 0.411 (t CO2/MWh) = PCO2 (EUR/MWh) for a natural gas plant 

PNat gas = Cost of Natural gas (EUR/MWh). [For the UK the natural gas price (Pence/Therm) is 

converted to EUR/MWh]   

Figure 1: Clean spark spread 

 

In our analysis we make the following assumption regarding the emission factor for a natural 

gas-fired plant as shown in figure 1. The assumption is in line with estimates about emission 

factor from other sources, such as the ICIS2 carbon market methodology and the report 

“Emission Cuts Realities – Electricity Generation” (Lang, 2010). Each individual natural gas-

fired plant has distinctive emission factors, even with the same technology. After each 

calendar year, installations must surrender a number of allowances equivalent to their verified 

CO2 emissions in that year. In our general market analysis we use an “average-best” 

assumption about the emission factor, based on fuel efficiency level. The ICIS methodology 

                                                

2 ICIS is a market intelligence provider for the global chemical, energy and fertilizer industries 

!"#$%&'($)*&'()#$+&
,-#./0#%/1&2$/34)&567&
#890:$"#%3&9%03'&42&%$39)$"&

;<=&

,&567&#"#/3)0/031&

>?@ABB-#./0#%/1&
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assumes an emission factor of 0.411 tonne CO2 per MWh produced electricity for a natural 

gas-fired plant with 49.13 per cent efficiency. For comparison the average emission factor, 

using brown coal as input, is 1.200 t CO2 per MWh (produced electricity).   

The emission factor implies a constant relationship between the emission factor and fuel 

efficiency: 

 0.411 t CO2/ 49.13 per cent fuel efficiency = 0.8366 

We use the implied relationship to determine the emission factor for other fuel efficiency 

levels as shown in appendix. The emission factor indicates 0.1195 t CO2 less emission for 

every 10 per cent increase in efficiency.  

Figure 2: Carbon cost with different fuel efficiency 

 

Figure 2 shows the historical carbon-cost per produced electricity (MWh) for natural gas-fired 

plants among different fuel efficiencies. The highest carbon cost spread (difference between 

high (60 per cent) and low (30 per cent) fuel efficiency) in our sample was 10.7 EUR/MWh 

observed on April 18 2006.  

1.4 Electricity production by source 

This section presents the sources used for electricity production in the three countries covered. 

It will be considered as background information that will help us to compare and interpret the 

!"!!#
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results. A logical assumption is that the price correlation between electricity and natural gas 

will be stronger the more natural gas is used in the production mix of electricity. A strong 

correlation will likely give a more predictable spark spread relationship.   

 

Table 1: Electricity production by source in the Netherlands, the UK and Germany 
(IEA 2009)3 

 

We observe considerable national differences in the electricity production by source. In terms 

of percentage points, the Netherlands is the country with the largest dependence on natural 

gas, and is by far the most important source of electricity production. In 2009, 61 per cent of 

domestic electricity production stemmed from natural gas.  

Thirteen per cent of the electricity production in Germany was generated by the use of natural 

gas in 2009. This makes Germany less dependent of natural gas compared to the two other 

countries. However, the domestic electricity production stemming from natural gas was 

almost 79 TWh, which makes Germany a larger total consumer of natural gas, for electricity 

production, than the Netherlands. Hence, Germany is a very important player on the European 

natural gas market.  

Moreover, Germany will realize changes in its energy mix during the coming years, mainly 

due to two factors. First, after the disasters at Fukushima, Germany has decided to phase out 

all its nuclear power production by 2022 (Dempsey & Ewing, 2011). Second, the German 
                                                

3 International Energy Agency. (IEA statistic by country) 

!"# $ !"# $ !"# $
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subsidies to coal fired production is at risk since EU is aiming to cancel them (Talt, 2010). 

Consequently, the German energy mix will change considerably and it is a lot of uncertainty 

regarding the importance of natural gas in the German energy mix.  

In the UK, natural gas is generating 44 per cent of the electricity production, which is the 

single largest source. The UK also has the largest size of electricity production from natural 

gas in terms of TWh, twice as much as Germany. Considering the comparatively low 

electricity interconnection capacity between the UK and Europe and the liquefied natural gas 

(LNG) market in the UK, we should expect to find a stronger correlation between electricity 

and natural gas prices in the UK.     

This introduction of the energy mix, and the share of natural gas, gives us an intuition of the 

natural gas relative dependence on natural gas in each country. Though, to understand how 

the production sources influence the price of electricity we need to consider the marginal cost 

of production, which we present by the merit order. 

1.5 Merit Order 

The merit order shows the supply curve for electricity production and separates the marginal 

cost of production by the various sources. Figure 3 is an illustration of the merit order in 

Germany in 2009. The Netherlands, Germany, and the UK all have different proportion of 

production sources, but natural gas is often the price setter in all three countries because of its 

flexibility and relative high fuel cost. Figure 3 reveals that natural gas and coal is the price 

setter if the demand for electricity in Germany is in the range of 60 to 85 GW4 before oil takes 

over.  

                                                

4 The maximum top-load for Germany in 2009 was 79 GW.   
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Figure 3: Merit order in Germany (RWE, 2009) 

 

Due to inelastic price elasticity of demand, electricity prices are driven by the merit order 

structure and seasonal shifts in demand. Fortunately, forecasting the merit order is generally 

valid for several years (RWE, 2009), which is due to the significant time requirement for 

planning, permitting, and constructing new generation capacity (as long as there are no 

systematic shifts in commodity price relations (e.g. hard coal vs. natural gas or renewable 

sources)). On the other hand, fuel prices and production based on renewables are very 

volatile, which therefore make short-term dynamics of the merit order to change quickly.  

The CO2 price also influences the marginal cost of different fuels and the merit order. The 

effect on the merit order depends on the relative emission intensity of the production process 

and the price relationship between hard coal and natural gas. Given that the price relationships 

between the fuel commodities stay constant, natural gas have a comparative lower marginal 

cost due to lower CO2 emission per produced MWh. Additionally, a modern natural gas-fired 

power plant has a more flexible production, which means capacity of quick adjustments to 

meet changing demand of electricity.  

Part 1 will explore the short-term dynamics of prices in terms of return, volatility, and 

correlation. Part 2 of our analysis will focus on the long-run relationships between natural gas, 

electricity and emission allowances in the merit order. 
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1.6 Natural gas-fired power plants 

To further explore the price connection between natural gas and electricity in Germany, the 

Netherlands and the UK we have collected fundamental data on all major natural gas-fired 

power plants in the selected countries. The data is collected using different sources, such as 

power plant information from producers, public data from transmission operators and other 

sources. To enhance our understanding about the spark spread we need information about the 

fundamental generation process that is subject for the spark spread. We have collected a data 

sample that covers 172 natural gas-fired plants with a total installed capacity of 70.6 GW. The 

data sample includes plants from all three countries and information on age profile, type of 

plant, location and efficiency5.    

Figure 4 shows the ten largest natural gas-power plants in the three countries. Seven are 

located in the UK, while the largest plant measured in generation capacity (MW) is the Claus 

C plant in the Netherlands. None of the ten are located in Germany. The Claus C plant, in the 

Netherlands, was built by Essent (owned by RWE) in 2012. With its efficiency of 58.5 per 

cent and 1940 MW installed capacity, it is able to supply power to more than 2 million typical 

European households.  

                                                

5 If we were unable to find data for the efficiency factor regarding a specific natural gas plant, we used an efficiency factor 
based on age. The reason is that efficiency factor is correlated with age because of developments in technology and 
deterioration over time. See appendix for the efficiency conversion from age to efficiency factor. 
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Figure 4: 10 largest natural gas-fired power plants in the UK, DE & NL 

 

The average installed generation capacity for the collected sample is 420 MW per plant. 

Several analysts predict that existing conventional power plants (both natural gas and coal) 

will go offline in the coming years (RWE, 2009). There are several reasons for this prediction, 

but the main two reasons are ageing power plants with low efficiency and stricter CO2 

allocation.  

Germany has an older power plant portfolio compared to the UK and the Netherlands. Our 

data sample shows that the average age of a natural gas-fired plant in Germany is 19 years, 

while it is 16 and 13 for the Netherlands and the UK respectively. The average generation 

capacity (installed power) is 259 MW per plant in Germany, while it is 584 MW and 607 MW 

in the Netherlands and the UK respectively.  

The total installed natural gas-fired generation capacity in the Netherlands, Germany and the 

UK is 72 GW. The total installed natural gas-fired power generation capacity in Europe is 199 

GW (2008), which is the largest source in the European energy mix in 2008 (RWE 2009).  

The average age of natural gas-fired power plants in Europe is 22 years old. To be able to 

compare that age in the three countries in a sensible way, we have calculated the capacity 

adjusted average age:  
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The capacity adjusted average age shows that the Netherlands and the UK have a capacity-

adjusted average age of 13 years, while in Germany it is 22 years. Hence, Germany has a 

portfolio consisting of older natural gas-fired plants.  An older portfolio implies that the 

natural gas-fired plants have lower efficiency, lower flexibility (ramping time) and is only 

profitable when used for peak production. Lower efficiency and slow ramping often indicates 

lower profit for the existing plants. Since fuel efficiency is even more important than the age, 

we have calculated the capacity adjusted average fuel efficiency, for the same reasons as we 

did for the capacity adjusted average age; 
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Figure 5: Capacity adjusted average fuel efficiency for natural gas-fired power plants 

 

Figure 5 shows that the adjusted average fuel efficiency in the UK is almost 8 percentage-

points higher compared to Germany, while the Netherlands is in-between.  

1.6.1 New plants and investment costs 

The Cambridge Energy Research Associates (CERA) reports that the majority of new power 

plants in Europe will be natural gas-fired plants. Their estimate is that approximately 60 per 

cent of new capacity in Europe will be natural gas-fired plants (CERA, 2009). The new 

plants, like the Claus C power plant, have high efficiency and flexible production capabilities 

(ramp time), and many new plants have been announced, but several are unlikely to come on 
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grid due to financing difficulties, lack of sufficient price signals and political risk (RWE 

2009).  

We have collected specific information regarding major planned natural gas-fired plants and a 

summary of these may be found in the appendix. 

The investment cost per installed generation capacity range from €0.62 million to €1.11 

million. Some of the planned plants are upgrades of older plants and might be the reason for 

large variance in investment costs per installed capacity. All of the new planned plants are 

based on CCGT (combined cycle natural gas turbine technology) with high efficiency.  

Currently, there is no information regarding new natural gas-fired plants in Germany. The 

main reason is the decreasing number of operating hours for natural gas-fired plants due to 

rising renewable energy production that have primary access to the grid. E.ON, the largest 

utility company in Germany, is not considering investing into new natural gas-fired capacity 

in their domestic country, and argues that such investments would not be economically viable 

in the face of high costs of natural gas procurement as well as Government-backing for 

subsidised feed-in of renewable power into the German power grid (Gas-to-Power Journal, 

2012).  

The International Energy Agency (IEA) states in a report from 2010 that, at a 5 per cent 

discount rate, the levelised costs6 of generating electricity from natural gas-fired power plants 

vary between 28 and 45 EUR/MWh, but in most cases it is lower than 41 EUR/MWh (IEA, 

2010). The cost of carbon emission is not included in the analysis from the IEA. Natural gas 

cost represents on average nearly 80 per cent of the total cost and up to nearly 90 per cent in 

some cases over the life span of the plant. Consequently, the predictions made on natural gas 

prices at the time of investment, are just as important as electricity prices when calculating net 

present value of a natural gas-fired power plant.   

 

                                                

6 Levelised energy cost (LEC) is the price at which electricity must be generated from a specific source to break even. The 
IEA calculations use generic assumptions for the main technical and economic parameters as agreed upon in the ad hoc group 
of experts, e.g., economic lifetime (40 years), average load factor for base-load plants (85 %) and discount rates (5 %) and). 
Electricity generation costs calculated are busbar costs, at the plant, and do not include transmission and distribution costs. 
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1.7 Recent development in the European energy market 

1.7.1 The integration of the European energy markets 

In 1998 the EU took a decision to aim for the establishment of a single, liberalised European 

energy market. At that time, each member state had its own, strictly national energy market, 

controlled by state-owned utility companies, and more often than not characterised by heavy 

subsidies for large energy users (Beckmann, 2010).   

As of 2012 the European electricity market is closer to reach its targets compared to the 

European natural gas market. Our analysis will not describe the physical details of the 

European market integration process, but market integration is a dynamic element in the price, 

correlation and co-integration analysis.       

1.7.2 European natural gas market transformation 

There is an on-going process, after European Union's Third Energy Package, for the 

transformation of the European natural gas market to an integrated liberalised market. The 

model is based on natural gas wholesale markets with competitive spot trading across EU.  

The natural gas trading platforms that were set up in various areas of Europe have already 

been seeing a great increase in wholesale spot trading in recent years. In section 2.2 we will 

give a comprehensive introduction to the various trading platforms for natural gas.  

Traditionally, procurements of natural gas have been bilateral oil-linked long-run natural gas 

contracts, and are still covering the largest share, which have no available transparent and 

official daily price listed. The hub-based spot prices are often below the oil-linked prices, 

which were the case in the period between late 2008 and mid 2010, when spot prices in North 

West Europe at times were close to 50 per cent below oil-linked levels. On the other hand 

there is no reason, in theory, as well as in practice, why hub-based prices could not exceed 

oil-linked levels, that is dependent on supply and demand conditions in oil and natural gas 

markets (Rogers & Stern, 2011).   

Several market players, organizations, regulators and studies such as from Oxford Institute for 

Energy believe the co-existence of oil-linked and hub-based pricing is unsustainable. The key 

argument is that hub-based pricing is the best price signal of supply and demand conditions in 
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the natural gas market (Rogers & Stern, 2011). Our analysis will only use hub-based prices, 

because these are more transparent, obtainable and based on the EU´s target model for price 

discovery of natural gas.     

1.7.3 EU Emission trading scheme (ETS) 

The EU ETS is a market-based instrument of the EU climate policy with the target to reduce 

greenhouse emissions at minimal economic costs to set and achieve climate protection targets. 

It is the first cross-border and, at the same time, the world’s largest emissions trading system. 

The EU ETS is based on the “cap & trade” principle, which means that the amount of 

greenhouse emissions is capped and the emission allowances are fully fungible and can be 

traded. This supports the economic incentive to reduce emissions of harmful greenhouse 

natural gases where it is most efficient (EEX, 2012).  

Figure 6: EU-ETS emissions allowances until 2020 (RWE, 2009)  
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2. Spot markets 

To get a better understanding of the underlying data in our analysis we will give a short 

introduction to the various spot prices that we have covered.  

2.1 Electricity spot markets 

The spot price for electricity is based on a day-ahead auction for physical delivery the next 

day and is a two-sided auction model. On the basis of the submitted bids, demand and supply 

are compared on a daily basis for every hour of the next day. 

Figure 7: Electricity Spot market Europe (source: Nord Pool Spot) 

 
The European spot markets for electricity are divided into different regional areas, for 

example the Nord Pool Spot area for the Nordic region. In Germany and the Netherlands the 

spot is cleared on the exchanges EPEX Spot and APX, respectively. In the UK there are two 

exchanges for spot clearing, N2EX and APX-UK. However, the electricity traded in the UK is 

mainly through bilateral over-the-counter (OTC) contracts, which may weaken the 

transparency of the listed prices.  

Our data contain daily time-weighted average spot prices from EPEX (EEX) Germany, APX 

Power NL and APX Power the UK. The time-weighted spot price is split into base and peak 

load. The base load price is the average price for all hours during the day (1 to 24) and the 



 24 

peak load price is the average price for hours with high load (in Germany 9-20 hours, the UK 

and the Netherlands 8-20 hours).    

The reason why we will use the average day spot for electricity is because it makes it easier to 

compare it with the futures contracts. The financial settlement of a futures contract is based on 

the average price over a given period, and the marginal account is settled on a day-to-day 

basis.  

2.1.1 Germany/Austria Electricity Spot (EPEX SPOT/Phelix) 

Phelix refers to the Physical Electricity Index and is calculated and published as Phelix Base 

and Phelix Peak.  

2.1.2 The Netherlands Electricity Spot (APX Power NL) 

The APX Index is determined on a daily basis and we have used the APX-ENDEX time 

average index for base-load and peak-load. This is consisted with the reporting of the Phelix 

spot prices.  

2.1.3 the UK Electricity Spot (APX Power the UK) 

APX-ENDEX publishes a range of indices that can be used as a reference price for spot 

electricity. We have used the time-weighted APX Power UK Spot Base Load Index (and Peak 

Load) in our analysis as a reference price for spot in the UK.  
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2.2 Natural gas Spot markets 

Natural gas spot trading is located at trading hubs across Europe, and is often located at the 

intersection of major natural gas pipelines. The hub can also be a virtual trading hub, such as 

the NCG (NetConnect Germany).  We will analyse price data from National Balancing Point 

(NBP) located in the UK, NetConnect Germany (NCG) and Title Transfer Facility (TTF) 

located in the Netherlands in our analysis.   

Figure 8: European natural gas trading hubs (E.ON Energy Trading, 2011) 

In the Netherlands the virtual 

trading point is TTF (Title 

Transfer Facility) and is 

operated by Natural gas 

Transport Services (GTS), the 

transmission operator for the 

pipeline grid. Physical short-

term natural gas and natural gas 

financial futures contracts for 

TTF are operated by APX-

ENDEX.  

NetConnect Germany (NCG) is 

operated by several grid companies7. The natural gas spot and forward contracts are operated 

by EEX (European Energy Exchange). Over the last two years, the German natural gas 

market has developed significantly and the NCG, Germany's virtual trading point, has seen 

the highest increase in trading volume of all the European hubs, and is consequently the 

fastest growing hub in Europe (E.ON Energy Trading, 2011). 

                                                

7 Bayernets	  GmbH,	   Eni	  Natural	   gas	   Transport	  Deutschland	   S.p.A.,	  Open	  Grid	   Europe	  GmbH,	  GRTgaz	  Deutschland	  GmbH,	  
GVS	  Netz	  GmbH	  and	  Thyssennatural	  gas	  GmbH 
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The National Balance Point (NBP) in the UK is operated by the grid owner National Grid, 

while the spot and OTC trading is handled by APX-ENDEX. The NBP is the most liquid 

natural gas-trading hub in Europe and is a virtual trading point.  

2.2.1 Germany Natural Gas Spot (NCG) 

We will use data on the daily reference price from NCG (NetConnect Germany) spot market 

reported on EEX. The NCG daily reference price is a volume-weighted index.  

2.2.2 The Netherlands Natural Gas Spot (TTF) 

We will use the APX TTF Day-Ahead8 index as our reference price for spot natural gas price 

in the Netherlands. The APX TTF Day-Ahead index is a volume-weighted average price of all 

orders that are executed on the day preceding the day of delivery.  

2.2.3 The UK Natural Gas Spot (NBP)  

The time series to be used as a reference price for the NBP spot price is the volume-weighted 

APX-ENDEX NBP Day Ahead (Pence per therm).  

2.3 C02 Spot (EEX) 

Since 2005 EEX has offered trading of emission allowances on the basis of the EU Emission 

Trading scheme (EU ETS) among several exchanges.  

The EU Allowances (EUA) are traded on the EEX spot and derivatives market on a 

continuous basis. One EU emission allowance (or EUA) grants the owner of a plant in an EU 

member state the right to emit one tonne of CO2 or CO2 equivalent during the second EU 

commitment period (2008 to 2012). Contracts in EU ETS have a contract volume of one EUA 

and are traded in EURO per EUA with two digits after the decimal point.  

On the EEX derivatives market a settlement price is established on every trading day for 

EUA. The settlement price is established after the end of trading on every trading day based 

on settlement price rules.  
                                                

8 APX TTF-Hi All-Day Index (Euro/MWh) 
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2.4 Volume-weighted vs. time-weighted spot indices 

The daily spot prices for natural gas and electricity are volume-weighted and time-weighted, 

respectively. The rational is linked to the physical attributes of the commodities, e.g. storage 

capacity. In the electricity market, supply and demand must be matched continuously and spot 

prices are cleared for every hour. Natural gas is storable, and most natural gas fired power 

plants has some storage capacity for natural gas that can exploit the flexibility of the plant to 

adjust the production volume. Therefore, some mismatches between the time of delivery of 

input factors (natural gas) and the equivalent output factor (electricity) will exist.  

Since the electricity price is settled for every hour during delivery day, the time-weighted 

price is of most relevance, and should therefore be used. Having peak and base load prices 

enables us to catch price differences that are linked to day and night volumes. 

Price settlement of natural gas spot prices are not done at an hourly basis, but during a day, 

and the volume-weighted price will therefore show the average price for a measurement unit 

of natural gas delivered. The volume-weighted price is therefore the preferred price 

representing the average price.  
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3. Futures Contracts  

Futures contracts can be defined as standardised forward contracts traded at commodity 

exchanges where a clearing-house serves as a central counterparty for all transactions. This 

eliminates the counterparty risk present in over-the-counter forward contracts (Burger et al 

2007). On each trading day a settlement price for the futures contract is determined and gains 

or losses are immediately realised at a margin account. We only consider one-month futures 

contracts (front month) in our sample since this is one of the most liquid futures contracts for 

the chosen commodities (Burger et. al., 2007). We are using futures contracts written on the 

respective spot prices, except CO2 as mentioned above. We were not able to find reliable data 

on the front futures month contracts for electricity in the UK. The ICE exchange operates with 

futures contract for the UK electricity, but there is no volume traded in this contract.  

Futures contracts are commonly used as a risk management tool to get more predictable 

revenues and costs. For example Statkraft, the largest electricity utility in Norway, states in 

the 2011 Q4 interim report that they secure 40 per cent of their electricity production in the 

financial market.  

The settlement of futures contracts involves both a daily mark-to-market settlement and a 

final spot reference cash settlement, after the contract reaches its due date. Mark-to-market 

settlement covers gains or losses from day-to-day changes in the market price of each contract 

(NASDAQ OMX, 2011).  

Figure 9: Futures contract settlement (NASDAQ OMX, 2011) 
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This principle for futures contract settlement applies for EEX, APX-ENDEX and ICE. There 

are minor differences in rules that determine the settlement price at the end of each trading 

day. The general principle is that the spot price (system price) is the reference price for 

settlement as shows in figure 8.   

3.1.1 Generic time series 

Since the variance of futures contracts increases when they approach delivery, known as the 

Samuelson effect (Samuelson, 1965), we will not attempt to analyse the futures prices 

directly. Instead we will use generic time-series. Generic time series are artificially 

constructed so that all prices in the series have approximately the same time to maturity. Since 

we are using front month generic series, prices shown in January are the futures prices with 

delivery in February and so on. By using the generic series we are able to analyse the data 

material without concerns of the Samuelson effect.  
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4. Data set 

The data set consist of daily power and natural gas prices (both spot and one month futures) 

from APX-ENDEX, ICE and EEX. The data set has approximately 20 000 observations in the 

period 2005-08-04 to 09-01-2012, and consist of 20 different price variables. One variable 

covering the whole sample has 1678 observations. All time series are downloaded from 

Thomson Reuters DataStream, and converted into appropriate and comparable measures. For 

more information regarding data manipulation and conversion of measurement units see 

appendix 9.17 and 9.1.8. 

The sample period is based on the implementation of the EU-ETS trading scheme. European 

Union trading scheme commenced operation on 1 January 2005, although national registries 

were unable to settle transactions for the first few months (Environment Agency UK, 2012). 

The EUA (EU Allowance for CO2) began trading on the EEX (European Energy Exchange) 

2005-08-04 and is therefore chosen as our sample starting point.  

Sub-periods 
The sub-periods are first of all chosen to consider the stages of the implementation of EUA 

trading scheme. 

P1: 2005-08-04 - 2007-01-26 (387 observations) 

P2: 2007-01-29 - 2009-01-15 (514 observations) 

P3: 2009-01-16 - 2012-01-09 (777 observations) 

We can clearly see that “there are” three periods; before, under, and after the prices crashed in 

figure 10. Anyhow, it is also a reflection of the two EU-ETS phases until now;  

● EU-ETS Phase 1 (2005-2008) 

● EU-ETS Phase 2 (2008-2012) 

Figure 10 shows how the EUA price collapsed at the end of 2006. Chevallier et.al (2008) 

point out two main reasons for the collapse: 

1) After a price "collapse" on April 2006 due to the publication of the 2005 verified emissions 

data by the EC, the EUA spot price with maturity December 2007 did asymptotically 

decreased towards zero because of the impossibility to transfer allowances to the next period. 
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2) The allocation of allowances did not achieve its objective as some sectors such as power 

producers were far more constrained than other participants who received an amount of 

allocation close to their business-as-usual scenario. 

Figure 10: CO2 spot price for an average natural gas-fired plant (EUR/MWh)9  

 

 

                                                

9 The price of CO2 for natural gas is calculated using the benchmark emission intensity factor of 0.411 t CO2/MWh 
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5. PART 1: 
 
Short-run relationships 

In part 1 we aim to explore and analyse return, volatility, and correlation developments in 

electricity, natural gas, and CO2 markets during the seven years gone since the EU-ETS first 

was established. 

5.1 Descriptive statistics 

We will start the short-run relationship analysis by highlighting the distributional properties of 

the different variables. These statistics have not been adjusted for seasonal effects. However, 

as mentioned earlier, the Samuelsson effect has been removed from the front series. In should 

also be pointed out the properties are for daily observations. 

Table 2: Full sample return distributions10 
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Table 3: Period 1 return distribution 

 

Table 4: Period 2 return distribution 

 

Table 5: Period 3 return distribution

 

!"#$%&'()*+, )-./# 012.342435 67-8/-99 %:;-99#<=>31949 ?1>@.2435#3-93
!"#$"#%&'(#)*%$ +,+#- ./,0#- 1+,+2 3,./ 03+,22#4556
!"#$"#%&'(#&$*7 +,0#- 20,8#- +,+3 3,3/ 039,88#4556
!"#$"#:;'!(#<'!(=#)*%$ 1+,.#- .,8#- 1+,+> 3,?/ 082,+>#4556
!"#$"#:;'!(#<'!(=#&$*7 111 111 111 111 111

@$#$"#%&'(#)*%$ +,+#- .?,2#- 1+,00 0+,>8 3?2,?8#4556
@$#$"#%&'(#&$*7 +,+#- 20,?#- +,00 9,28 293,>2#4556
@$#$"#:;'!(#<'!(=#)*%$ 1+,.#- 2,+#- 10,+3 /,33 9+,/00#4556
@$#$"#:;'!(#<'!(=#&$*7 111 111 111 111 111

A7#$"#%&'(#)*%$ 1+,0#- .+,2#- 0,+2 ?,2? 0//,??#4556
A7#$"#%&'(#&$*7 +,+#- .3,/#- +,>/ /,0? 0+/,?3#4556

!"#((:#%&'( +,+#- 0+,3#- 10,28 /0,29 ..29,/#4556
!"#((:#:;'!(#<'!(= 1+,/#- .,+#- 1+,/3 3,2. 000,>0#4556

@$#%BCD#E*%#4&FCGH6 +,+#- 0+,3#- 10,28 /0,29 ..29,/#4556
@$#EIJ#:FCKD#4&FCGH6 1+,3#- .,.#- 0,23 0?,3+ 3>9,89#4556

A7#!)&#%&'( +,+#- 03,0#- 0,// 00,3. 0?2,0?#4556
A7#!)&#:;'!(#<'!(= 1+,8#- 3,0#- 0,// 9,89 0.>,0+#4556

L'.#%BCD 1+,/#- /,+#- +,?+ 2.,28 0/0/,9#4556

!"#$%&'()*+, )-./# 012.342435 67-8/-99 %:;-99#<=>31949 ?1>@.2435#3-93
!"#$"#%&'(#)*%$ +,-#. -/,0#. 1+,-2 3+,-4 -303,5#6778
!"#$"#%&'(#&$*9 +,-#. 3:,2#. 1+,3- -4,;- --20,/#6778
!"#$"#<='!(#>'!(?#)*%$ 1+,3#. 3,2#. 1+,+4 2,+0 -54,;;#6778
!"#$"#<='!(#>'!(?#&$*9 111 111 111 111 111

@$#$"#%&'(#)*%$ +,3#. 3-,2#. 1+,:0 :,;3 -::,03#6778
@$#$"#%&'(#&$*9 +,3#. 30,;#. 1+,33 2,34 -;0,;;#6778
@$#$"#<='!(#>'!(?#)*%$ 1+,-#. 3,/#. -,04 -5,25 223,+:#6778
@$#$"#<='!(#>'!(?#&$*9 111 111 111 111 111

A9#$"#%&'(#)*%$ +,3#. 3-,-#. +,+3 3,:- ;:,;5-#6778
A9#$"#%&'(#&$*9 +,3#. 30,;#. +,++ 3,+3 5+,+4;#6778

!"#((<#%&'( +,-#. 0,0#. +,-/ :,0- -::,:-#6778
!"#((<#<='!(#>'!(? 1+,3#. :,+#. +,0/ 2,45 -50,;4#6778

@$#%BCD#E*%#6&FCGH8 +,-#. 2,2#. +,:4 5,+: 355,52#6778
@$#EIJ#<FCKD#6&FCGH8

A9#!)&#%&'( +,-#. 5,4#. +,+/ 3,50 /+,3/2#6778
A9#!)&#<='!(#>'!(? 1+,3#. :,2#. +,23 :,+4 /2,/:2#6778

L'3#%BCD 1-,+#. -:,0#. +,5/ -2,30 ;:0,+:#6778

!"#$%&'()*+, )-./# 012.342435 67-8/-99 %:;-99#<=>31949 ?1>@.2435#3-93
!"#$"#%&'(#)*%$ +,-.#/ ..-0#/ ,-12 3-34 1.5-3,#6778
!"#$"#%&'(#&$*9 +,-.#/ ..-4#/ ,-:0 ;-42 :2;-:4#6778
!"#$"#<='!(#>'!(?#)*%$ +,-.#/ .-1#/ ,-45 0-54 122-2,#6778
!"#$"#<='!(#>'!(?#&$*9 +++ +++ +++ +++ +++

@$#$"#%&'(#)*%$ +,-.#/ .1-,#/ ,-1. 22-30 2.5:-:#6778
@$#$"#%&'(#&$*9 +,-.#/ .:-5#/ ,-;. .1-40 .54.-1#6778
@$#$"#<='!(#>'!(?#)*%$ +,-.#/ .-;#/ .-;0 .;-.: 12;-,2#6778
@$#$"#<='!(#>'!(?#&$*9 +++ +++ +++ +++ +++

A9#$"#%&'(#)*%$ +,-.#/ .5-:#/ ,-,4 2-;5 5,0-14#6778
A9#$"#%&'(#&$*9 +,-.#/ .1-.#/ ,-.2 2-1. .04-22#6778

!"#((<#%&'( ,-,#/ 2-0#/ +,-1; 1-0: 223-,5#6778
!"#((<#<='!(#>'!(? +,-.#/ 5-:#/ +,-54 2-24 .31-13#6778

@$#%BCD#E*%#6&FCGH8 ,#/ 5-33#/ .-:, .1-01 3:5-.5#6778
@$#EIJ#<FCKD#6&FCGH8 +,-.#/ ,-3#/ ;-,3 03-4, 320-.;#6778

A9#!)&#%&'( ,-,#/ ;-5#/ +,-20 .0-2; .3.3-4#6778
A9#!)&#<='!(#>'!(? +,-.#/ 5-4#/ +,-,5 5-;, .50-..#6778

L'5#%BCD ,-3#/ 52-5#/ 53-2: 31:-2, 13012,#6778



 34 

5.1.1 Mean return 

In tables 3 to 6 we found a tendency, in the sign of the average return, among the 

commodities in the different sub-samples; either most of the series exhibit a positive average 

return or a negative average return. This is an indication that during a given time interval, 

these commodities will drift in the same direction, and possible some connecting forces co-

exist. For example a negative drift can be explained by factor such as lower demand after the 

financial crisis and/or lower average production cost due to the fact of increased share of wind 

and photovoltaic production in Germany.   

5.1.2 Volatility 

Tables 3 to 6 show that the spot electricity has an immense volatility, where the daily 

volatility of the spot electricity returns are about 20 per cent. Peak-load are slightly higher 

than base-load volatility returns. The volatility is not pure uncertainty, but a reflection of the 

fundamental factors of the electricity market that changes rapidly from day to day. Adjusted 

for “known-unknowns” like planned operational maintenance, planned capacity and various 

seasonal effects, the volatility would be somewhat lower.  

We observe that the volatility of the front futures prices (both natural gas & electricity) is 

considerably lower compared to the spot prices. The front futures price is the expected 

average price for spot delivery the next month without capacity congestion, unexpected 

outages and other unexpected conditions. A change in the front futures price is therefore a 

change in the excepted average spot price for the next month. Consequently the volatility is 

lower in the futures market and a direct comparison of spot and futures volatility is invalid.  

As we observed with the average returns there is a clear tendency that almost all series have 

their highest volatility in the first period and the lowest in the last. This is an additional signal 

of price linkage between returns of the different series. We could therefore form a hypothesis 

testifying that at times where there is “turmoil” in the natural gas markets with high volatility, 

we would similarly observe high volatility in the electricity market and vice versa. Similar 

hypothesis could be made between for example the electricity markets in the Netherlands and 

Germany. 
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The reason of reduced volatility may be fundamental factors such as increased capacity, lower 

demand and increased market integration that lowers price spikes. A second explanation is 

that market players have become more mature.  

5.1.2.1 Impact of CO2 prices and its volatility 

If we then look at the connection between the volatilities of electricity and natural gas returns 

and their relation to the CO2 volatility in the three periods, we see no connection of high 

volatility in CO2 prices would cause higher volatility in the two energy prices. In period 1 we 

see that CO2 volatility is at its lowest, at the same time as natural gas and electricity prices 

have their lowest volatility. In period 3 we see opposite results; high volatility in CO2 returns 

and lower in natural gas and electricity returns. It should be mentioned that we do not infer 

causality in this observation, but we limit our self to highlight these observations. In addition 

we note that CO2 return skewness is very high in period 3, which means that the estimate of 

the standard deviation (volatility) will overestimate the actual risk (Bodie, Kane, & Marcus, 

2009). 

5.1.2.2 Rolling volatility 

To get a better understanding of how the volatility has developed during the sample, we have 

constructed series for a 30-day rolling volatility.  

Figure 11: 30 day rolling volatility EL Spot 

 

30d ret vol NL EL SPOT BASE NL EL SPOT BASE 

2006 2007 2008 2009 2010 2011 2012

0.25

0.50

0

200

30d ret vol NL EL SPOT BASE NL EL SPOT BASE 

30d ret vol DE EL SPOT BASE DE EL SPOT BASE 

2006 2007 2008 2009 2010 2011 2012

0.25

0.50

0

250
30d ret vol DE EL SPOT BASE DE EL SPOT BASE 

30d ret vol UK EL SPOT BASE UK EL SPOT BASE 

2006 2007 2008 2009 2010 2011 2012

0.25

0.50

0

250

30d ret vol UK EL SPOT BASE UK EL SPOT BASE 



 36 

The red lines in figure 11 show the development in the 30-day rolling volatility for the spot 

electricity returns in the Netherlands, Germany, and the U.K. For all three countries it seems 

like the lower average volatility in the last period is mostly due to less seasonal fluctuations in 

the volatility, resulting in a more stable volatility. This is supporting our argument in section 

5.1.2 where we stated that the average lower volatility in period 3 is most likely due to 

reduced capacity constraints that increase the well-functioning of the markets. 

Visually, it also seems like there is a very strong connection between the volatility in the three 

electricity markets, which was expected. However, it is difficult to tell from these plots 

whether the connection is stronger in the last part of the sample, but this will be described in 

more detail in section 6.2.2. A spike on a single day will also effect the 30-day rolling 

volatility for exactly 30 days. For example following the sharp increase in the electricity in 

Germany on July 2, 2006 and the subsequently increase in relative volatility. On July 2, 2006, 

the daily average base-load price for electricity changed from 100 EUR/MWh the previous 

day to 301 EUR/MWh the next day.  

Figure 12: 30 day rolling volatility NATURAL GAS Spot 

 

In figure 12 we plot the similar series for the spot natural gas markets in the same three 

countries, and in contrast to the electricity markets it seems like the higher volatility in the 

first period is due to specific events, rather than stronger seasonal fluctuations. However, 

turmoil in any of the markets has a tendency to be present in the two others at the same time, 

even though there are clear exceptions, as in the UK in 2009.  
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If we plotted the same series for the front markets we would have found similar results as in 

the spot, but with lower volatility in general. 

 

5.2 Correlations 

After the visual discussion in section 5.1 about the relationships between the various series, a 

natural next step is to investigate connections by statistical measures, where we start by 

estimating correlation in returns. These measures would answer questions regarding the short-

run relationship between the commodities.  

Our expectation was that the increased transparency of prices would lead to tighter 

integration, and therefore strong correlation in later parts of our samples. Except from 

calculating regular correlations between two time series in a given time interval, we will 

strengthen the analysis of short-run relationships by performing a 100 days rolling correlation 

in return analysis. This analysis will give support to the importance of performing long-run 

relationship analysis, and whether seasonalties are an important part that should be accounted 

for in those relationships.  

Thereafter, we will investigate the discussed relationships in volatility further, by calculating 

correlations between 30-day rolling volatilities.  

5.2.1 Correlation returns 

5.2.1.1 Correlation returns full sample 
The return correlations for the full sample are listed in table 7. Naturally we find the highest 

correlations between spot base load and peak load prices, which range between 94 per cent 

and 99 per cent. The fact that these correlations are high is not by itself interesting at all, but 

seen together, it indicate less difference between peak load and base load price, on average, in 

U.K. than in Germany and the Netherlands. 
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Table 6: Correlation returns full sample

 

If we instead look at the correlations between the spot prices of natural gas and electricity in 

the separate countries, we would at least expect to find positive correlation, and that the 

magnitude some how could be described by the relative dependence on natural gas in the 

electricity generation mix. As expected the correlations are positive, but the magnitude are 

more remarkable. From table 1 (Electricity production by source), we know that the 

Netherlands has the greatest dependency on natural gas (61 per cent), followed by U.K. (44 

per cent), and Germany (13 per cent). For Germany we observe a correlation of 1 per cent. 

Practically, there is no correlation in returns between German natural gas and electricity in the 

spot markets. However, in the front market there is a correlation coefficient of 22 per cent, 

which might be an indication that there is a connection on a semi-long term (futures for 

delivery during a month). The front series also exhibit less noise (short-term price spikes) and 

therefore we also see a stronger connection in the semi-long term. Generally we cannot 

compare the spot and front correlation coefficients direct, but we can state that the connection 

is stronger in the front market.   

Next, and contradicting our expectation, we find a correlation coefficient in the Netherlands 

of only 7 per cent between spot natural gas and electricity returns. Again, there is a much 

stronger correlation between front natural gas and electricity returns (35 per cent), again 

indicating a relationship on a longer term. In the U.K., the correlation between the spot natural 

gas and electricity returns is 23 per cent, which is distinctive from the two other countries.  

If we look at cross-country correlations we see that there are tighter connection between 

returns in Germany and the Netherlands than any of the two and the U.K. in the spot markets. 
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electricity and natural gas respectively. Note that the high correlation in natural gas is partly 

artificial due to the use of a proxy natural gas series in Germany for the first period.  Between 

the UK and the two other countries the correlation is close to 10 per cent in both natural gas 

and electricity spot markets.  

The last correlations are between the various natural gas and electricity series and the CO2 

series. We note that these are practically zero but due to the collapse in the second period 

these measures only give meaning in the first and last period.  

5.2.1.2 Correlation returns sub-periods 
In the sub-periods11 we see that for the first and second time period there are almost perfect 

correlations between base and peak load spot electricity returns, while there is a small drop to 

87 per cent in both the Dutch and German markets in the third period.  

Concerning the changes in correlations between natural gas and electricity within the 

countries, there are no clear trends shared by the three countries. While there are slight 

increases in in the correlations between spot natural gas and electricity in Germany and the 

Netherlands, it is a steep decline in the U.K. In the first time period the correlation was 38 per 

cent in the U.K. dropping to 16 per cent and 8 per cent in the following two periods. For the 

similar front correlation the picture is also mixed, and it is difficult to see a connection 

between the developments in the front and spot markets return correlations. We observe a 

movement towards stronger correlation in the Netherlands and weaker in Germany.  

Then, in the cross-country correlations we find in the spot electricity market a fairly stable 

correlation with a small increase between the Netherlands-U.K. and Germany-U.K, but still 

much weaker than between the Netherlands-Germany. In the connection between the last two 

countries we observe that the front electricity correlation has increased from 56 per cent in the 

first period to 87 per cent in the last. This must be seen in connection with tighter integration 

between these countries due more efficient use of cross-border capacity as described earlier.  

The cross-boarder connection in natural gas returns shows what we commented above. In the 

first period the correlation is of course 100 per cent between spot natural gas returns in 
                                                

11 Tables of results can be found in the appendix. 
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Germany in the Netherlands, but now as the correlation only is 5 per cent in the last, it seems 

like using Dutch natural gas prices as a proxy for German prices is no longer perfect when 

comparing returns. The correlation between the spot natural gas returns in the Netherlands 

and the U.K. are stable and low, while for the German-U.K. connection the correlation has 

increased from 8per cent in the first to 30 per cent in the last period. Considering the front 

natural gas connection the natural gas market picture become quite confusing, so it is difficult 

to see any connection by the correlation changes in the spot and front market.  

Since we found it challenging to discover clear and lasting trends in the correlation 

developments between electricity and natural gas, we would like to examine this further. 

Hence, in the next section we will plot and analyse a 100 days rolling correlation between 

returns. 

5.2.2 100 days rolling correlation in returns 

Analysing the connection between natural gas and electricity is of special interest since we 

want to have a detailed understanding of the spark spread. Therefore the following figure 

shows a 100 days rolling correlation in returns between electricity and natural gas in both spot 

and front markets in the Netherlands. Similar plots on the British and German variables are 

found in the appendix. 

Figure 13: 100 days rolling correlation in returns  

 

This plot reveals something interesting. Especially in the front market there are strong 

seasonality in this correlation. We interpret this as during winter months, natural gas is much 

more often the marginal production source on the merit order since demand is higher. To see 

this more clearly, we have plotted the fitted values of a regression with the blue series above 

as the left-hand-side variables, and only dummies on the right, one for each month. 
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Figure 14: 100 days rolling correlation in returns with dummies 
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is from June to September. During summer month excess production is injected into storage 

and in the winter months the storage natural gas is withdrawn to supply any excess load 

(Alexander, 1999).  

If seen together with the similar figures in the appendix for the two other countries, there is 

again no clear trend in how the correlations between natural gas and electricity changes, 

depending on the three sup-periods we have chosen.  

5.2.3 Summary of return correlations 

To sum up our results of correlation in returns we found that base and peak-load returns are 

strongly correlated, because the two series are interrelating.  The two spark spread 
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commodities are only weakly correlated in spot returns. However, it is somehow better in the 

front markets, where it also is a strong seasonal correlation component. Cross-boarder 

correlation in electricity returns is only present between Germany and the Netherlands, while 

for natural gas the picture is very mixed.  

5.2.4 Correlation in volatility 

We have now described the short-run connection in returns thoroughly, and before we end the 

short-run relationship section, we find it valuable to see these connections in volatility terms. 

In table 8 we have listed correlations between all (el: base load) spot series 30 days rolling 

volatility. By doing this we intend to discover possible effects of cross market/country turmoil 

properties, that might suggest common influencing parameters not captured by return 

connections alone. If the correlation is high we have an argument that the prices are connected 

even though return connections are low. 

In the electricity market alone the correlation coefficients are rather low in period 1 ranging 

between 4 and 31 per cent. However, we find a clear shift towards higher correlation ranging 

between 47 and 61 per cent in period 3. Compared to correlation in returns, this indicates that 

there actually are some common behaviour or similar forces affecting British, German and 

Dutch spot electricity prices. For example, it may be similar seasonal fluctuations in demand, 

but also an evidence of tighter market integration.  

In the analysis of correlation in natural gas returns we found some confusing results, not 

revealing any clear statement of strong connection, opposed to what was expected. After the 

results in table 8 we can at least say that the natural gas markets are connected to some extent. 

With correlations between 64 and 87 per cent we are confident to argue that we at least found 

some evidence of what we expected.  
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Table 8: Volatility correlation 

 

Concerning the correlation coefficients between natural gas and electricity volatility, the spark 

spread variables, we observe that there has been a movement toward stronger connection in 

the last period. In period 1 the volatility correlation was negative in the Netherlands (-0.16) 

and Germany (-0.10), while it was positive in the UK (0.36). We observe almost the same 

picture in period 2 with a small positive correlation in the Netherlands (0.06), negative in 

Germany (-0.06) and almost unchanged in the UK (0.37). In the last period the picture 

changes completely, with a strong positive volatility correlation in the Netherlands (0.60), 

Germany (0.27) and the UK (0.49). Overall the correlation in volatility has been relative 

stable and strong in the UK in all three periods, but rather unstable in the two other countries. 

It seems that in the UK, the natural gas volatility is, and has been, one of the key drivers for 

the uncertainty in the spot electricity price. For the two other countries natural gas volatility 

only play that role in the last period. 
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Last, the correlation in volatility against CO2 is showing similar movements as correlation 

between natural gas-electricity volatility. In the first period, the correlation is negative for all 

spot volatilities except the German that is 30 per cent. In period 3 all are positive, indicating 

that CO2 quotas are influencing natural gas and electricity markets, or that the CO2 price 

partly in determined by forces of natural gas and electricity. Surprisingly, the lowest 

correlation is found for the German spot electricity volatility, moving the opposite way 

compared to period 1. We have not reached a meaningful explanation of this. On average we 

find that natural gas are more linked to CO2 than electricity in terms of correlation in rolling 

volatility. The last finding will be analysed further in the section 7.6 about Granger causality. 

5.3 Part 1 summary 

In part 1 we started by presenting the first and second movement of the return distribution of 

the various time series. The first indication of a connection between the commodities was 

clear trends in the sign of mean returns in different time intervals. Later in part 1 we analysed 

correlation in returns and found strong correlation between variables of the same commodity. 

At the same time it was difficult to use these measures to establish clear arguments of tighter 

connection, on a daily basis, between electricity, natural gas, and CO2 prices with respect to 

the three time intervals we have chosen. However, by the analysis of the mean returns and 

their relations we have stressed the importance to investigate long-run relationships, which 

will be our focus in part 2. We also discovered that there were strong seasonalties in the 

relationship between electricity and natural gas, which suggests that these properties must be 

accounted for in part 2.  

Furthermore, we analysed the second movement, volatility, of the distributions deeply. Here it 

seemed clear that if it was high volatility in the electricity market in one country, the same 

would be true in the two other countries, and visa versa. The same connections were found in 

the natural gas markets. When we looked at this connection between natural gas and 

electricity prices, high volatility in one market was not clearly shared by the other market. 

Nevertheless, in the last period we found a correction, were the correlation in 30 days rolling 

volatility between natural gas and electricity were strong and positive. Last, we saw this in 

relation with volatility in the CO2 price and found that in general there was stronger 

correlation between volatility in electricity and gas markets and volatility in the CO2 price in 
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the last period, compared to the firsts. An intuitive explanation of that may be the recent 

macro economical turmoil, which affects all price series. 

So, considering the difficulties of discover evidence of tighter market integration by analysing 

returns we believe that the volatility analysis revealed that there are some shared forces 

affecting prices of physically linked commodities, such as natural gas, electricity and CO2 

allowances.  

By the analysis of part 1 we have established a motivation to explore the long-run 

relationships between these commodities and as we not have approached any attempt to infer 

causality between them. Causality between the commodities will be an important section of 

the long-run relationship analysis of part 2.  
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6. Part 2: 
 
Long-run relationships  

As we move to study long-run relationships between the prices of electricity, natural gas and 

CO2, and disclose the dynamics of these relationships, we would highlight that the 

understanding of these relationships is of great relevance to many markets players that are 

exposed to the difference between the electricity price, natural gas price and CO2. The 

difference in price between the commodities is known as the clean spark spread. 

To further explore the spark spread relationships we clarified in part 1 we need to look 

beyond the short-terms dynamics of return, volatility, and correlations. We need to analyse 

the variables on level form, which can give valuable information on long-run dynamics 

between energy commodities.  If we observe mean-reversion in the relationship between 

electricity and natural gas, we can argue that the spark spread is “tied together” by long-run 

forces. 

The analysis of part 2 is based on regression analysis of time-series variables. To get valid 

results with time-series we need to stress the concept of stationary variables and avoiding 

spurious regression. The next sections will give a short introduction to these concepts, but 

before that we will give a brief presentation of the variables on level form. 
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6.1 Descriptive statistics 

Table 9: Full sample summary 

 

The mean spot base electricity price was highest in the UK with an average 57.64 EUR/MWh 

over the full sample period. The mean spot peak electricity price was highest in the 

Netherlands. The average natural gas spot price was slightly higher in Germany for the full 

sample with 19.29 EUR/MWh. Overall the natural gas prices are on average very similar 

across markets, both spot and futures prices. This is an indication that the natural gas prices in 

Europe are converging.  
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Figure 15: Price developments of natural gas and electricity 

 

The average CO2 price for a typical natural gas-fired power plant was 4.7 EUR per MWh 

produced electricity12. The CO2 price is strongly affected by the period with close to zero 

prices. For all three countries we observe that the mean front natural gas price is greater than 

the mean spot natural gas price, while for the electricity markets it is the opposite. 

In the daily return series we rarely found correlation coefficients greater than 50 per cent, 

which suggested that the short-run relationship often were weak. As table 10 shows, in level 

prices the correlation is most often above 50 per cent, except the CO2 variable. That takes us 

into the next section of analysis of long-run relationships in level series, by performing 

various regressions between the variables. 

                                                

12 A combined cycle natural gas turbine (CCGT) plant with 49.13 per cent efficiency  
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Table 10: Correlation in level prices (full sample) 

 

In level form we make an unexpected observation. The correlation between the spark-spread 

variables is stronger in Germany than the Netherlands. In the spot market the correlation is 60 

per cent in the Netherlands, 64 per cent in Germany and 75 per cent in the UK. The 

correlation is stronger in the front prices than the spot prices. The front spark spread 

correlation is 86 per cent in the Netherlands and 89 per cent in Germany.  

 

6.2 Stationary time series 

When performing regression analysis it is crucial to know whether the variables involved are 

stationary or not. A stationary time-series has a finite mean, finite variance and the 

autocorrelations are time-independent (Enders, 2010). Further on, Granger and Newbold 

(1974) presented the term “spurious regression” that is a problem of regressions with non-

stationary variables. They showed that spurious regressions can generate artificial high R-

squared and t-statistics, even though the variables were independent, hence causing statistical 

inference to be invalid. Since then it has become common practice to test whether the series 

are stationary by investigate the characteristic roots lie within the unit circle. 
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6.2.1 Characteristic roots and the unit circle 

The expression characteristic roots in time series regression is used to describe the stability of 

an autoregressive process of a variable, and are the homogenous solutions to the process. 

Stability requires that all characteristic roots lie within the unit circle, otherwise, if the any of 

the characteristic roots are equal to unity, it is called a unit root process (Enders, 2010). 

Hence, stability, stationary and none unit roots are equivalent concepts to describe the 

properties of a variable. 

6.2.2 The integrated order of a variable 

During our analysis we will describe variables according to integrating order I(d). Integrated 

order means how many unit roots the sequence contains. If the variable is stationary, we say 

that it is integrated of order zero I (0). If It contains a single unit root, it is integrated of order 

one I (1), and the first difference of the variable is stationary. 

6.2.3 Augmented Dickey Fuller Test 

To test whether a series is stationary, we practically test if the series contains any unit roots. 

Dickey and Fuller (1979) considered three different equations to test for unit roots. The three 

equations are based on possible assumptions that the researcher has about the true data-

generating-process. The three possible assumptions are:  

• A pure random walk (RW) 
• A RW plus a drift, or 
• A RW plus a drift and a time trend 

To control for autocorrelation in the error term the equations were extended to higher order 

autoregressive processes. In addition, any seasonality should be adjusted for when possible. 

6.2.3.1 Assumption about the data-generating-process 
After a visual study of our time-series we assume that natural gas, electricity, and CO2 do not 

have a linear time trend, meaning that time in itself do not have a significant effect on the 

price developments. However, since we are working with energy commodities that often 

exhibit seasonality in demand, and the fact that both electricity and natural gas has its storage 

limitations, seasonality is expected to be part of the process. We also found support for that in 

part 1. Thus, we should account for deterministic seasonal effects.  
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Our assumptions suggest to test whether the differenced series is a RW plus a drift, while we 

account for seasonal effects: 

H0: ! = !, unit root or drift, non-stationary 

∆!! = !! + !!!!
!!! + !!!!! + !!∆!!!!

!
!!! + !! (Random walk plus drift) 

We have used monthly dummy variables, Di, with value one in period i, and zero otherwise. 

Arbitrarily, we would capture seasonal effects by using quarterly or weekly dummies instead, 

but since we have used monthly futures contracts in our analysis, monthly dummies seem 

natural. 

The incorporation of seasonal dummies will not change the limiting distribution of the 

coefficient of the !!!! variable, !  (Dickey, Bell, & Miller, 1986). We can therefore use the 

regular critical values used in augmented Dickey Fuller tests for unit roots. Hence, the 

equation contains an intercept, so we have to use the Dickey Fuller !! statistic. 

If the series contain a unit root we should also check if it is only a single unit root, that is the 

differenced series is stationary. In that case we do not include the drift term: 

H0: ! = ! unit root, non-stationary 

∆!! = !!!!! + !!∆!!!!
!
!!! + !!  

In this case we use the Dickey Fuller !  statistic since we neither include an intercept nor a 

time trend. 

The t-statistics returned from the tests is compared to the critical values from table A in the 

book “Applied Econometric Time Series” (Enders, 2010). 

For both models we have minimized Akaike information criteria when we have selected the 

number of differenced lags. The differenced lags are used to capture systematics in the !! - 

series. We performed the test for the three sub-periods and the full sample. 

 

 



 52 

Critical values for Augmented Dickey-Fuller tests of unit root 

5 per cent significant level  (*), 1 per cent significant level (**) 

Dickey Fuller !! statistic: -2.86 (*) and -3.43 (**) 

Dickey Fuller ! statistic: -1.95 (*) and -2.58 (**) 

(Statistics for sample size ∞) 

 
6.2.3.2 Augmented Dickey-Fuller Results (full sample) 
The following table shows the Dickey-Fuller results with t-statistics.  

Table 11: Full sample Augmented Dickey-Fuller results  

 
Note that DE Spot gas is stationary on a 10 per cent level. This will be used later in Part 2. 

An interesting observation is that all spot series (both natural gas and electricity) are 

stationary, except DE Spot Natural gas and CO2 Spot. That gives us confidence to analyse 

most spot relationships with regression analysis without worrying about spurious regression. 

A possible rationalisation of the spot series to be stationary, and not the futures series, is that 

deviation from the average spot price is often a short-term spike. The spot series is therefore 

quickly corrected back to the finite statistical properties of the series (adjusted for 

seasonality), which are the fundamental properties of a stationary time series. We also observe 

that all first-differenced time series are stationary for the full sample.   
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6.2.3.3 Augmented Dickey-Fuller Results (sub-samples) 
Table 29 (in appendix) shows the augmented Dickey-Fuller results for sub-periods. Based on 

the results for full sample we assume that all variables that are non-stationary have stationary 

differenced series, thus only test for level series are conducted.  

For the spot series the results are generally distinctive between natural gas and electricity in 

the sub-periods. In the Netherlands both electricity spot series are stationary for all samples, 

while the spot natural gas price is only stationary for the full sample and the first period. This 

may be interpreted as stronger mean-reversion properties in the spot electricity market than in 

the natural gas market. Generally, the findings in the UK and German spot markets are 

similar, with some exceptions. 

 

For the front series we find unit roots in all series, both natural gas and electricity and within 

every period. It seems like the mean-reversion effect that was present in the spot price of 

electricity is not strong enough to conclude that the front price developments are statistically 

stationary. The CO2 price for the last period is stationary in level terms.  

 

6.3 Co-integration 

Due to spurious regression there were for a long time a general wisdom to difference all non-

stationary variables used in regression, thereby throwing away useful information about the 

variables level. Often non-stationary variables follow the same or linked stochastic trends, as 

are common with commodities and indicated in the section covering short-term relationships. 

In a multivariate case differencing the variables will result in loss of information relevant to 

describe the long-run relationship, so that the appropriate way to threat non-stationary 

variables is therefore not that straightforward. Clive Granger introduced the concept of co-

integration when recognizing the possibility that a linear combination of non-stationary 

variables can be stationary (Granger C. , 1981). 

The Augmented Dickey-Fuller results showed that all futures series were non-stationary. 

Instead of rejecting long-run analysis of these series now, we will analyse them by the 

concept of co-integration. In relation to commodities such as natural gas, electricity and CO2, 

theory of co-integration is especially relevant, and is capturing the concepts of market 
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arbitrage and the law of one price. In the short run there might be sustainable deviations from 

a long-run mean but eventually the prices will return to the long run relationship. This might 

be the price of natural gas in the UK, the Netherlands and Germany, or the price difference 

between natural gas and electricity known as spark spread. The long-run relationship should 

be valid, as long as it exists a physical and fundamental connection between the commodities.  

Engle and Granger (Engle & Granger, 1987) developed estimation procedures and tests for 

co-integration, first introduced by Granger, arguing that deviations from the long-run 

equilibrium between integrated variables only have meaning if these equilibrium errors 

follow a stationary process. In economic terms this means that a deviation from equilibrium 

not is a contradiction of a plausible economic relationship between two variables as long as 

the deviation is corrected in the long run. 

 

6.3.1 Co-integration defined 

If two variables are co-integrated there exist a long-run equilibrium that could be described by 

the following formal expressions: 

Two vectors: ! = (!!,!!,… ,!!) and !! = (!!! , !!! ,… . , !!")′ are used to describe the long-

run equilibrium between a set of variables non-stationary variables !! integrated of same 

order such that: 

!!! = !!!!! + !!!!! +⋯+ !!!!" = 0   

When the equation holds the variables are in a long-run equilibrium, but short-run deviations 

are allowed in the concept of co-integration. 

!!! = !! 

The equilibrium errors !!  captures short run deviation from the long-run equilibrium but 

will only have meaning if it cannot drift too far apart. Therefore, the requirement for variables 

!! to be co-integrated is that the equilibrium errors are stationary. 

!!~!(0) 

(Enders, 2010) 
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In general there are two distinctive procedures to test for co-integration; the Engle-Granger 

Methodology and the Johansen methodology. The Johansen methodology may have an 

advantage to Engle-Granger methodology that it uses maximum likelihood estimators to 

circumvent the troubles caused by the two-step estimators of the Engle-Granger methodology. 

This is one of the weaknesses of the Engle-Granger methodology. The first step is to generate 

the residual series !! , and the second step uses the generated errors to estimate the 

regression ∆!! = !!!!!! +⋯. The problem occurs if the researcher has misspecifications in 

the first regression that is carried to the second through the stored residuals. Nevertheless, the 

Engle-Granger methodology is commonly used because it is easily implemented. In the case 

of a two-variable co-integration relationship, the methodology is applicable in using the 

residuals from either13 of the two following regressions:  

I. !! = !!" + !!!!! + !!! 

II. !! = !!" + !!"!! + !!! 

 

In the following tests for co-integration, between variables of integrated order 1, we have 

adopted the Engle-Granger methodology, where we deployed the following steps: 

1. Estimate the long run relationship: !! = !! + !!!! +!!
!!! !!!! + !!,  and store the 

residual sequence !!  

Note that we have included monthly dummy variables !! to allow for deterministic seasonal 

properties in the series, as we did with stationary tests earlier. 

If the variables are co-integrated the residuals !!  will be stationary, and the OLS estimators 

!! and !! are “super-consistent” since they converge faster to the true coefficients than in 

OLS models using stationary variables (Stock, 1987). 

                                                

13 “As the sample size grows infinitely large, asymptotic theory indicates that the test for a unit root in the !!!  sequence 

becomes equivalent to the test for a unit root in the !!!  sequence” (Enders, 2010) p 385. 
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2. Test if !!  is stationary  

Since !!  are residuals from another regression we have to use different critical values than 

for ordinary augmented Dickey-Fuller tests. Tables for these tests are found in most applied 

books for time series regressions such as Enders (2010).  

H0: !! = !, !!  not a white noise, no co-integration 

!!! = !!!!!! + !!!!∆!!!!

!

!!!

+ !! 

The intercept term is unnecessary since the sequence is a residual series from an OLS 

regression, and we have minimized Akaike information criteria when we have selected the 

number of distributed lags. 

If we are able to reject H0 we can conclude that the variables are co-integrated. 

Critical values for the Engle-Granger co-integration test with two variables14 

5 per cent significant level: -3.350 (*) 

1 per cent significant level: -3.921 (**)  

(Enders, 2010) 

                                                

14 Critical values if sample size is 500 
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6.3.2 Co-integration test  

6.3.2.2 Cross-commodity electricity and natural gas 
When we adjust for seasonal effects we observe that all our tested relationships are co-

integrated. This gives us confidence to analysis the long-run relationship, without having 

spurious regression.  
 
Table 12: Co-integration tests  

 
We observe that the spark-spread relationship cannot deviate too much from a long-run 

relationship. The price should always drift back to an equilibrium level independent of sub-

periods.  
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6.3.2.3 Cross-country electricity, cross-country natural gas 
We would also want to test for co-integration between the same commodities for the front 

market in different national regions.  

In the front electricity markets we have mixed results depending on the chosen time interval. 

For the whole sample we were not able to reject the null of no co-integration between the 

front natural gas price in the Netherlands and in Germany. We got the same result for the first 

time interval. In the last two periods we find evidence against the null; we have statistical 

evidence to state that the front market for electricity in Germany and the Netherlands are co-

integrated.       

Table 13: Co-integration test  

 

6.3.3 Co-integration summary 

We have found co-integrating relationships between most of the non-stationary variables we 

want to analyse, at least in some of the periods. Based on these results, we are able to estimate 

valid long-run relationships between most non-stationary variables and between variables that 

are stationary.  

6.4 Long-run equilibrium 

We will start by estimating the long-run equilibrium between the spark spread commodities. 

Thereafter, we will analyse the equilibrium between the same commodities in two markets to 
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evaluate how well the markets are integrated with each other. Throughout this section we will 

directly incorporate monthly seasonalties in the estimated regression models. 

6.4.1 Asymptotic t-distribution for co-integrated relationships 

The analysis in section 6.4.2, long-run relationships between electricity and natural gas prices, 

and section 6.4.3 for the cross-country commodity price relationships, presents results of the 

beta coefficients in the co-integrating vector. Inferences on regression coefficients are 

regularly done by t- and F-tests. However, one should do that with caution, and as Walter 

Enders points out, on page 376 – 377, the coefficients in the co-integrated vector have an 

asymptotic t-distribution (Enders, 2010) only if certain restrictive requirements are satisfied. 

Nevertheless, the coefficients are still super-consistent but the standard errors are not. 

Consequently, simple inference on the beta coefficient is not appropriate unless the co-

integrating relationship could be described as follows: 

!! = ! + !!!! + !!! 

∆!! = !!!,  

and !!!!!!! = 0 

The point is that both residuals are uncorrelated white noise disturbances. 

6.4.2 Cross-commodity electricity and natural gas (spark spread) 

In a theoretical framework we would expect the beta coefficient to be equal to 2, if we 

assume: 

1) Natural gas is the only input used to generate electricity 
2) The average plant efficiency is equal to 50 per cent 
3) No price for carbon emission  
4) Perfect competition in the electricity market 

 

If the natural gas price is equal to 20 EUR/MWh then the price of electricity should be equal 

to 40 EUR/MWh if it is perfect competition, and if the natural gas price is equal to 25 

EUR/MWh the price of electricity should be equal to 50 EUR/MWh. In this theoretical 

framework the beta coefficient in the long-run relationship should be equal to 2.  
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The estimated beta coefficient can be explained by many factors such as the price of 

supplementary production sources for electricity, shift in demand for the commodities, 

imperfect competition, and the actual average efficiency factor in each country.  

The relationship between electricity and natural gas prices also depends on the aggregate mix 

of generators polices (reserve, off-peak, peak power) and fuels used by the power companies 

in the service area (Emery & Liu, 2001). 

Given our understanding of the different markets we should expect beta values to be close to 

2, particularly in the UK and the Netherland, since the capacity adjusted average efficiency 

factor presented in section 1.5 was approximately 50 per cent in these countries. We find it 

most reasonable to model the relationship as a linear function.  

Estimated model for long-run relationship: 

 !!,!" = !+ !!!! +!!
!!! !!!,!"# +   !!"   

Table 14: Long-run relationship  

 
These relationships involve the variables that give the spark spread, and changes in the 

coefficients across time may indicate changes in the properties of the respective spark 

spreads. As mention in the introduction the spark spread is the basic marginal production 

profit for a gas-fired plant. The slope coefficient beta is the marginal effect of a change in 

natural gas price on the change in electricity price. In regression analysis the marginal effect 

of the independent variable on the dependent variable is constant (Wooldridge, 2009).  
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As expected all beta coefficients are positive, an increase in natural gas price as a positive 

marginal effect on electricity price. Beta values close to unity would imply that the estimated 

relationship gives on average a marginal loss in the estimated period, modelling a benchmark 

natural gas-fired plant (ignoring the intercept term). If the beta is 2, then the marginal profit 

effect for the benchmark natural gas-fired plant is break even, excluding operational cost.  

If the beta is 1.33, as observed in the last period in German front market, it implies that if the 

price of natural gas increases by 1 EUR/MWh, the prices of electricity will on average 

increase by 1.33 EUR/MWh in the period, ceteris paribus. Translated into the marginal 

benefit to the producers; the marginal income from electricity sales will on average increase 

by 1.33 EUR/MWh, while marginal cost increases by 2 EUR/MWh15, imposing a marginal 

loss of 0.67 EUR/MWh. The translated interpretation of the coefficients will be that in the last 

period the producers was, on average, unable to pass the increased cost of natural gas 

procurement to the price paid by the electricity buyers.   

A beta greater than 2 indicate a positive marginal effect to the producer is the natural gas price 

increases, so one might argue that the expected beta should be close or equal to 2 in the long-

run in pure electricity and natural gas environment.  

For the long-run relationship we observe that the beta for the front spark spread has changed 

considerably in the last period. The beta coefficient changes from 2.09 (1.88) to 1.35 (1.33) 

for the Netherlands (Germany). One could argue that the reason for the drop in the beta-

coefficient is due to the presence of a positive CO2 price, but we also observe a positive CO2 

price in period 1. Other reasons are falling demand after the financial crises and increased 

supply from renewable generation, which has resulted in a negative electricity price trend. 

The price of natural gas has actually increased in the period.  

                                                

15 A natural gas-fired plant with 50 per cent efficiency will have an increased marginal cost of 2 EUR/MWh if the natural gas 
price increases by 1 EUR/MWh. (1 EUR/MWh / 50%) = 2 EUR/MWh  
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6.4.3 Long-run spark spread profitability dynamics 

The estimated full sample long-run beta-coefficient is within the range 2.09 to 1.88. As 

mention the estimated beta coefficient can be explained by many factors such as the price of 

supplementary production sources for electricity, shift in demand for the commodities, 

imperfect competition, price of carbon emission and the actual gas-plant portfolio efficiency 

factor in each country.  

We explained in section 6.4.2 that in the long run gas-fired producers must be compensated in 

the electricity market for an increase in the natural gas price to be profitable. A marginal 

effect less than 2 means that a benchmark gas-fired plant is not able to push the entire cost of 

natural gas procurements on to the electricity price, when the procurement cost is increasing. 

In the last period we observe a beta-coefficient equal to 1.33 in Germany. A beta-coefficient 

equal to 1.33 implies a marginal reduction in the spark spread of 0.67 EUR/MWh when the 

cost of natural-gas procurements increases by 1 EUR/MWh 16. The analysis reflects initially a 

base-load plant, but the result also shows the importance (value) of flexible production to be 

able to earn profit in the market. As mentioned in section 6.4.2, the estimated long-run 

relationship is not a representation of a pure gas-electricity relationship. Both commodities are 

affected by other factors and have several uses.  

Given the knowledge of co-integration and our best estimate for the long-run relationship we 

should expect the low beta-coefficient in the last period to return to a sustainable level for 

gas-fired plant. Considering the importance of natural gas as production source, especially in 

the UK and the Netherlands, we expect the beta coefficient level to increase in the long run 

from the level observed in the last period. There are several ways the marginal-effect could 

change, for example an increase in the average fuel efficiency and/or lower natural gas prices. 

Another scenario is if the marginal effect stays at 1.33 and the natural gas is unchanged, the 

consequence is a large-scale low-efficient plant phase-out. The plant phase-out will force the 

inefficient excess natural gas capacity out of the market. In the next section we will explain 

why old inefficient gas-fired plants, especially in Germany, are likely to be replaced.    

                                                

16 The observed average clean spark spread profit in the period, for a benchmarked gas-fired plant, was 5.34 EUR/MWh 
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6.4.4 Inefficient gas-fired plant phase out          

As we earlier assumed, the fuel efficiency factor is highly correlated with operating hours, 

which implies that high efficiency yields more profitable operating hours and is therefore 

more profitable on average. During a given period the gas-fired plant must run a minimum of 

profitable operating hours yield required return on investments, and this is again based on the 

fuel efficiency of the plant in relation to the commodities prices. We will therefore analyse the 

average profitability in relation to fuel efficiency further.      

Germany 

One reason for the low beta-coefficient for the last period in Germany is the large-scale 

installation of photovoltaic17 capacity. Since this capacity may only be exploited during 

sunshine, which again is during peak-hours, the movement is somewhat larger for peak load 

than base load prices (Böhme, 2011).  

If the beta-coefficient returns to a higher level, several of the large German installations will 

still be in the “danger zone”. The reason is their low fuel efficiency. The database of natural 

gas-fired power plants in Germany shows that 46 out of 90 have efficiency lower than 40 per 

cent.     

Emden 4 (450 MW), a natural gas-fired power plant operated by Statkraft, was put in cold 

reserve on February 2012 during Q4 2011. They argue that the increase of new renewable 

energy capacity in 2011, the fall in electricity prices, and high natural gas prices, resulted in 

low margins for the plant in Germany. Dr. Jürgen Tzschoppe, Senior Vice President, Head of 

Continental Energy at Statkraft explains the current situation at Emden plant 4: “Plans to 

replace the old plant with a new one in the same location have been put on hold. Currently we 

do not see any market signals in favour of investments into additional generation capacity in 

Germany. Energy demand has levelled out as a result of the financial crisis. At the same time, 

we are facing high natural gas costs and low power prices at the spot market, indicating 

excess capacities across Europe.” (Statkraft, 2012)  

                                                

17 Photovltaic is the generation of electricty by the use of solar. 
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Overall, if the price signal for the spark spread are consistent, old inefficient natural gas-fired 

plants of a total 15 600 MW installed capacity needs to be replaced by more efficient 

sources18. The replacement may be more energy efficient buildings, renewable energy 

capacity or new flexible and efficient fuel power plants. As mention, the total installed 

capacity of photovoltaic in Germany was 24 800 MW in 2011.  

The Netherlands 

The database on natural gas-fired plants in the Netherlands shows that only 2 out of 28 natural 

gas-fired plants have efficiency lower than 40 per cent. Expect for the last period the observed 

long-run beta-coefficient is over 2. The result implies that a benchmark gas-fired plant will on 

average be profitable in the sample period. An substantial gas-fired plant phase-out in the 

Netherlands is very unlikely, given the average efficiency factor and historical prices for clean 

spark-spread commodities.  

The newly built Claus C plant in the Netherlands is a 1940 MW natural gas-fired plant with 

an efficiency of 58.5 per cent, which is enough capacity to supply power to more than 2 

million typical European households. Given the historical development in the clean spark 

spread, the plant would have been on average profitable in base-load and peak-load hours 

during the sample years. If the plant secured natural gas procurements and CO2 allowances in 

the front market, the plant would be profitable in all base-load operating hours based on our 

time-series.    

The UK 

The clean spark spread is on average highest in the UK followed by the Netherlands. In the 

long-run analysis we have only spot price data, but the beta-coefficient for the full sample is 

the highest of all countries, equal 2.43. A gas-fired plant with approximate 40 per cent 

efficiency would be on average profitable during the full sample period.  

                                                

18 Full sample beta-coefficient = 1.88 (Implies a long-run efficiency equal 53% to been on average profitable). Plant with 
lower efficiency is estimated to be phased out.  
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The fuel efficiency gas-plant portfolio is also the most efficient in the UK.  The database on 

natural gas-fired plants in the UK shows that 0 out of 53 natural gas-fired plants have 

efficiency lower than 40 per cent.  

 

6.4.5 Cross-country electricity and natural gas relationship 

The hypothesis is that the long-run beta should be equal to 1. The markets should be 

integrated in Europe if there is enough capacity between the countries. The electricity market 

is market-coupled (implicit auctions) in central-western Europe (CWE). Market-coupling 

means that the prices are cleared (merit order books) simultaneous in Germany and the 

Netherlands, with respect to the cross-border capacity for flow of electricity.  

Long-run relationship !!,! = !+ !!!! +!!
!!! !!!,! +   !!    

Table 15: Long-run relationships 

As stated above we would 

expect to find beta coefficients 

close to unity due to an 

arbitrage principle in integrated 

markets.  

Futures relations: 

For all practical purposes all, 

except one, of the betas are 

approximately equal to unity. 

The beta between electricity 

futures in the Netherlands and 

Germany is 1.3 in the first 

period, which is an evidence of 

lack of market integration compared to the last two periods.  

As expected the other long-run relationship betas are equal to one, both for natural gas and 

electricity after 2006.  
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Spot relations: 

Compared to the betas between futures contracts, the betas of the spot relations are far from 

unity. In the electricity markets the low beta is suggesting interaction constraints forcing 

differences in prices for the same commodity in different markets. There might be many 

reasons that can explain these numbers, some mentioned in other parts of the thesis. However, 

the explanatory power of the regression are all strong, so we are confident that there are 

strong forces connecting the cross-boarder prices.  

As a next step we would like to explore were the “price leader”, if it is one, of the respective 

markets is located. This analysis will be conducted with the Error-correction model (ERM) 

and the testing procedure for Granger causality. Thereby we are able to understand interaction 

between the various markets better, and a better understanding of movements in the spark 

spread. The error-correction model will give a thorough explanation on how deviations are 

corrected and the average time to restore equilibrium in the long-run relationships.  

 

6.5 Error Correction Model  

We have now estimated long-run equilibriums between stationary variables and variables that 

are co-integrated, implying that there are long-run dynamics relating the price developments 

of two variables. However, yet we have not said anything about how deviations are corrected. 

We will describe this in two ways. First to investigate how fast deviations are corrected we 

will apply the error-correction model and interpret the speed-of-adjustment parameter. Second 

we will try to discover the direction of these dynamics, that is which variable is the causing 

changes in the other. Testing for Granger causality will answer that.  

The concepts of this section are of special relevance in the case of understanding the 

dynamics behind the spark spread. The long-run equilibrium between electricity and natural 

gas has its equivalent in a predictable solution to the spark spread. Deviations from the long-

run equilibrium will similarly yield deviations from the expected solution to the spark spread. 

Therefore, specification of “correction processes” to deviations in the long-run equilibrium, 

will answer questions regarding the developments of the spark spread. Understanding these 

relationships will enhance risk management for market players. To justify the use of an error-
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correction model the following theorem is stated in section 6.5.1: 

 

6.5.1 Granger Representation Theorem 

If two variables are co-integrated there is a guarantee that an error-correction model exists. 

Therefore, for any set of non-stationary variables integrated of same order, error-correction 

and co-integration are equivalent representations. 

(Enders, 2010)  

The error correction model has the following representation: 

 ∆!! = !!" + !!(!!!! − !!!!!!)+ !!!(!)∆!!!! + !!"(!)∆!!!! + !!" 

 ∆!! = !!" + !!(!!!! − !!!!!!)+ !!"(!)∆!!!! + !!!(!)∆!!!! + !!" 

Except that it is augmented by the error-correction terms !!(!!!! − !!!!!!) and !!(!!!! −

!!!!!!), the model is simply a bivariate VAR in first differences, and !! and !! can be 

interpreted as speed-of-adjustment parameters. A large ! means that deviation from 

equilibrium is quickly corrected, while a ! close to zero indicate that deviation never is 

corrected. Note that if the !!  and !!  are co-integrated at least one of the !´! must be non-

zero. In a case when !! = !, it implies that !!  does not respond to deviations in the long-

run equilibrium, and that all the adjustments to “restore” equilibrium is done in the !!  –

sequence, and !!  is said to be weakly exogenous (Enders, 2010). Therefore, testing the 

speed-of-adjustment parameters is also a test of exogeneity (weak), where exogeneity requires 

that the variable is not responding to contemporaneous values of the other.   

Since !! is the parameter from the co-integrating relationship, and is unknown, Engle & 

Granger (Engle & Granger, 1987) suggested that (!!!! − !!!!!!) could be approximated by 

the generated !! -sequence from the estimated co-integrated relationship. We will therefore 

estimate the error-correction model with these stored residuals: 

 ∆!! = !!" + !!!!!! + !!!(!)∆!!!! + !!"(!)∆!!!! + !!" 

 ∆!! = !!" + !!!!!! + !!"(!)∆!!!! + !!!(!)∆!!!! + !!" 
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The speed-of-adjustment parameters are of particular interest, and if OLS is an efficient 

estimation strategy, restrictions on these can be conducted by a simple t-test. Since all 

variables, including !! , are zero-mean stationary the above statement is true.  

Nevertheless, we have used heteroskedasiticy and autocorrelation consistent standard errors 

(HACSE) when we performed the tests on speed-of-adjustment parameters.   

The differenced lags in the model is called autoregressive distributed lags of order p and q; 

ADL (p,q) which is decided using the general-to specific approach starting at lag length 10, 

which is yielding serially uncorrelated errors.  

6.5.2 Error correction model with seasonal adjustments 

Our theoretical assumption is that the first difference for all variables is unbiased for seasonal 

effects. For example the price level for natural gas changes with seasonal effects, but the 

average return is constant over the year. The suggested approach is that the generated error 

term sequence from the estimated co-integrated relationship is adjusted for seasonal effects, 

but the rest of the error correction model is estimated without seasonal adjustment for the first 

differences variables.   

6.5.3 Testing speed-of-adjustment parameters 

Critical Values for Error-Correction Model (t-statistics) 

5 per cent significant level: -1.960 (*) 

1 per cent significant level: -2.576 (**) 

H0:	  α	  =	  0	  
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6.5.3.1 Speed-of-adjustment  
Table 16: Speed-of-adjustment  

 
The speed-of-adjustment is relative low (slow adjustment) and differs a lot for various sample 

and long-run relationship. All estimates are adjusted for monthly seasonal effects. The 

adjustment back, measured in days, to the estimated long-run relationship can take from 8 to 

81 trading days19.  When interpreting coefficients we always see them as the ceteris paribus 

effect of a unit change in one variable (independent) on another (dependent). Since we here 

look at the lagged deviation in a relationship, the coefficient (speed-of-adjustment) tells us if 

there is 1 EUR/MWh deviation in the relationship (lagged one day), the dependent variable is 

changes by the coefficients size, ceteris paribus. If that is true we could use the estimate to 

calculate how many days it takes to correct 1 EUR/MWh deviation in the long-run 

relationship, by taking the inverse of the speed-of-adjustment value. 

                                                

19 Trading days back to long run relationship = 1/ Speed-of-adjustment parameter = 1/ !! 
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Figure 16: Trading days to adjust (front market) 

 

In the first period the speed-of-adjustment for the spark spread differs a lot between the two 

countries, 8 and 81 days. Contrary, in the two last periods the speed-of-adjustments are 

approximately 22 to 28 trading days, respectively in the Netherlands and Germany. The 

speed-of-adjustment gives us additional knowledge in the complex dynamics of the spark 

spread.    

6.5.4 Speed of adjustment spot series 

In the spot relationships between electricity and gas we have chosen to calculate both with 

base load and peak load price series. As we see form table 17 the speed of adjustment 

parameter are higher than the equivalent front measures. This should not be surprising since 

the separate series are stationary themselves.  
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Table 17: Speed of adjustment spot series 

 

Figure 17: Trading days to adjust (spot) 

 

Translating the results into trading-days to adjust, as shown in figure 17, it takes between 4 

and 7 days for the base load relationship to correct 1 EUR/MWh deviation from the long-run 

equilibrium, while for the base load it takes between 3 and 6 days. The results are intuitive in 

that spot prices, especially electricity, are more often exhibiting temporary spikes, resulting 

from impermanent deviations from business-as-usual (e.g. physically).  Following the same 

argument, the peak prices are more affected by the same deviation, since demand is higher 

during peak hours and the correction is larger back to equilibrium for the same amount of 

time to correct. 
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6.6 Granger Causality 

As stated earlier we would like to investigate the direction of the dynamics between two 

variables that are connected, either in a link between two stationary variables, or for two 

non-stationary variables that are co-integrated. The Granger causality test is a way to test the 

relationship between two or more variables, and refers to the effects of past values of !!  on 

the current value of !!. The most common way to test the causality is to consider whether 

lags of one variable enter into the equation of another variable. 

6.6.1 For stationary variables 

If we are working with a bivariate VAR model where both variables are stationary, the test is 

simply done by an F-test of the joint-significance of the lagged independent variable. 

The test procedure could be described as follows: 

!! = !!  Does not Granger cause !!  

Control for past values of y by estimating the autoregressive model for !! AR(p): 

!! = !! + !!!(!)!!!!
!
!!! + !!     (Restricted model) 

The appropriate model could be selected by the general-to-specific approach. As an 

alternative we will use OxMetrix´s advanced algorithm20 for model selection. After the 

software selects the appropriate AR(p) model we enter 10 distributed lags of !! into the 

model: 

!! = !! + !!!(!)!!!!
!
!!! + !!"(!)!!!!!"

!!! + !!                 (Unrestricted model) 

!− !"#" =
(!!"! − !!

!)

!
(!− !!"! )
(!− !− !)

 

                                                

20 The software is called “Autometric” and is available on OxMetrix´s 6.01 and newer. 
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UR = Unrestricted model, R =Restricted model, T= observations, r= dropped variables in 

restricted model (=10), k= total number of variables in unrestricted model. 

 If F-stat is greater than F-critical from the F-distribution, we reject H0 and conclude that !!  

Granger cause !!. 

Then, we perform the same test procedure in the opposite direction, that is to investigate 

whether !!  does not Granger cause !!. 

Critical Values: 

5 per cent F-test: 1.83 (*) 

1 per cent F-test: 2.32 (**) 

6.6.2 Granger Causality Spot Series 

We want to investigate the Granger Causality for the spot spark spread commodities in all 

three markets. This analysis is restricted to the full sample because we want to keep the 

analysis on level form. All the full sample spot prices are stationary time series21. The 

autoregressive model captures some seasonal effects, so the seasonal adjustment (with 

monthly dummies) has less significant influence for the results. We will therefore not take 

into account seasonal adjustment in this analysis.    

Overall the results show that in Germany, the Netherlands and the UK the natural gas price 

Granger Causes the electricity price, but the electricity price does not Granger Cause the 

natural gas price on a 5 per cent significance level. 

The result is similar with the findings elsewhere in the world; Emery & Liu (2001) confirms 

that a asymmetric response make sense in the US market, considering that natural gas is an 

important resource for generating electricity, while generating electricity is only one of many 

uses for natural gas.  

 

 

                                                

21 The DE Spot NATURAL GAS full sample time series is stationary on 10 per cent significance level  
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Table 18: Granger causality test between Electricity and Natural Gas 

 

Table 19: Granger causality test between Electricity spot prices in different 
countries 

 

Table 19 shows that there are significant Granger causality in both direction, in all three 

combination for the electricity spot market. Our overall conclusion is that there is a 
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significant Granger causality relationship between the electricity spot prices, but we cannot 

suggest a leading market “steering” any of the others. Note that the F-statistic is highly 

dependent on degrees of freedom in the denominator, so that the full sample F-statistics are 

greater than the sub-sample F-statistics. Thus, based on the F-statistic, one should not 

conclude that the Granger causality is stronger in the full sample models.  

We have already seen that electricity was Granger caused by natural gas in the spot markets 

in all three countries, but not the other way. It is significant Granger causality both ways in 

the electricity market and therefore no one-way  “steering” of the prices.  

Table 20: Granger causality between Natural Gas spot prices 

 

In table 20 we have not included a Granger causality test with German natural gas prices. 

The reason is that the Dutch series has been partly used as a proxy for this series. However, 

we did not find a steering natural gas spot market, thus the Granger causality goes in both 

directions. That is true both for the full sample and in period 1. 

Table 21: Granger causality between CO2 and Electricity spot prices 

* We also control the model for auto-correlation in residual with Portmanteau (Ljung-Box test). 

As seen in table 21 we investigated the relationships between the spot electricity prices and 

the price of C02 allowances only for the last period. That is due to the collapse of the CO2 

price in the second period.  
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The Granger causality between CO2 and electricity spot prices goes both directions, but there 

seems to be a stronger Granger causality from electricity spot prices than from CO2 spot 

prices. The CO2 price does Granger cause the electricity price in Germany and the UK on a 

10 per cent significance level. One reason that electricity Granger causes the CO2 price is 

that the market players first observe price signals in the electricity price before they trade 

emission rights.  

We could not perform Granger causality tests between natural gas and CO2 because we do 

not have any samples where they are integrated of same order. 

6.6.3 Granger Causality for Co-integrated variables 

When we are working with Granger causality in a co-integrated system, it is actually an 

extension of the analysis of the speed-of-adjustment estimators and it is necessary to 

reinterpret Granger Causality in that circumstances. “In a co-integrated system, !!  does not 

Granger cause !!  if lagged values of ∆!!!! do not enter the ∆!! equation and if !! does not 

respond to the deviation from long-run equilibrium”(Enders, 2010). In other words, if !! is 

not Granger caused by !!  it requires that !!  is weakly exogenous and that all estimators 

of ∆!!!!´s are insignificant. Therefore we again apply the F-test for the joint significance of 

these parameters, similar to the one for stationary variables but now in first differences. 

The test procedure could be described as follows: 

!! = !!  Does not Granger cause !!  

Control for past values of ∆! by estimating the autoregressive model for ∆!! AR(p): 

∆!! = !! + !!!(!)∆!!!!
!
!!! + !!       (Restricted model) 

The appropriate model could be selected by the general-to-specific approach. As an 

alternative we will again use OxMetrix´s advanced algorithm for model selection. After the 

software has selected the appropriate AR(p) model we have entered 10 distributed lags of !!: 

∆!! = !! + !!!(!)∆!!!!
!
!!! + !!!!!! + !!"(!)∆!!!!!"

!!! + !!                  

(Unrestricted model)  
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!− !"#" =
(!!"! − !!

!)

!
(!− !!"! )
(!− !− !)

 

UR = Unrestricted model, R =Restricted model, T= observations, r= dropped variables in 

restricted model (=10), k= total number of variables in unrestricted model.  

If F-stat is greater than F-critical from the F-distribution, we reject H0 and conclude that !!  

Granger cause !!. 

Numerator degree of freedom is 10 for the F-test.  

Then, we perform the same test procedure in the opposite direction, that is to investigate 

whether !!  does not Granger cause !!. 

Critical Values:  

5 per cent F-test: 1.83 (*) 

1 per cent F-test: 2.32 (**) 

If the test concludes auto-correlation in the residuals we need to add more lags to fix the 

problem. The errors (residuals) must be uncorrelated and homoscedastic to perform valid 

statistical inference.  
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Table 22: Granger causality between Electricity and Natural Gas front prices 

* We also control the model for auto-correlation in residual with Portmanteau (Ljung-Box test). 
(#) = Had to use an AR(10) as restricted model since Autometics failed 

In the front electricity market we could not conclude Granger causality in either of the 

directions, but since the speed-of-adjustment coefficient were significant it is not in conflict 

with the Granger representation theorem.  

NL TTF Front Month Granger causes NL EL Front month, but not the other way. This result 

is expected in the same way as in the spot market analysis where the natural gas is price 
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setter in electricity spot market, but electricity market is just one of the many uses for natural 

gas.  

Consequently, we are surprised by the results of this relationship in Germany. Here we 

found that in the front market, the electricity is Granger causing the price of natural gas. 

However, table 1 show the relatively low share of natural gas in the German energy mix, and 

by taking that into account it is fair to argue that it should not dictate the electricity price in 

large manner.  So, why is this different in the spot and front market in Germany? That is a 

difficult question to answer, but if we look at the Granger causality test between the different 

front natural gas markets we might have an answer. As the results demonstrate, for the front 

natural gas price between the UK and the Netherlands the Granger causality goes in both 

directions, meaning that both markets have a significant influence on each other. More 

important is it that both the Dutch and the British front natural gas price is Granger causing 

the German, while the German does not Granger causes any of the two. In our interpretation 

of this, the key is that Germany has the lowest average efficiency factor of the three 

countries as highlighted in figure 4. When prices of natural gas in Europe spike, adjustments 

in the spot markets lead to increased electricity price, which is Granger causality from 

natural gas to electricity in all three markets. Since the average efficiency in Germany is low, 

many plants will be expected to reduce its production volume, and “relatively” easy rely on 

other sources in the energy mix. Following the same argument for the Netherlands, which 

has a higher efficiency and much more reliant on natural gas, the front electricity price 

increase as the front natural gas prices increases. In other words, the efficient gas-fired plants 

in the UK and the Netherlands are more resistant to high natural gas prices and dependent on 

natural gas, while in Germany there should be a shift in production to other sources.  

So looking ahead, the German electricity price should not be as sensitive to natural gas 

prices as in the UK and the Netherlands. As the price of electricity increases more German 

natural gas plants are expected to come into operation, which increases German demand for 

front natural gas, which is Granger causality from electricity to natural gas.  
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6.7 Part 2 summary  

The problems regarding spurious regression were addressed in a comprehensive approach in 

part 2. First we tested whether the variables were stationary by Dickey-Fuller tests. 

Relationships involving non-stationary variables were later tested for co-integration. When 

we adjusted for seasonal effects we observed that all relationships involving non-stationary 

variables that we wanted to investigate were co-integrated. That gave us confidence to 

analyse the long-run relationships, without having spurious regression.  

The estimated cross-commodity (spark spread) long-run relationships gave some interesting 

results. The marginal effect, estimated by the slope coefficient (beta), showed a substantial 

decrease in the last period. We argued that when the average marginal effect decrease, it 

implies that gas-fired power plants face difficulties to be fully compensated by increased 

electricity prices when the price of natural gas increases. Due to that we find it difficult to 

argue that the spark spread relationship is a stable relationship. 

It should be noted that the marginal effect is based on the well-known method of ordinary 

least squares, such that the estimates will minimize the sum of squared residuals. Since the 

estimated marginal effect is a constant we only observed the “average” marginal effect for 

the sample. In this view we clearly recognise that it is some loss of information, which 

describe the dynamics faced by the management of a gas-fired plant on a daily basis. For 

example the flexibility to only run a plant in profitable peak hours.  

In addition, we argued that if markets should be fully integrated in Europe, there should be 

sufficient transfer capacity between the countries. The estimated results for historical cross-

country long-run relationships, or long-run market integration, were two-fold. For all 

practical purposes the markets are integrated when we considered front prices. On the other 

hand, the betas for the spot relations were far from unity. Given our hypothesis, the 

conclusion is that the spot markets is not fully integrated. However, we observed high 

explanatory powers between the spot relations, which indicate strong connections between 

the markets.   

To further explore the dynamics we estimated the error-correction model and calculated the 

speed-of-adjustment parameters. The speed-of-adjustment gave an indication of how many 

days it takes to correct a 1 EUR/MWh deviation from the long-run relationship, by taking the 

inverse of the speed-of-adjustment coefficient. The result for the front market was that we 
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observed a substantial decrease, in the number of days it takes to correct the deviation, from 

the first to the two last periods. In the two last periods the speed-of-adjustments are 

approximately 22 to 28 trading days, respectively in the Netherlands and Germany.  

Following the reduction of speed-adjustment days, it means that the spark spread 

relationship actually has become stronger.  

In the last section of part 2 we explored the Granger causality among different variables. For 

the spot electricity and natural gas markets the causality goes in both directions. The same 

was found between CO2 and electricity spot prices, but it seemed to be a stronger Granger 

causality from electricity spot prices than the other way. For the front market the tests 

showed that natural gas prices Granger cause electricity prices, but not the other way around, 

except in the front market in Germany. The asymmetric response make sense considering 

that natural gas is an important resource for generating electricity, while generating 

electricity is only one of many uses for natural gas.  
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7. Conclusion    

The main task for this thesis was to explore the connections between electricity and natural 

gas prices in Germany, the Netherlands, and the UK, with an incorporation of the CO2 

allowance price. We analysed the electricity, natural gas and CO2 allowance prices by short-

term and long-term statistical concepts. The result showed evidence of cross-boarder market 

integration and that (clean) spark spread price relationship is reasonably stable over time. 

The last period showed a structural break in the (clean) spark spread relations, as we studied 

in section 6. Further on we hoped to identify “leading markets” by disclosing the dynamics 

of the price connections. At last we wanted to use estimated statistical relationships to 

describe the marginal effect for a natural gas-fired power plant given changes in commodity 

prices. 

The analysis was based on a top-down approach with analysis of price-relationship in the 

different markets. From the statistical analysis we made several observations that we believe 

are important for various market participants exposed to electricity or natural gas prices. The 

analysis has also emphasized the importance of using several statistical techniques to explore 

these relationships, not only considering short-term relations.   

This section will highlight the main conclusions from the analysis, based on short- and long-

term relationships. 

Short-term 

When analysing short-term relationships between the variables we had a special focus on 

correlation measures, and estimated correlations in terms of returns and volatility of returns 

between the different variables. Within each commodity we found strong correlations, 

indicating tight integration of the markets. Contrary, when we performed the correlation 

analysis between the different commodities, we could not establish clear arguments of tight 

connection based short-term movements in prices. 

However, when we looked at the cross-commodity correlation of volatility we found a 

movement towards stronger connection in the last period, indicating that electricity, natural 

gas and CO2 allowances prices have become closer connected.  
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Since these analyses were based on short-term movements (daily basis), and that the results 

could not be used to infer causality, it stressed the importance of extending the analyses to 

statistical concepts suitable to describe relationships on a longer term. 

Long-term 

When we analysed long-run relationships that could explain market integration, the results 

were two-fold. In the front market we found clear evidence of market integration, while in 

the spot market the results gave less support to the hypothesis of integrated markets. 

However, we conclude that European electricity markets are highly integrated, and for the 

natural gas markets we reach the same conclusion. 

In the long-term analysis we established an important finding concerning the causality 

between the commodities. Granger causality tests showed that natural gas prices Granger 

cause electricity prices, but not the other way around, except in the German front market. 

The asymmetric response between the commodities make sense considering that natural gas 

is an important resource for generating electricity, while generating electricity is only one of 

many uses for natural gas.  

In section 6.4.2 we estimated long-run relationships and the marginal effect between 

electricity and natural gas prices. The slope coefficients indicate how a natural gas-fired 

electricity producer can transfer the average natural gas procurement cost to income from 

selling electricity (the spark spread). As explained in section 6.4.2, an estimated beta less 

than 2 indicates that a benchmarked gas-fired plant will have a marginal loss if the natural 

gas price increases. For the last period we observe a strong decrease in the slope coefficient. 

Our conclusion is that it is too soon to argue that the spark spread has reach a stable level, 

even though the speed-of-adjustment days has been reduced.  

Considering causality, we are not able to conclude that there is a general “leading market” 

for any of the three price variables in the spark spread. The reason is that the results were to 

mixed, even though we found Granger causality in many relationships. 
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Suggestion for further analysis 

Considering the strong decrease of the beta coefficient in the long-run relationship of the 

spark spread commodities in the last period, it would be very interesting to explore if the 

estimated slope coefficient in the last period is a permanent structural break.  

In addition, an extension of the analysis that includes capacity constraints, traded volumes, 

and storage facilities will possibly enhance the understanding of the estimated concept. If 

that is combined with hourly prices instead of daily, the researcher will be able to 

incorporate the valuable flexibility of a natural gas-fired power plant.  
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9. Appendix 

9.1.1 Figure of time series  

Electricity and natural gas time series used in regression analysis (level series): 

Figure 18: Electricity and natural gas seires in the Netherlands 
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Figure 19: Electricity and natural gas seires in Germany 

 

Figure 20: Electricity and natural gas seires in the UK 
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9.1.2 Data variables  

Table 23: Time series variables 

 

9.1.3 Source 

We downloaded the exchange rates form FX Historical Data 

(http://www.fxhistoricaldata.com) that we used for the conversion to from Sterling Pound to 

Euro.  

Natural gas, Power and CO2 prices are all downloaded from Thomson Reuters DataStream. 

The physical conversion is based on numbers from 

http://www.onlineconversion.com/energy.htm.  

9.1.4 Statistical software 

We have used the statistical software OxMetrics 6.01 (2009) with the regression program 

PcGive 13.0, created by Jurgen A. Doornik who is a Research Fellow at the Economics 

Department of the Univeristy of Oxford, and a director of OxMetrics Technologies Ltd.  

9.1.5 Energy units  

Capacity (measured in Watt) is the rate of energy conversion.  

1 kW = 1000 W 
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1 MW = 1 000 000 W 

1 GW = 1 000 000 000 W 

1 TW = 1 000 000 000 000 W 

For constant power, energy in watt-hours is the product of power in watts and time in hours. 

Often used to measure energy over a time period, e.g. MWh or TWh.  

9.1.6 C02 Emission Factor 

60 per cent efficiency: 1 – (60 per cent/0.8366) = 0.283 t CO2/MWh 

50 per cent efficiency: 1 –(50 per cent/0.8366) = 0.402 t CO2/MWh 

40 per cent efficiency: 1 – (40 per cent/0.8366) = 0.522 t CO2/MWh  

30 per cent efficiency: 1 – (30 per cent/0.8366) = 0.641 t CO2/MWh 

9.1.7 Converting all natural gas prices to EUR/MWh : 

100 000 Btu (Therm) = 0.029 307 108 333 MWh 

1 000 000 Btu (MMBtu)=  0.29 307 108 333 MWh 

Exchange rates conversion: EUR = USD * (1/EURUSD ) 

Pound = Pence/100 (National Balancing Point) 

9.1.8 Data preparation for missing data points (observations); 

We used linear interpolation to adjust for unequal number of observations between two or 

more data samples.  

After the generic series were transformed either by first differencing or log returns, they got 

extraordinary large spikes that did not stem from regular price formation at the exchanges. 

These spikes came when the front contract shift to the next month. This was corrected by 

replacing them by the approximate mean of the series, which is zero. 
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9.1.9 Age/efficiency conversion for missing data 

Table 24: 
Efficiency/age 

	  Years	   Efficency	  
Age	  <	  10	   60	  per	  cent	  
10	  >	  age	  <	  20	   50	  per	  cent	  
20>Age	  >	  30	   40	  per	  cent	  
Age>40	   30	  per	  cent	  
 

9.1.10 Data-sample error in the futures contract for electricity in The 
Netherlandss (DE EL FRONT MONTH BASE) 

During our error correction testing we discovered a data-sample error. Germany (Phelix) 

month futures and The Netherlands month futures have the last contract trading day the next 

to last business day before contract expires. In the data-sample from Thomson Retures 

Datastream the month contract for Germany (Phelix EEX Month futures) is registered with 

data from the previous contract for the last business day. This means that when compering 

the two time-series we will always compare two different monthly contracts the last business 

day of the month. For example in the end of January the NL-series will shows the value for 

the March-contract, but DE-series will show the value for the February-contract. This creates 

a huge spike in the difference between the two series at every end-of-month observation.        

We used the following formula to solve this problem since we do not have the real 

observations form Phelix EEX Month Futures.  

DE (t) = NL (t) * (DE (t-1) / NL (t-1)) 

The natural gas time series (both spot and front) from Germany is based on index series form 

TTF before 2007-09-27 and based on data from NCG (NetConnect Germany) from 2007-09-

28 until 2012-01-09. E-ON states that the increased volume and activity in the German 

natural gas market has made the NCG prices credible. There is therefore a artificially high 

correlation between the TTF and NCG prices. The EUA (CO2) prices are converted to 

EUR/MWh modelling a natural gas fired power plant. The average CO2 price is the average 

price a natural gas fired power plant need to pay for its emission per MWh.         
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9.1.11 New insvestments in Natural gas-fired power plants 

Table 25: New natural gas-fired power plants 

 

 

9.1.12 Correlation returns sub-samples 

Table 26: Correlation returns Period 1 
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Table 27: Correlation returns Period 2 

 

Table 28: Correlation returns Period 3 

 

9.1.13 Rolling correlations 

Figure 21: 100 days rolling corr DE EL-GAS Germany 
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!"##$%&'(")*#$'+#)*,-
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65.07
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./*8/*145.0*9:28 BF*D IJ*D KB*D K>*D B

<;*.9,*2,50 J*D IE*D -*D K>*D BG*D B

<;*.9,*145.0* F*D G>*D F*D -*D I>*D I>*D B

<;*8/*2,50*9:28 F*D G*D BC*D BH*D B*D G*D B-*D B

<;*8/*2,50*,8:; >*D H*D BJ*D BF*D >*D J*D B-*D CG*D B

=8*8/*2,50*9:28 F*D B*D IC*D IC*D B*D E*D B*D B>*D C*D B

=8*8/*2,50*,8:; I*D B*D FJ*D J-*D B*D K>*D KB*D B-*D B>*D GH*D B

=8*8/*145.0* B-*D IE*D KB*D K>*D GH*D BH*D -H*D KB*D E*D K>*D >*D B

!5>*2,50*?@:2A H*D KJ*D KF*D KJ*D -*D KI*D KJ*D KG*D KG*D KJ*D KC*D E*D B

=8*2,50*@:2* F*D HF*D I*D -*D -C*D -E*D H-*D C*D C*D I*D -*D --*D K-*D B

=8*@:2*145.0* >J*D I>*D -*D I*D -B*D >E*D -C*D I*D -*D -*D I*D >F*D I*D -G*D B
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Figure 22: Dummy model of 100 days rolling corr DE Front EL-GAS Germany 

 

Figure 23: Dummy model of 100 days rolling corr UK Front EL-GAS the UK 
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9.1.14 Stationarity tests 

Table 29: Sub-periods Augmented Dickey-Fuller Results 

 

!"#$%& '()"*#+)"&,%#&"# -"."/,)01)+)$1)$2 3"/"2)"&0/+*1,45'67
8-,99:,3!;9 !"#$%&,< '4=7,1)+)$%(+#> 0?@AB,4CC7 D

!"#$%&,E '4<7,F($),#%%) 0<GDH <
!"#$%&,? '4<7,F($),#%%) 0<GHE D

8-,99:,:I;89,J;89K !"#$%&,< '4<7,F($),#%%) 0EG=L =
!"#$%&,E '4<7,F($),#%%) 0<G?? A
!"#$%&,? '4<7,F($),#%%) 0<G?M L

8-,N-,3!;9,O53N !"#$%&,< '4=7,1)+)$%(+#> 0B@?<,4CC7 A
!"#$%&,E '4=7,1)+)$%(+#> 0?@DB,4CC7 A
!"#$%&,? '4=7,1)+)$%(+#> 0A@A=,4CC7 A

8-,N-,3!;9,!N5P !"#$%&,< '4=7,1)+)$%(+#> 0D@MH,4CC7 <
!"#$%&,E '4=7,1)+)$%(+#> 0H@<<,4CC7 A
!"#$%&,? '4=7,1)+)$%(+#> 0A@EM,4CC7 <=

8-,N-,:I;89,J;89K,O53N !"#$%&,< '4<7,F($),#%%) 0EGH< E
!"#$%&,E '4<7,F($),#%%) 0<GHA =
!"#$%&,? '4<7,F($),#%%) 0EG< A

8-,N-,:I;89,J;89K,!N5P !"#$%&,? '4=7,1)+)$%(+#> 0?@<M,4C7 <
QP,8O!,3!;9 !"#$%&,< '4=7,1)+)$%(+#> 0E@DM,4C7 H

!"#$%&,E '4<7,F($),#%%) 0EG<A ?
!"#$%&,? '4<7,F($),#%%) 0<GA< B

QP,8O!,:I;89,J;89K !"#$%&,< '4<7,F($),#%%) 0<GME A
!"#$%&,E '4<7,F($),#%%) 0<GBA =
!"#$%&,? '4<7,F($),#%%) 0<GAH M

QP,N-,3!;9,O53N !"#$%&,< '4=7,1)+)$%(+#> 0?@DA,4CC7 L
!"#$%&,E '4<7,Q($),#%%) 0<GL< <=
!"#$%&,? '4=7,1)+)$%(+#> 0?@??,4C7 <=

QP,N-,3!;9,!N5P !"#$%&,< '4=7,1)+)$%(+#> 0A@EM,4CC7 L
!"#$%&,E '4<7,Q($),#%%) 0EG=? <=
!"#$%&,? '4=7,1)+)$%(+#> 0A@<E,4CC7 <=

RN,3S%),T53 !"#$%&,< '4=7,1)+)$%(+#> 0?@AB,4CC7 D
!"#$%&,E '4<7,F($),#%%) 0<GE? <
!"#$%&,? '4<7,F($),#%%) 0<GH? D

RN,T+1,:#%() !"#$%&,< '4<7,F($),#%%) 0EG=L =
!"#$%&,E '4<7,F($),#%%) 0<GA< <
!"#$%&,? '4<7,F($),#%%) 0=GLL <

RN,N-,3!;9,O53N !"#$%&,< '4=7,1)+)$%(+#> 0M@=E,4CC7 <
!"#$%&,E '4<7,F($),#%%) 0EGHD <=
!"#$%&,? '4=7,1)+)$%(+#> 0?@AA,4CC7 <=

RN,N-,3!;9,!N5P !"#$%&,< '4=7,1)+)$%(+#> 0M@MA,4CC7 <
!"#$%&,E '4=7,1)+)$%(+#> 0A@?<,4CC7 A
!"#$%&,? '4=7,1)+)$%(+#> 0A@AM,4CC7 D

RN,N-,:I;89,J;89K,O53N !"#$%&,< '4<7,F($),#%%) 0EGL ?
!"#$%&,E '4<7,F($),#%%) 0<GHL ?
!"#$%&,? '4<7,F($),#%%) 0EG<B A

6;E,3!;9,4T537 !"#$%&,< '4<7,F($),#%%) =GB< <=
!"#$%&,? '4=7,1)+)$%(+#> 0H@DD,4CC7 =
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9.1.15 Akaike information criterion (Akaike, 1974) 

General AIC = 2 K – 2 ln (L) 

K=number of parameters     L = is the maximized value of the likelihood 

function 

 


