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I 
 

Abstract 
 

 

Risk aversion has been empirically estimated using different equilibrium models [Hansen and 

Singleton (1982, 1983), Mehra and Prescott (1985)]. However, the results are controversial. 

Jackwerth (2000) and Ait-Sahalia and Lo (2000) study the risk aversion from a different 

perspective. They derive the risk aversion function across wealth by using the subjective density 

and risk-neutral density. Under this method, they avoid using the low-frequency consumption 

data. In this paper, we use British capital market data to calculate the risk aversion, which can be 

expressed as a function of risk-neutral density and subjective density. The risk-neutral densities 

are estimated by two different methods, the double lognormal method of Bahra (1997) as well as 

the fast and stable method of Jackwerth (2000). The subjective density is generated by the 

GARCH Monte Carlo method. 

Compared to the subjective densities, the estimated risk-neutral densities are leptokurtic with 

fatter left tails. Using the Kolmogorov-Smirnov test, we find that the risk-neutral densities 

estimated by different method are statistically different at conventional significance level. The 

calculated implied risk aversion functions are U-shaped across wealth. This is inconsistent with 

the theory of finance. Further, the U-shaped risk aversion function is stable under different 

settings. 
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1. Introduction 
 

 

Classical finance theory tries to explain how people make decisions under uncertainty by 

assuming that people’s preference can be represented by a well-behaved utility function. Then 

one can use asset pricing models to compute the price of financial assets. An important input of 

the utility function is the so-called risk aversion coefficient, which describes an agent’s degree of 

risk aversion. Given the consumption and capital market data, the risk aversion coefficient can be 

estimated by equilibrium asset pricing models. However, results of these studies are 

controversial. Hansen and Singleton (1982, 1983) find that the coefficient of risk aversion is 

around one, while Mehra and Prescott (1985) arrive at the conclusion that the equity premium 

can only be explained by an extremely high level of risk aversion. 

In the late 1990s, Jackwerth (2000) and Ait-Sahalia and Lo (2000) attack the problem from 

another perspective. They combine the equilibrium pricing framework with the no arbitrage 

pricing framework, and derive investors’ risk aversion from risk-neutral density (RND) and 

subjective density. Various RND estimation techniques developed in the 1990s are the 

foundation for estimating risk aversion function. 

Under no arbitrage condition, assets prices equal to the product of their payoffs and the risk-

neutral probability discounted by the risk-free rate. Inversely, risk-neutral probability can be 

derived from asset prices. Option market contains abundant information about investors’ future 

beliefs. Breeden and Litzenberger (1978) and Cox and Ross (1976) develop the theoretical 

foundation for deriving risk-neutral density from option market. On the other side, Bahra (1997), 

Jackwerth (2000), and Ait-Sahalia and Lo (1998), among others, propose various empirical RND 

estimation methods. 

In this paper, asset pricing theories related to density estimation and implied risk aversion are 

briefly reviewed. Subsequently, the RND function and empirical risk aversion will be 

empirically derived from option prices. Using FTSE 100 index options (ESX), I find that the 

RNDs estimated by the two methods are statistically different. In addition, unlike subjective 
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densities, RNDs are leptokurtic with fatter left tails. Next, we compute the implied risk aversion 

which is a U-shaped function across wealth. After implementing several robustness tests, I 

conclude that the risk aversion is U-shaped under different empirical settings. Further, I find that 

the risk aversion function is time-varying.  

The contribution of this paper is twofold: firstly, we derived the implied risk aversion function 

from British dataset; secondly, the RNDs are estimated by two different methods, the double 

lognormal method [Braha (1997)] as well as the fast and stable method [Jackwerth (2000)]. 

The structure of the thesis is as follow: section 2 discusses the asset pricing theory and the 

derivation of the risk aversion function; the density estimation techniques are illustrated in 

section 3; section 4 provides an empirical example; the last section concludes the thesis. 
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2. Review of Asset Pricing Theory 
 

 

Asset pricing can be categorized into equilibrium pricing and arbitrage pricing. Equilibrium 

models price financial assets by demand and supply analysis. No arbitrage pricing models, on the 

other side, assume that assets with the same future payoffs should have identical price. In this 

section, both frameworks will be discussed. A more detailed review of asset pricing theory is 

given in the appendix A. 

 

2.1 Equilibrium Pricing 
Microeconomists assume that on the demand side consumers’ preference can be represented by 

utility functions, and on the supply side the productions of firms are measured by production 

functions. The price and quantity of the goods can be found by solving a mathematical 

optimization problem, given that consumers and firms maximize their utilities and profits 

respectively. Alternatively, in an exchange economy, the supply of goods is treated as 

endowment. Exchange economy is frequently used in financial economics. Nevertheless, the 

static framework is not suitable for asset pricing because financial assets normally live more than 

one period and have stochastic future payoffs. 

Arrow (1964) and Gerard (1959) extend the classical static exchange economy to a two-period 

stochastic economy, where the consumption and future endowment are stochastic. In order to 

maximize their lifetime utility, agents allocate their assets intertemporally and hedge against 

future consumption risks. Their model can be further extended to a multi-period framework 

[Lucas (1978)]. 

In equilibrium, asset prices determined by supply and demand at each moment can be used to 

derive investors’ belief [Wang (1993)]. In a standard dynamic exchange economy, e.g. the 

continuous-time setting of He and Leland (1993), the security market is dynamically complete so 

that there exists a single representative investor1

                                                             
1 See Constantinides (1982). 

 who lives in a finite time interval [0,𝑇]. There 
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is one riskless bond and one risky stock that represent the market portfolio. The investor is a self-

interested, risk averse utility maximizer endowed with one unit of stock at period 0 but no 

exogenous income. He maximizes his expected utility of consuming a single good on the final 

date 𝑇2
P. Suppose the riskless rate is 𝑟, and the risky asset price follows a diffusion process 

𝑑𝑆𝑡 = 𝜇(𝑆𝑡 , 𝑡)𝑆𝑡𝑑𝑡 + 𝜎(𝑆𝑡 , 𝑡)𝑆𝑡𝑑𝐵𝑡      (2.1) 

The investor’s consumption and investment problem is 

𝑀𝑎𝑥 𝐸[𝑈(𝑊𝑇)] 

𝑠. 𝑡.  𝑑𝑊𝑠 = [𝑟𝑊𝑠 + 𝐴𝑠(𝜇(𝑆𝑠 , 𝑠) − 𝑟)]𝑑𝑠 + 𝐴𝑠𝜎(𝑆𝑠 , 𝑡)𝑑𝐵𝑠 

𝑊𝑠 ≥ 0, 0 ≤ 𝑠 ≤ 𝑇 

where 𝑊𝑠  is the investor’s wealth at period 𝑠 and 𝐴𝑠 is the amount invested in risky stock. 

In equilibrium, the investor follows the so-called path-independent strategy and optimally invests 

all the wealth in the risky stock. This is equivalent to 

𝐴𝑠 =  𝑆𝑠 ,∀𝑠 ∈ [0,𝑇] 

The concept of equilibrium used here is stronger than what is commonly defined in competitive 

equilibrium [Merton (1973) and Breeden (1979)]. He and Leland (1993) derive a partial 

differential equation that must be satisfied by this equilibrium asset price process. Clearly, the set 

of this equilibrium price process is a subset of the competitive equilibrium price process. 

However, it still covers an important group of asset price dynamics. For example, Cox and 

Leland (2000) demonstrate that if the equilibrium asset prices are lognormally distributed then 

the investor must be following a path-independent strategy. The advantage of this equilibrium is 

that one can conveniently infer investors’ preference from stock prices. He and Leland (1993) 

show that if the volatility is constant, a decreasing relative risk aversion in terminal wealth of the 

representative investor is the necessary and sufficient condition for the expected instantaneous 

return of the market portfolio to be mean reverting. As a matter of fact, under certain 

assumptions the entire risk aversion function across investor’s final wealth can be extracted from 

asset prices [Ait-Sahalia and Lo (2000) and Jackwerth (2000)]. 
                                                             
2 Changing this will not change the results. 
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2.2 No Arbitrage Pricing 
Under no arbitrage condition, portfolios with identical future payoffs should have the same price. 

Therefore, if we know the distribution of future asset payoffs and the value of state prices, asset 

price can be calculated by 

𝑃𝑡 = � 𝑓𝑆(𝑆𝑇) 𝑋(𝑆𝑇)𝑑𝑆𝑇
∞

0
     (2.2) 

where 𝑓𝑆(𝑆𝑇) is the state price density, 𝑆𝑇 is the asset price at time 𝑇, 𝑋(𝑆𝑇) is the future payoff 

of 𝑆𝑇. 

Alternatively, the pricing formula can be expressed in terms of risk-neutral density. As we know, 

state price density equals risk-neutral density discounted by riskless rate. Hence asset price can 

be expressed as 

𝑃𝑡 = 𝑒−𝑟𝑇 � 𝑓𝑄(𝑆𝑇) 𝑋(𝑆𝑇)𝑑𝑆𝑇
∞

0
     (2.3) 

where 𝑓𝑄(𝑆𝑇) is the risk-neutral density for asset 𝑆𝑇. 

It is possible to transform the diffusion process (2.1) in the probability space (𝛺,𝑃,ℱ) to a 

stochastic process with a riskless drift term in the risk-neutral probability space (𝛺,𝑄,ℱ) by 

Radon-Nykodim derivative 

𝑑𝑓𝑄(𝑆𝑇)
𝑑𝑓𝑃(𝑆𝑇) = 𝑒𝑥𝑝 �−

1
2
� �

𝜇(𝑆𝑠 , 𝑠)− 𝑟
𝜎(𝑆𝑠 , 𝑠) �

2

𝑑𝑠
𝑡

0
− �

𝜇(𝑆𝑠 , 𝑠)− 𝑟
𝜎(𝑆𝑠 , 𝑠) 𝑑𝐵𝑠

𝑡

0
� 

 

2.3 Implied Risk Aversion 
With the preparations showed above, we can start deriving the risk aversion function. In 

equilibrium, the representative investor optimally invests in the market portfolio and spends all 

the wealth on the final date 𝑇 , i.e. 𝑆𝑇 = 𝑊𝑇 = 𝐶𝑇 . Therefore, the investor’s maximization 

problem can be rewritten as 

𝑀𝑎𝑥� 𝑓𝑃(𝑆𝑇)𝑈(𝑆𝑇)𝑑𝑆𝑇
∞

0
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where 𝑓𝑃(𝑆𝑇) is the subjective probability density of the stock price on date 𝑇  across states. 

Since the investors are defined as rational, their subjective density should be an unbiased forecast 

of the realized density, and thus consistent with the objective or physical density [Bliss and 

Panigirtzoglou (2004)]. 

One does not have to solve the entire maximization problem to get the risk aversion function. 

Only the first-order condition (F.O.C.) is needed. In this framework, it is easier to derive the risk 

aversion function by the martingale method rather than the Hamilton-Jacobi-Bellman (HJB) 

partial differential equation method. For the martingale method, the first step is to transform the 

intertemporal dynamic maximization problem into a static utility optimization problem, and the 

second step is to calculate the optimal investment and consumption strategy by martingale 

representation theorem. Here we only need to implement step one. As the investor’s initial 

endowment is normalized to 1 unit, by applying the risk-neutral valuation method the risky stock 

price can be expressed as 

1
𝑟𝑡 � 𝑓𝑄(𝑆𝑇)𝑆𝑇𝑑𝑆𝑇

∞

0
= 1 

where fQ(𝑆𝑇) is the risk-neutral probability density of the stock price on date 𝑇 across states. 

Now we can transform to a static problem by building up the Lagrangian function 

ℒ = � 𝑓𝑃(𝑆𝑇)𝑈(𝑆𝑇)𝑑𝑆𝑇
∞

0
− 𝜆 �

1
𝑟𝑡 � 𝑓𝑄(𝑆𝑇)𝑆𝑇𝑑𝑆𝑇

∞

0
− 1� 

where λ is the shadow price of the budget constraint. By taking the first-order derivative of the 

Lagrangian function with respective to the terminal stock price, we have 

𝑈′(𝑆𝑇) =
𝜆
𝑟𝑡
𝑓𝑄(𝑆𝑇)
𝑓𝑃(𝑆𝑇) 

The F.O.C. above must hold in equilibrium. According to the definition of absolute risk aversion, 

we also need the second-order derivative of the utility function with respect to 𝑆𝑇 

𝑈′′(𝑆𝑇) =
𝜆
𝑟𝑡
𝑓𝑄′(𝑆𝑇)𝑓𝑃(𝑆𝑇)− 𝑓𝑃′(𝑆𝑇)𝑓𝑄(𝑆𝑇)

𝑓𝑃2(𝑆𝑇)  

The absolute risk aversion function can be written as 
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𝐴(𝑆𝑇) = −
𝑈′′(𝑆𝑇)
𝑈′(𝑆𝑇) = −

𝜆
𝑟𝑡
𝑓𝑄′(𝑆𝑇)𝑓𝑃(𝑆𝑇)− 𝑓𝑃′(𝑆𝑇)𝑓𝑄(𝑆𝑇)

𝑓𝑃2(𝑆𝑇)
𝜆
𝑟𝑡
𝑓𝑄(𝑆𝑇)
𝑓𝑃(𝑆𝑇)

=
𝑓𝑃′(𝑆𝑇)
𝑓𝑝(𝑆𝑇) −

𝑓𝑄′(𝑆𝑇)
𝑓𝑄(𝑆𝑇)     (2.4) 

The relative risk aversion function can be written as 

𝑅(𝑆𝑇) = −𝑆𝑇
𝑈′′(𝑆𝑇)
𝑈′(𝑆𝑇) = 𝑆𝑇 �

𝑓𝑃′(𝑆𝑇)
𝑓𝑝(𝑆𝑇) −

𝑓𝑄′(𝑆𝑇)
𝑓𝑄(𝑆𝑇)�      (2.5) 

The absolute risk aversion coefficient is now a function of subjective density and risk-neutral 

density. The result is not surprising. If investors in the stock market are risk-neutral, the RND 

function depicts the actual beliefs of the investors. If, however, the investors are risk averse, we 

can study how risk averse they are by analyzing the difference between the RND density and the 

subjective density. As stressed by Ait-Sahalia and Lo (2000), people can infer any one of the 

following from the other two: (1) the representative investor’s preference; (2) the subjective 

density; and (3) the risk-neutral density. Market completeness guarantees the uniqueness of the 

risk-neutral density and further guarantees the uniqueness of the risk aversion function. 

Implied risk aversion function is both theoretically and empirically worth studying. The shape of 

absolute and relative risk aversion across wealth is crucial for choosing a utility function, and 

further influences the result of equilibrium pricing models. Yet the estimated risk aversion 

coefficients from different consumption based models are controversial. Measurement errors of 

the low-frequency consumption data might be one important reason. While applying the new 

approach, we can use high quality capital market data to estimate the subjective density as well 

as the risk-neutral density. If the assumptions of this model are appropriate, this approach should 

provide a more accurate estimated risk aversion function. 
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3. Density Estimation 
 

 

Absolute risk aversion can be written as a function of subjective density and risk-neutral density. 

To derive the risk aversion function, one needs to estimate the subjective density and the RND. 

In this section, methods regarding subjective density and RND estimation will be discussed. 

 

3.1 Subjective Density Estimation 
Most of the subjective density estimation methods assume that investor’s future expectation is 

reflected by historical information. In other words, these methods assume that future returns or 

price density are predictable based on past information. The subjective density function can be 

estimated parametrically or nonparametrically. The nonparametric kernel density estimation 

(KDE) method is used by Jackwerth (2000), Ait-Sahalia and Lo (2000) and Perignon and Villa 

(2002). The parametric Monte Carlo simulation method is adopted by Rosenberg and Engle 

(2002) and Hordahl and Vestin (2005). 

In addition, these subjective density estimation methods assume that the density function is 

stationary, i.e. the underlying stochastic process has not changed during the estimation period 

[(Bliss and Panigirtzoglou (2004)]. This is an important concern in time series analysis. One 

needs to make sure that there is no structural change during the estimation period, namely the 

fundamental factors that influence the underlying data-generating process have not changed. This 

guarantees the stationarity of the density function. 

 

3.1.1 Nonparametric Kernel Density Estimation Method 
Nonparametric methods do not make any assumptions about the distribution. Hence, the KDE 

method does not impose any specific type of stochastic process on the price series, and the 

estimated subjective density can be in any shape. 
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The intuition behind the KDE method is similar to that behind histogram, which depicts the 

density function of a group of data. KDE estimates a smoothed density function by a kernel. The 

subjective density function estimated by KDE is 

𝑓𝑃(𝑟) =
1
𝑛ℎ

�𝐾 �
𝑟 − 𝑟𝑖
ℎ �

𝑛

𝑖=1

 

where 𝐾( )  is the kernel that integrates to one; 𝑛  is the number of observations; ℎ  is the 

bandwidth; 𝑟𝑖 is the stock return observed in period 𝑖. 

 
Figure 1 Subjective Densites across Wealth 
The subjective density is estimated by KDE method. The subjective density describes the distribution of 
the investor’s wealth level on 15.Jun.2012. The wealth level is defined as the stock price on 15.June.2012 
divided by the stock price on 16.Apr.2012. The estimation period is from 01.Jun.2007 to 16.Apr.2012. 
We use a selection of different bandwidths. The kernel is Gaussian. 
 
When implementing the KDE method, one needs to decide the bandwidth, type of kernel and 

estimation period. Selecting too large a bandwidth will result in an over-smoothed density 

function, but if the bandwidth is too small the density function might be under-smoothed. 

Silverman (1986) suggests the bandwidth ℎ = 1.06𝜎 𝑛0.2⁄  for Gaussian kernel. Yet Jackwerth 

(2000) uses a bandwidth of ℎ = 1.8𝜎 𝑛0.2⁄  and claims that other selections will not change the 

basic finding of his paper. It seems that there is no common rule of thumb for bandwidth 

selection. Therefore, I will choose different bandwidth under different circumstances. I follow 

Jackwerth (2000) and Perignon and Villa (2002) who adopt the Gaussian kernel 
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𝐾(𝑟) =
1

√2𝜋
𝑒−𝑟2 2⁄  

 

3.1.2 Parametric Monte Carlo Estimation Method 
Parametric methods estimate the parameters of a specific time series model. The specification of 

the model can be determined by, for example, the Box-Jenkins methodology. Next, we run the 

out-of-sample forecast on the selected model, say ARMA (p, q), with simulated shocks. After 

repeating a number of times (e.g. 100 000 times), we obtain a group of predictions on a specific 

day. Then we can derive the subjective density on that day by the kernel density method. 

Hordahl and Vestin (2005) use the CIR interest rate model [Cox, Ingersoll and Ross (1985)] and 

assume that the term structure of short term interest rate follows a mean-reverting process. The 

discretized mean-reverting process is calibrated using historical data. The subjective density is 

then obtained by Monte Carlo simulation. 

Rosenberg and Engle (2002) criticize the KDE estimation method used by Jackwerth (2000) and 

Ait-Sahalia and Lo (2000) and indicate that those methods assume that investors form 

probability beliefs by equally weighting events over the estimation period and disregarding 

previous event. Rosenberg and Engle further stress that future events depend more on recent 

information. They generate the subjective density by a discrete-time stochastic volatility model, 

the ARMA-GARCH model. 

 

3.2 Risk-Neutral Density Estimation 
It is not possible to derive the implied risk aversion function until we can empirically extract the 

RNDs. The theory of deriving RND function from option prices dates from the 1970s [Ross 

(1976), Breeden and Litzenberger (1978)], but the empirical research blooms during the 1990s 

[Rubinstein (1994), Jackwerth and Rubinstein (1996), Ait-Sahalia and Lo (1998), Bahra (1997) 

and Malz (1997)]. The application of RND function includes illiquid or exotic options pricing 

[Rosenberg (1998)], risk management [Ait-Sahalia and Lo (2000)], central bank policy making 

and event study [Bahra (1997), Castren (2005), Hordahl and Vestin (2005)]. 
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Theory of RND extraction is discussed in subsection 3.2.1.Then I categorize the theory into two 

groups, and briefly review the estimation methods that fall into each group in subsection 3.2.2 

and 3.2.3 respectively. 

 

3.2.1 Theory of RND Extraction 
Under no arbitrage framework, the price of an asset equals the expected future payoffs under 

risk-neutral measure 𝑄 discounted by risk-free rate. Thus the prices of the call option and the put 

option3

Given the risk-neutral density, risk-free rate and future payoffs, we can compute the option price. 

Conversely, if we know the option price, the risk-neutral density can be backed out using 

equation (3.1) and (3.2). Estimation methods founded on this theory attempt to find a density 

function that minimize the distance between the observed option price and the calculated price. 

These methods are illustrated in section 3.2.2. 

 can be expressed as 

𝐶𝐶𝑎𝑙𝑙 = 𝑒−𝑟𝑡𝐸𝑄[𝑀𝑎𝑥(𝑆𝑇 − 𝐾)] = 𝑒−𝑟𝑡 � 𝑓𝑄(𝑆𝑇)𝑀𝑎𝑥(𝑆𝑇 − 𝐾, 0)
∞

0
𝑑𝑆𝑇      (3.1) 

𝐶𝑃𝑢𝑡 = 𝑒−𝑟𝑡𝐸𝑄[𝑀𝑎𝑥(𝐾 − 𝑆𝑇)] = 𝑒−𝑟𝑡 � 𝑓𝑄(𝑆𝑇)𝑀𝑎𝑥(𝐾 − 𝑆𝑇, 0)
∞

0
𝑑𝑆𝑇     (3.2) 

On the other hand, Breeden and Litzenberger (1978) prove that the state price can be 

approximated by a butterfly spread, which can be constructed by selling (buying) two call (put) 

options with the same strike price 𝐾1 while buying (selling) two call (put) options with strike 

prices 𝐾0 and 𝐾2 respectively, where 𝐾0 < 𝐾1 < 𝐾2 and  𝐾1 − 𝐾0 = 𝐾2 − 𝐾1. 

The panel A and B of figure 2 show the payoffs of two butterfly spreads with strike prices of 9.5, 

10, 10.5, and 9.9, 10 and 10.1 respectively. The payoff of the first butterfly spread at 𝑆𝑇 = 𝐾1 

equals 𝐾1 − 𝐾0 = 𝐾2 − 𝐾1 = 10.5 − 10 = 10− 9.5 = 0.5 while the payoff of the latter one is 

0.1. As the distances between the adjacent strike prices 𝐾1 − 𝐾0 and 𝐾2 − 𝐾1 become narrower, 

the payoff of the butterfly spread divided by 𝐾1 − 𝐾0 or 𝐾2 − 𝐾1 is closer to that of the pure 

security which pays one unit of currency when 𝑆𝑇 = 𝐾1. This is demonstrated in panel C and D

                                                             
3 Unless specified, all the options mentioned in the thesis are European-style. 
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Figure 2 Payoff of the Butterfly Spread and the Approximation of the Pure Security 
Panel A and B show the payoffs of two butterfly spreads. They are constructed by call options. Panel C and D demonstrate the payoff of the 
butterfly spreads divided by the distance between the strike prices of two adjcent options. 
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of figure 2. Therefore, the value of a pure security that pays one unit of currency at 𝑆𝑇 = 𝐾1 

approximately equals the value of the butterfly divided by 𝐾1 − 𝐾0 or 𝐾2 − 𝐾1. 

The price of the pure security, which pays one unit of currency when the terminal price of the 

underlying asset equals 𝑆𝑇, can be expressed as 

𝑃0(𝑆𝑇 = 𝐾,∆𝐾) = 𝑙𝑖𝑚
∆𝐾→0

�𝐶𝐶𝑎𝑙𝑙,𝐾+∆𝐾 − 𝐶𝐶𝑎𝑙𝑙,𝐾 � − �𝐶𝐶𝑎𝑙𝑙,𝐾 − 𝐶𝐶𝑎𝑙𝑙,𝐾−∆𝐾 �
∆𝐾      (3.3) 

Equivalently, we have 

𝑙𝑖𝑚
∆𝐾→0

𝑃0(𝑆𝑇 = 𝐾,∆𝐾)
∆𝐾 = 𝑙𝑖𝑚

∆𝐾→0

�𝐶𝐶𝑎𝑙𝑙,𝐾+∆𝐾 − 𝐶𝐶𝑎𝑙𝑙,𝐾 � − �𝐶𝐶𝑎𝑙𝑙,𝐾 − 𝐶𝐶𝑎𝑙𝑙,𝐾−∆𝐾 �
(∆𝐾)2      (3.4) 

The left-hand side of the equation is the state price density while the term on the right-hand side 

is the second order derivative of the call option with respect to the strike price. We know that the 

state price density equals the RND discounted by risk-free rate. Therefore, RND function can be 

written as 

𝑓𝑄(𝑆𝑇) = �𝑒𝑟𝑇
𝜕2𝐶
𝜕𝐾2�

𝐾=𝑆𝑇

 

If we have a continuous function of option prices in terms of the strike price, we can derive the 

RND function by taking the second-order derivative with respective to the strike price. To get a 

positive risk-neutral probability across strike price, the price of the call has to be a convex 

function of strike price. Methods discussed in section 3.2.3 try to derive the RND function based 

on the theory of Breeden and Litzenberger (1978). 

Theoretically, the RND function generated from these two thoughts are consistent with each 

other. This is proved by Malz (1997) and Figlewski (2008). If we take the second-order 

derivative of the equation (3.1), we have 

𝜕𝐶𝐶𝑎𝑙𝑙
𝜕𝐾 =

𝜕�𝑒−𝑟𝑡 ∫ 𝑓𝑄(𝑆𝑇)(𝑆𝑇 − 𝐾)∞
𝐾 𝑑𝑆𝑇�

𝜕𝐾 = 𝑒−𝑟𝑡 �−𝐾𝑓𝑄(𝐾) + 𝐾𝑓𝑄(𝐾)−� −𝑓𝑄(𝑆𝑇)
∞

𝐾
𝑑𝑆𝑇� 

= 𝑒−𝑟𝑡 � −𝑓𝑄(𝑆𝑇)
∞

𝐾
𝑑𝑆𝑇 = −𝑒−𝑟𝑡�1− 𝐹𝑄(𝐾)� 



- 14 - 
 

Reorganize the terms and we have 

𝐹𝑄(𝐾) = 𝑒𝑟𝑡
𝜕𝐶𝐶𝑎𝑙𝑙
𝜕𝐾 + 1 

By taking the second-order derivative with respect to 𝐾, the desired result can be obtained 

𝜕2𝐶𝐶𝑎𝑙𝑙
𝜕𝐾2 = 𝑒−𝑟𝑡𝑓𝑄(𝐾) 

If options with any strike price are available, the market is complete. In a complete market, there 

is one and only one RND function. In theory, estimation methods based on either the risk-neutral 

pricing or the theory of Breeden and Litzenberger (1978) should give us identical RND function. 

However, the empirically estimated RND functions may not be the same due to market 

imperfections and different estimation assumptions. 

The methods discussed in the following two subsections are based on the two thoughts discussed 

above. There are some other ways to categorize the RND estimation methods, e.g. Jackwerth 

(2004) classifies them as nonparametric and parametric methods according to the statistical 

properties. Note that there are many approaches to back out the RND function from options 

market, and in this thesis only a selection of the methods are reviewed. More comprehensive 

reviews have been done by Jackwerth (2004) and Taylor (2005). 

 

3.2.2 Risk-Neutral Pricing: Double Lognormal Method 
According to the risk-neutral pricing theory, the price of any asset equals its expected future 

payoffs under risk-neutral measure discounted by the riskless rate. Consequently, one can 

compute a theoretical option price using a predetermined density function. By minimizing the 

sum of squared differences between the theoretical prices and the observed market prices, one 

can approximate the true RND function. This is done by appropriately choosing the parameters 

of the predetermined density function. To approximate the RND function, Bahra (1997) uses a 

mixture of two lognormal density functions, Melick and Thomas (1997) adopt a mixture of three 

lognormal density functions, Ritchey (1990) estimates the RND function with a mixture of 

normal distributions, while Bookstaber and McDonald (1987) propose the generalized 
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distribution method which uses four parameters to capture the mean, volatility, skewness and 

kurtosis of a density. 

On the other side, Rubinstein (1994) derives RNDs from the implied binomial tree model. The 

implied binomial tree is closely related to the Cox-Ross-Rubinstein binomial tree. Similarly, 

RNDs can be extracted from the implied binomial tree by solving a series of equations. However, 

given that only limited number of discrete strike prices is observed, the risk-neutral probabilities 

obtained are discrete and the probabilities of the tails are not available. So interpolation and 

extrapolation are required. Further, Jackwerth and Rubinstein (1996) study various RND 

estimation methods which are based on no arbitrage relation. They introduce non-quadratic 

objective functions, including the “absolute difference function” and “maximum entropy 

function”. Their method is an innovation of Rubinstein’s (1994) implied binomial tree.  

In this thesis, Bahra’s double lognormal method is applied. Bahra uses a combination of two 

lognormal density functions, and estimates the parameters in the density function by minimizing 

the sum of squared differences between the observed option prices and the prices calculated by 

equations (3.1) and (3.2). 

The lognormal mixture method is first proposed by Ritchey (1990). When deciding the number 

functions, one should consider the trade-off between better fit of the RND function and less 

degrees of freedom (as one needs to estimate more parameters). The estimated RND function is 

said to be a weighted average of lognormal density functions 

𝑓𝑄(𝑆𝑇) = �[𝜔𝑖𝐿(𝛼𝑖 ,𝛽𝑖;  𝑆𝑇)]
𝑘

𝑖=1

 

�𝜔𝑖

𝑘

𝑖=1

= 1 

Bahra (1997) suggests a mixture of two lognormal density functions so that only five parameters 

𝛼1,𝛽1,𝛼2,𝛽2,𝜔 will be estimated while the function still fits the actual prices well. The option 

prices, based on risk-neutral pricing theory, can then be expressed as 

𝐶𝐶𝑎𝑙𝑙 = 𝑒−𝑟𝑡 � [𝜔 𝐿(𝛼1,𝛽1;  𝑆𝑇) + (1 −𝜔)𝐿(𝛼2,𝛽2;  𝑆𝑇)]𝑀𝑎𝑥(𝑆𝑇 − 𝐾, 0)
∞

0
𝑑𝑆𝑇     (3.5) 
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𝐶𝑃𝑢𝑡 = 𝑒−𝑟𝑡 � [𝜔 𝐿(𝛼1,𝛽1; 𝑆𝑇) + (1 − 𝜔)𝐿(𝛼2,𝛽2; 𝑆𝑇)]𝑀𝑎𝑥(𝐾 − 𝑆𝑇 , 0)
∞

0
𝑑𝑆𝑇      (3.6) 

Equations (3.5) and (3.6) can be solved analytically. The derivation, however, is quite lengthy, 

and is given in appendix B. The expressions for the call and put are 

          𝐶𝐶𝑎𝑙𝑙 = 𝑒−𝑟𝑡 �𝜔 � 𝑒𝛼1+
𝛽1

2

2 𝑁(𝑑1) −𝐾𝑁(𝑑2)� + (1 − 𝜔) �𝑒𝛼2+
𝛽2

2

2 𝑁(𝑑3)− 𝐾𝑁(𝑑4)��      (3.7) 

𝐶𝑃𝑢𝑡 = 𝑒−𝑟𝑡 �𝜔 �𝐾𝑁(−𝑑2)− 𝑒𝛼1+
𝛽1

2

2 𝑁(−𝑑1)� + (1 − 𝜔) �𝐾𝑁(−𝑑4) − 𝑒𝛼2+
𝛽2

2

2 𝑁(−𝑑3)��      (3.8) 

where 

𝑑1 =
𝛼1 + 𝛽1

2 − 𝑙𝑛(𝑘)
𝛽1

 

𝑑2 = 𝑑1 − 𝛽1 

𝑑3 =
𝛼2 + 𝛽2

2 − 𝑙𝑛(𝑘)
𝛽2

 

𝑑4 = 𝑑3 − 𝛽2 

 

Given the observed and computed prices for put and call, we can estimate those five coefficients 

by solving the following minimization problem 

𝑀𝑖𝑛
𝛼1,𝛽1,𝛼2,𝛽2,𝜔

��𝐶𝐶𝑎𝑙𝑙,𝑖 − 𝐶̂𝐶𝑎𝑙𝑙,𝑖�
2

𝑛

𝑖=1

+ ��𝐶𝑃𝑢𝑡,𝑖 − 𝐶̂𝑃𝑢𝑡,𝑖�
2

𝑛

𝑖=1

+ �𝜔𝑒𝛼1+
𝛽1

2

2 + (1 − 𝜔)𝑒𝛼2+
𝛽2

2

2 − 𝑆𝑒(𝑟−𝑑)𝑡�
2

 

𝑠. 𝑡.𝛽1,𝛽2  > 0 𝑎𝑛𝑑 0 ≤ 𝜔 ≤ 1 

The first and second terms minimize the sum of squared errors between the observed and 

computed call and put options prices across different strike prices. The last term minimize the 

distance between the mean of implied RND and the futures price. Under no arbitrage condition, 
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the cost of carry4

Advantages of double lognormal approach are obvious. The model is parsimonious and we only 

need to estimate five coefficients. Therefore, unlike the kernel regression method discussed later, 

double lognormal approach performs well with limited data. Moreover, unlike some methods 

that produce negative probabilities or require interpolation and extrapolation, this method will 

always result in positive probabilities and smooth curve. 

 relation must hold and thus 𝐹 = 𝑆𝑒(𝑟−𝑑)𝑡. On the other side, the forward price 

is an unbiased estimation of future spot price and should equal the mean of the implied RND 

𝐹 = 𝑆𝑒(𝑟−𝑑)𝑡 = 𝐸[𝑆𝑡] = 𝜔 𝑒𝑥𝑝�𝛼1 + 𝛽1
2 2⁄ � + (1− 𝜔) 𝑒𝑥𝑝�𝛼2 + 𝛽2

2 2⁄ �. 

However, as the predetermined density function is a mixture of two lognormal densities and the 

shape of the RND depends only on five coefficients, it might not fully capture the properties of 

the observed option prices. Sometimes even if the objective function is minimized, the difference 

between the actual option price and the calculated price is still quite large. Another practical 

problem is that sometimes the mixed lognormal density could be bimodal if the mean of the first 

component is significantly different from that of the second component. Furthermore, the method 

assumes that the options are correctly priced. If the traded options do not fully capture investors’ 

beliefs, it might be inappropriate to use the estimated RND function for asset pricing, policy 

making, risk management or other purposes. As indicated by Bahra (1997), illiquid option 

market is not a good choice for estimating RND function. 

 

3.2.3 Breeden and Litzenberger (1978): Fast and Stable Method 
Inspired by Breeden and Litzenberger (1978), RND function can be estimated by taking the 

second-order derivative of the option price function with respective to strike price. However, 

strike prices of options in the market are not continuous. Moreover, the range of the strike prices 

is limited and the options with extremely low or high strike prices are not available. Without 

information about option prices that have extremely the low and high strike price, we are unable 

to accurately estimate the tails of the RND. One direct approach is to fit a predetermined 

                                                             
4 When the underlying asset is a dividend paying stock, dividend yield has to be considered; if the underlying asset 
is a type of foreign currency, foreign interest rate is added; present value of interest payments have to be 
subtracted from the initial price when the underlying asset is a fixed-income security; for commodities, storage 
cost and convenience yield have to be considered. See Hull (2006) for a thorough explanation. 
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function or a mixture of several predetermined functions to the observed option prices through 

strike price. This is similar to the double lognormal method presented in section 3.2.2. Bates 

(1991) uses a cubic spline5

The advantage of the fitting method is that it is not nested in the Black-Scholes framework so it 

is not restricted by the assumptions of Black-Scholes model. Nevertheless, as pointed out by 

Jackwerth (2004), under this approach the tails of the estimated RND function might still be 

inaccurate. For example, for parametric fitting methods, parameters that minimize the errors 

between the predetermined function and the actual prices might not be optimal because they do 

not include the potential unavailable options with extremely low and high strike price. So the 

shape of the tails actually depends on the observations that do not lie in the tails. 

 to fit the observations while Yatchew and Hardle (2006) use model-

free least square method to estimate the state price density by fitting the option prices across 

strike prices. 

Alternatively, Shimko (1993) suggests fitting the implied volatilities across strike. An important 

strength of fitting the function 𝜎𝐼𝑚𝑝𝑙𝑖𝑒𝑑(𝐾) is that unlike option prices fluctuate sharply across 

strike prices, the plots of implied volatility against strike price are smoother [Jackwerth (2004)]. 

When fitting the option prices curve, we minimize the distance between the actual prices and the 

fitted function. Hence we put more weights on expensive in-the-money options than out-of-the-

money options. However, by fitting the smoother implied volatility function, this problem can be 

alleviated. 

Before going through the implied volatility fitting method, we briefly explain the concept of 

implied volatility. In the Black-Scholes option pricing formula, there are five inputs6

                                                             
5 A spline is a smoothed polynomial function, where a polynomial is in the form 𝐶(𝐾) = α0 + α1𝐾 + α2𝐾2 + ⋯+
α𝑛𝐾𝑛. 

, namely 

underlying asset price, annualized volatility of underlying asset returns, strike price, interest rate 

and time to maturity. Conversely, given the observed option price, any one of the five variables 

can be backed out. The most interesting variable among the five is the implied volatility derived 

from the Black-Scholes model. It is said that implied volatilities have superior predictability for 

future volatilities compared to historical volatilities, volatilities calculated by GARCH or other 

6 For options with underlying assets that are dividend paying stocks or currency, dividend yield and foreign interest 
rate should be considered. Slight changes of the Black-Scholes formula can be made to value options on these 
assets.  
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time series models [Mayhew (1995)]. However, when plotting the implied volatility curve across 

strike prices, we realize that it is a convex function of strike price. This violates one of the Black-

Scholes assumptions7

By fitting the volatility smile curve, Shimko’s (1993) method assumes that implied volatility 

curve and strike price have a nonlinear relationship. In the Black-Scholes framework, the 

function of an option is 𝐶(𝑆𝑡 ,𝑇,𝐾,𝜎, 𝑟). Therefore, we can derive the RND function by taking 

the second-order derivative regarding strike price. But if the implied volatility is related to strike 

price 𝐾, the function of the option can be rewritten as 𝐶�𝑆𝑡 ,𝑇,𝐾,𝜎𝐼𝑚𝑝𝑙𝑖𝑒𝑑(𝐾),𝑟�. As strike price 

will influence the value of the option directly and via volatility, we should find the continuous 

implied volatility function with respect to strike price and then replace it back into the Black-

Scholes formula. 

 and further motivates research about stochastic volatility option pricing 

model [Hull and White (1987), Heston (1993)] and deterministic volatility model [Runbinstein 

(1994)]. However, the implied volatility fitting method and other related estimation methods use 

the Black-Scholes formula only as a “transformation mechanism” that first transforms actual 

option prices into implied volatilities and then converts fitted implied volatility curve into option 

price curve. 

The function 𝜎𝐼𝑚𝑝𝑙𝑖𝑒𝑑(𝐾)  can be fitted by polynomials, splines, kernel regressions or other 

methods. Many estimation methods consider both the smoothness of the estimated volatility 

function and the fitness to actual data. Jackwerth and Rubinstein (1996) and Bliss and 

Panigirtzoglou (2002), for example, introduce the trade-off coefficient or the so-called penalty 

function to do so. On the other side, the kernel regression is labeled as easy to implement and 

reliable by Jackwerth (2004). Ait-Sahalia and Lo (1998, 2000) assume that the implied volatility 

is influenced by all five variables from the Black-Scholes and estimate the function by kernel 

regression. Due to its data intensity, this method will not be used in the thesis. An illustration of 

kernel regression with application in finance is provided by Campbell et al. (1997). 

                                                             
7 The explicit assumptions originally made by Black and Scholes (1973) are: 

(1) The no arbitrage condition holds; 
(2) The capital market is perfect, e.g. no short sell restrictions, no transaction costs, securities can be 

subdivided arbitrarily, securities are traded continuously; 
(3) The underlying security does not pay dividends; 
(4) The data generating process of the underlying asset is geometric Brownian motion; 
(5) Both interest rate and the volatility of the asset returns are constant. 
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Malz (1997) proposed another frequently adopted method that interpolates implied volatilities 

across deltas. Delta is one of the Greek letters which measures the sensitivity of the underlying 

asset price 𝑆𝑡 to option price 𝐶(𝑆𝑡,𝑇,𝐾,𝜎, 𝑟). In other words, it is the first-order derivative of 

option price to underlying asset price. In the Black-Scholes framework, the delta8

As delta is a monotonic function of strike price, the function 𝜎𝐼𝑚𝑝𝑙𝑖𝑒𝑑(𝐾) can be derived via delta. 

The intuition of this method is the same as those discussed above in this section. But this method 

is more complicated in the sense that it requires a transformation from delta to strike. 

 of a call option 

can be written as 

∆=
𝜕𝐶
𝜕𝑆 = 𝑁 �

𝑙𝑛(𝑆0 𝐾⁄ ) + (𝑟 + 𝜎2 𝑟⁄ )𝑇
𝜎√𝑇

� 

Last but not least, I will introduce Jackwerth’s so-called fast and stable method. The fast and 

stable method will also be used in this thesis. Jackwerth (2000) indicates that the fast and stable 

method can find a smooth risk-neutral density which also explains the observed option prices. 

𝑀𝑖𝑛
𝜎𝑗

��𝜎𝑗′′�
2

𝑛

𝑗=0

+ 𝜆��
𝜎𝑖 − 𝜎𝚤�
𝑆𝐷𝑖

�
2𝑚

𝑖=1

 

where 𝜎𝑗  and 𝜎𝑖  are estimated implied volatility associated with strike price 𝐾𝑗  and 𝐾𝑖 

respectively; 𝜎𝚤�  is the implied volatility derived from actual option prices; 𝜆  is the trade-off 

parameter; 𝜎𝑗′′ is the second derivative of the implied volatility curve and can be approximated 

by �𝜎𝑗−1 − 2𝜎𝑗 + 𝜎𝑗+1� △2⁄ ; 𝑆𝐷𝑖 is the standard deviation of 𝜎𝚤� . 

The first part of the objective function finds the smallest squared second-order derivative of the 

implied volatility curve since we want a smooth implied volatility curve. The second term 

minimizes the distance between the observed implied volatility and the estimated one. The trade-

off parameter is selected manually to balance the need to find a smooth implied volatility curve 

and the fitness of estimated curve. To solve the objective function above, a group of volatilities 

𝜎𝑗 and 𝜎𝑖 are selected so that the curvature of the volatility curve is minimized and the estimated 

volatility curve agrees with the observed volatilities. 

                                                             
8 This is for assets without dividend payment. 
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After deriving the implied volatility curve, we substitute it back to the Black-Scholes formula 

and calculate the RND function by taking the second derivative with regard to strike price. The 

closed-form solution is 

𝑃�𝑆𝑗� = 𝑟𝑇 �
𝑟−𝑇𝑛�𝑑2𝑗�
𝑆𝑗𝜎𝑗√𝑇

�1 + 2𝑆𝑗√𝑇𝑑1𝑗𝜎𝑗′� + 𝑠𝑑−𝑇√𝑇𝑛�𝑑1𝑗� �𝜎𝑗′′ +
𝑑1𝑗𝑑2𝑗
𝜎𝑗

�𝜎𝑗′�
2�� 

where 

𝑑1𝑗 =
𝑙𝑛(𝑠𝑑−𝑇) �𝑆𝑗𝑟−𝑇��

𝜎𝑗√𝑇
+

1
2𝜎𝑗√

𝑇 

𝑑2𝑗 = 𝑑1𝑗 − 𝜎𝑗√𝑇 

𝑑 = 1 + 𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑑 𝑦𝑖𝑒𝑙𝑑 

𝑆 = 𝑖𝑛𝑑𝑒𝑥 𝑣𝑎𝑙𝑢𝑒 𝑡𝑜𝑑𝑎𝑦 

𝜎𝑗′ = 𝑓𝑖𝑟𝑠𝑡 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑜𝑓 𝑖𝑚𝑝𝑙𝑖𝑒𝑑 𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝑠𝑡𝑟𝑖𝑘𝑒 𝑝𝑟𝑖𝑐𝑒, 𝑎𝑛𝑑 𝑐𝑎𝑛 𝑏𝑒  

𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒𝑑 𝑏𝑦 �𝜎𝑗+1 − 𝜎𝑗−1� 2△⁄  

Like we stated in the paragraphs above, fitting the option price curve itself by minimizing the 

sum of squared errors will put more weights on in-the-money options since the prices of these 

options are higher. Fitting the implied volatility curve can alleviate the problem. Another 

advantage of this method is that the curvature of the implied volatility curve can be minimized so 

that we can get a smooth curve. The disadvantage of this method is that the trade-off parameter is 

selected arbitrarily. A different trade-off parameter will result in a somewhat different RND 

function. For example, a trade-off parameter that closes to zero might result in a straight line. 

Since we use the Black-Scholes formula as the transformation mechanism, a constant volatility 

curve means that risk-neutral density is lognormal. 
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4. Implied Risk Aversion: An Empirical Example 
 

 

In this section, I estimate the subjective density function by the GARCH Monte Carlo method. 

The RND function is estimated by Bahra’s double lognormal method as well as Jackwerth’s fast 

and stable method. I will then derive the implied risk aversion function using equation (2.4) in 

section 2.3. Furthermore, to examine the stability of the implied risk aversion function, 

robustness tests will be implemented. 

 

4.1 Data 
The empirical example is based on a dataset from Thomson Reuters Datastream. The dataset 

contains daily prices of FTSE 100 index options (ESX) that expire on June 2012, ranging from 

06.Jun.2010 to 01.May.2012. The underlying asset of the FTSE 100 index option is the FTSE 

100 index, which measures the price level of 100 largest companies (in terms of market 

capitalization) listed on the London Stock Exchange. FTSE 100 index options are European style 

and are traded on NYSE Liffe London. The expiration date of the FTSE 100 index option 

contract is normally the third Friday of the delivery month, i.e. 15.Jun.2012 in this example. For 

options contracts expired on June 2012, there are 56 different strike prices, ranging from 1600 to 

8800. 

In studies related to RND estimations, S&P 500 European style options (SPX) traded on the 

Chicago Board Options Exchange (CBOE) are frequently used [Jackwerth and Rubinstein (1996), 

Ait-Sahalia and Lo (1998), Figlewski (2008)]. S&P 500 index option is known as one of the 

most frequently traded options in the world. There are more than 100 strikes prices for contracts 

that have the same expiry date. Accordingly, it is convenient to extract the RND functions from 

S&P 500 index options. Yet fewer researchers choose FTSE 100 index options [Bliss and 

Panigirtzoglou (2002, 2004)]. This paper can be a supplement to existing literature. 
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Figure 3 Adjusted Closing Price of FTSE 100 Index and Call Option Prices 
The strike prices of the four options are 1600, 3200, 4800 and 6000 respectively. The sample period is 
from 06.Jul.2010 to 01.May.2012. 
 
 

4.2 Estimation 

4.2.1 Subjective Density Estimation 
In this empirical example, I estimate the one-month-ahead FTSE 100 subjective density. Let 𝐼𝑇 

be the information set on date 𝑇, and 𝐼𝑇 is used to estimate the subjective density of the index 

level 𝑃𝑇+𝑁 , 𝑁  days after the trading day 𝑇 . Here date 𝑇  is 16.Apr.2012 and date 𝑇 + 𝑁  is 

15.Jun.2012. From figure 4, we can see that the behavior of the prices and returns of FTSE 100 is 

consistent with the stylized facts of financial time series. That is, the FTSE 100 closing prices are 

non-stationary, and the logarithmic returns demonstrate the volatility clustering effect9

                                                             
9 I have used augmented Dickey-Fuller test to examine the non-stationarity of prices and the Lagrange multiplier 
test to examine the volatility clustering effect of returns. The unreported results indicate that these two stylized 
facts do exist. 

. Before 

year 2000 the FTSE 100 index increases gradually and the volatility seems to be stable. After 

year 2000, however, the index starts to fluctuate, and the return series become more volatile, 

especially during the period of crash. It seems that the FTSE 100 has recovered from the 

financial crisis since 2009. Therefore, it is appropriate to use the estimation period 16.Apr.2009 

to 16.Apr.2012 to generate the subjective density.  
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Figure 4 Adjusted Closing Price and Logarithmic Return of FTSE 100 Index 
The FTSE 100 index and the logarithmic return series are from 03.Apr.1984 to 01.May.2012. 
 
I use the GARCH Monte Carlo method to estimate the subjective density function. The 

following the GARCH specification is used 

𝑅𝑡 = 𝛽0 + 𝜀𝑡 

ℎ𝑡+12 = 𝛼0 + 𝛼1𝜀𝑡2 + 𝛼2ℎ𝑡2 

𝜀𝑡+1 = ℎ𝑡+1𝜖𝑡+1 

𝑅𝑡 is the logarithmic return of FTSE 100 index on date 𝑡; 𝛽0 is a constant and 𝜀𝑡 is a shock for 

date 𝑡; the time-dependent standard deviation ℎ𝑡+1  can be forecasted by the shock 𝜀𝑡  and the 

standard deviation ℎ𝑡, where 𝜀𝑡 = 𝑅𝑡 − 𝛽0; the shock 𝜀𝑡+1 is the product of ℎ𝑡+1 and 𝜖𝑡+1, where 

{𝜖𝑡} is a sequence of identically and independently distributed (i.i.d.) normal random variables 

with mean zero and variance one. 

The information set 𝐼𝑇  is used to estimate the parameters of the model, and simulated series 

𝑃𝑇+1, … ,𝑃𝑇+𝑁 can be generated with 𝑁 standardized random residuals. After repeating 200, 000 

times, we obtain 200,000 predicted prices �𝑃𝑇+𝑁𝑖 �
𝑖=1
200,000

. Then the kernel method is used to 

estimate the subjective density based on these simulated observations. 
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Figure 5 FTSE 100 Index Simulation 
The estimation period is from 16.Apr.2009 to 16.Apr.2012. The GARCH (1, 1) model is used to forecast 
the FTSE 100 index level on 15.Jun.2012 with simulated shocks. 
 
 

Figure 6 Subjective Density Estimated by the GARCH Monte Carlo Method 
Subjective densities are estimated by the GARCH Monte Carlo method and the KDE method respectively. 
The estimation period is from 16.Apr.2009 to 16.Apr.2012. For the KDE method, Gaussian kernel is 
adopted, and the bandwidth is ℎ = 1.4𝜎 𝑛0.2⁄ . The subjective densities depict the representative 
investor’s wealth distribution on 15.Jun.2012. 
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Figure 6 depicts the empirical subjective densities on 15.Jun.2012. The subjective density 

estimated directly by the KDE method seems to have a fatter left tail, indicating that there is a 

larger probability of wealth decrease from 16.Apr.2012 to 15.Jun.2012. Just as criticized by 

Rosenberg and Engle (2002), the KDE method assumes that the probability beliefs are formed by 

equally weighting events over the estimation period, but previous events are disregarded. By 

equally weighting the events over the estimation period, the KDE method might give more 

weights to the left tail of the distribution due to two sudden market declines during the estimation 

period. On the other side, the GARCH model has the long memory property. It admits that 

events before the estimation period can also influence the formation of the subjective density. 

Therefore, I will only use the GARCH Monte Carlo method to estimate the implied risk aversion. 

 

4.2.2 Risk-Neutral Density Estimation 
When estimating the RND function, risk-free rates and dividend yields are needed. I obtain the 

dividend yields directly from Thomson Reuters Datastream. Risk-free interest rates, however, are 

more difficult to find. The 3-month risk-free rate is available from Datastream and the webpage 

of the Bank of England. Yet there is no information regarding 2-month risk-free interest rate. 

Unless the 2-month risk-free interest rate is equal to the 3-month rate, I am unable to accurately 

estimate the RND function on 15.Jun.2012 using the information by 16.Apr.2012. London 

Interbank Offer Rate (LIBOR) can be used to calibrate the interest rate required. But a spread 

should be subtracted from the LIBOR since the LIBOR is not a risk-free rate. Another approach 

suggested by Jackwerth and Rubinstein (1996) is to extract the risk-free interest rate from put-

call parity and cost-of-carry relation 

𝐶𝑡 + 𝑒−𝑟(𝑇−𝑡)𝐾 = 𝑒−𝑑(𝑇−𝑡)𝑆𝑡 + 𝑃𝑠 

𝐹𝑡 = 𝑒(𝑟−𝑑)(𝑇−𝑡)𝑆𝑡 

Since all the variables in the two equations above are observable except the interest rate, the 

interest rate can be backed out from the two equations 

𝑟 =
𝑙𝑛 𝑃𝑠 + 𝑒−𝑑(𝑇−𝑡)𝑆𝑡 − 𝐶𝑡

𝐾
−(𝑇 − 𝑡)  
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𝑟 =
𝑙𝑛 𝐹𝑡𝑆𝑡
𝑇 − 𝑡 + 𝑑 

This method assumes that there is no arbitrage opportunity in the market. Moreover, factors like 

the bid-ask spread of the options and transaction costs are overlooked. Therefore, the derived 

interest rate might subject to different types of errors. The empirically estimated interest rate can 

even be negative. Bliss and Panigirtzoglou (2004) use different rates as proxy of risk-free rate to 

calculate the RNDs, e.g. the 3-month LIBOR, Federal funds rate, or the 3-month EuroDollar rate. 

They conclude that the choices of interest rate will have little impact on the RND estimation, 

since a 100 basis point change in the assumed interest rate will produce approximately a 2 basis 

point change in the measured at-the-money implied volatility for a 1-month contract, increasing 

to 5 basis points at the 6-month horizon. In this example, I will use the interest rate extracted 

from the put-call parity relation. When implementing the robustness test, I will estimate the 

RNDs with different interest rates. 

Figure 7 Risk-Neutral Density estimated by Bahra’s (1997) Double Lognormal Method 
The risk-neutral density is estimated by Bahra’s double lognormal method. 7 options on 16.Apr.2012 are 
used. The risk-neutral density depicts the wealth distribution of the representative investor on 15.Jun.2012. 
 
Although there are 56 different strikes for the FTSE 100 index options, some options are 

infrequently traded, especially the deep in-the-money options and the deep-out-of-the-money 

ones. These infrequently traded options may not fully incorporate investors’ beliefs. Thus, for the 
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double lognormal method I will only use 7 options with strike prices that are closest to the FTSE 

100 index level on 16.Apr.2012. For the fast and stable method, 9 such options will be selected. 

When implementing the double lognormal method, we estimate five parameters of the objective 

function so that sum of squared differences between the theoretical prices and the actual market 

prices of the options is minimized. 7 options on 16.Apr.2012 are used to estimate the RND 

function on 15.Jun.2012. Figure 7 shows the first and second component of the RND function, 

and the combination of the two. The mean of the second component is about 0.95 while that of 

the first component is about 1.05. The kurtosis of the second component is larger. The RND 

function, as the combination of the two, exhibits a moderate mean and kurtosis. 

Figure 8 Implied Volatility Curve estimated by Jackwerth’s (2000) Fast and Stable Method 
The implied volatility curve is fitted by Jackwerth’s (2000) fast and stable method with 9 options on 
16.Apr.2012. Implied volatilities backed out from actual option prices are denoted by nine blue triangles. 
 

Next we use the Fast and Stable method to estimate the RND function. The implied volatilities 

are backed out from the at-the-money (ATM) call option and eight adjacent options using 

Newton-Raphson interation method. We fit the the implied volatility function 𝜎𝐼𝑚𝑝𝑙𝑖𝑒𝑑(𝐾) by the 

fast and stable method. When selecting the trade-off parameter, I put priotrity on the fittness of 

the implied volatility curve to the actual implied volatilities, but also consider the smoothness of 

the estimated density. The logic behind this criteria is that if the implied volatility curve does not 

fit the actual data well, the estimated density will not fully incorporate investors’ beliefs. Figure 

0.0% 

5.0% 

10.0% 

15.0% 

20.0% 

25.0% 

30.0% 

35.0% 

Wealth Level 

Trade-off = 10^6 

Trade-off = 10^4 



- 29 - 
 

8 below shows two fitted implied volatility curves. It seems that a trade-off parameter of 106 

works well. A trade-off parameter higher than 106 will lead to a under-smoothed RND. 

After deducting the implied volaitlity curves, we use the Black-Scholes formula to transform the 

volatility curve to the option prices function. Then the RND function can be derived by taking 

the second-order derivative with respect to strike price. As expected, the RND function derived 

with a trade-off parameter of 104 is smoother. However, the RND function with a trade-off 

parameter of 106 better reflects market beliefts. 

Figure 9 Risk-Neutral Density estimated by Jackwerth’s  (2000) Fast and Stable Method 
The risk-neutral density is estimated by Jackwerth’s (2000) fast and stable method with 9 options on 
16.Apr.2012. 
 

 

4.2.3 Implied Risk Aversion Estimation 
Figure 10 displays the RND functions estimated by the double lognormal method as well as the 

fast and stable method, and the subjective density estimated by GARCH Monte Carlo method. 

The risk-neutral densities exhibit leptokurtic property. RNDs have more acute peaks, and the left 

tails are fatter than that of the subjective density. On the other hand, the subjective density is 

platykurtic. Further, subjective density indicates that there is a higher probability of obtaining a 

wealth level above 1.10. Jackwerth (2004) estimates the risk-neutral and actual probability 

distributions for S&P 500, German DAX 30 and UK FTSE, and concludes that the risk-neutral 
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distributions are leptokurtic and left-skewed (i.e. they have fatter left tail). Taylor (2005) points 

out that the RND contains more information than the subjective density. Just like implied 

volatility is a better predictor of future volatility than the historical volatility [Mayhew (1995)], 

RND function incorporates investors’ beliefs while the subjective density is only a reflection of 

historical information. 

Figure 10 Risk-Neutral Densities and Subjective Density 
The RNDs are estimated by double lognormal method and fast and stable method respectively. The 
subjective density is estimated by the GARCH Monte Carlo method. The densities depict the wealth 
distribution of the representative investor on 16.Jun.2012. 
 
It seems that the RNDs estimated by the two different methods are in similar shape. We 

implement the Kolmogorov-Smirnov test (K-S test) to examine whether the RNDs estimated by 

the two approaches are statistically different. The null hypothesis is that the two distributions are 

the same, i.e. 𝐻0:𝑓𝑄 ,𝐷𝐿𝑀(𝑊𝑇) = 𝑓𝑄,𝐹&𝑆(𝑊𝑇). Firstly of all, 10,000 observations are generated 

from each risk-neutral probability distribution. Next, two cumulative distribution functions with 

respective to the generated observations are formulated. Then we calculate the supremum of the 

set of absolute different between the two cumulative distributions, i.e. 𝐷 = 𝑠𝑢𝑝�𝐹�𝑄,𝐷𝐿𝑀(𝑊𝑇) =

𝐹�𝑄,𝐹&𝑆(𝑊𝑇)�. Lastly, the critical value and p-value can be computed based on the maximum 

distance 𝐷. The p-value of the K-S test is 0.000, indicating that the null hypothesis that the 

RNDs estimated by the two different methods are the same is rejected at any conventional 

significance level. Thus, the RND calculated by the double lognormal method is statistically 

different from the one calculated by the fast and stable method. 
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Given the RND and the subjective density, we can calculate the implied risk aversion function. 

Implied risk aversion functions are derived using the GARCH estimated subjective density, and 

the RND estimated by either the double lognormal method or the fast and stable method. 

However, the risk aversion functions are inconsistent with the orthodox financial theory. The risk 

aversion functions are U-shaped. When the wealth level is higher than 1, the risk aversion 

increases dramatically. This is more prominent for the function estimated by the fast and stable 

method. 

 
Figure 11 Implied Risk Aversion Functions across Wealth 
The RNDs are estimated by the double lognormal method as well as the fast and stable method. The 
subjective density is estimated by the GARCH Monte Carlo method. The implied risk aversion describes 
the absolute risk aversion of the representative investor across wealth. 
 
The implied risk aversion smile in figure 11 is also documented by other papers. Jackwerth 

(2000) estimates the absolute risk aversion function with options on the S&P 500 index from 

April 2, 1986 to December 29, 1995, while Ait-Sahalia and Lo (2000) calculate the relative risk 

aversion function using option prices in 1993. The RND function is estimated by the fast and 

stable method in Jackwerth’s paper and the kernel regression method in the paper of Ait-Sahalia 

and Lo. Both of the papers estimate the subjective density function by the KDE method. 

Jackwerth indicates that after the 1987 stock market crash the risk aversion becomes an 

increasing function of wealth when the wealth level is higher than 0.99. On the other side, the 

implied risk aversion obtained by Ait-Sahalia and Lo (2000) is also an increasing function of 

wealth when the S&P 500 index level is higher than 500 at expiration. One exception is Perignon 
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and Villa (2002). They investigate the risk aversion function with the CAC 40 index options. 

Perignon and Villa replicate the paper of Jackwerth (2000). They find that the risk aversion 

function is a decreasing function of CAC 40 index, but the risk aversion becomes negative when 

the index is higher than a certain level. Nevertheless, in their paper the subjective density 

estimated by the KDE method does not capture the volatility clustering effect which exists in 

most financial time series. 

 

4.3 Robustness Tests 
Before exploring possible explanations for the oddly behaved risk aversion function, I will 

implement robustness test to examine the stability of the function. Empirically, the selection of 

estimation methods, estimation periods and dataset may influence the shape of the risk aversion 

function. For example, the RNDs estimated by the double lognormal method and the fast and 

stable method in figure 10 are statistically different, and can further influence the shape of the 

risk aversion functions. 

The robustness test is divided into three steps. Firstly, the stability of the subjective density will 

be examined. I will use different GARCH-family models to derive the subjective density. 

Secondly, I will select different risk-free rates to estimate the RNDs, and for the fast and stable 

method different trade-off parameters will be chosen. Lastly, I will investigate whether the 

implied risk aversion function is still U-shaped under these different choices. Note that the 

robustness test here is a comparative statics analysis rather than a scenario analysis, i.e. in the 

robustness test only one element is changed at a time. 

Glosten, Jagannathan and Runkle (1993) proposed an alternative ARCH-family model. For some 

financial time series, it could be the case that former positive and negative shocks have different 

impact on current shocks. Accordingly, the GJR-GARCH model introduces a dummy variable 

that equals one when the past shock 𝜀𝑡  is positive. If the dummy variable is statistically 

significant at conventional level, there exists leverage effect. Moreover, most probability 

distributions of high-frequency financial data are leptokurtic, so I will employ the student t-

distribution rather than the normal distribution when estimating the GJR-GARCH model with 

maximum likelihood method (MLM). 
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Figure 12 Subjective Density estimated by the GJR-GARCH model 
The subjective densities are generated by the GJR-GARCH model. The parameters of the GJR-GARCH 
model are estimated by the maximum likelihood method (MLM). When implementing the MLM, the 
normal distribution and the t-distribution are used. 
 
 

 
Figure 13 Implied Risk Aversion Functions across Wealth 
The RNDs are estimated by the double lognormal method and the fast and stable method respectively. 
The subjective densities are generated by the GJR-GARCH model. The parameters of the GJR-GARCH 
model are estimated by the maximum likelihood method (MLM). When implementing the MLM, the 
normal distribution and the t-distribution are used. 
 
Figure 12 displays the subjective densities generated by the GJR-GARCH model. Subjective 

densities derived from GJR-GARCH model are more leptokurtic than the density estimated by 

GARCH(1, 1) model. The implied risk aversion functions are U-shaped, and the risk aversion 
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increases sharply when the wealth level is above 1.14. Even if we change the model to generate 

the subjective density, it seems that the risk aversion function is still U-shaped. 

Figure 14 RNDs Estimated by the Fast and Stable Method with Different Interest Rates 
The RNDs are estimated by the fast and stable method. The interest rates used vary from 1% to 5%. 
 
 

 
Figure 15 Implied Risk Aversion Functions Across Wealth 
The implied risk aversion is estimated by RNDs and subjective density. RNDs are estimated by the fast 
and stable method with interest rates ranging from 1% to 5%, and the subjective density is estimated by 
the GARCH Monte Carlo Method. 
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The next thing is to estimate the shape of RNDs using different interest rates. Figure 14 

demonstrates RNDs estimated by the fast and stable method using various interest rates. It seems 

that when different interest rates are employed, the shapes of the RNDs do not change 

significantly, except that the left tails of the distributions are fatter when interest rate decreases. 

The risk aversion functions in figure 15 preserve the features of those in figure 11. That is, the 

risk aversion is an increasing function of wealth when the wealth level is above a certain level. 

We also use the double lognormal method for this sensitivity analysis, and the unreported results 

are consistent with those obtained here. As indicated by Bliss and Panigirtzoglou (2004), interest 

rate does not play an important role in RND estimation. 

Then I select a different set of trade-off parameters when using the fast and stable method. If the 

trade-off parameter gets larger, the implied volatility curves fit the observations better. Figure 16 

demonstrates five fitted implied volatility curves that employ different trade-off parameters. It is 

interesting to point out that the fitted curves converge to straight lines when the trade-off 

parameter is getting smaller. Since we use the Black-Scholes formula as a transformation 

mechanism, the associated risk-neutral distribution will be closer to lognormal. A lognormal 

risk-neutral distribution will then result in a decreasing absolute risk aversion function. In figure 

16, 17 and 18, we can see that if the volatility curve is close to a straight line, the risk-neutral 

density is close to lognormal, and the associated risk aversion decreases when the wealth level 

exceeds 0.93.  

The reason is as follows. In the Black-Scholes economy, the asset price follows the geometric 

Brownian motion, and the implied volatility is constant. We obtain the risk-neutral density by 

taking the second-order derivative of the option function 𝐶(𝑆𝑡 ,𝑇,𝐾,𝜎, 𝑟). The subjective density 

can be generated directly using the physical asset price dynamics. Using equation (2.5)  in 

section 2.3, we calculate the relative risk aversion function in the Black-Scholes economy. It 

turns out that the relative risk aversion is a constant across wealth, i.e. the absolute risk aversion 

is a decreasing function of wealth. See He and Leland (1993) and Ait-Sahalia and Lo (2000) for 

a more detailed derivation. 

However, when the trade-off parameter is equivalent to or smaller than 103, the fitter volatility 

curves no longer reflect investors’ beliefs since the curves do not fit the empirical implied 

volatilities at all. Therefore, it is meaningless to interpret the associated risk aversion functions. 
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On the other side, the well-fitted implied volatility curves still lead to U-shaped risk aversion 

functions. 

 
Figure 16 Fitted Implied Volatility Curves 
The implied volatility curves are estimated by Jackwerth’s (2000) fast and stable method using 9 options 
on 16.Apr.2012. Five different trade-off parameters are selected. Implied volatilities backed out from 
actual option prices are denoted by nine blue triangles. 
 
 

 
Figure 17 RNDs Estimated by Fast and Stable Method  
The RNDs are estimated by the fast and stable method using 9 options on 16.Apr.2012. Five different 
trade-off parameters are used. 
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Figure 18 Implied Risk Aversion Functions across Wealth 
The implied risk aversion functions are estimated by RNDs and subjective densities. RNDs are estimated 
by the fast and stable method with 9 options on 16.Apr.2012, and the subjective density is estimated by 
the GARCH Monte Carlo Method. 
 
So far all the densities are derived using the option prices on 16.Apr.2012. It is possible that the 

implied risk aversion is unstable across different days. Therefore, we derive RNDs and 

subjective densities on a set of trading days, ranging from 4.Jan.2012 to 30.Apr.2012. A total 

number of 82 RNDs and subjective densities are extracted respectively. RNDs are estimated by 

Jackwerth’s fast and stable method, and subjective densities are derived by the GARCH Monte 

Carlo method. Subsequently, 82 implied risk aversions are calculated with respective to each 

trading day. The figures are given in Appendix C. For each month, we compute the mean and 

standard deviation of risk aversions at each wealth level. Then we plot the average risk aversion 

across wealth for each month. It turns out that the absolute risk aversion functions are still 

humped for each month. Although the risk aversion is about 1~2 around the wealth level 1.00 in 

each month, it increases to approximately 18, 28, 80 and 110 at the wealth level 1.18 for January, 

February, March and April respectively. Therefore, the absolute risk aversion is time-varying. 

This is consistent with the finding of Rosenberg and Engle (2002). They study the relation 

between empirical risk aversion and the business cycle, and find that the empirical risk aversion 

is counter cyclical. Due to data limitation, I do not estimate the risk aversion over a longer period 

of time. 
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Figure 19 Implied Risk Aversion Function across Wealth (Jan-2012, Feb-2012, Mar-2012 and Apr-2012) 
We calculate the absolute risk aversion functions across level from 4.Jan.2012 to 30.Apr.2012. For each month, we calculate the mean 
of risk aversion at each wealth level. The dashed line is the 0.5 times the standard of the risk aversion at each wealth level.

0 
2 
4 
6 
8 

10 
12 
14 
16 
18 
20 

Ab
s.

 R
is

k 
Av

er
si

on
 

Wealth Level 

Panel A: Jan-2012 

0 

5 

10 

15 

20 

25 

30 

35 

Ab
s.

 R
is

k 
Av

er
si

on
 

Wealth Level 

Panel B: Feb-2012 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

Ab
s.

 R
is

k 
Av

er
si

on
 

Wealth Level 

Panel C: Mar-2012 

0 

20 

40 

60 

80 

100 

120 

Ab
s.

 R
is

k 
Av

er
si

on
 

Wealth Level 

Panel D: Apr-2012 



- 39 - 
 

4.4 U-Shaped Implied Risk Aversion: Possible Explanations 
The U-shaped implied risk aversion function is stable under different conditions. The shape of 

the implied risk aversion function changes only when we select a trade-off parameter that 

seriously deteriorates investors’ beliefs. Furthermore, since options with extremely low and high 

strike prices are illiquid, they might not fully reflect investors’ future expectations. So the tails of 

the RNDs might be inaccurately estimated. However, the risk aversion functions are U-shaped 

even around the wealth level 1, where options are actively traded. Illiquid trading is therefore not 

an excuse for the U-shaped risk aversion function. It seems that the U-shaped implied risk 

aversion might not be caused by empirical issues, i.e. data selection, methods used etc. 

Theoretically, several issues might influence the validity and accuracy of the estimated risk 

aversion function. The equilibrium model discussed in section 2.3, so to speak, is based on some 

strict assumptions: in the exchange economy, there is a single consumption good, the market is a 

frictionless and complete, and the stock index is a proxy of aggregate endowment and aggregate 

wealth. However, in reality, there are obviously more consumption goods and the market is not 

frictionless. If the market is incomplete, we are unable to use the representative investor 

framework, and the RND function is no longer unique, so is the risk aversion function. Another 

controversial assumption is that in equilibrium the representative investor optimally holds the 

market portfolio so that the stock index is a proxy of his aggregate wealth and aggregate 

consumption. However, Lochstoer (2006) shows that the stock index returns are heteroskedastic 

while that of the aggregate consumption is not. Ziegler (2007) exploits the potential solutions to 

the implied risk aversion smile puzzle and studies the shape of the risk aversion function under 

different frameworks, i.e. agents with heterogeneous preferences and beliefs, asset price 

dynamics with stochastic volatility or jumps. He concludes that none of these can account for the 

risk aversion smile. 
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5. Concluding Remarks 
 

 

In this paper, we derive the implied risk aversion function under a specific economy, where the 

market is complete so that there is a representative investor who endows with one unit of risky 

asset and optimally follows the path-independent strategy [Ait-Sahalia and Lo (2000), Jackwerth 

(2000)]. In this economy, the absolute risk aversion can be written as a function of the subjective 

density and the risk-neutral density.  

Then we use the GARCH Monte Carlo method to estimate the subjective density, and use the 

double lognormal method as well as the fast and stable method to estimate the risk-neutral 

density. Compared with the subjective densities, the risk-neutral densities are leptokurtic with 

fatter left tails. Although the RNDs estimated by the two methods are in similar shape, the results 

of the Kolmogorov-Smirnov test indicate that the RNDs estimated by these two methods are 

statistically different with a p-value of 0.000. 

Next, the implied risk aversion function is calculated. However, we find that the absolute risk 

aversion function is U-shaped. It is inconsistent with the theory of finance. Intuitively, when an 

agent’s wealth increases, his risk aversion decreases. The U-shaped risk aversion function has 

also documented in other related papers, such as Jackwerth (2000, 2004), Ait-Sahalia and Lo 

(2000), Rosenberg and Engle (2002), and Ziegler (2007), to name a few. We implement some 

robustness tests to examine the stability of the U-shaped risk aversion function by comparative 

static analysis. The subjective densities are estimated using a different GARCH-family model, 

and the RNDs are estimated with options on various trading days. The results indicate that the U-

shaped risk aversion function is robust under different empirical settings. Therefore, it seems that 

the U-shaped function is less likely to be caused by the empirical issues. As stressed by Ziegler 

(2007), the standardized consumption-based model is too idealistic. Future research can study the 

implied risk aversion function under a more sophisticated economy, which for example, admits 

market incompleteness. 
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Appendix A: Asset Pricing Theory 
 

 

Asset pricing can be categorized by equilibrium pricing and arbitrage pricing. The former analyzes the 

demand and supply of assets while the latter is based on the ideal that assets with the same expected 

payoffs should have the same price. However, these two types of models are interrelated. In section 1 of 

this appendix, we will start with Pareto optima, and end with the multi-period dynamic equilibrium model. 

The connection between arbitrage pricing and equilibrium pricing is the Arrow-Debreu security. In 

section A2, the risk-neutral pricing and the martingale measure will be discussed. The whole framework 

is the foundation of modern finance theory. In order to better understand the RND estimation methods 

and implied risk aversion, it is necessary to study the theory behind. 

 

A1 Equilibrium Pricing 
Equilibrium models analyze the supply and demand of assets. From the first fundamental theorem of 

welfare economics, the competitive economy market equilibrium must be Pareto optimum, that is, 

resources reallocation cannot improve one agent’s utility without deteriorate other agents’ utilities. I will 

start with the simplest but classic one-period equilibrium model, and will introduce time and uncertainty 

gradually. Note that in all the equilibrium models here technology and production are not considered.  

 

A1.1 Static Competitive Exchange Model 
In a static model, all the transactions occur at one time point and there is no uncertainty. There are N 

agents and G tradable goods. Each individual initially owns tradable goods as endowment, and consumes 

all the goods after trading. Agents’ preferences are represented by their utility function. They act to 

maximize their own utilities. Using mathematical notations, we have 

(1) 𝐴𝑔𝑒𝑛𝑡𝑠 𝑁 =  [1, … ,𝑛, …𝑁]; 

(2) 𝑇𝑟𝑎𝑑𝑎𝑏𝑙𝑒 𝑔𝑜𝑜𝑑𝑠 𝐺 = [1, … ,𝑔, …𝐺]; 

(3) 𝑃𝑟𝑖𝑐𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑔𝑜𝑜𝑑𝑠 𝑃 =  �𝑃1, … ,𝑃𝑔 , …𝑃𝐺�; 

(4) 𝐸𝑛𝑑𝑜𝑤𝑚𝑒𝑛𝑡 𝑓𝑜𝑟 𝑎𝑔𝑒𝑛𝑡 𝑛,𝜑𝑛 = �𝜑1𝑛, … ,𝜑𝑔𝑛 , …𝜑𝐺𝑛�; 
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(5) 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑎𝑔𝑒𝑛𝑡 𝑛,𝐶𝑛 = �𝐶1𝑛 , … ,𝐶𝑔𝑛, …𝐶𝐺𝑛�; 

(6) 𝑈𝑡𝑖𝑙𝑖𝑡𝑦 (𝑓𝑜𝑟 𝑎𝑔𝑒𝑛𝑡 𝑛) 𝑈𝑛(𝐶𝑛),𝑤ℎ𝑒𝑟𝑒 𝑈(. ) ∈ ℂ. 𝐼𝑓 𝑈(. ) 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠, 𝑐𝑜𝑛𝑐𝑎𝑣𝑒 𝑎𝑛𝑑  

𝑠𝑡𝑟𝑖𝑐𝑡𝑙𝑦 𝑚𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐, 𝑡ℎ𝑒𝑛 𝑤𝑒 𝑠𝑎𝑦 𝑈(. ) ∈ ℂ. 

An equilibrium allocation 𝐶 = [𝐶1, … , 𝐶𝑛, …𝐶𝑁]  and price vector 𝑃 =  �𝑃1, … ,𝑃𝑔 , …𝑃𝐺�  satisfy the 
following conditions 

𝑀𝑎𝑥  [𝑈𝑛(𝐶𝑛)] 

𝑠. 𝑡.  𝑃 ∙ 𝐶𝑛 = 𝑃 ∙ 𝜑𝑛  

𝐶𝑛 ≥ 0 

If there is no other feasible allocation 𝐶̅ = [𝐶̅1, … , 𝐶̅𝑛, … 𝐶̅𝑁] that makes 𝑈𝑛(𝐶̅𝑛) > 𝑈𝑛(𝐶𝑛),∀ 𝑛 ∈ 𝑁, 
then the equilibrium allocation 𝐶 = [𝐶1 , … ,𝐶𝑛, …𝐶𝑁] is Pareto optimum. 

This is the fundamental framework for the equilibrium analysis. The existence of the equilibrium in this 
economy is proved by Arrow and Debreu (1954), and further elaborated by Varian (1992) and Mas-Colell 
et al. (1995). 

 

A1.2 Two-period Competitive Exchange Model 
In this framework, we extend the one-period model into a two-period model, and introduce uncertainty. 

There are two time points 𝑡0 and 𝑡1 when agents consume, but the endowments at period 𝑡1 are uncertain, 

i.e. there are different states of world at 𝑡1. The inputs of the model are as follow 

(1) 𝑆𝑡𝑎𝑡𝑒𝑠 𝑜𝑓 𝑤𝑜𝑟𝑙𝑑 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡1 , 𝑆 =  [1, … , 𝑠, … 𝑆]; 

(2) 𝐴𝑔𝑒𝑛𝑡𝑠,𝑁 =  [1, … ,𝑛, …𝑁]; 

(3) 𝑇𝑟𝑎𝑑𝑎𝑏𝑙𝑒 𝑔𝑜𝑜𝑑𝑠,𝐺 = [1, … , 𝑔, …𝐺]; 

(4) 𝑃𝑟𝑖𝑐𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑔𝑜𝑜𝑑𝑠 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡0 ,𝑷𝟎 =  �𝑃01, … ,𝑃0𝑔 , …𝑃0𝐺�; 

(5) 𝑃𝑟𝑖𝑐𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑔𝑜𝑜𝑑𝑠 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡1 𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 𝑠,𝑷𝒔 =  �𝑃𝑠1, … ,𝑃𝑠𝑔 , …𝑃𝑠𝐺� ; 

(6) 𝐸𝑛𝑑𝑜𝑤𝑚𝑒𝑛𝑡 𝑓𝑜𝑟 𝑎𝑔𝑒𝑛𝑡 𝑛 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡0,𝝋𝟎
𝒏 = �𝜑01𝑛 , … ,𝜑0𝑔𝑛 , …𝜑0𝐺𝑛 �; 

(7) 𝐸𝑛𝑑𝑜𝑤𝑚𝑒𝑛𝑡 𝑓𝑜𝑟 𝑎𝑔𝑒𝑛𝑡 𝑛 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡1 𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 𝑠,𝝋𝒔
𝒏 = �𝜑𝑠1𝑛 , … ,𝜑𝑠𝑔𝑛 , …𝜑𝑠𝐺𝑛 �; 

(8) 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑎𝑔𝑒𝑛𝑡 𝑛 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡0 ,𝑪𝟎𝒏 = �𝐶01𝑛 , … ,𝐶0𝑔𝑛 , …𝐶0𝐺𝑛 �; 

(9) 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑎𝑔𝑒𝑛𝑡 𝑛 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡1 𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 𝑠,𝑪𝒔𝒏 = �𝐶𝑠1𝑛 , … ,𝐶𝑠𝑔𝑛 , …𝐶𝑠𝐺𝑛 � ; 

(10) 𝑃𝑟𝑖𝑐𝑒𝑠 𝑜𝑓 𝑐𝑜𝑛𝑡𝑖𝑛𝑔𝑒𝑛𝑡 𝑐𝑙𝑎𝑖𝑚𝑠, 𝑷́𝒔 =  �𝑃́𝑠1, … , 𝑃́𝑠𝑔 , … 𝑃́𝑠𝐺�; 

(11) 𝑇𝑟𝑎𝑑𝑖𝑛𝑔 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑔𝑒𝑛𝑡,𝜽𝒔𝒏 = �𝜃𝑠1𝑛 , …𝜃𝑠𝑔𝑛 , …𝜃𝑠𝐺𝑛 �; 

(12) 𝐴𝑑𝑑𝑖𝑡𝑖𝑣𝑒 𝑢𝑡𝑖𝑙𝑖𝑡𝑦 (𝑓𝑜𝑟 𝑎𝑔𝑒𝑛𝑡 𝑛) 𝑈𝑛(𝑪𝒏),𝑤ℎ𝑒𝑟𝑒 𝑈(. ) ∈ ℂ 𝑎𝑛𝑑 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 𝑡ℎ𝑒  
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𝑣𝑜𝑛 𝑁𝑒𝑢𝑚𝑎𝑛𝑛 −𝑀𝑜𝑟𝑔𝑒𝑛𝑠𝑡𝑒𝑟𝑛 (𝑣𝑁𝑀) 𝑢𝑡𝑖𝑙𝑖𝑡𝑦 𝑡ℎ𝑒𝑜𝑟𝑒𝑚; 

(13) 𝐴𝑔𝑒𝑛𝑡𝑠 𝑎𝑟𝑒 𝑖𝑚𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑠𝑜 𝑡ℎ𝑎𝑡 𝑢𝑡𝑖𝑙𝑖𝑡𝑦 𝑎𝑡 𝑓𝑢𝑡𝑢𝑟𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 𝑖𝑠 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑 𝑏𝑦 𝑎 𝑡𝑖𝑚𝑒  

𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 𝑟𝑎𝑡𝑒 𝛿𝑛. 

In this model, the utility function is additive. This type of utility function is frequently used and 

convenient for computation purpose. Yet it has been criticized for linking risk aversion coefficient to 

intertemporal substitution10

To demonstrate the importance of contingent claim, we first ignore it and inputs (10) and (11). The 

equilibrium in such case satisfies 

𝑀𝑎𝑥  {𝑈𝑛(𝑪𝟎𝒏) + 𝛿𝑛𝐸[𝑈𝑛(𝑪𝒔𝒏)]} 

𝑠. 𝑡.  𝑷𝟎 ∙ 𝑪𝟎𝒏 ≤ 𝑷𝟎 ∙ 𝝋𝟎
𝒏 

𝑷𝒔 ∙ 𝑪𝒔𝒏 ≥ 𝑷𝒔 ∙ 𝝋𝒔
𝒏,∀𝑠 ∈ 𝑆 

𝑪𝒏 ≥ 𝟎 

. Since uncertainty is introduced, we assume that the utility at period 𝑡1 is the 

expected utility across states, discounted by a discount rate 𝛿. The tradable goods are assumed to be 

perishable so that people cannot store the goods from 𝑡0 to 𝑡1. Here the contingent claim is defined as a 

commitment to pay one unit of commodity 𝑔 in state 𝑠 at time 𝑡1. The price for this contingent claim is 

𝑃́𝑠𝑔 . Contingent claim works as an important instrument for intertemporal asset allocation and risk 

hedging. 

Due to the perishability of the goods, agents are not able to make intertemporal decisions. In other words, 

one cannot store his goods to smooth his marginal utility. Therefore, there is no connection between either 

𝑡0 and 𝑡1 or state 𝑠𝑎 and 𝑠𝑏. The equilibria at time 𝑡0 are in fact the same as those discussed in the static 

model. At 𝑡1, every individual’s consumption decision is bounded by his own endowment at that specific 

state. He cannot hedge his risk in those states where he has fewer endowments. However, from a welfare 

point of view, it is possible for two or more agents to achieve higher utility by trading. For example, 

agents with high endowment at time 𝑡0 but low endowment at 𝑡1 can trade with agents who have high 

endowment at time 𝑡1 but nothing at 𝑡0; on the other hand, agents with high endowment at state 𝑠1 can 

make an agreement with those with high endowment at state 𝑠2 to alleviate the consumption volatility 

among states. As agents are assumed to be risk averse, such trades can actually increase the utility of both 

traders. 

                                                             
10 For example, in the approximated log linearized Euler equation with a constant relative risk aversion (CRRA) 
utility function, the risk aversion coefficient is exactly the intertemporal substitution parameter. 
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Contingent claim market works as an instrument for intertemporal asset allocation and risk hedging. 

Hence, investors’ consumption restriction caused by time and uncertainty can be solved. Suppose (10) 

and (11) are now included, and the equilibrium should satisfies 

𝑀𝑎𝑥  {𝑈𝑛(𝑪𝟎𝒏) + 𝛿𝑛𝐸[𝑈𝑛(𝑪𝒔𝒏)]} 

𝑠. 𝑡.  𝑷𝟎 ∙ 𝑪𝟎𝒏 +�𝑷́𝒔 ∙ 𝑪𝒔𝒏
𝑆

𝑠=1

≤ 𝑷𝟎 ∙ 𝝋𝟎
𝒏 +�𝑷́𝒔 ∙ 𝝋𝒔

𝒏
𝑆

𝑠=1

 

𝑪𝟎𝒏,𝑪𝒔𝒏 ≥ 𝟎 

The inequality can be rewritten as 𝑷𝟎 ∙ 𝑪𝟎𝒏 ≤ 𝑷𝟎 ∙ 𝝋𝟎
𝒏 − ∑ 𝑷́𝒔 ∙ 𝜽𝒔𝒏𝑆

𝑠=1  since  𝜽𝒔𝒏 + 𝝋𝒔
𝒏 = 𝑪𝒔𝒏 . Market 

clearing condition is fulfilled when ∑ 𝑪𝒔𝒈𝒏𝑁
𝑛=1 = ∑ 𝝋𝒔𝒈

𝒏𝑁
𝑛=1 , ∀𝑠 ∈ 𝑆 & 𝑔 ∈ 𝐺 . This equilibrium is also 

Pareto optimum. This is the very classic Arrow-Debreu economy by Arrow (1964) and Debreu (1959). 

Mas-Colell et al. (1995) also elaborate the construction of the economy and the existence of equilibria. A 

more intuitive but less technical interpretation is given by Danthine and Donaldson (2005). Arrow-Debreu 

economy brings us the concept of pure security, which plays a significant role in arbitrage pricing. Pure 

security builds a bridge between stochastic discount factor (SDF) and risk-neutral probability, and closely 

relates to market completeness. These will be demonstrated in section A2.2. 

 

A1.3 Multi-period Competitive Exchange Model 
In the two-period setting, all the decisions about contingent claims are made at 𝑡0. If we extent to multi-

period framework, agents can make investment and consumption decision at every time point. Before 

explaining the model, a complete probability space has to be setup. A complete probability space 

(𝛺,𝑃,ℱ) consists 

(1) 𝐴 𝑐𝑜𝑚𝑚𝑜𝑛 𝑠𝑎𝑚𝑝𝑙𝑒 𝑏𝑒𝑙𝑖𝑒𝑓 𝛺 = (𝜔1 , … ,𝜔𝑠 , … ,𝜔𝑆) 𝑤𝑖𝑡ℎ 𝑆 𝑒𝑣𝑒𝑛𝑡𝑠; 

(2) 𝑇ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 𝑃 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑠 𝑡𝑜 𝑒𝑎𝑐ℎ 𝑒𝑣𝑒𝑛𝑡; 

(3) 𝑇ℎ𝑒 𝜎 − 𝑎𝑙𝑔𝑒𝑏𝑟𝑎11 ℱ 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑎 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡𝑠. 

The event 𝜔𝑠 ∈ ℱ is measureable if it is able to project to the real number set, i.e. 𝐹:𝛺 → ℛ. Then we 

define {ℱ𝑡}𝑡∈[0,𝑇]  as an information flow which contains all the information at time 𝑡 and before time 𝑡, 
                                                             
11 The formal definition of the 𝜎 − 𝑎𝑙𝑔𝑒𝑏𝑟𝑎 on 𝛺 is: 

(1) The empty set ∅ ∈ ℱ; 
(2) If 𝜔𝑠 ∈ ℱ, then its complement 𝜔𝑠𝐶 ∈ ℱ; 
(3) If 𝜔1 ,𝜔2 , … ,𝜔𝑛 ∈ ℱ, then ⋃ 𝜔𝑖

𝑛
𝑖=1 ∈ ℱ. 
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i.e. ℱ0 ⊆ ℱ1 ⊆ ⋯ ⊆ ℱ𝑡 . If the consumption stochastic process 𝐶𝑡(𝜔)  or the stochastic endowment 

process 𝜑𝑡(𝜔) is ℱ𝑡 measurable, then we say that they are ℱ𝑡-adapted. The trading strategy 𝜽𝒕+𝟏 shown 

in the following equation is also ℱ𝑡-adapted. 

In a dynamic equilibrium model, all the agents should have the common information structure and all the 

consumption, endowment and price process are ℱt -adapted. Each individual makes investment and 

consumption decisions according to the information available at that specific time. The setting of the 

dynamic model is similar to that in section A1.2 except that there is now only one good and the agents are 

identical. Notations 𝝋 and 𝑪 are now in monetary forms. The consumption for each period equals the 

endowment minus the net investment in that period, i.e. 𝑪𝒕𝒏 = 𝝋𝒕
𝒏 − 𝑷́𝒕[𝜽𝒕+𝟏𝒏 − 𝜽𝒕𝒏]. Thus, agents will 

maximize their lifetime utility subject to the budget constraint 

𝑀𝑎𝑥 E ��(𝛿𝑛)𝑡  𝑈(𝑪𝒕𝒏)
𝑇

𝑡=0

� 

𝑠. 𝑡.  𝑪𝒕𝒏 = 𝝋𝒕
𝒏 − 𝑷́𝒕[𝜽𝒕+𝟏𝒏 − 𝜽𝒕𝒏] 

A market clearing allocation 𝑪 = �𝑪𝟏, … ,𝑪𝒏, …𝑪𝑵� is Pareto optimum when no other feasible allocation 

𝑪� = �𝑪�𝟏, … ,𝑪�𝒏, …𝑪�𝑵� can lead to 𝑼𝒏(𝑪�𝒏) > 𝑼𝒏(𝑪𝒏). 

This model can further be generalized if we consider K securities instead of the contingent claim which 

pays one unit of goods at a specific state. Then the maximization problem can be written as 

𝑀𝑎𝑥 E ��(𝛿𝑛)𝑡  𝑈(𝑪𝒕𝒏)
𝑇

𝑡=0

� 

𝑠. 𝑡.  𝑾𝒕+𝟏
𝒏 = (𝑾𝒕

𝒏 − 𝑪𝒕𝒏 + 𝒀𝒕𝒏)�𝜽𝒊𝒏𝑹𝒊

𝑲

𝒊=𝟏

 

This is the modern way of deriving equilibrium asset pricing models. Agents’ wealth at each period is the 

total portfolio return of last period’s wealth plus his endowment minus the consumption at that period. 

Merton (1969) first solves a similar portfolio selection problem. Further discussion includes Pennacchi 

(2007) and Back (2010). Materials about measure theory with application in finance can be found in 

Øksendal (2010). 
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A1.4 Stochastic Discount Factor 
Stochastic discount factor (SDF), or the pricing kernel, is one of the most important concepts in asset 

pricing. The SDF can be deduced from a standard dynamic exchange economy, with one consumption 

good and no exogenous income. These assumptions are made to reduce computation 12

Here the model is restricted to two periods, but the two-period model can be extended to multi-period 

model without changing the fundamental setting. Also, the endowment is ignored. Without considering 

endowments, agent’s consumption depends purely on his initial wealth and investment decisions. Then 

we introduce a representative investor who is treated as a weighted average of all individuals in the 

market. This representative investor’s consumption at period 𝑡 is the aggregate consumption of at that 

period and his preference is a weighted average of all the agents’ preference. This is been proved in the 

first part of Constantinides’s (1982) paper. The model in this setting is 

𝑀𝑎𝑥 𝑈(𝐶0) + E0 [𝛿 𝑈(𝐶1)] 

𝑠. 𝑡.  𝐶1 = (𝑊0 − 𝐶0)�𝜃𝑖𝑅𝑖1

𝐾

𝑖=1

 

�𝜃𝑖

𝐾

𝑖=1

= 1 

. Moreover, 

financial economists concentrate more on trading strategy and asset pricing, rather than how income 

process influences consumption. 

The representative investor maximizes his overall discounted expected utility subject to his consumption 

budget. He has initial wealth of 𝑊0 and invests the difference between initial wealth and consumption 

𝑊0 − 𝐶0 in the capital or money market. At period 𝑡1 he will spend all the wealth for consumption, and 

the consumption for period 𝑡1 depends how much the investor save during the first period, the trading 

strategy, and expected return of assets. By substituting the first budget constraint into the second term of 

the maximization problem, we can obtain the first-order conditions (a1) and (a2) 

E0 [𝛿 𝑈′(𝐶1)𝑅𝑖1] = 𝜆,   ∀𝑖 ∈ 𝐾     (𝑎1) 

𝑈′(𝐶0) = 𝜆     (𝑎2) 

                                                             
12 For example, multi-period optimization problem with stochastic income is difficult to solve since the optimal 
consumption with respect to income at each period might not have a closed-form solution. The consumption 
function has to be approximated by mathematical software like Mathematica or Matlab. 
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From the F.O.C. above, we know that  

𝑈′(𝐶0) = E0 [𝛿 𝑈′(𝐶1)𝑅𝑖1],  ∀𝑖 ∈ 𝐾     (𝑎3) 

E0 [𝛿 𝑈′(𝐶1)𝑅𝑖1] = E0 �𝛿 𝑈′(𝐶1)𝑅𝑗1�,   ∀𝑖, 𝑗 ∈ 𝐾     (𝑎4) 

(a3) and (a4) are consistent with the arguments in section A1.2 regarding the two-period equilibrium 

model. When agents can make intertemporal consumption and investment decision, they will eliminate 

consumption uncertainty by equating the expected marginal utility between two periods weighted by asset 

returns. Also, to hedge the risks among different states, investors will smooth the expected marginal 

utility weighted by different asset returns. Asset return can be defined as 

𝑅𝑖𝑡+1 =
𝑋𝑖𝑡+1
𝑃𝑖𝑡

     (𝑎5) 

For assets like contingent claims that expire at period t + 1, the return is the payoff at t + 1 divided by Pit. 

For assets like stocks, the return is the summation of dividend and price at t + 1 divided by stock price at 

t. Substituting (a5) into the first equation 

𝑈′(𝐶0) = E0  �𝛿 𝑈′(𝐶1)
𝑋𝑖1
𝑃𝑖0

� 

As 𝑃𝑖0 is measurable under period 1, we can reorganize the equation by taking 𝑃𝑖0 out of the expectation 

sign 

𝑃𝑖0 = E0  �𝑋𝑖1
𝛿 𝑈′(𝐶1)
𝑈′(𝐶0) � = E0 [𝑋𝑖1𝑀01]     (𝑎6) 

Equation (a6) indicates that we can price any assets with the price kernel and next period payoffs. The 

intuition is that investors are willing to pay greater amount for assets that have high payoff, or when their 

future consumption level is low or when their current consumption level is high. On the one hand, if their 

future consumption at one specific future state is low, the representative agent is willing to hedge the risk 

and pay more for an asset that have higher payoff in that state. On the other hand, if the agent have high 

consumption at period 𝑡0, his is willing to smooth his marginal utility intertemporally and is willing to 

pay a higher price for assets that have payoff in the next period 𝑡1. 

Materials about stochastic discount factor are covered by Back (2010) and Pennacchi (2007). The 

construction of a representative investor is discussed by Danthine and Donaldson (2005), Back (2010) 

and Constantinides (1982). 
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A2 Arbitrage Pricing 
Arbitrage pricing models are straight forward and receive more positive results in empirical studies. The 

only underlying assumption of arbitrage pricing is that assets or portfolio of assets should have the same 

price if their future payoffs are identical across different states. An alternative statement of no arbitrage 

condition13

A good starting point to discuss arbitrage pricing is the Arrow-Debreu security. In section A1.2, we 

defined a contingent claim as the right to receive one unit of commodity 𝑚 at the state 𝑠. However, then a 

total number of 𝑀 × 𝑆 kinds of contingent claims are required for the consumers to fully hedge the risks 

through all states. Instead, if we use a security that pays one unit of currency when state 𝑠 occurs, then 

only 𝑆 securities are need. This security is called the pure security or the Arrow-Debreu security. 

 is that it is not possible to earn positive expected future payoffs with an asset or portfolio that 

has zero or negative price. 

 

A2.1 Market Completeness 
Ross (1976) first illustrates the ideal of market completeness. If the number of pure security 𝑁  is 

equivalent to that of the states 𝑆, then the market is complete. If, however, 𝑁 < 𝑆, then the market is 

incomplete. Using matrix notation, the payoffs of 𝑁 securities in 𝑆 states are 

�
𝑋11 ⋯ 𝑋1𝑆
⋮ ⋱ ⋮

𝑋𝑁1 ⋯ 𝑋𝑁𝑆
� 

In a complete market, there are 𝑆 pure securities, and their payoffs are 

𝑆1 =

⎣
⎢
⎢
⎢
⎡
1
⋮
0
⋮
0⎦
⎥
⎥
⎥
⎤
𝑇

, … , 𝑆𝑠 =

⎣
⎢
⎢
⎡
0
⋮
1
⋮
0⎦
⎥
⎥
⎤
𝑇

, … , 𝑆𝑆 =

⎣
⎢
⎢
⎡
0
⋮
0
⋮
1⎦
⎥
⎥
⎤
𝑇

  

Then the payoff of any asset can be replicated by a combination of pure securities 

𝑃𝑖 = 𝑋𝑖1

⎣
⎢
⎢
⎢
⎡
1
⋮
0
⋮
0⎦
⎥
⎥
⎥
⎤
𝑇

+ ⋯+ 𝑋𝑖𝑠

⎣
⎢
⎢
⎡
0
⋮
1
⋮
0⎦
⎥
⎥
⎤
𝑇

+⋯+ 𝑋𝑖𝑆

⎣
⎢
⎢
⎡
0
⋮
0
⋮
1⎦
⎥
⎥
⎤
𝑇

= 𝑆1𝑋𝑖1 +⋯+ 𝑆𝑠𝑋𝑖𝑠 +⋯+ 𝑆𝑆𝑋𝑖𝑆,∀𝑖 ∈ 𝑁     (𝑎7) 

                                                             
13 This is called the “no free lunch” condition. 
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Under no arbitrage condition, assets or portfolio of assets with the same expected payoffs should have the 

same price, and the price of any asset can be represented by equation (a7) above. If the states are 

continuous rather than discrete, the price of an asset equals 

𝑃 = � 𝑓𝑆(𝑆𝑇) 𝑋(𝑆𝑇)𝑑𝑆𝑇
∞

0
     (𝑎8) 

where 𝑓𝑆(𝑆𝑇) is the state price density and 𝑋(𝑆𝑇) is the end-of-period payoff that depends on the final 

asset price 𝑆𝑇. 

In the real world, there are no pure securities traded in the market14

In a complete market, any assets can be replicated by existing assets in the market. Thus, any arbitrage 

profits can be captured by selling the one with high price and buying the other with low price. So any 

markets that have arbitrage opportunities are not in equilibrium. In an incomplete market, the rank of the 

payoff matrix is smaller than the number of states. Then pure securities for some specific states are not 

replicable, so agents cannot hedge their risks from some states. 

. However, we can create the system 

of pure securities payoff matrix by selling and buying the existing assets in the market. The selling and 

buying process can be treated as the elementary transformation in linear algebra. After implementing the 

elementary transformation, the payoffs matrix should become an identity matrix. If the rank of the 

identity matrix is larger than or equal to the states of world, then we say the market is complete. 

�
𝑋11 ⋯ 𝑋1𝑆
⋮ ⋱ ⋮

𝑋𝑁1 ⋯ 𝑋𝑁𝑆
�

𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑟𝑦 
𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛
�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯� �

111 ⋯ 01𝑆
⋮ ⋱ ⋮

0𝑁1 ⋯ 1𝑁𝑆
� 

 

A2.2 Risk-Neutral Pricing 
The ideal of risk-neutral pricing is proposed by Ross (1976) and Cox and Ross (1976). Risk-neutral 

probability and the state price are closely related. This will be demonstrated in the following paragraphs. 

Using pure security, we can calculate the price of different assets once their payoffs are known. Suppose 

there are two states, and two securities. Their payoffs at date 1 for two different states are as follow 

𝑋1 = � 𝐵1 𝐵1
𝑋1𝑈 𝑋1𝐷

� 

                                                             
14 We can, however, create a portfolio of options that approximates the payoff of a pure security manually using a 
butterfly spread. 
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If the prices of pure securities are given, then prices of the risky and riskless securities equal the product 

of payoffs and the prices of pure securities. The payoff of the riskless security can be replicated by buying 

𝐵1 units of pure securities for both state, and the payoff of the risky asset can be replicated by buying 𝑋1𝑈 

units of pure security for state 𝑈 and buying 𝑋1𝐷 units of pure security for state 𝐷. 

�
𝑃𝐵,0
𝑃𝑆,0

� = � 𝐵1 𝐵1
𝑋1𝑈 𝑋1𝐷

� �
𝑆𝑈,0
𝑆𝐷,0

� = �
(𝑆𝑈,0 + 𝑆𝐷,0)𝐵1

𝑋1𝑈𝑆𝑈,0 + 𝑋1𝐷𝑆𝐷,0
� 

This problem can be illustrated in terms of return. The payoff of the riskless asset is 𝑃𝐵,0(1 + 𝑟), where 𝑟 

is the risk-free rate. Then the equation above can be rewritten as 

�
𝑃𝐵,0
𝑃𝑆,0

� = �𝑃𝐵,0(1 + 𝑟) 𝑃𝐵,0(1 + 𝑟)
𝑋1𝑈 𝑋1𝐷

� �
𝑆𝑈,0
𝑆𝐷,0

� = �
(𝑆𝑈,0 + 𝑆𝐷,0)𝑃𝐵,0(1 + 𝑟)
𝑋1𝑈𝑆𝑈,0 + 𝑋1𝐷𝑆𝐷,0

� 

By reorganizing the equation, we have 

�𝑆𝑈,0 + 𝑆𝐷,0�(1 + 𝑟) = 1 

𝑃𝑆,0 = 𝑋1𝑈𝑆𝑈,0 + 𝑋1𝐷𝑆𝐷,0 

Define 𝑆𝑈,0(1 + 𝑟) = 𝑄𝑈 and 𝑆𝐷,0(1 + 𝑟) = 𝑄𝐷 such that 𝑄𝑈 + 𝑄𝐷 = 1. We can infer that 

𝑃𝑆,0 =
1

1 + 𝑟
�(1 + 𝑟)𝑋1𝑈𝑆𝑈,0 + (1 + 𝑟)𝑋1𝐷𝑆𝐷,0� =

1
1 + 𝑟

[𝑄𝑈𝑆1𝑈 + 𝑄𝐷𝑆1𝐷] 

This formula means that the price of an asset is equivalent to the expected future payoffs discounted by 

risk-free rate, if we treat the 𝑄𝑈 and 𝑄𝐷 as probabilities. This is feasible since 𝑄𝑈 + 𝑄𝐷 = 1 and both  𝑄𝑈 

and 𝑄𝐷  are positive15

Comparing (a8) and (a9), we find that the risk-neutral density is simply the state price density times the 

continuous-time risk-free return, i.e. 𝑓𝑄(𝑆𝑇) = 𝑒𝑟𝑇𝑓𝑆(𝑆𝑇). 

. In microeconomics, risk-neutral investors are those who require no additional 

compensation for risk since they only concern about expected payoff. Thus the probabilities are called 

risk-neutral probabilities. Generally, when the states of world are continuously, the formula above can be 

written as 

𝑃 = 𝑒−𝑟𝑇 � 𝑓𝑄(𝑆𝑇) 𝑋(𝑆𝑇)𝑑𝑆𝑇
∞

0
     (𝑎9) 

                                                             
15 PU,0(1 + r) = QU and PD,0(1 + r) = QD , and riskless rate is always positive. In addition, when there is no 
arbitrate opportunity, the price of pure security will always be positive. 
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A2.3 Equivalent Martingale Measure 
Martingale method is a revolution in quantitative finance. Using martingale method for asset pricing is 

very convenient. For example, using martingale method avoids solving the partial differential equation in 

the Black-Scholes model. The definition of martingale16

(1) In a probability space  (𝛺,𝑃,ℱ) with the information flow {ℱ𝑡}𝑡∈[0,𝑇], the stochastic process 𝑋𝑡 is 

ℱ-adapted; 

 𝑋𝑡 is 

(2) 𝐸[|𝑋𝑡|] < ∞; 

(3) 𝐸[�𝑋𝑡+𝑛|ℱ𝑡] = 𝑋𝑡 ,∀𝑛 ≥ 0. 

The definition of sub-martingale17

In financial markets, most normalized assets prices

 is the same as that of martingale except that condition (3) becomes 

𝐸[�𝑋𝑡+𝑛|ℱ𝑡] > 𝑋𝑡.  

18 are sub-martingales rather than martingales because 

most price series have an upward growing trend. Only normalized riskless asset prices are martingales. 

Therefore, martingale method is developed to change the measure, and thus transforms normalized prices 

that were sub-martingales to martingales. This can be done by Girsanov transformation. If there is a 

probability measure 𝑄 such that normalized prices are martingales under measure 𝑄, then the measure 𝑄 

is called equivalent martingale measure19

Using equivalent martingale measure (risk-neutral measure), I will introduce important theorems in 

arbitrage pricing in the following section. The equivalent martingale measure and its application are 

illustrated by Harrison and Kreps (1979). 

. As a matter of fact, the equivalent martingale measure is the 

risk-neutral measure, under which the asset prices equal the expected future payoff discounted by risk-

free rate. In other words, the normalized asset prices under risk-neutral measure are martingales. 

 

                                                             
16  For example, 𝑌𝑡 = 𝑌𝑡−1 + 𝜀𝑡  and 𝑑𝑌𝑡 = 𝜎(𝑡,𝜔)𝑑𝐵𝑡  are martingales in discrete time and continuous time 
respectively, where 𝜀𝑡  is the white noise term, 𝜎(𝑡,𝜔) is a stochastic process and 𝐵𝑡  is the Brownian motion. The 
definition of Brownian motion can be found in Appendix B. 
17 Examples of sub-martingales in discrete and continuous time are 𝑌𝑡 = 𝛼 + 𝑌𝑡−1 + 𝜀𝑡  and 𝑑𝑌𝑡 = 𝛼𝑑𝑡 +
𝜎(𝑡,𝜔)𝑑𝐵𝑡 , where 𝛼 is a positive constant term. 
18 Normalized asset prices equal its prices divided by risk-free asset prices. For example, suppose the risk-free rate 
equals 𝑟, and the riskless asset price at time 𝑡0 is 1. Then its prices from period t1 to tnare r + 1, (𝑟 + 1)2, … , (𝑟 +
1)𝑛 , respectively. Then the normalized price for this riskless asset is always 1 in each period. However, for risky 
assets, the expected returns contain risk premiums that compensate for risk bearing, and the expected return 
should be  𝑟 + 𝜓. For an risky asset with initial price 1, the normalized prices from period t1  to tn  are 
𝑟 +𝜓 + 1 r + 1⁄ , (𝑟 + 𝜓 + 1)2 (𝑟 + 1)2⁄ , … , (𝑟 + 𝜓 + 1)𝑛 (𝑟 + 1)𝑛⁄ . This is a sub-martingale since  𝑟 +𝜓 > 𝑟. 
19 Measure 𝑄 is equivalent to measure 𝑃 in the sense that ∀𝜔 ∈ Ω,𝑃(𝜔) = 0 ⇔ 𝑄(𝜔) = 0. 
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A2.4 Fundamental Theorem of Asset Pricing 
The first fundamental theorem of asset pricing states that a market with equivalent martingale measure 

does not admit arbitrage opportunity. In the two-period setting in section A2.1, without the no arbitrage 

condition, the state prices and risk-neutral probabilities cannot be extracted from the market. This can also 

be proved from the perspective of equivalent martingale measure under continuous time. 

Firstly, we define the price process of an asset or a portfolio as 𝑉𝑡 . If 𝑉0 = 0 , an arbitrage satisfies 

𝑃(𝑉𝑇 ≥ 0) = 1,𝑃(𝑉𝑇 > 0) > 0. The former equation means that the value of the portfolio will not be 

negative at 𝑇, and the latter one indicates that it is possible that the value of the portfolio is greater than 

zero at time 𝑇. Secondly, we prove by apagoge. If there is an equivalent martingale measure 𝑄 such that 

the normalized price process under  (𝛺,𝑄,ℱ) is a martingale, then 𝐸𝑄[�𝑒−𝑟𝑡𝑉𝑇|ℱ0] = 0. Since measure 𝑄 

is an equivalent measure regarding 𝑃 , 𝑃(𝑉𝑇 ≥ 0) = 1 indicates that 𝑄(𝑉𝑇 ≥ 0) = 1. Suppose 𝑄(𝑉𝑇 >

0) > 0 , then the martingale property 𝐸𝑄[�𝑒−𝑟𝑡𝑉𝑇|ℱ0] > 0 . This is a contradiction. Therefore, the 

existence of equivalent martingale measure means that there is no arbitrage opportunity. 

The second fundamental theorem of asset pricing indicates that there exists a unique risk-neutral measure 

if and only if the market is complete. In section A2.1, we know that the market is complete if the rank of 

the payoff matrix equals the number of states. Given the asset prices and their payoff matrix, the state 

price 𝑆 can be calculated by solving the system of equations 

�
𝑋11 ⋯ 𝑋1𝑆
⋮ ⋱ ⋮

𝑋𝑁1 ⋯ 𝑋𝑁𝑆
� ∙

⎣
⎢
⎢
⎢
⎡
𝑆1
⋮
𝑆𝑠
⋮
𝑆𝑆⎦
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
𝑃1
⋮
𝑃𝑛
⋮
𝑃𝑁⎦
⎥
⎥
⎥
⎤

, 𝑆 = 𝑁 

Given that the number of equations equals the number of unknown variables, i.e. 𝑆 = 𝑁, and the rank of 

the matrix equals 𝑆, the solution of the equations is unique. Therefore, there exist unique state prices 

given that the market is complete. In addition, from equations (a8) and (a9), the risk-neutral probabilities 

are one-to-one correspond to state prices, and thus market completeness leads to unique risk-neutral 

probabilities. However, if the market is incomplete, then 𝑆 > 𝑁. The number of equations is less than that 

of the unknown variables, and there are infinite groups of solutions for state prices. Accordingly, in an 

incomplete market, there are infinite groups of risk-neutral probabilities. It is easy to prove that the 

reverse of these two statements are true. 

This important theorem can also be proved by applying Girsanov theorem under continuous time. The 

Girsanov theorem is given below. In a probability space  (𝛺,𝑃,ℱ), there is an Ito process of the form 
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𝑑𝑌𝑡 = 𝛽(𝑡,𝜔)𝑑𝑡 + 𝜎(𝑡,𝜔)𝑑𝐵𝑡      (𝑎10) 

where 𝛽(𝑡,𝜔) and 𝜎(𝑡,𝜔) are stochastic processes of dimension 𝑛 and 𝑛 × 𝑚, and 𝐵𝑡  is the Brownian 

motion of dimension 𝑚. 

If there exists processes 𝑢(𝑡,𝜔) and 𝛼(𝑡,𝜔) such that 𝜎(𝑡,𝜔)𝑢(𝑡,𝜔) = 𝛽(𝑡,𝜔) − 𝛼(𝑡,𝜔). Then we can 

define a Brownian under measure 𝑄 

𝑑𝐵�𝑡 = 𝑢(𝑡,𝜔)𝑑𝑡 + 𝑑𝐵𝑡      (𝑎11) 

where measure 𝑄 is defined as 

𝑑𝑄 = 𝑀𝑇𝑑𝑃     (𝑎12) 

𝑀𝑇 = 𝑒𝑥𝑝 �−
1
2
� 𝑢2(𝑠,𝜔)𝑑𝑠
𝑡

0
− � 𝑢(𝑠,𝜔)𝑑𝐵𝑠

𝑡

0
�     (𝑎13) 

Substitute (𝑎11) into (𝑎10), we have 

𝑑𝑌𝑡 = 𝛽(𝑡,𝜔)𝑑𝑡 + 𝜎(𝑡,𝜔)�𝑑𝐵�𝑡 − 𝑢(𝑡,𝜔)𝑑𝑡� = [𝛽(𝑡,𝜔) − 𝜎(𝑡,𝜔)𝑢(𝑡,𝜔)]𝑑𝑡 + 𝜎(𝑡,𝜔)𝑑𝐵�𝑡 

Alternatively, it can be written as 

𝑑𝑌𝑡 = 𝛼(𝑡,𝜔)𝑑𝑡 + 𝜎(𝑡,𝜔)𝑑𝐵�𝑡 

The mission of Girsanov transformation is to find a measure such that 𝛼(𝑡,𝜔) equals 0 so that the 

stochastic process 𝑌𝑡  under new measure 𝑄 is a martingale. This stochastic process is a normalized asset 

prices process20

This is a complete market as there are two risk factors and two assets that are not linearly correlated. The 

equivalent martingale measure in this case is unique, we can find the martingale under measure 𝑄 such 

that 𝜎(𝑡,𝜔)𝑢(𝑡,𝜔) = 𝛽(𝑡,𝜔) − 𝛼(𝑡,𝜔) and 𝛼(𝑡,𝜔) = 0: 

�1 2
1 −1� ∙ �

𝑢1
𝑢2� = �10�

𝑦𝑖𝑒𝑙𝑑𝑠
�⎯⎯⎯� �

𝑢1
𝑢2� = �1 3⁄

1 3⁄ � 

. Suppose the market assets under probability space  (𝛺,𝑃,ℱ) are in the form 

𝑑𝑌𝑡 = �10� 𝑑𝑡 + �1 2
1 −1� 𝑑𝐵𝑡 ,𝑑𝐵𝑡 = �𝑑𝐵1𝑡𝑑𝐵2𝑡

� 

                                                             
20 This is equivalent to find a price process that makes  α(t,ω) equal r(t,ω), which is the risk-free interest rate 
process. 
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Accordingly, a unique equivalent martingale measure can be found in this market because the solution 

𝑢(𝑡,𝜔) is unique. However, if the risk factors are larger than the number of linearly uncorrelated assets, 

the market is incomplete. One can find different 𝑢(𝑡,𝜔), substitute back to equation (a13) and (a12) and 

obtain infinitely numbers of equivalent martingale measures, under which the processes are martingales. 

For example, suppose the market assets under probability space  (𝛺,𝑃,ℱ) are in the form 

𝑑𝑌𝑡 = �10� 𝑑𝑡 + �1 2
1 2� 𝑑𝐵𝑡 ,𝑑𝐵𝑡 = �𝑑𝐵1𝑡𝑑𝐵2𝑡

� 

Then there are infinitely numbers of solutions for the following system of equations. Therefore, there are 

infinitely numbers of equivalent martingale measures in the incomplete market. 

�1 2
1 2� ∙ �

𝑢1
𝑢2� = �10� 

Overall, we show the relationship between risk-neutral measure/equivalent martingale measure and 

market completeness. If there is a normalized martingale process, e.g. a continuous-time process with no 

drift term, the market is complete and admits no arbitrage opportunity. 

From the proofs above, we know that the existence of a unique risk-neutral measure indicates that the 

market is complete and there is no arbitrage opportunity. The inverse proposition is only valid between 

the market completeness and uniqueness of risk-neutral measure. The no arbitrage condition will result in 

a unique risk neutral measure only in some special circumstances. These relations are demonstrated in 

figure 20. The first and second theorem are proved by Harrison and Kreps (1979) and Harrison and Pliska 

(1983) respectively, further interpretation is made by Øksendal (2010). 

 

 

 

 

 

 

 

 

Figure 20 The Fundamental Theorem of Asset Pricing 

No Arbitrage Condition 

Existence 

Market Completeness 

Uniqueness 

There exists a 
unique risk-neutral 
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A3 Summary 
In this section, both the equilibrium and arbitrage models are studied. The theoretical results presented are 

crucial in empirical analyses. Equations (a8) and (a9) indicate that given the payoffs at time 𝑡, state price 

density (SPD) and risk-neutral density can be used to price assets. Conversely, the SPD and the RND 

function for a specific date can be extracted from asset market. This is the theoretical guidance to derive 

RND function. Further, SPD and RND are be transformed conveniently by multiplying or dividing the 

risk-free total return. On the other hand, equation (a6) is applied to estimate the pricing kernel. Hansen 

and Singleton (1982, 1983) estimate pricing kernel using generalized method of moments (GMM) and 

maximum likelihood method (MLM). However, quality of aggregate consumption data is worse than that 

of the capital market data due to the measurement error and measurement frequency. Moreover, unlike 

the arbitrage models, equilibrium models are less accurate in short run because the market might deviate 

from equilibrium and the adjustment might take a long time. Arbitrage opportunities, on the other side, 

will be captured by arbitrageurs in minutes. Nevertheless, Rosenberg and Engle (2002) back out the 

empirical pricing kernel from option markets. This is possible since pricing kernel depends on the 

subjective probability density and RND. Combine equations (a6) and (a9), we have 

𝑒−𝑟𝑇 � 𝑓𝑄(𝑆𝑇) 𝑋(𝑆𝑇)𝑑𝑆𝑇
∞

0
= � 𝑀0𝑇𝑓𝑃(𝑆𝑇) 𝑋(𝑆𝑇)𝑑𝑆𝑇

∞

0
 

𝑀0𝑇 = 𝑒−𝑟𝑇
𝑓𝑄(𝑆𝑇)
𝑓𝑃(𝑆𝑇)      (𝑎14) 

Hence instead of estimating the stochastic discount factor directly, we can extract the RND function and 

subjective function. It is also possible to back out the representative agent’s preference which is inherent 

in the stochastic discount factor. In section A.1.4, the stochastic discount factor is defined as 

𝑀0𝑇 =
𝛿 𝑈′(𝐶𝑇)
𝑈′(𝐶0)      (𝑎15) 

Consider we are in a dynamic economy [for example, He and Leland (1993)], as we discussed in section 

2.1. Since the representative investor optimally hold the market stock, 𝐶𝑇 = 𝑆𝑇. Using (𝑎14) and (𝑎15), 

we can also obtain the implied risk aversion function 

𝐴(𝑆𝑇) =
𝑓𝑃′(𝑆𝑇)
𝑓𝑝(𝑆𝑇) −

𝑓𝑄′(𝑆𝑇)
𝑓𝑄(𝑆𝑇) 

This method is provided by Ait-Sahalia and Lo (2000), and the only different is that they derive it under a 

continuous-time equilibrium framework. This method yields the same expression as we did in section 2.1. 
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Appendix B: Derivation of Double Lognormal Method 
 

B1 Geometric Brownian Motion and Ito’s Lemma 
Before going through the derivation, we should demonstrate the mathematical technique required. One of 
the most important mathematical techniques in quantitative finance is the Ito’s lemma. However, only 
part of the results is provided. Øksendal (2010) gives a thorough and rigorous proof.  

Suppose asset prices follow Geometric Brownian motion (GBM) 

𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝐵𝑡      (𝑏1) 

𝑌𝑡 = 𝑔(𝑡, 𝑆𝑡)     (𝑏2) 

where 𝐵𝑡  is a stochastic process satisfying 

(1) 𝐵0 = 0; 
(2) 𝐵𝑡  has independent increments; 
(3) 𝐵𝑡 − 𝐵𝑠~𝒩�0,√𝑡 − 𝑠�. 

Then 

𝑑𝑌𝑡 =
𝜕𝑔(𝑡, 𝑆𝑡)

𝜕𝑡
𝑑𝑡 +

𝜕𝑔(𝑡, 𝑆𝑡)
𝜕𝑆𝑡

𝑑𝑆𝑡 +
1
2
𝜕2𝑔(𝑡, 𝑆𝑡)

𝜕𝑆𝑡2
(𝑑𝑆𝑡)2     (𝑏3) 

and 

𝑑𝑡 ∙ 𝑑𝑡 = 0,𝑑𝑡 ∙ 𝑑𝐵𝑡 = 𝑑𝐵𝑡 ∙ 𝑑𝑡 = 0,𝑑𝐵𝑡 ∙ 𝑑𝐵𝑡 = 𝑑𝑡     (𝑏4) 

By substituting (𝑏1) into (𝑏2) and applying (𝑏3), we have 

𝑑𝑌𝑡 = �
𝜕𝑔(𝑡, 𝑆𝑡)

𝜕𝑡
+
𝜕𝑔(𝑡, 𝑆𝑡)
𝜕𝑆𝑡

𝜇𝑆𝑡 +
1
2
𝜕2𝑔(𝑡, 𝑆𝑡)

𝜕𝑆𝑡2
𝜎2𝑆𝑡2� 𝑑𝑡 +

𝜕𝑔(𝑡, 𝑆𝑡)
𝜕𝑆𝑡

𝜎𝑆𝑡𝑑𝐵𝑡      (𝑏5) 

If (𝑏2) becomes 

𝑌𝑡 = 𝑙𝑛(𝑆𝑡)     (𝑏6) 

Then 

𝑑𝑙𝑛(𝑆𝑡) = �𝜇𝑆𝑡 ∙
1
𝑆𝑡

+
1
2
�−

1
𝑆𝑡2
�𝜎2𝑆𝑡2� 𝑑𝑡 +

1
𝑆𝑡
𝜎𝑆𝑡𝑑𝐵𝑡 = �𝜇 −

1
2
𝜎2�𝑑𝑡 + 𝜎𝑑𝐵𝑡      (𝑏7) 

Therefore, we know that if asset prices 𝑆𝑡  follow GBM, then 

∆𝑆𝑡
𝑆𝑡

~𝒩�𝜇∆𝑡,𝜎√∆𝑡�     (𝑏8) 
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𝑙𝑛(𝑆𝑡) − 𝑙𝑛(𝑆0)~𝒩��𝜇 −
1
2
𝜎2� 𝑡,𝜎√𝑡�      (𝑏9) 

𝑙𝑛(𝑆𝑡)~𝒩�𝑙𝑛(𝑆0) + �𝜇 −
1
2
𝜎2� 𝑡,𝜎√𝑡�      (𝑏10) 

 

B2 Double Lognormal Method 
The derivation of Bahra’s double lognormal method is based on the original Black-Scholes model and the 
equivalent martingale measure of Harrison and Kreps (1979). Instead of using one lognormal distribution, 
Bahra uses a combination of two lognormal distributions. Lognormal density function is defined as 

𝐿(𝛼, 𝛽;  𝑆𝑇) =
1

𝑆𝑇𝛽√2𝜋
𝑒𝑥𝑝 �−

(𝑙𝑛(𝑆𝑇) − 𝛼)2

2𝛽2
�      (𝑏11) 

The formula to price the call option can be written as 

𝐶𝐶𝑎𝑙𝑙 = 𝑒−𝑟𝑡 � [𝜔 𝐿(𝛼1,𝛽1;  𝑆𝑇) + (1− 𝜔)𝐿(𝛼2,𝛽2;  𝑆𝑇)]𝑀𝑎𝑥(𝑆𝑇 − 𝐾, 0)
∞

0
𝑑𝑆𝑇  

= 𝑒−𝑟𝑡 � [𝜔 𝐿(𝛼1,𝛽1;  𝑆𝑇) + (1− 𝜔)𝐿(𝛼2,𝛽2;  𝑆𝑇)](𝑆𝑇 − 𝐾)
∞

𝐾
𝑑𝑆𝑇     (𝑏12) 

Substitute (𝑏11) into (𝑏12) 

𝐶𝐶𝑎𝑙𝑙 =
𝑒−𝑟𝑡

√2𝜋
� � 

𝜔
𝛽1
𝑒𝑥𝑝 �−

(𝑙𝑛(𝑆𝑇) − 𝛼1)2

2𝛽1
2 �+ 

(1− 𝜔)
𝛽2

𝑒𝑥𝑝 �−
(𝑙𝑛(𝑆𝑇) − 𝛼2)2

2𝛽2
2 ��

∞

𝐾
𝑑𝑆𝑇 

−
𝐾𝑒−𝑟𝑡

√2𝜋
� � 

𝜔
𝑆𝑇𝛽1

𝑒𝑥𝑝 �−
(𝑙𝑛(𝑆𝑇) − 𝛼1)2

2𝛽1
2 �+  

(1− 𝜔)
𝑆𝑇𝛽2

𝑒𝑥𝑝 �−
(𝑙𝑛(𝑆𝑇) − 𝛼2)2

2𝛽2
2 ��

∞

𝐾
𝑑𝑆𝑇     (𝑏13) 

A transformation from lognormal distribution to normal distribution is made by substituting 𝑋 = 𝑙𝑛(𝑆𝑇) 
and 𝑑𝑆𝑇 = 𝑒𝑥𝑝(𝑋)𝑑𝑋 into the first integral term of (𝑏13). Since ST is lognormally distributed, X should 
follow normal distribution. Then the first term of (𝑏13) becomes 

𝑒−𝑟𝑡

√2𝜋
� �

𝜔
𝛽1
𝑒𝑥𝑝 �𝑋 −

(𝑋 − 𝛼1)2

2𝛽1
2 � +

(1 −𝜔)
𝛽2

𝑒𝑥𝑝 �𝑋 −
(𝑋 − 𝛼2)2

2𝛽2
2 ��

∞

𝑙𝑛(𝐾)
𝑑𝑋 

Reorganizing the terms 

𝑒−𝑟𝑡𝑒𝑥𝑝 �𝛼1 +
𝛽1

2

2
�
𝜔
𝛽1
�

1
√2𝜋

𝑒𝑥𝑝 �
−�𝑋 − �𝛼1 + 𝛽1

2��
2

2𝛽1
2 �

∞

𝑙𝑛(𝐾)
𝑑𝑋 

+𝑒−𝑟𝑡𝑒𝑥𝑝 �𝛼2 +
𝛽2

2

2
�

(1 −𝜔)
𝛽2

�
1

√2𝜋
𝑒𝑥𝑝 �

−�𝑋 − �𝛼2 + 𝛽2
2��

2

2𝛽2
2 �𝑑𝑋

∞

𝑙𝑛(𝐾)
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Again, the normal distribution can be transformed to standard normal distribution when substituting 
𝑌1 = �𝑋 − �𝛼1 + 𝛽1

2�� 𝛽1�  , 𝑌2 = �𝑋 − �𝛼2 + 𝛽2
2�� 𝛽2�  and 𝑑𝑋 = 𝛽1𝑑𝑌1 = 𝛽2𝑑𝑌2 

𝑒−𝑟𝑡𝑒𝑥𝑝 �𝛼1 +
𝛽1

2

2
�𝜔�

1
√2𝜋

𝑒𝑥𝑝 �−
1
2
𝑌12�

∞

𝑙𝑛(𝐾)−�𝛼1+𝛽1
2� 𝛽1�

𝑑𝑌1 

+𝑒−𝑟𝑡𝑒𝑥𝑝 �𝛼2 +
𝛽2

2

2
� (1 −𝜔)�

1
√2𝜋

𝑒𝑥𝑝 �−
1
2
𝑌22�

∞

𝑙𝑛(𝐾)−�𝛼2+𝛽2
2� 𝛽2�

𝑑𝑌2 

This expression can be written in terms of cumulative normal distribution function 

𝑒−𝑟𝑡 �𝜔 𝑒𝑥𝑝 �𝛼1 +
𝛽1

2

2
�𝑁�

�𝛼1 + 𝛽1
2� − 𝑙𝑛(𝐾)
𝛽1

�� 

+𝑒−𝑟𝑡 �(1−𝜔)𝑒𝑥𝑝 �𝛼2 +
𝛽2

2

2
�𝑁 �

�𝛼2 + 𝛽2
2� − 𝑙𝑛(𝐾)
𝛽2

��      (𝑏14) 

For the second integral term of (𝑏13), the same approach is used. Substitute 𝑌1 = (𝑙𝑛(𝑆𝑇) − 𝛼1) 𝛽1⁄ , 
𝑌2 = (𝑙𝑛(𝑆𝑇) − 𝛼2) 𝛽2⁄  and 𝑑𝑆𝑇 = 𝑆𝑇𝛽1𝑑𝑌1 = 𝑆𝑇𝛽2𝑑𝑌2 

𝑒−𝑟𝑡𝐾 �𝜔�
1

√2𝜋

∞

(𝑙𝑛(𝐾)−𝛼1) 𝛽1⁄
𝑒𝑥𝑝 �−

1
2
𝑌12�𝑑𝑌1 + (1 −𝜔)�

1
√2𝜋

∞

(𝑙𝑛(𝐾)−𝛼2) 𝛽2⁄
𝑒𝑥𝑝 �−

1
2
𝑌22� 𝑑𝑌2� 

Write the above expression in terms of cumulative distribution function 

𝑒−𝑟𝑡𝐾 �𝜔𝑁�
𝛼1 − 𝑙𝑛(𝐾)

𝛽1
� + (1 −𝜔)𝑁�

𝛼2 − 𝑙𝑛(𝐾)
𝛽2

��      (𝑏15) 

Substitute (b14) and (b15) back to (b13), and we obtain the closed-form solution for the call: 

𝐶𝐶𝑎𝑙𝑙 = 𝑒−𝑟𝑡 �𝜔 � 𝑒𝛼1+
𝛽1

2

2 𝑁(𝑑1) −𝐾𝑁(𝑑2)� + (1 −𝜔) �𝑒𝛼2+
𝛽2

2

2 𝑁(𝑑3) −𝐾𝑁(𝑑4)��      (𝑏16) 

where                                                  

𝑑1 =
𝛼1 + 𝛽1

2 − 𝑙𝑛(𝐾)
𝛽1

 

𝑑2 = 𝑑1 − 𝛽1 

𝑑3 =
𝛼2 + 𝛽2

2 − 𝑙𝑛(𝐾)
𝛽2

 

𝑑4 = 𝑑3 − 𝛽2 
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The formula to price the put option can be written as 

𝐶𝑃𝑢𝑡 = 𝑒−𝑟𝑡 � [𝜔 𝐿(𝛼1,𝛽1; 𝑆𝑇) + (1 −𝜔)𝐿(𝛼2,𝛽2;  𝑆𝑇)]𝑀𝑎𝑥(𝐾 − 𝑆𝑇, 0)
∞

0
𝑑𝑆𝑇 

= 𝑒−𝑟𝑡 � [𝜔 𝐿(𝛼1,𝛽1;  𝑆𝑇) + (1− 𝜔)𝐿(𝛼2,𝛽2;  𝑆𝑇)](𝐾 − 𝑆𝑇)
𝐾

0
𝑑𝑆𝑇      (𝑏17) 

Substitute (𝑏11) into (𝑏17) 

𝐶𝐶𝑎𝑙𝑙 =
𝐾𝑒−𝑟𝑡

√2𝜋
� � 

𝜔
𝑆𝑇𝛽1

𝑒𝑥𝑝�−
(𝑙𝑛(𝑆𝑇) − 𝛼1)2

2𝛽1
2 �+  

(1 −𝜔)
𝑆𝑇𝛽2

𝑒𝑥𝑝 �−
(𝑙𝑛(𝑆𝑇) − 𝛼2)2

2𝛽2
2 ��

𝐾

0
𝑑𝑆𝑇 

−
𝑒−𝑟𝑡

√2𝜋
� � 

𝜔
𝛽1
𝑒𝑥𝑝 �−

(𝑙𝑛(𝑆𝑇) − 𝛼1)2

2𝛽1
2 �+ 

(1− 𝜔)
𝛽2

𝑒𝑥𝑝�−
(𝑙𝑛(𝑆𝑇) − 𝛼2)2

2𝛽2
2 ��

𝐾

0
𝑑𝑆𝑇     (𝑏18) 

 

A transformation from lognormal distribution to normal distribution is made by substituting 𝑋 = 𝑙𝑛(𝑆𝑇) 
and 𝑑𝑆𝑇 = 𝑒𝑥𝑝(𝑋)𝑑𝑋 into the second integral term of (𝑏18) . Since 𝑆𝑇  is lognormally distributed, 𝑋 
should follow normal distribution. Then the second term of (𝑏18) becomes 

−
𝑒−𝑟𝑡

√2𝜋
� �

𝜔
𝛽1
𝑒𝑥𝑝 �𝑋 −

(𝑋 − 𝛼1)2

2𝛽1
2 �+

(1 −𝜔)
𝛽2

𝑒𝑥𝑝 �𝑋 −
(𝑋 − 𝛼2)2

2𝛽2
2 ��

𝑙𝑛(𝐾)

0
𝑑𝑋 

Reorganizing the terms 

−𝑒−𝑟𝑡𝑒𝑥𝑝 �𝛼1 +
𝛽1

2

2
�
𝜔
𝛽1
�

1
√2𝜋

𝑒𝑥𝑝 �
−�𝑋 − �𝛼1 + 𝛽1

2��
2

2𝛽1
2 �

𝑙𝑛(𝐾)

0
𝑑𝑋 

−𝑒−𝑟𝑡𝑒𝑥𝑝 �𝛼2 +
𝛽2

2

2
�

(1− 𝜔)
𝛽2

�
1

√2𝜋
𝑒𝑥𝑝 �

−�𝑋 − �𝛼2 + 𝛽2
2��

2

2𝛽2
2 � 𝑑𝑋

𝑙𝑛(𝐾)

0
 

Again, the normal distribution can be transformed to standard normal distribution when substituting 
𝑌1 = �𝑋 − �𝛼1 + 𝛽1

2�� 𝛽1�  , 𝑌2 = �𝑋 − �𝛼2 + 𝛽2
2�� 𝛽2�  and 𝑑𝑋 = 𝛽1𝑑𝑌1 = 𝛽2𝑑𝑌2 

−𝑒−𝑟𝑡𝑒𝑥𝑝 �𝛼1 +
𝛽1

2

2
�𝜔�

1
√2𝜋

𝑒𝑥𝑝 �−
1
2
𝑌12�

𝑙𝑛(𝐾)−�𝛼1+𝛽1
2� 𝛽1�

0
𝑑𝑌1 

−𝑒−𝑟𝑡𝑒𝑥𝑝 �𝛼2 +
𝛽2

2

2
� (1 −𝜔)�

1
√2𝜋

𝑒𝑥𝑝 �−
1
2
𝑌22�

𝑙𝑛(𝐾)−�𝛼1+𝛽1
2� 𝛽1�

0
𝑑𝑌2 

This expression can be written in terms of cumulative normal distribution function 

−𝑒−𝑟𝑡 �𝜔 𝑒𝑥𝑝�𝛼1 +
𝛽1

2

2
�𝑁�

𝑙𝑛(𝐾) − �𝛼1 + 𝛽1
2�

𝛽1
�� 
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−𝑒−𝑟𝑡 �(1−𝜔)𝑒𝑥𝑝 �𝛼2 +
𝛽2

2

2
�𝑁 �

𝑙𝑛(𝐾) − �𝛼2 + 𝛽2
2�

𝛽2
��      (𝑏19) 

For the first integral term of (𝑏18) , the same approach is used. Substitute 𝑌1 = (𝑙𝑛(𝑆𝑇) − 𝛼1) 𝛽1⁄ , 
𝑌2 = (𝑙𝑛(𝑆𝑇) − 𝛼2) 𝛽2⁄  and 𝑑𝑆𝑇 = 𝑆𝑇𝛽1𝑑𝑌1 = 𝑆𝑇𝛽2𝑑𝑌2 

𝑒−𝑟𝑡𝐾 �𝜔�
1

√2𝜋

(𝑙𝑛(𝐾)−𝛼1) 𝛽1⁄

0
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1
2
𝑌12�𝑑𝑌1 + (1 −𝜔)�

1
√2𝜋

(𝑙𝑛(𝐾)−𝛼1) 𝛽1⁄

0
𝑒𝑥𝑝 �−

1
2
𝑌22� 𝑑𝑌2� 

Write the above expression in terms of cumulative distribution function 

𝑒−𝑟𝑡𝐾 �𝜔𝑁�
𝑙𝑛(𝐾) − 𝛼1

𝛽1
�+ (1 −𝜔)𝑁�

𝑙𝑛(𝐾) − 𝛼2
𝛽2

��      (𝑏20) 

Substitute (b19) and (b20) back to (b18), and we obtain the closed-form solution for the put 

𝐶𝑃𝑢𝑡 = 𝑒−𝑟𝑡 �𝜔 �−𝑒𝛼1+
𝛽1

2

2 𝑁(−𝑑1) + 𝐾𝑁(−𝑑2)�+ (1− 𝜔) �−𝑒𝛼2+
𝛽2

2

2 𝑁(−𝑑3) + 𝐾𝑁(−𝑑4)��      (𝑏21) 

where 

𝑑1 =
𝛼1 + 𝛽1

2 − 𝑙𝑛(𝐾)
𝛽1

 

𝑑2 = 𝑑1 − 𝛽1 

𝑑3 =
𝛼2 + 𝛽2

2 − 𝑙𝑛(𝐾)
𝛽2

 

𝑑4 = 𝑑3 − 𝛽2 
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Appendix C: Densities and Risk Aversion Functions 
 

C1 Risk Neutral Densities 

 

 

0.00 

0.01 

0.02 

0.03 

0.04 

0.05 

0.06 

0.07 

0.08 

04Jan2012 05Jan2012 06Jan2012 09Jan2012 10Jan2012 
11Jan2012 12Jan2012 13Jan2012 16Jan2012 17Jan2012 
18Jan2012 19Jan2012 20Jan2012 23Jan2012 24Jan2012 
25Jan2012 26Jan2012 27Jan2012 30Jan2012 31Jan2012 

0.00 

0.01 

0.02 

0.03 

0.04 

0.05 

0.06 

0.07 

0.08 

0.09 

0.10 

01Feb2012 02Feb2012 03Feb2012 06Feb2012 07Feb2012 
08Feb2012 09Feb2012 10Feb2012 13Feb2012 14Feb2012 
15Feb2012 16Feb2012 17Feb2012 20Feb2012 21Feb2012 
22Feb2012 23Feb2012 24Feb2012 27Feb2012 28Feb2012 
29Feb2012 



- 62 - 
 

 

 

 

0.00 

0.02 

0.04 

0.06 

0.08 

0.10 

0.12 

0.14 

01Mar2012 02Mar2012 05Mar2012 06Mar2012 07Mar2012 
08Mar2012 09Mar2012 12Mar2012 13Mar2012 14Mar2012 
15Mar2012 16Mar2012 19Mar2012 20Mar2012 21Mar2012 
22Mar2012 23Mar2012 26Mar2012 27Mar2012 28Mar2012 
29Mar2012 30Mar2012 

0.00 

0.02 

0.04 

0.06 

0.08 

0.10 

0.12 

0.14 

0.16 

02Apr2012 03Apr2012 04Apr2012 05Apr2012 10Apr2012 
11Apr2012 12Apr2012 13Apr2012 16Apr2012 17Apr2012 
18Apr2012 19Apr2012 20Apr2012 23Apr2012 24Apr2012 
25Apr2012 26Apr2012 27Apr2012 30Apr2012 



- 63 - 
 

C2 Subjective Densities 
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C3 Risk Aversion Functions 
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