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ABSTRACT 

This is an event study which investigates the stock price behavior of oil and gas companies in 

the days surrounding announcements of petroleum discoveries. The pre-announcement period 

is examined in order to test for indications of information leakage. The analysis in the post-

announcement period is a test of market efficiency and competing theories of return behavior 

following firm-specific events. I find no indications of information leakage, and the market 

seems to adjust efficiently to the announcements. However, there are some weak indications 

of a positive post-announcement drift.  Due to some power issues, I leave this an open 

question for further research.  
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FOREWORD 

This thesis is the final stage in my Master in Financial Economics degree at the Norwegian 

School of Economics (NHH) in Bergen, Norway. The choice of topic was driven mainly by 

my interest in the oil and gas industry as well as a desire to learn more about econometrics, a 

subject area of which I had little preexisting knowledge. I also wanted to choose an original 

topic - one which had the potential to contribute to a meaningful field of research.  

The process of writing the thesis has been both challenging and educational. There is a vast 

amount of studies devoted to similar research questions, but there are no directly comparable 

results. Broadly, this study is a crossover of the traditional event study and the previous work 

in short-term reversal studies. This necessitated an extensive literature review. Understanding 

the sometimes complex statistical concepts in the earlier work and how it applies to the 

specifics of this study was particularly strenuous, but also enlightening. Data selection did at 

first seem very straightforward, but considerations which came up along the way led to a 

somewhat reiterative and time consuming process. Altogether, the work has been very 

rewarding and has increased my understanding of empirical finance in many respects.  

I would like to extend my gratitude to Hanqing Wang, my supervisor, for excellent guidance 

and advice, and for being remarkably accommodating through the whole process.  

 

 

Bergen, 13.06.2013 

Kenneth Vik 
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1. INTRODUCTION 

1.1 PURPOSE & MOTIVATION 

The petroleum industry is one of the largest industries in the world. A critical success factor 

for producers in this industry is replenishing reserves through exploration drilling. These 

endeavors carry with them high levels of uncertainty and can potentially have a large impact 

on firm value. Broadly, this paper seeks to examine how the stock market reacts before and 

after announcements of petroleum discoveries.  

Valuation of discoveries is not an easy affair. It requires skill in interpreting geological and 

seismic data which creates information asymmetry between geologists on the one side and 

analysts and investors on the other. Further, available information is often of low quality 

when a discovery is initially announced, and these announcements are required to be 

conservative. According to an anonymous analyst at a well-known Norwegian investment 

bank, the valuation techniques employed upon announcements are often crude. It is therefore 

interesting to analyze the aftermath of the discoveries in the stock market. This research 

question will mainly contribute to the debate on market efficiency, behavioral finance and 

related subject areas in empirical finance. Specifically, I investigate if there is evidence of 

overreaction or underreaction. The uncertainty surrounding announcements and the degree of 

news coverage that these events receive creates an atmosphere in which behavioral biases 

might thrive. To my knowledge, no previous studies have been published that examine the 

stock market’s reaction to petroleum discoveries.  

There are quite a few examples in the media of suspicions and cases of insider trading on 

information about drilling results. Despite regulatory actions, the information content of 

drilling results is particularly susceptible to leakage. The information is potentially very price-

sensitive, especially for smaller companies, and there are many individuals privy to the 

information. The second goal of this thesis is therefore to look for empirical evidence of 

information leakage. Of course, a pre-announcement run-up of the stock price is not 

conclusive evidence of insider trading, but it certainly should be of concern to regulators. 

Because of this research question, I focus on the Norwegian Continental Shelf (NCS) only in 

order to keep the analysis under one governing authority.  
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1.2 APPROACH 

This paper can be classified as an event study – an econometric technique of empirically 

assessing the impact of an event on stock prices. The procedure is common in tests of market 

efficiency and the information value of corporate events.  

This paper examines the stock price movements both before and after the announcements. An 

adaptation of the classical event study approach popularized by Fama, Fisher, Jensen and Roll 

(1969) will allow for such an investigation. It involves calculating abnormal returns (AR), 

cumulative abnormal returns (CAR), and cumulative average abnormal returns (CAAR) 

around the event dates. This approach leads to general insights into the price formation 

process around the event which can be displayed graphically and interpreted easily. It 

therefore seems appropriate to apply given no preexisting research on reactions to discoveries, 

and it may yield additional insights which reveal interesting topics for further research. 

The calculations of CAR mentioned above will form a foundation from which I can employ 

two alternative testing strategies. First, I will segregate observations into two subgroups based 

on whether the announcement day abnormal return is negative or positive. Then abnormal 

returns for the pre-event and post-event windows are used to determine whether there is 

evidence of underreaction, overreaction and information leakage in the two subsamples. 

Significance is gauged using t-tests. The approach is a combination of the traditional event 

study and tests of over- and underreaction after large relative price changes. 

The second approach is a simple regression model designed to test whether pre- and post-

event returns are correlated with event day returns. In the post-event window, negative 

correlation would be consistent with overreaction while positive correlation would be 

consistent with underreaction. For the pre-event window, positive correlation would be 

consistent with information leakage.  

1.3 RESULTS 

The results largely confirm the predictions of the efficient markets hypothesis. The market 

and its investors are able to interpret the news and incorporate their effects into the stock price 

in an efficient manner. There are some indications of a positive drift following 

announcements, an effect which can be explained by behavioral biases, the Uncertain 
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Information Hypothesis as well as the conservative nature of drilling announcements, but the 

significance of this result is low. Imposing an additional selection criterion demanding that 

the firm itself announces the news seems to amplify the effect, but a larger sample size is 

needed to investigate the drift using this criterion.  

There is no significant correlation between pre-announcement and announcement-day returns, 

nor is the CAAR for this period significant. The sign of the output variables is in fact opposite 

of that which would be expected in the presence of information leakage - thus insider trading 

does not seem to be a prevalent issue for announcements of oil and gas discoveries. This 

indicates that the regulations enforced by the Norwegian governmental agencies in 

cooperation with the Oslo Stock Exchange for the management of insider information in 

exploration drilling are well functioning. 

1.4 OUTLINE 

The next section will be a quick introduction to exploration and production, which is 

necessary background information for the rest of the paper. The subsequent section will 

present theoretical concepts and previous studies which provide context and highlight possible 

explanations for the observed behavior of stock prices. The two methodologies are discussed 

in detail in chapter four, and the data collection process as well as the data characteristics is 

described in chapter five. The discussion is detailed enough to be replicable and to highlight 

potential issues in inference. The results are presented and discussed in chapter six.  
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2. BACKGROUND 

2.1 THE EXPLORATION & PRODUCTION (E&P) 
PROCESS 

The Petroleum Act §1-1 maintains that the State of Norway has the proprietary right to all 

subsea petroleum deposits, and also the exclusive right to resource management on the 

Norwegian continental shelf (NPD, 2012)
1
. Resource management is carried out jointly by the 

Ministry of Petroleum and Energy and the Norwegian Petroleum Directorate through a 

licensing system. It is through this system that proprietary rights to the deposits are ultimately 

transferred to the E&P companies. 

The first step in this process is approving an area for exploration activity. This is a 

comprehensive process which entails an evaluation of the impact on industry, trade, 

environment, pollution and social effects (Petroleum Act §3-1), and is subject to political 

debate. The exploration and production (E&P) 

companies contribute to the debate by providing 

geological and seismic data which is used to assess 

the size and extractability of the deposits. The 

Ministry announces which blocks of the NCS that 

have been approved and create production licenses 

comprising one or several adjacent blocks.  

A production license gives the exclusive right to 

exploration and production in the areas covered by 

the license (Petroleum Act §3-3). E&P companies 

are invited to submit applications, either individually 

or as groups. The ministry grants licenses on the 

basis of factual and objective criteria, and the 

licensees become the owners of the resources 

produced from the license (Petroleum Act §3-5).  

                                                 
1 The Petroleum Act is not available in English, but a translation is offered on the website referred to as (NPD, 2012).  

 Figure 1 - Overview of production 

licenses (NPD FactMap, 2013) 
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Most licenses on the NCS are awarded to joint ventures, which typically comprise three to 

four companies.  One of the companies is appointed as the operator and assumes the 

responsibility of managing the day-to-day operations of the field, while the others participate 

through joint operating and accounting agreements (Statoil, 2011). These agreements ensure 

that cost and revenue from the licenses are shared among the partners in accordance with their 

respective stake in the license. Thus, for a single discovery of oil or gas there are multiple 

companies whose stock price can be affected.  

2.2 THE TIMELINESS OF DISCLOSURE 
REQUIREMENTS 

The type of information which must be disseminated to the market for listed companies is 

regulated by the respective stock exchange. For the Oslo Stock Exchange, the rule is that 

information must be disclosed if it is expected to have a significant effect on the value of the 

firm (Oslo Stock Exchange, 2009). The rules are similar for the New York Stock Exchange 

(NYSE, 2012).  Although I have not reviewed regulations for all stock exchanges included in 

the sample, they are likely to be similar. Even if they were different, there are international 

agreements in place because the partners in a single joint venture may be listed on different 

exchanges, and it is usually in the best interest of the firm to guide the market’s expectations. 

It thus seems reasonable to hold as a general rule that the companies will announce news that 

is expected to have a substantial effect on the value of the firm. 

Although I will not use stock exchange notices for data selection, the background knowledge 

is useful for two main reasons. First, one potential problem in this study is that many of the 

announcements have low information value and thus have a high relative noise level. Because 

companies disclose information which is expected to be price-sensitive, either through stock 

exchange notices or other press releases, I can “screen” observations on whether or not the 

firms themselves announce the news. Second, it indicates at what point in the drilling process 

disclosure requirements are triggered. The information gathered will increase with drilling 

depth. For a small firm, simply finding hydrocarbons of unknown magnitude early in the 

drilling process might have a large impact on firm value and thus trigger a disclosure 

requirement. A hypothetical announcement at the end of the drilling process where the full set 

of information gathered is announced may thus come several weeks after the initial 
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announcement. These implications will be considered in the methodology section when 

determining the length of the event windows.  

For drilling on the NCS, there has been some debate on the involvement of the NPD in 

announcements. In 1973, it was decided by administrative orders that press releases regarding 

drilling results on the NCS should be prepared in coordination with the NPD, and that the 

NPD should be the first party to disclose the results (Oslo Stock Exchange, 2009). The NPD 

would serve as an objective and authoritative third party to ensure that announcements are 

objective and homogenous across firms. Because stock prices may be sensitive to this type of 

information, following a set of prescribed rules for reporting is important, but it causes a delay 

in the process of announcing the news which increases the risk of insider trading. Therefore, 

the Oslo Stock Exchange changed its view in a circular in 2009 and maintained that the 

companies should not defer disclosure and instead follow the general rule from the Securities 

Trading Act §5-3 of immediate disclosure of price-sensitive information (Oslo Stock 

Exchange, 2009). This will also be considered in determining the length of the event 

windows, especially the pre-event window where I test for information leakage.  
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3. THEORY 

This section will present relevant theoretical concepts as well as previous research on related 

subjects. The aim is to provide context and point out issues in testing which will later be 

considered in the methodology section. 

Essentially, all theory and literature presented in this chapter can be traced back to or relates 

to the debate on market efficiency. I will first present the efficient markets hypothesis and its 

implications for asset pricing before discussing possible reasons for why empirical tests may 

find it to be untrue. This will serve to underline statistical considerations and to formulate 

alternative explanations for the results. The overreaction and underreaction phenomena are 

given special attention in a separate section which includes a literature review, with a special 

focus on short-term studies. The last section will briefly discuss some previous evidence of 

information leakage and insider trading.  

3.1 THE EFFICIENT MARKETS HYPOTHESIS 

The efficient markets hypothesis (EMH) proposes that stock prices fully reflect all available 

information (Fama, 1970). It was developed independently by both Eugene Fama and Paul 

Samuelson in the 1960’s (Lo, 2007). The major assertion of the EMH is that it is not possible 

to earn excess returns on a risk-adjusted basis because the stock market is highly competitive, 

and all information is therefore instantaneously impounded in the stock price. Empirical 

deviations from this assertion are called market anomalies.  

There are three versions of the EMH; strong form, semi-strong form and weak form, which 

differ in their interpretation of required information level as follows (Bodie, et al., 2005). 

i. Weak form – Prices reflect all historical price information 

ii. Semi-strong form – Prices reflect all publicly available information 

iii. Strong form – Prices reflect all information, including insider information 

The underlying information level of the three forms as listed above is additive. That is, semi-

strong form assumes prices reflect historical price information as well as publicly available 

information, and strong form efficiency assumes prices reflect all of the above in addition to 

private information.  
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Market efficiency relies on a number or assumptions. First, investors must be rational in 

information processing and decision making. Rational information processing means that 

investors must update expectations according to Bayes’ law and rationality in decision 

making means that decisions must be consistent with Subjective Expected Utility (Barberis & 

Thaler, 2003). This need not be literally true, as irrationality of individual investors is allowed 

as long as the market as a whole is rational. If irrationality does cause mispricing in the 

market, the EMH relies on the process of arbitrage to correct the mispricing. Thus market 

efficiency implicitly inherits the assumptions of arbitrage, which are discussed below.  

Under these circumstances, stocks will always be correctly priced given the available 

information. It is not possible to “beat the market” by information motivated trading in an 

informationally efficient market - any excess return should require excess risk. Of course, the 

assumptions as presented so far are very strict, and they are not congruent with the pragmatic 

definition of efficiency. However, the assumptions in different studies which test for market 

efficiency will vary, especially regarding the dynamics of arbitrage, so the strict definition is 

necessary to present. 

Jensen (1978, p. 97) gives a more encompassing definition of market efficiency, which is 

closer to the current practical interpretation: 

“A market is efficient with respect to information set θt, if it is impossible to make economic 

profits by trading on the basis of information set θt.” 

Jensen defines economic profits as risk adjusted returns net of all costs related to trading, 

mainly transaction costs and information acquisition costs (Jensen, 1978). The refined 

definition is necessary because markets are not frictionless, which is the implicit assumption 

in the assertion that stock prices fully reflect all information. Instead, security prices should 

adjust until the marginal cost of trading and acquiring information exceeds the benefit of 

exploiting the mispricing (Elton, et al., 2009). Also, it is not in practice assumed that arbitrage 

is risk free and requires no capital. It is sufficient that risk is low compared to the reward, 

creating a possibility for excess risk-adjusted return in trading strategies designed to exploit 

the anomaly. It is assumed, however, that there are a sufficient amount of arbitrageurs, or 

rather a sufficient amount of arbitrage capital (Lo, 2007). This may seem obvious, but the 

distinction between the strict and practical version is not trivial because previous studies have 
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drawn conclusions on market efficiency without properly adjusting for cost and risk (Lo, 

2007).  

3.1.1 Tests of Market Efficiency 

The definitions of the three forms of efficiency as listed above were initially developed by 

Fama (1970) to facilitate tests of efficiency at different levels. Whether or not stock prices do 

reflect the presumed information set is not empirically testable per se, it is the implications for 

the return generating process that form testable hypotheses. Fama therefore more recently 

updated his interpretations of the three levels in terms of these implications (Elton, et al., 

2009). Weak form tests are taken to mean tests of return predictability, semi-strong form tests 

are tests of the speed of which stock prices update to new information, and strong form tests 

examine whether or not prices reflect nonpublic information (Elton, et al., 2009).  

Return predictability 

The strict definition of weak form efficiency above is that prices reflect all historical price 

information. Another way to frame the assertion is that stock prices are martingales, which 

implies that the past is not useful in predicting the future. Fama (1965) explains that 

historically, there were two conflicting views on this subject. One the one hand, proponents of 

“chartist theory” believed that one could predict prices by means of technical analysis. In 

contrast, proponents of the random walk hypothesis (RWH) maintained that asset prices 

fluctuate randomly. According to the EMH, the information used by the chartists to predict 

price movements should already be reflected in the stock price. The rationale is that if future 

price levels are predictable, agents in the market who know this will bid up the price until it 

reaches that level, thus arriving at that price level presently
2
 (Bodie, et al., 2005). The EMH 

can be viewed as the theoretical justification for the RWH, and they both imply that it is not 

possible to predict future asset prices or returns.  

Informational efficiency 

This last line of reasoning above can be used more generally for the other two forms as well. 

If new and unanticipated information which affects the fundamental value of a firm becomes 

known, the stock will suddenly be mispriced and the price will then be corrected through the 

                                                 
2 The argument suffers from what is known as the market efficiency paradox. If all information is already impounded in the 

stock price, there is no incentive for stock picking. Yet if no one is interested in stock picking, the information would not be 

impounded. The EMH can therefore only hold if there are a sufficient amount of investors who do not accept it to be true.  
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supply and demand mechanics of the stock market. This can happen either through a large 

population of arbitrage-seeking investors or a handful with deep pockets, e.g. institutional 

investors (Schwert, 2003). If information is disseminated rapidly the adjustment should also 

be rapid. If not, the argument that prices should instantaneously adjust only holds if the 

investors who are privy to the information are sufficiently deep pocketed. If a delay occurs, or 

if systematic errors in interpreting a specific type of information exist in previous price 

movements, traders will realize this and eliminate the anomaly by designing exploitative 

trading strategies (Fama, 1965). For the information set in semi-strong form efficiency, the 

implication is that fundamental analysis will not be fruitful. For strong-form efficiency, the 

implication is that insider trading is not profitable.  

Tests of return predictability are still prevalent and comprise the main bulk of research on 

efficiency. Semi-strong form tests are also frequently used. Most event studies interested in 

the effect of corporate events on firm value and how quickly these effects are impounded in 

price examine semi-strong form efficiency. Strong form tests are not very relevant in practice. 

Jensen (1978, p. 99) argues that the strong form is “an extreme form which few people have 

ever treated as anything other than a logical completion of the set of possible hypotheses”. 

However, tests of whether specific groups of investors, such as mutual fund managers or 

insiders in a company, can earn excess profits are often classified as strong-form tests (Elton, 

et al., 2009). 

3.1.2 Classification of the Tests in This Study 

The objective for the post event window is to investigate market efficiency by means of 

testing whether there are significant excess returns or correlation. It is important to note that 

there might be updated pieces of information regarding the drilling results in the subsequent 

days which the stock market may react to. Therefore, if a post-announcement drift is found it 

could be caused by either a delayed response to the initial information or reactions to the 

subsequent information releases (or extraneous factors). Only the first case would be 

inconsistent with the criteria from the semi-strong EMH that prices instantly react. The 

second case would in fact be a violation of the weak form EMH as stock prices would fail to 

reflect what the announcements imply, on average, for subsequent updates. 

For the pre-event window, the null hypothesis assumes that the market is not efficient in the 

strong form. An accepted null of no excess returns and no correlation would be consistent 
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with strong-form efficiency. However, if the null is rejected, the alternative hypothesis is not 

that the market is efficient in the strong form. In other words, we cannot prove anything in 

hypothesis testing; only disprove what efficiency implies for returns. The issue does not 

matter very much, and is not worth belaboring. The goal is to find evidence of information 

leakage, not strong-form efficiency, but it can be classified as a strong-form test.  

3.2 MARKET ANOMALIES - POSSIBLE EXPLANATIONS 
FOR THEIR EXISTENCE AND PERSISTANCE 

Market anomalies are deviations from the EMH found through empirical research. The EMH 

has been tested extensively since its inception, and several anomalies have been unearthed. In 

theory, once an anomaly is discovered and knowledge of its existence is disseminated the 

mispricing should be corrected immediately by arbitrageurs who capitalize on the low-risk 

opportunity. Schwert (2003) explains that many anomalies are in fact reduced after evidence 

is published, but others remain persistent through time. This section will discuss some 

possible reasons why they might exist, as well as the inevitable ambiguity in testing the EMH 

due to factors such as the joint test problem. The discussion is concerned with both reasons 

why they might counterfactually be found, as well as reasonable explanations for why they 

might exist. The latter brings us into the field of behavioral finance. 

3.2.1 The Joint Test Problem 

The joint test problem is the idea that any test of market efficiency is simultaneously a test of 

whether or not the normal return model used is adequate (Fama, 1970). That is, whether it is 

correctly specified, whether there are statistical issues in its estimation, and whether its 

assumptions about investor preferences are correct (Kothari & Warner, 2007) (Lo, 1997). 

Essentially, the problem is that in trying to determine the effect of one factor (discovery) on 

another (stock price), ceteris paribus estimation is needed. That is, all other factors must be 

held constant in order to isolate the effect. Complete isolation is of course not feasible in 

practice as no asset pricing model exists which exactly determines what the return should be 

at any given point in time, considering all factors besides the factor of interest in the study. 

The effect is that evidence against the EMH will never be accurate enough to constitute 

conclusive proof. 
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Because of the limitations of asset pricing models, studies of market efficiency are prone to 

statistical errors. These statistical errors might cause false conclusions of anomalies, i.e. type 

1 errors. For example, one common problem in event studies is increased risk (volatility) in 

the event window (MacKinlay, 1997). Parameters of the normal return model are normally 

calculated from an estimation window prior to the event, and therefore the beta(s) might be 

too low in some cases. If excess returns are found, they could be a fair compensation for risk 

instead of evidence of market inefficiency. The statistical biases of normal returns model will 

certainly be a major reason why market anomalies may exist, or rather appear to exist. I will 

elaborate on these in the Chapter 4, so that they can be discussed in relation to the 

methodology of this paper. It is important to stress, however, that the main consequence of the 

joint test problem is that we may never conclusively infer market efficiency or inefficiency.  

3.2.2 Data-mining 

As Schwert (2003), Fama (1998) and several other authors point out, with so many studies 

conducted in the aim of finding anomalies it is inevitable that they will be found in certain 

samples. After all, it would be quite surprising if no anomalous evidence was found after 

literally thousands of studies. There is always a chance that a pure statistical coincidence 

conforms to some researcher’s hypothesis.  This issue is exacerbated by the fact that 

researchers engage in data-snooping (Lo, 2007). Not only may data by chance conform, the 

hypothesis may be formed after finding anomalous evidence. 

Tests must therefore be run for different samples, and perhaps also using different 

methodologies. If an anomaly is not found in a subsequent test, it could be due to one of two 

reasons; either the investors in the market have realized the mistake and corrected it or it was 

not there in the first place (Schwert, 2003). 

3.2.3 Market Microstructure 

Market microstructure is concerned with how trading mechanisms affect the price formation 

process (O'Hara, 1995, p. 1). The main issues are liquidity, non-synchronous trading, bid-ask 

spreads and the bid-ask bounce, which are all related issues. When discussing the validity of a 

study which finds an anomaly, the aforementioned issues, along with other statistical 

problems caused by the normal return model, are often cited as possible reasons why the 

effect may exist without deviating from rationality or the EMH.  
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If a security is illiquid, quoted prices may become stale – the information set they represent is 

outdated because a significant amount of time has passed since they were last traded. For 

example, if there are news close to the end of a trading day 0, and the market does not trade 

for the rest of day 0 but instead on day 1, it will seem as if the stock responded to a piece of 

information on day 1. Liquidity is a problem that I will have to deal with when using 

observations form small companies. There is also some risk associated with illiquidity 

(Amini, et al., 2013).  

Illiquidity also raises the issue of non-synchronous trading. When using closing prices of 

securities we assume that the observations represent the market clearing price at the end of 

each day, while in truth the prices might be stale. Non-synchronous trading may lead to false 

abnormal returns and cross-autocorrelation
3
, and is a common issue in event studies. 

The bid-ask spread is the difference between the lowest price quoted by a seller (ask) and the 

highest price quoted by a buyer (bid). In effect, the bid-ask spread is a transaction cost 

charged by the stock exchange. Poorer liquidity will likely increase the bid-ask spread, so the 

issue is likely to be larger for smaller stocks (Elton, et al., 2009). Other transaction costs 

include brokerage fees and potential endogenous changes in the bid and ask prices due to 

large trades (Elton, et al., 2009). These transaction costs will defer trading, possibly causing 

anomalies to exist because it is not profitable to try to exploit them.  

If there is high selling (buying) pressure on the event day, there might be an 

overrepresentation of the bid (ask) price in closing prices in the cross-section of observations 

compared to the day before or after. According to Cox and Peterson (1994) this could lead to 

spurious abnormal returns on the next trading day and consequently lead to false conclusions 

of reversals or overreactions. This phenomenon is known as the bid-ask bounce, and has been 

found to explain much of the turn-of-the-year (January) effect (Cox & Peterson, 1994).  

                                                 
3 Cross-autocorrelation is when one security’s return is correlated with another across time. For 
example, a high return for security A today may on average result in a high return for security B 
tomorrow (Lo & MacKinlay, 1990). A possible explanation for this is that low-volume stocks react 
slower to market-wide news than do high-volume stocks (Chordia & Swaminathan, 2000). 
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3.2.4 Behavioral Finance’s Explanations – Cognitive Biases and 
Limits to Arbitrage 

The final major issue is concerned with investor rationality, which brings us into the field of 

behavioral finance. The previous sections on why market anomalies might be found in 

research were mainly explanations of why they might counterfactually exist. Behavioral 

finance, by contrast, proposes that markets in some cases will exhibit signs of departure from 

efficiency due to the presence of irrational investors coupled with limits to arbitrage (Barberis 

& Thaler, 2003). 

Behavioral finance is a relatively new field of research. Barberis and Thaler (2003) claim that 

it was partly the inability of traditional theories to explain anomalous phenomena that led to 

the emergence of behavioral finance. This is particularly due to the underlying assumption in 

traditional theories that investors are rational, which according to behavioral economists is 

false (Lo, 2007). The work of Daniel Kahneman and Amos Tversky (1973, 1974, 1979, and 

1982) in decision theory and behavioral biases forms the backdrop. Their findings are largely 

from an experimental setting where they examined how people make decisions. Kahneman 

and Tversky showed that individuals use heuristics
4
 to assign probabilities to values. Investors 

are therefore prone to cognitive biases in information processing and decision making. The 

results led to the development of prospect theory as well as experimental evidence of a 

plethora of behavioral biases. These results have been applied to the field of finance as a 

descriptive, rather than normative approach to explaining investor and market behavior.  

There are a few specific biases that should be defined before the next section on overreaction 

and underreaction. The following definitions are mostly quoted from Hens & Bachmann 

(2008) because of their focus on investment, but a citation is due Kahneman and Tversky, e.g. 

(1974). 

Representativeness and Availability 

Hens & Bachmann (2008, p. 71) describe the representativeness heuristic as “the tendency for 

individuals (1) to estimate probabilities depending on their pre-existing beliefs even if the 

conclusions are statistically invalid and (2) to believe that small samples (e.g. a sequence of 

returns) represent entire populations (e.g. all returns from which the realization is drawn).” 

                                                 
4 Heuristics are methods of problem-solving based on «rules-of-thumb» reasoning.  
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Statement (2) is of particular interest. It may lead investors to think that firms performing well 

will continue to do so in the future (Hens & Bachmann, 2008). If this is widespread, it may 

cause overreaction in that prices depart from intrinsic value and later revert. It may therefore 

explain investor behavior in speculation bubbles and also shorter term overreaction. The 

availability bias describes the tendency of investors to overweight information which is easy 

to recall (Kahneman & Tversky, 1974). It may amplify the representativeness heuristic (Hens 

& Bachmann, 2008). 

Anchoring and Conservatism 

Hens & Bachmann (2008) explain anchoring as being influenced in judgment by some 

arbitrary figure - the anchor - even when the figures are not informative. Conservatism means 

that investors overweight prior beliefs and underweight recent data. Hens & Bachmann (2008) 

explain that conservatism may be described as a consequence of anchoring, in which case the 

anchor is previous levels of the stock price or previous values of the firm. This is an obvious 

contradiction to the representativeness bias, and also predicts the opposite effect - 

underreaction due to slow updating of expectations. 

Ambiguity aversion 

Ambiguity aversion, or uncertainty aversion, was first documented in Ellsberg (1961). It 

describes the tendency of individuals to prefer options where the probability distributions are 

known. It is closely related to risk, but whereas perceived risk can be represented by 

probabilities, ambiguity refers to situations where the outcomes are too uncertain to be 

assigned a probability measure due to a lack of precise information (Epstein, 1999). The 

effect is that trading may be deferred where there is a lack of precise information (Easley & 

O'Hara, 2010). 

The key question is whether these biases will be relevant to asset pricing and whether they are 

plausible explanations for market anomalies. Proponents of the EMH would argue that the 

process of arbitrage would push stock prices towards their fundamental value, i.e. the 

equilibrium price with rational expectations (Lo, 2007). Behavioral economists, on the other 

hand, would argue that this will not necessarily happen due to a collection of issues known as 

limits to arbitrage.  
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Limits to arbitrage 

The textbook definition of arbitrage requires no risk and no capital, and yields an immediate 

payoff. However, arbitrage opportunities require taking offsetting positions in other assets, 

and these positions will rarely be perfect (Barberis & Thaler, 2003). The arbitrage portfolio 

will therefore be subject to fundamental risk. The security which was initially mispriced 

might continue to move in the direction of the mispricing. For example; if a security was 

underpriced, and an investor therefore went long in that security, an unexpected negative 

firm-specific event might occur which pushed the price down further (Barberis & Thaler, 

2003). The fact that arbitrage is risky is a major deference to arbitrage trading, and by itself 

falsifies the strictest interpretation of the EMH.  

The irrationality that caused the mispricing in the first place might also continue and 

exacerbate the mispricing. This is a problem if portfolios are not held until the arbitrage 

payoffs are realized. Shleifer & Vishny (1997) explain that contrary to the assumptions 

implicit in the EMH and models such as the CAPM and APT, arbitrage trading is mostly 

carried out by institutional investors rather than a large number of small traders. This poses a 

significant problem in the event that mispricing exacerbates. Investors in a fund might 

observe temporary losses in the arbitrage positions and withdraw capital from the fund. The 

arbitrageur might then be forced to liquidate holdings prematurely, taking losses instead of 

cashing in on the arbitrage opportunity (Shleifer & Vishny, 1997). Further, the fear of this 

happening might limit investors’ aggressiveness in exploiting mispricing (Barberis & Thaler, 

2003). This could lead to a slow convergence towards intrinsic value, rather than an 

immediate correction. These arguments are even more compelling if the providers of capital 

are creditors who require immediate repayment if the value of the portfolio or fund reaches 

some predetermined low (Barberis & Thaler, 2003). 

Exploiting mispricing will also require the incurrence of implementation costs such as 

transaction and information acquisition costs. This will of course limit the profitability of 

arbitrage trading. Moreover, there will be a tradeoff between offsetting risk and transaction 

costs. More assets in the portfolio might offset more risk, but transaction costs will increase. 

These costs should only be considered limits to arbitrage when the theoretical version of 

efficiency is used as opposed to the pragmatic version. 

Arbitrage opportunities are often referred to as “free lunches”. In practice, arbitrage trading 

entails risks, costs and capital and is by no means free. As a result, mispricing may exist and 



21 

 

persist because even if investors come to know of them they may be unprofitable to exploit. 

Barberis and Thaler (2003) write that correct prices imply that there is no free lunch, 

however; the fact that there is no free lunch does not necessarily imply that prices are correct. 

Market forces may simply not be powerful enough to correct them.  

Now, it was explained in section 3.1 that the EMH does not necessarily assume that arbitrage 

is riskless and requires no transaction costs. Jensen (1978) recognized transaction and 

implementation costs in his definition. But I included transaction costs above, as an argument 

of behavioral finance that markets are not efficient. EMH proponents may still make the 

argument that markets are efficiently adjusting until the costs equal the benefits, and take this 

as evidence in favor of the EMH (Lo, 2007). But then the argument of arbitrage does not rule 

out that there is mispricing in the market, only that it is unprofitable to exploit. In other words, 

there is a gray area where anomalies are not taken as evidence of inefficiency as small 

anomalies are allowed to persist in an efficient market as defined by Jensen.  

3.3 OVERREACTION AND UNDERREACTION 

One of the most intriguing pieces of evidence against market efficiency is overreaction and 

underreaction. When the market underreacts, stock prices continue to move in the same 

direction as an initial shift. This is also referred to as continuation, and is related to 

momentum. If there is an overreaction, the market adjusts beyond fundamental value, and the 

price is eventually reversed. Accordingly, overreaction is often referred to as reversal. There 

is empirical evidence for the existence of both phenomena in stock markets, but the 

implications for efficiency are still debated and are yet unclear. Behavioral economists argue 

that the phenomena exist due to cognitive biases and limits to arbitrage. The main counter-

argument is that it is too early to reject efficiency due to possible alternative justifications 

such as increased risk or ambiguity or the microstructure issues discussed above. This section 

will present a mix of previous literature and theory, with special focus on short-term over- and 

underreaction. I will start with a short introduction to the history of how behavioral finance 

became a viable alternative hypothesis to the EMH. 

3.3.1 Overreaction  

The article by Werner De Bondt and Richard Thaler (1985) “Does the Stock Market 

Overreact?” was somewhat of a breakthrough for behavioral finance. They found that firms 
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that performed well during the past three to five years tended to perform poorly in the 

following months. Influenced by the work of Kahneman and Tversky, they attributed the 

results to overreaction caused by the representativeness heuristic. In a stock market setting, 

the representativeness heuristic means that investors overweight recent performance relative 

to past. Biased investors will therefore buy stocks that have recently gained and sell stocks 

that have recently dropped. Hens & Bachmann (2008) explain that the availability bias could 

cause overreaction in stock markets. It is certainly related. Availability in this context means 

that investors remember recent stock returns more easily and therefore overweight them 

compared to prior returns, so this could be an underlying causal factor to the 

representativeness heuristic. The major consequence of overreaction is that contrarian 

investment strategies – buying losers and selling winners – can potentially earn excess profits, 

which should of course not happen in efficient markets. 

3.3.2 Underreaction 

In contrast to De Bondt and Thaler’s results, Bernard and Thomas (1990) examined 

performance after earnings announcements and found that markets underreacted. That is, 

prices seemed to drift upwards for good news firms and drift downwards for bad news firms 

in the 60 days following an earnings announcement. This phenomenon was first documented 

by Ball and Brown (1968), and is known as the post-earnings announcement drift (PEAD). 

While overreaction can be explained by the representativeness and availability heuristics, 

underreaction is often attributed to conservatism and anchoring (Hens & Bachmann, 2008). In 

short, investors are biased towards the previous price level or value, and it takes time for them 

to update their beliefs about the value of the firm. Therefore, new information will slowly be 

impounded in the stock price rather than instantly. Hens and Bachmann (2008) explain that 

conservatism might arise because processing new information and updating beliefs is costly, 

and that information which is difficult to interpret is weighted less. This will definitely be a 

relevant point for drilling announcements, as they are often difficult to decipher effectively. A 

related phenomenon is the momentum effect found by Jegadeesh and Titman (1993). They 

conduct a relative performance study and find that stocks that performed well over a year tend 

to perform well also in the following three to six months. 
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3.3.3 Ambiguity aversion and the Uncertain Information Hypothesis 

Eugene Fama, in his classic 1965 paper on the behavior of stock prices, stated that mispricing 

caused by uncertainty would not persist (1965, p. 39):  

«If uncertainty concerning the importance of new information consistently 

causes the market to underestimate the effects of new information on intrinsic 

values, astute traders should eventually learn that it is profitable to take this 

into account when new information appears in the future. » 

In contradiction to Fama’s statement, Brown, Harlow and Tinic (BHT) (1988) formulate what 

they dub the Uncertain Information Hypothesis (UIH). Its premise is that when unanticipated 

significant news arrives the market must set a price before the full ramifications of the news 

are known. BHT claim that rational and risk-averse investors will price these securities in 

such a way that leads to higher returns in the post-event window due to increased risk, 

regardless of whether the news are good or bad. More precisely, after good news the stock 

price should increase, but not as much as it would conditional on the news release and with 

commensurate risk. The stock price should adjust slowly as the ramifications are gradually 

understood and uncertainty is reduced. This is a modification of the EMH which loosens the 

requirement that stock prices must instantly react, which is the current interpretation of semi-

strong form efficiency (see 3.1.1). BHT find empirical evidence that supports the hypothesis. 

Consequently, they argue that the effect might lead researchers to incorrectly conclude with 

underreaction to good news and overreaction to bad news in the short term.  

The UIH explains the increased premium in terms of increased risk, and BHT’s assumptions 

do not depart from rationality. However, if investors were ambiguity averse, the same effect 

would be expected as they would prefer to invest in stocks with less uncertainty.   

 

Corrado and Jordan (1997) later criticize the methodology of BHT and replicate the approach 

with slight modifications
5
.  They conclude that the modified results are consistent with price 

reversals for both negative and positive events, typically lasting for around two days (Corrado 

& Jordan, 1997). Bernard and Thomas (1990) also refute the UIH as an alternative 

explanation due to the fact that their bad news firms experience a negative drift, which is 

opposite to the prediction of the UIH, but their argument does not necessarily hold in the very 

                                                 
5 BHT used the relatively low threshold of ±2.5 percent excess returns as the proxy for significant informational surprises. 

Corrado and Jordan explain that the 60-day post-event window used by BHT should on average include 6 observations of 

either negative or positive subsequent events. They therefore argue that BHT do not “effectively discriminate between 

positive and negative events” (Corrado & Jordan, 1997, p. 53). Their response is to simply increase the threshold and they 

report difficulties in obtaining empirical justification for the theory. 
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short term. Despite criticism, the UIH received interest from researchers and remains a viable 

alternative explanation to underreaction and overreaction. Amini et al (2013) provide a 

literature review of reversal studies which reveals a large body of evidence in favor of the 

UIH. However, whether results indicating an overreaction to negative events and an 

underreaction to positive events are caused by cognitive biases or uncertainty is an open and 

empirical question. The issue is especially noteworthy after announcements of drilling results 

because of the high level of uncertainty and potentially large ramifications.  

3.3.4 Previous evidence of short-term price reversals and delayed 
price responses 

The main bulk of studies on short term over- and underreaction define the event is a large 

relative price change. Other studies have used announcements and trading volume (Pritamani 

& Singal, 2001). Although I will not use a relative price change to weed out observations, 

these studies contain the most general conclusions and it is better to review these than a 

specific type of announcement. 

Atkins and Dyl (1990) examine post-event behavior of stock prices after being listed in the 

Wall Street Journal as the top losers or winners. They conclude that the market seems to 

initially overreact and reverse for both negative and positive events, but the effect was much 

less significant for positive news. They do not, however, conclude with market inefficiency 

after transaction costs because the bid-ask spread is high. The two-day abnormal return 

following decreases was 2.26 percent, but the bid-ask spread was 3.57 percent. For increases, 

the bid-ask spread was 3.29 percent, while the two day abnormal return was -0.77 percent. 

 

Bremer and Sweeney (1991) perform a similar study exclusively on extreme price decreases 

and find that reversal lasts approximately two days. They also note that the results do not 

necessarily imply that a trading strategy exploiting it will be profitable, but they emphasize 

that the results are inconsistent with the notion that stock prices should instantly react. The 

results are therefore consistent with both the UIH and overreaction, but they do note that the 

abnormal returns can partly be explained by a high bid-ask spread. Later, Bremer, Hiraki and 

Sweeney (1997) examine predictable patterns after large stock price changes on the Tokyo 

Stock Exchange. They find significant positive abnormal returns after price decreases over 10 

percent, but they do not find any patterns of returns after large increases.  
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Cox and Peterson (1994) study three-day post-event performance after one-day declines of 10 

percent of more. They find that prices reverse significantly, but conclude that there is no 

evidence of overreaction due to two additional findings. First, the large selling pressure on the 

day of the large drop causes an overrepresentation of bid prices relative to ask prices, i.e. a 

bid-ask bounce. Cox and Peterson show that this accounts for a major part of the positive 

abnormal returns in the following three days. Second, they find that the remaining abnormal 

returns are decreasing in time and argue that this is due to increased liquidity in more recent 

years, which leads to a reduction in the bid-ask spread.    

 

While the above studies only use relative price measures, Pritamani and Singal (2001) apply a 

more refined approach. They use relative price changes, volume changes, and public 

announcements as proxies of information releases simultaneously instead of focusing on just 

one. The first selection criterion is large price changes, and then they a screen observations 

based on whether or not there was a public announcement on that day for the firm. For 

relative price changes only, post-event returns reverse for both positive and negative news, 

which is consistent with overreaction. The results are economically insignificant but 

sometimes statistically significant, which is generally the conclusion of the aforementioned 

studies. When screening on public announcements in addition the effect increases and actually 

changes sign. They find that investors earn an average of 1.20 percent cumulative average 

return (CAR) in the 20-day interval following positive announcements, and -1.62% following 

negative reactions. When the observations are screened on volume changes also, this effect is 

amplified and the 20-day cumulative abnormal return increases to 2 percent and -1.68 percent 

for positive and negative news, respectively. These results are consistent with underreaction 

for both positive and negative news, which contradicts the aforementioned studies, their own 

results not conditioned on announcements, as well as the UIH. Finally, they examine different 

types of announcements and find that underreaction in response to earnings announcements 

and changes in analyst forecasts are even larger. They employ an out-of-sample trading 

strategy for the most refined example, i.e. observations for which there are large price 

changes, volume increases, and announcements regarding earnings or changes in analyst 

forecasts. The result is a 20-day abnormal return of 1-1.5% after adjusting for transaction 

costs, excluding commissioning costs, and they consequently claim proof of market 

inefficiency. 
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The takeaway here is that large price decreases are typically reversed in the few following 

days, but the effect could vary within subsamples such as those events accompanied by 

company announcements. My sample size cannot afford screening on relative price changes, 

so these findings are not directly comparable as there will be small price changes also. Amini 

et al (2013), through a literature review, find that there is some evidence to suggest that large 

price changes are associated with reversals and small changes are associated with 

continuations. If there is a reversal for negative news it may be difficult to separate an 

overreaction effect and increased uncertainty. For positive news, a reversal would imply 

negative returns in the following days, while the UIH and underreaction hypothesis would 

predict positive returns. There is some opposing evidence on the sign of post positive event 

excess returns, and the effects seem to be smaller than for decreases. This could also be due to 

the effect varying in sign across different subsamples. While these studies are not based on 

specific events, they do reveal some important considerations and possible alternative 

explanations. Some alternative explanations were also considered introductorily in this paper. 

I will interpret information asymmetry as essentially the same as ambiguity or uncertainty. A 

more interesting alternative explanation to keep in mind is that investors are affected by the 

conservative nature of announcements, and therefore fail to recognize the true implications for 

firm value. 

3.4 CONCLUDING REMARKS ON MARKET EFFICIENCY 

The purpose of this chapter so far was to present previous evidence and theory in order to 

provide context and also highlight possible explanations for results. There are many problems 

in testing for market efficiency, some of which are yet to be discussed in the methodology 

section. However, the tests still provide useful information and if evidence is strong, statistical 

inference will be valid. As Eugene Fama (1991, p. 1576) states; “academics largely agree on 

the facts that emerge from the tests, even when they disagree about their implications for 

efficiency.” Several anomalies have been found and present powerful evidence against the 

EMH. For practical purposes however, most markets are approximately efficient, and the 

EMH continues to be a cornerstone of financial theory. Jensen wrote early on in this debate 

that “I believe there is no other proposition in economics which has more solid empirical 

evidence supporting it than the Efficient Market Hypothesis” (Jensen, 1978, p. 96). The debate 

on efficiency continues today because there is still no widely accepted normative theory to 

describe deviations from the EMH.  
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Because of the conflicting evidence and theory on the nature of the reaction, it is difficult to 

hypothesize whether the market might exhibit tendencies of continuation or reversal. The 

statistical tests are therefore investigative and two-sided in order to accommodate both 

directions. 

3.5 INFORMATION LEAKAGE AND INSIDER TRADING 

While it is difficult to hypothesize what will happen in the post-event window, for the pre-

event window the intuition is simple. Investors with inside information would trade to profit 

from the assumed direction of the event-day return. If a market is strong-form efficient, 

investors with private information about a firm could not earn excess returns by trading on 

this information. In practice, it is not strong-form efficiency which limits the investor’s profits 

but rather the laws and regulations which prohibit this behavior (Elton, et al., 2009). In this 

short section which concludes the theory chapter I will discuss how this study relates to 

previous research on insider trading and also discuss a couple of particularly interesting 

previous studies.  

Context 

First of all, it is not necessarily illegal for an insider in a company to transact in the company 

stock. It becomes illegal if the trading is carried out on the basis of private and material 

information which is presumed to affect the stock price
6
. Much of the literature on insider 

trading seems to focus on whether reported insider trades which are announced through stock 

exchange notices make excess profits. These trades are not necessarily illegal, so the results of 

these studies are not directly relevant for this study. Further, these studies examine the 

profitability of the actual trades of insiders. In order to do that for a specific event, such as 

discovery announcements, one would need to examine trades of constituents of insider lists in 

connection with the discoveries. That would require a radical change in methodology and 

cannot accommodate a dual research question such as the one in this study, but it is an 

interesting option for further research.  

                                                 
6 This definition is taken from the U.S. Securities and Exchange Commission (SEC, 2013). Although laws and regulations are 

decided by different governing bodies for each stock exchange, it is assumed that the laws are similar (see 2.2).  
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There is also a line of research which uses the traditional event study methodology to 

determine the abnormal returns around firm announcements, e.g. the study by Agapova and 

Madura (2011) discussed below. This coincides with one of the approaches in this paper, the 

CAAR method, but this paper is somewhat differentiated from these studies also. Naturally, 

they typically focus on one specific stock exchange or country in order to keep the analysis 

under one governing authority. In this study, what the firms in the sample have in common is 

that they are subject to the rules and regulations pertaining to insider information for drilling 

results on the NCS, some of which were discussed in section 2.2, but not a specific country or 

stock exchange. However, most observations are from companies listed in the USA and 

Norway (see appendix 8.1.3 for a list of observations per company). The most relevant 

question to answer through the following literature review is whether or not there is evidence 

of insider trading on these exchanges.  

Evidence 

There is a fairly large amount of research for the US, especially after Regulation Fair 

Disclosure (RFD)
7
. Agapova and Madura (2011) offer recent evidence in a thorough event 

study using the abnormal returns around company issued market guidance in the US. They 

find strong evidence for information leakage, both before and after RFD. They also find that 

the degree of leakage is larger when (1) the information content is larger, (2) the level of 

information asymmetry is higher and (3) when firms are small and trading volume is high. 

The last finding is especially interesting. Agapova and Madura predict that the degree of 

information leakage for both small firms and low-volume stocks should be comparatively 

higher due to larger information asymmetry, but they found the opposite effect for volume. 

Subrahmanyam (2005) offers a hypothesis which justifies the evidence: Illegal insider trading 

is easier to disguise when trading in stocks with higher liquidity. Agapova and Madura cite 

several earlier studies which confirm the evidence of information leakage for the US market 

in connection with research on RFD. I will not duplicate their literature review here.  

The evidence is more limited for the Oslo Stock Exchange. Eckbo & Smith (1998) conduct a 

study for the OSE where they form portfolios of actual insider trades and evaluate the 

performance of these portfolios. These trades are based on stock exchange notices and are not 

necessarily illegal, but they do find some interesting evidence. Insider portfolios did not 

                                                 
7 Through RFD, implemented in 2000, companies must disseminate news about the company market wide rather than 

informing a small group of investors, hence the term fair disclosure.  
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perform abnormally well, a result which was robust to a variety of factors including the size 

of the trade and whether the investor sold or bought. Moreover, the insider portfolios do not 

outperform the average mutual fund in their sample. They compare their results with a 

traditional event study approach, which finds some weak evidence of leakage. Both the 

methodology and results in this latter test are consistent with the earlier studies for other 

markets. They argue quite convincingly in favor of the portfolio approach, and therefore 

conclude that there is no evidence of information leakage for the OSE.  
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4. METHODOLOGY 

For the most part, I will follow the approach and notation of Craig A. MacKinlay’s often cited 

paper “Event Studies in Economics and Finance” (1997). In brief, the procedure involves 

calculating the mean cumulative abnormal returns (CAR) around the event date and using t-

tests to determine the significance level of the CARs for various intervals. This will allow for 

a graphical representation of the average effect of the discovery announcements, and the 

CARs are used as a foundation from which I can carry out the two strategies of testing the 

null hypotheses in the post- and pre-announcement event windows. 

For the announcements to have an effect on stock price, they must convey information which 

differs from what is priced in by the market. In other words, the reactions can be positive, 

negative or null, depending on the market’s expectations. The full-sample mean is therefore 

not efficient in testing for efficiency and over- and underreaction as negative and positive 

reactions are offsetting. The two testing strategies differ in how they deal with this problem.  

The first method, which I have named the CAAR (cumulative average abnormal return) 

approach, involves classifying announcements as either good or bad news before testing 

hypotheses of whether there is excess return in these subsamples around the event dates. The 

specific null hypotheses are:  

(1) There is no excess return around the date of announcements 

(2) There is no excess return after announcements 

(3) There is no excess return before announcements 

Hypotheses 1 is mainly included for logical completion but is to some extent a premise for 

hypotheses 2 and 3. 

There is no third-party proxy available for gauging expectations of drilling results, so the 

grouping of positive and negative events is done on the basis of the event-day abnormal 

return. Thus, this approach is similar in methodology to previous research on short term over- 

and underreaction where a fixed price change threshold is applied. While a threshold is tested, 

the discussion will revolve around tests where the only criterion for discrimination is the sign 

due to a large reduction in sample size.  
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The second approach is based on OLS regression and tests the same hypotheses, but without 

the explicit grouping. Pre- and post-announcement window CARs are regressed on 

announcement day abnormal returns and the coefficients in the regression are used for 

hypothesis testing. The formal hypotheses for this method are: 

(4) There is no correlation of returns after and immediately after announcements 

(5) There is no correlation of returns before and immediately after announcements 

Hypotheses 2 & 4 both test for an under- or overreaction, while 3 & 5 both test for 

information leakage. 

The two methods will be described in more detail in their respective subsections. Below is a 

step-by-step outline of the methodology section. Steps 1 through 4 will be common to both 

methods.  

1. Define the event windows 

2. Estimate normal returns 

3. Compute abnormal returns 

4. Aggregate abnormal returns across time 

5. CAAR testing method 

6. OLS testing method 

Statistical considerations will be included throughout where they apply. 

4.1 CHOOSING EVENT AND ESTIMATION WINDOWS 

The event window is the period in which we investigate the behavior of stock prices. The 

estimation period is the period in which we estimate parameters for the normal return model. 

The window selection is dependent on the research question, statistical considerations, as well 

as the nature of the event. 

4.1.1 Event Windows 

The total event window is decomposed into a pre-event window, the announcement or event 

day, and the post-event window as follows:  
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The event day is at t = 0. The general notation is necessary because I will vary the length of 

the event windows. However, T2, the end of the pre-event window, will always be at t = -1, 

the end of the day before the event day, and T3, the start of the post-event window, will 

always be at t = +1, the day after. The lengths (L) of the windows are:  

 

Estimation window: L1:  T1 – T0 

Pre-event window: L2:  T2 – (T1 + 1) 

Event day:  L3:  T3 – (T2 + 1) = 1 

Post-event window: L4:  T4 – T3 

The pre-event window 

For the issue of information leakage, it is relevant to know the amount of time that passes 

from striking oil or gas until the information is passed on to the public. There is no universal 

answer to this. First of all, in exploration drilling the information content gradually increases 

with drilling depth. Also, there is not a fixed stage in the process of drilling that triggers an 

announcement. That is, some announcements are at an early stage of drilling, perhaps just 

notifying the public that hydrocarbons have been discovered
8
.  This happens in situations 

where there is danger or suspicion of information leakage, or if the market is highly 

anticipant. Because the information value is increasing up until the announcement date, and 

also the number of people privy to the information increases
9
, we would expect the risk of 

insider trading to be highest the day or two before the announcement.  

The post-event window 

In the post-event window, aside from statistical considerations, we are most interested in how 

long we might reasonably expect the event to have an effect on the stock price. As part of the 

objective of this study is to examine whether the stock market underreacts or overreacts, we 

should leave the window large enough so that subsequent announcements, i.e. updates of 

                                                 
8 As will be discussed in chapter 5, if there are several subsequent announcements, the first one is included. This is done 

because if not there would be a justifiable reaction in the pre-event period, which is obviously unwanted.  

9 The operator will inform the partners in the license as well as the NPD of the results. Based on discussions with the NPD, 

this is usually the day before the announcement.  
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estimates, are included in the window. These updates may come in the few days preceding or 

several months or even years later.  

Statistical considerations 

The main statistical consideration is that an increasing event window will reduce the power of 

the tests (Brown & Warner, 1985). Also, an increasing event window will increase the risk of 

including extraneous events, potentially damaging the validity of the results.  

In summary, I want to keep the window as short as possible while still capturing as much of 

the effect as possible. Because of this tradeoff of statistical efficiency versus information 

value I experiment with multiple lengths of event windows. For reasons outlined above, the 

pre-announcement window will be tested for 2 and 5 calendar days. The post-announcement 

window will be tested at 2, 5, 10, 20 and 30 days. The shorter windows are more reliable and 

valid, while the 30 day window will potentially provide additional information. 

Estimation window 

In determining the estimation window, there is a tradeoff between statistical efficiency and 

the possibility that the company’s risk has changed over time. Here I will follow the 

convention of using about a year’s worth of trading days, which is also recommended by 

MacKinlay (1997). 

It is worthwhile to note here that the estimation window will include other discoveries. Also, 

there was no attempt at correcting for extraneous events in the estimation window which 

means that in some cases the variance is likely to be overestimated (Thompson, 1988). 

Unfortunately, this would cause a downward bias and reduction in power. On the other hand, 

this downward bias is positive in the event that discoveries are associated with increased 

volatility. That is, the downward bias will decrease the likelihood of a type 1 error caused by 

using a low estimate of risk, and thus strengthen validity. 

4.2 THE MODEL FOR NORMAL RETURN 

There are several methods available for modeling normal (predicted, expected) returns. An 

important consideration in selecting a model is to achieve a high level of precision in the 

expected return estimates. This will reduce the variance of the calculated abnormal returns 
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and consequently increase power. I also seek to limit the amount and magnitude of statistical 

biases introduced, and in that respect it is important that the model is correctly specified.  

The market model, which is a less restrictive form of the CAPM
10

, will be applied here. It 

appears to be the most frequently applied method and is generally recommended (MacKinlay, 

1997). The market model assumes that asset returns are normally distributed and given by the 

expression (MacKinlay, 1997): 

                   

 

 (     )                    (   )     
  

Where; 

 

     = return on the stock i at time t 

       = return on the market index at time t 

     = zero mean disturbance term with variance    
  

         
 11 = model parameters to be estimated 

 

A local market index is used for the market return. This is the norm in international event 

studies (Campbell, et al., 2010). Specifically, DataStream’s LI (Local Index) function is used, 

which returns a local index linked to the securities. All securities are listed on fairly large 

exchanges. 

Because I have daily data, I use log returns because they conform better to the assumption of 

normally distributed errors and are inexpensive to implement (Henderson Jr., 1990). The price 

is adjusted for dividends, so the following formula applies (Henderson Jr., 1990): 

      (        )    [  (
    
  

  )]    (
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10 MacKinlay (1997) explains that while the CAPM is built on economic arguments the market model is purely statistical and 

does not make restrictions based on rational investor behavior.  

11 NOTE: The i indexer should be interpreted as the observation, rather than the firm, because firms will be included multiple 

times. Βi is therefore the beta of for the firm in the observation denoted by i. 
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The model parameters alpha, beta and the variance of the disturbance term must be measured 

for each observation through ordinary least squares (OLS) regression. Below are the 

expressions of the estimates that are calculated for each observation (MacKinlay, 1997).  
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Since the sample will almost exclusively consist of firms in the petroleum industry, including 

an industry index and possibly the oil price could increase performance. If more variance is 

explained by the independent variables, the variance of the abnormal returns (prediction 

errors) would be reduced and consequently increase the power of the test. Dyckman et al 

(1984) showed, explicitly for the oil and gas industry, that failure to account for “industry 

clustering” reduces the power of the model to detect abnormal returns. However, since the 

event window is relatively short, the inclusion of an industry factor should not affect results 

significantly. Also, if local industry indexes were used some firms would constitute a large 

part of the index, there could be multiple event-firms in the index, and there are potential 

spillover effects
12

. The simpler market model is therefore preferred. 

Assumptions and statistical considerations 

The assumptions underlying the model follow from its linear specification and OLS 

estimation procedure. An extensive body of research
13

 has accumulated over the years testing 

the performance of the model as applied to the event study methodology. Performance is 

tested empirically, usually using a simulation procedure similar to that of Brown & Warner 

                                                 
12 The results of one well might impact the expectations of deposits in nearby areas, thereby affecting firms with stakes in 

neaby licenses.  

13 See e.g. (Henderson Jr., 1990) (MacKinlay, 1997) (Brown & Warner, 1980) (Brown & Warner, 1985) (Thompson, 1988) 

(Ahern, 2009) (Kothari & Warner, 2007) (Dyckman, et al., 1984) for examples and summaries. 
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(1980 & 1985). These studies generally find that the market model performs well in a variety 

of conditions. MacKinlay (1997) explains that the market model is well specified given three 

assumptions; asset returns are multivariate normal and independently and identically 

distributed through time.  The assumptions, although strong, do not generally lead to 

problems because they are empirically reasonable and even if they do not hold, inferences are 

generally robust to deviations (MacKinlay, 1997). 

There are, however, some statistical issues which must be discussed both with regard to the 

model itself as well as the estimation procedure. These include increased risk, liquidity, non-

synchronous trading and serial correlation. 

Increased risk 

The market model may inadequately adjust for risk, and therefore yield excess return, when in 

truth the increased returns are a fair compensation for increased risk. This is important to 

consider in event studies as a stock often becomes more risky (volatile) following an 

important announcement (MacKinlay, 1997). However, it will not make a major difference 

when the event windows are short. Also, other discoveries are included in the estimation 

window, as mentioned, which reduces the chance of a type 1 error due to event-induced 

uncertainty or risk. The issue is therefore ignored.  

Liquidity and non-synchronous trading 

Poor liquidity could cause biases in the market model regression in several ways. First, 

securities that do not trade on a given day are assigned a zero return. If there are many non-

trading days, the beta will be understated and the variance of abnormal returns will increase. 

A related bias occurs from the problem known as non-synchronous trading. All prices are 

assumed to be set at the end of the trading day while in reality they may be set hours or even 

days before. When the stock return and the market return are measured over different time 

intervals the beta in the market model estimation is biased and inconsistent (Brown & Warner, 

1985). The issue is increasing in decreasing liquidity because illiquid stocks will trade less 

frequently.  

One simple way of dealing with the problem is to use weekly returns instead of daily returns, 

but that would decrease the amount of observations. Since most of the firms in the sample 

have liquid stocks, I prefer to use daily data. As is elaborated in the data section, some 

observations were excluded due to infrequent trading.  
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Serial Correlation 

Another issue is the evidence of serial correlation (autocorrelation) in daily returns. If there is 

serial correlation returns will not be independent through time. According to Brown and 

Warner (1985) non-synchronous trading could explain some of the effect. The effect is that 

parameter accuracy will be overstated, which would increase the chance of a type 1 error. 

Also, if there is serial correlation in the abnormal return estimates in the event windows, the 

effect is indistinguishable from overreaction and underreaction. It could bias the results either 

downward or upward, depending on which case of misreaction there is and whether the 

autocorrelation is negative or positive.  

I test for serial correlation using the Durbin-Watson statistic and find no observations with 

significant results. 

4.3 CALCULATING AND AGGREGATING ABNORMAL 
RETURNS 

The abnormal (excess) return is the actual return less the corresponding predicted return. It is 

thus synonymous to the prediction error (   ) in the market model equation. Let   ̂   denote 

the abnormal return for the stock (observation) at each t over the event window. The abnormal 

return can then be expressed as: 

  ̂         ̂    ̂     

 

Where  ̂  and  ̂  are the parameter estimates from the market model regression. This estimate 

of abnormal return will be used directly in the OLS regression equation as the announcement 

day excess return, and it will also be used to segment the observations into good and bad news 

for the CAAR method.  

 

MacKinlay (1997) argues that for a sufficiently large estimation window
14

, the variance can 

be expressed as:  

                                                 
14

 The full variance expression is: 
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where the second component is variance due to the sampling error of α and β, and L1 is the length og the estimation window 

(MacKinlay, 1997). It is assumed here that the lenght of the window (240 days) is large enough to assume that the sampling 

error variance is low enough to be ignored.  
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That is, the variance of the prediction error from the market model regression is the 

appropriate measure of variance of abnormal returns for each t in the event window 

(MacKinlay, 1997). The main assumption is that the event does not significantly increase risk.  

We could use these estimates to test a hypothesis of whether or not returns for a given 

observation at a given point in time in the full event window are statistically different from 

zero. However, the hypotheses I want to test require event windows which are larger than one 

day, so the returns must be aggregated across time. The estimate of cumulative abnormal 

return for any observation, from time t1 to t2 is calculated from: 

 

   ̂ (     )   ∑   ̂  

  

    

 

The inputs t1 and t2 are varied to match different event windows. Since the estimation window 

is large, the variance of    ̂  is assumed to be approximated by its asymptotic property 

(MacKinlay, 1997):  

  
 (     )  (       )   

  

As evidenced by this equation, the variance is increasing in the length of the event window. 

This marks the end of the commonality between the two testing strategies.   

4.4 CAAR TESTING METHOD 

In order to draw inferences about the event effects the observations must be aggregated across 

observations. This is simply done by calculating the mean: 

   (     )  
 

 
∑   ̂ (     )

 

   

 

This is done for the whole sample and the two subsamples of positive and negative events. 

Finally, an estimate of variance is needed. Assuming that there is no cross-sectional 
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dependence in abnormal returns, the covariance term is set to zero and the expression for 

variance is (MacKinlay, 1997): 

   (   (     ))  
 

  
∑  

 (     )

 

   

 

The nulls, for both subsamples and for all event windows, are tested with the test statistic:  

   
   (     )

   (   (     ))   
    (   ) 

4.4.1 Statistical considerations for CAAR method 

Clustering 

In the variance estimate above for the cross-section it is assumed that the covariance between 

abnormal returns is zero. There are two reasons for which this assumption may not necessarily 

hold; there will be some cases of overlapping event windows (time clustering) and firms are 

concentrated in one industry (industry clustering). When aggregating abnormal returns across 

firms in event time, the prediction errors from the market model may therefore be correlated. 

This would bias the standard deviation of abnormal returns downward and the test statistic 

upward, leading to increased probability of a type 1 error (Kothari & Warner, 2007). The 

issue has been studied extensively in the literature, and important papers include Brown & 

Warner (1980), Collins & Dent (1984), Bernard (1987) and Petersen (2006). 

Including an industry index in the normal return model would be one method of reducing 

some of the effect (Brown & Warner, 1985). However, as discussed in section 4.2, market 

models and market-industry models generally perform similarly, especially for short-term 

studies. This indicates that intra-industry cross-dependence does not seem to be a significant 

issue (Thompson, 1988).  

Clustering caused by overlapping event windows will affect the results to some degree. Two 

samples are used in this study, as will be elaborated in the chapter on data and sample 

description. For the smaller sample, 74% of the event dates are unique, and the average 

number of discoveries per event date is 1.44. The bias in the variance estimate is therefore 

likely to be very small. For the larger sample, 40% of the dates are unique, and the average 

number is 2.52. The concern is larger for this sample, but I will not attempt to resolve the 
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issue. The methods available are rather complicated and therefore out of scope. The result is 

that for the larger sample, there will be some degree of increased risk of a type 1 error.  

Cross-autocorrelation 

Aggregating also imposes a possible problem of cross-autocorrelation, i.e. if firm A’s returns 

today are correlated with firm B’s returns tomorrow (Lo & MacKinlay, 1990). This could be a 

problem if some of the firms which discover petroleum are illiquid, so that the information 

from the discovery is not impounded until the next day. Cross-autocorrelation is only a minor 

issue as the observations are generally well spread out over time, but again somewhat larger 

for the full sample.  

4.5 OLS TESTING METHOD 

If the null hypotheses of no abnormal returns during either the post or pre-announcement 

windows are correct, then there should be no correlation between the announcement day 

return and the event window returns. The following regression equation is used:  

    (     )        (       )      

If the announcement day return is the same sign as the post-announcement return, then there 

is evidence of underreaction. If the signs are opposite there has been a reversal, which is 

consistent with overreaction. Similarly, if the pre-announcement return is the same sign as the 

announcement day return, there is evidence of information leakage.  

The coefficient    is used to determine the sign and significance of misreaction. Significance 

is tested using the t-statistic and the p-value in the regression output. If the coefficient is 

positive (negative) for the post-announcement regression, there is underreaction 

(overreaction). A positive beta in the pre-announcement period would be a sign of 

information leakage. However, the sign will only be positive if there is partial information 

leakage. If the information has fully been reflected in the stock price, the beta should (in 

absence of any other affects) be zero.  

This approach offers another way to deal with the issue of positive and negative reactions 

because a positive announcement followed by a positive drift is for my purposes the same as a 

negative announcement and a negative drift – both are evidence of underreaction. However, 

the model will be poor in the case that the nature of the misreaction differs between the 
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subsamples. That is, if there is a positive or negative drift associated with both negative and 

positive news the coefficient is not an appropriate way to test for under- and overreaction. To 

illustrate, examine figure Figure 2 – illustration for OLS results interpretationFigure 2. If there is e.g. 

underreaction to positive news and overreaction to negative news the coefficient in the linear 

approximation might not detect any effects even if there is a significant amount of 

misreaction. The alpha value could indicate that the effect might be present, but the economic 

meaning of the alpha is in this case uncertain.  

 

     Figure 2 – illustration for OLS results interpretation 

 

There is one more caveat with regard to this method. The hypothesis seeks to test whether or 

not the two variables CAR and AR are correlated. Consider the scenario where there is 

underreaction, but the amount of underreaction is independent of the event-day abnormal 

return. In this case, the slope in the regression should be zero and any underreaction in the 

market would be difficult to detect.  

The regressions are carried out in STATA with White standard errors.  

Overreaction to 

positive events

Underreaction to 

negative events

Overreaction to 

negative events
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5. DATA AND SAMPLE DESCRIPTION 

In this section I will first discuss the process of collecting data as well as considerations in 

selecting the announcements. I will also describe how price data was gathered, and finally 

present descriptive statistics of two different samples used.  

5.1 Announcement and Wellbore Data 

The NPD has compiled a uniquely rich and detailed database on drilling results which is 

publicly available on their website (NPD, 2013). As of February 2013, the total number of 

wells drilled on the NCS was just over 1550, of which 411 were classified as discoveries by 

the NPD (2013). For each discovery, there are typically multiple companies with stakes in the 

license. The NPD has compiled a list named “Petroleum register” which lists the historical 

ownership percentages of firms in the licenses (NPD, 2013). Using these two lists, I created a 

unique observation, or event ID, for each firm in each discovery. The dates of the NPD’s 

press releases for the discoveries were gathered for each observation. In section 2.2, I 

explained that for part of the time interval this study examines, the NPD were to release the 

news before the companies. After the NPD press release dates were gathered from their press 

release database, I used Factiva searches to confirm announcement dates, note any previous 

announcements, and to check whether or not the firm itself announced the news. Some 

discoveries which were not included in the NPD database were found through these searches, 

and these events were included in the dataset.  

Selecting the appropriate announcement date  

First of all, market efficiency is judged on the profitability of a trading strategy designed to 

exploit systematic mispricing. There must thus be a clear trigger which initiates trading. 

Announcements are largely heterogeneous and can occur at varying times in the drilling 

process. The information content will vary from minimum disclosure announcements to full 

production testing. I must with respect to the research questions in all cases use the first 

announcement that indicates that oil was found. If not, I could get positive movements in the 

pre-event windows and falsely conclude with information leakage, and the effect of over- or 

underreaction would also be lost. This issue makes it necessary to search for previous news of 

the discovery. This is carried out through Factiva and Google, using search criteria such as the 

wellbore name, field name, company name and dates. 
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Wildcat and appraisal wells 

Another important question is whether to include appraisal wells or just wildcat wells. 

Wildcat wells are exploratory wells in new areas, and appraisal wells are drilled nearby a 

discovery to assess the size by improving geological data. The distinction between the two is 

not clear-cut. The previously known geological data will vary and in some cases can be 

greater for a wildcat well than for an appraisal well. Moreover, the wells may have multiple 

purposes. For example, a wildcat well may be drilled in search for a separate deposit that is 

close to a previous discovery, and thus additionally serve as an appraisal well for that nearby 

discovery. Finally, appraisal wells may be drilled up to several years after the initial wildcat, 

and they may be announced as and considered a discovery in the same way that wildcats are. 

The distinction is thus not necessary for my intents and purposes, on the condition that a 

sufficient amount of time has passed since the respective wildcat was announced. A sufficient 

amount of time must at the minimum be the length of the event windows, but in the final data 

set the shortest length is about a year. 

Classifying drilling announcements as discoveries 

Another issue is that the NPD’s classification of discoveries cannot be used exclusively 

because two similar announcements may be classified differently ex post. The NPD’s 

definition of a discovery is as follows:  

“A discovery is a petroleum deposit or several petroleum deposits collectively, which have 

been discovered in the same well, in which through testing, sampling or logging there has 

been established a probability of the existence of mobile petroleum (includes both commercial 

and technical discovery).” (NPD, 2013) 

Consider two initial announcements which said simply that hydrocarbons had been 

discovered. If closer examination reveals that one of the deposits was very limited and one 

was large, the foremost may not be classified as a discovery. Both of these announcements 

must be included to avoid a selection bias. Because market efficiency will be judged by the 

profitability of a trading strategy, there needs to be a clear trigger for trading. This trigger is 

set at the minimum level – any type of discovery, whether the firm deems it commercially 

viable or not. The potential selection bias would cause positive developments in expectations 

over time to be included and negative developments to be excluded, and a positive drift would 



44 

 

therefore be justified. This was accounted for by not filtering on the discovery field in the 

NPD database, but instead on the results field
15

. 

Screening on firm announcement 

One of the main challenges of this study is that announcements may sometimes convey little 

information value. Announcements will only affect the stock price if they (1) have a 

significant impact on firm value and (2) differ from the expectations in the market. There are 

three parameters which determine the economic relevance for the company; the size of the 

discovery, the size of the company, and the share of the license through the joint venture 

agreement. Mathematically adjusting the information-noise ratio would be complex and the 

announcements are largely heterogeneous. Relative price and volume changes are not used 

because they would reduce the sample too much. I instead follow (loosely) Pritamani and 

Singal (2001) and use their additional screen on whether or not the company itself announced 

the news as a proxy for information value. This allows me to conveniently circumvent the 

problems in adjusting for the aforementioned determining factors.  

The announcement criterion does not necessarily exclude those observations where the market 

is correct in its expectations. Although firms will according to the discussion in section 2.2 

announce discoveries which are expected to have a significant impact on firm value, there is 

no reason to believe that they would not announce the news if the market was correct in its 

expectations. If I wanted to exclude these observations, I would have to use a threshold for 

price change, volume change or a third party estimate such as analyst forecasts, which is 

prominent in studies of e.g. the post earnings announcement drift (PEAD). Third party 

estimates are not available and relative changes would decrease the sample too much. 

Including these low-impact events is not necessarily a bad thing, however, because the market 

may still systematically under or overestimate the value of the discoveries which would cause 

a drift or later shift in the stock price.  

This announcement requirement does reduce the sample drastically, and I will therefore report 

results with and without this criterion.  

Confounding events 

In a perfect world, the normal returns model would predict all other factors besides the event 

we are studying. Several authors note that confounding events can cause serious questions 

                                                 
15 The parameters are Oil, Gas, Condensate, Dry, Shows of all of the above, and combinations of all of the above.  
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about validity. The importance is increasing in a decreasing sample size, as it weakens the 

aggregation effect. I cannot solely rely on the “law of large numbers” to neutralize these other 

events, i.e. assume that they on are random and on average have a stock price effect close to 

zero.  

Ideally we would want to exclude all observations that have experienced a price change 

during the event and estimation windows due to some other event. Significant events in the 

estimation window could lead to an artificially high beta and reduce power (Thompson, 

1988), and more seriously, the abnormal returns found in the event windows could be due 

some other extraneous event. In practice, events must be excluded on the basis of some 

criteria. The problem with defining a fixed list of events and excluding on that basis is that 

expectations regarding the event are unknown. That is, the event may already be impounded 

in the stock price. Further, events will have different impact on different companies. For 

example, a large company such as ExxonMobil may be awarded new licenses every day and it 

wouldn’t have much effect on the stock price. If a smaller company was granted a license, it 

might have a large effect on the stock price. Defining the granting of a license as a fixed event 

would therefore not be very effective. The events included on this “blacklist” would have to 

be events which are expected to have a relative effect, such as a stock split. Also, I could not 

be too rigorous in the search because I have a limited amount of events. To sum up, the 

problem is basically that there are too few observations to fully rely on the effects being 

neutralized, which necessitates a search for confounding events, but to keep a reasonable 

number of observations I cannot do an extensive cleaning. Finally, searching through the 

event and estimation window for confounding events would prove too time-consuming. 

Correcting for other discoveries would not be too difficult, but then again this would cause a 

downward bias because there are no announcements of dry wells in my dataset, nor is ready-

to-edit data for international wells available.  

Nonetheless, I did clean the data for the most obvious cases of confounding events in the 10-

day period surrounding the announcements, but only for the smaller sample. It is more critical 

to do this for the smaller sample as the aggregation effect is smaller. The search was carried 

out simultaneously while searching for previous company announcements of discoveries in 

Factiva, Google and company websites. This resulted in the exclusion of 24 observations.  

Reasons included takeover talks, large price reactions to earnings announcements, a strike, 

and a large divestment to name some.  
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Summary of criteria 

For any discovery in the NPD dataset, defined simply as hydrocarbons being discovered in 

either a wildcat or an appraisal well, the first announcement date is recorded given that there 

are no confounding events. From this I arrive at the sample referred to as the full sample. For 

the smaller or screened sample, the criterion that the firm must itself announce the news is 

added. 

5.2 Price data 

Very few companies are engaged in exploration drilling directly through the listed company. I 

therefore used the stock price for the parent company – the Global Ultimate Owner (GUO) in 

the Orbis
16

 database. Where there was missing information I used company websites and 

news databases to determine the ownership structure. There are also many private companies 

involved and these were excluded from the sample. Data for stock prices (transaction P), bid 

(PB) and ask (PA) prices, local market indexes (LI) as well as volumes (VO) were gathered 

from Thomson Reuters DataStream. 

There was also an exclusion criterion here. A few of the stocks were quite thinly traded. This 

is a microstructure issue which could lead to a misinterpretation of abnormal returns because 

e.g. information may be impounded in the stock price at a different date than when the 

information actually caused investors’ expectations to change.  

 

 

 

 

                                                 
16 Includes Amadeus and Zephyr 
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5.3 Description of the final dataset 

Before screening there are 461 events, of which 240 are positive and 221 are negative as 

defined by the sign of the event-day abnormal return. After screening there are 77 positive 

and 64 negative events for a total of 141. 

Sample Total Positive Negative Significantly Positive Significantly Negative 

Full sample 461 240 221 26 11 

Screened sample 141 77 64 16 5 

Table 1 – Overview of observations. Significance is tested using t-tests with the variance estimate 

equal to the variance of the prediction error of the market model.  

The number of significant movements on the event day is rather low, indicating that there are 

few large deviations from market expectations.  

Table 2 shows summary statistics for the variables which are used for hypothesis testing for 

both the CAAR and OLS testing methods.  

  FULL SAMPLE SCREENED SAMPLE 

Variable Obs Mean Std. Dev. Min Max Obs Mean Std. Dev. Min Max 

pre_5 461 0.06% 3.65% -17.64% 17.39% 141 0.27% 4.10% -14.49% 17.39% 

pre_2 461 -0.03% 2.21% -12.71% 11.88% 141 -0.09% 2.59% -12.71% 8.85% 

event_day 461 0.30% 2.78% -10.99% 30.69% 141 0.82% 4.32% -7.48% 30.69% 

post_2 461 0.07% 2.70% -26.94% 12.93% 141 0.20% 2.93% -10.24% 12.93% 

post_5 461 0.36% 3.97% -17.09% 28.44% 141 0.60% 3.96% -9.99% 14.15% 

post_10 461 0.48% 5.21% -16.89% 36.27% 141 0.79% 4.81% -10.83% 17.71% 

post_20 461 0.55% 7.46% -24.08% 44.48% 141 0.63% 6.75% -13.64% 24.03% 

post_30 461 0.70% 10.53% -67.03% 48.64% 141 1.38% 11.74% -63.10% 48.24% 

Table 2 – Summary statistics of the variables used for hypothesis testing.  

The data is gathered from the 17-year period 1996 to 2012, but the sample conditioned on 

announcements does not contain any observations prior to 2001 due to difficulties in finding 

news releases. The number of observations per year, displayed below, varies in the 

willingness to invest on the NCS. The full sample includes a substantial amount of 

observations from earlier years (pre 2001), but the distribution of observations through time is 

otherwise quite similar. 
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Figure 4 – Number of observations per year for both subsamples.  

 

The full sample comprises observations from 44 unique companies, while the screened 

sample consists of 21. See appendix 8.1.2 for a graphical overview of the number of 

observations per company.  

It is also useful to compare some firm characteristics between the two samples. These are 

presented in Table 3 below. The main difference is the average firm size, which is 

approximately cut in half after screening. This is expected. The purpose of the screen is to 

proxy for information value, and discoveries for larger companies will be less price-sensitive 

for a given discovery size and ownership percentage. The three ratios presented do not differ 

considerably between the two samples.  

  FULL SAMPLE SCREENED SAMPLE 

Variable Obs Mean Std. Dev. Min Max Obs Mean Std. Dev. Min Max 

Market Value (MUSD) 451 65 000 93 100 5 495 000 137 32 300 38 000 5 153 000 

Capex / Total Assets 451 0,10 0,05 -0,03 0,39 137 0,12 0,07 0,01 0,39 

Debt / Equity 451 1,66 0,92 0,19 6,79 137 1,63 0,81 0,19 6,09 

EBITDA / Total Assets 451 0,20 0,15 -0,43 0,58 137 0,19 0,21 -0,43 0,58 

Table 3 – Summary statistics of firm characteristics for the two subsamples. 10 observations were 

excluded from this analysis due to missing data. See appendix 9.1.1 for a description of the data and 

calculations.  
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6. RESULTS 

This section will report results from two samples (full and screened), two methodologies 

(CAAR and OLS) and two subsamples (positive and negative) as well as the average effect. I 

will both present and discuss the results in the same section due to the fairly large amount of 

output. The results from the two samples are similar. Because the full sample includes more 

observations, I will present and discuss the results of this sample first. The screened sample 

will be presented subsequently and the discussion will mostly focus on the discrepancies 

between the results of the two samples.   

6.1 FULL SAMPLE 

6.1.1 OLS Results 

Table 4 below summarizes the regression output for the alternative event windows for the full 

sample. The significance of the coefficients and parameters are generally low and constitute 

little evidence against the null hypothesis. There is only one significant value at the 95% 

level: the positive intercept for the 10-day post-event period. The finding is only weakly 

significant, but the 5-day post-event period is also significant at the 90% level.  

The interpretation of the intercept is not very clear, but one possibility is that the market 

underreacts to positive news and overreacts to negative news, in which case the model would 

perform poorly (see section 4.5). Another possibility is that there is misreaction, but no 

magnitude effect. That is, the market does exhibit tendencies of misinterpreting the 

announcements, but the magnitude of the subsequent correction does not depend on the size 

of the event-day abnormal return.  

The largest coefficient for the post-event period is 0.09 for the two days following the 

announcement, which is quite small. There is also no evidence of correlation between pre-

announcement performance of and event-day performance, which is good news for regulatory 

authorities. In fact, the coefficient is negative, which is of course opposite of what is expected 

if there is information leakage.  
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Coefficient pre_5 pre_2 post_2 post_5 post_10 post_20 post_30 

Event-day AR (  ) -0.133 -0.0883 0.0916 0.0149 -0.0589 0.00371 -0.0792 

 (-1.41) (-1.49) (1.15) (0.15) (-0.48) (0.02) (-0.26) 

        

Intercept (  ) 0.00104 -0.0000653 0.000396 0.00355* 0.00496** 0.00545 0.00721 

 (0.61) (-0.06) (0.32) (1.90) (2.01) (1.57) (1.48) 

        

N 461 461 461 461 461 461 461 

R-sq 0.010 0.012 0.009 0.000 0.001 0.000 0.000 

Interval (t1,t2) (-5,-1) (-2,-1) (1,2) (1,5) (1,10) (1,20) (1,30) 

Regression Equation     (     )        (       )     

Table 4 – Full sample OLS results. T-statistics in parentheses. [
*
 p < 0.10, 

**
 p < 0.05, 

***
 p < 0.01] 

A scatterplot of event-day return versus post-announcement return is shown in figure 4 for the 

10-day window, which has the significant intercept. The observations are mostly scattered 

around the origin. This is expected because there are many events with low information value, 

and these will be approximately normally distributed with a mean of zero. The correlation is 

therefore also low.  

 
    Figure 5 – Scatterplot of CAR versus AR for the post_10 regression 

6.1.2 CAAR Results 

The results from the CAAR method are similar to those of the OLS method, and the 

significance levels are low for this method also. For the pre-event window, positive (negative) 

events have negative (positive) average CARs, curiously, but the effect is not significant.  

 

-20%

-10%

0%

10%

20%

30%

40%

-20% 0% 20% 40%

XY plot for the 10-day post-event window 

Post_10



51 

 

Subsample  N Pre_5 Pre_2 Event_day Post_2 Post_5 Post_10 Post_20 Post_30 

Positive  240 

 

-0,19 %    

(-0,67) 

-0,20 % 

(-1,16) 

1,69 % 

(13,59)***  

0,10 % 

(0,58) 

0,30 % 

(1,07) 

0,35 % 

(0,89) 

0,32 % 

(0,58) 

0,38 % 

(0,57)  

Negative  221 0,34 % 

(1,28) 

0,15 % 

(0,92) 

-1,21 %      

(-10,34)*** 

0,03 % 

(0,18) 

0,43 % 

(1,64) 

0,62 % 

(1,68)* 

0,79 % 

(1,51) 

1,04 % 

(1,62) 

Total  461 0,06 % 

(0,33) 

-0,03 % 

(-0,27) 

0,30 % 

(3,49)*** 

0,07 % 

(0,55) 

0,36 % 

(1,88)* 

0,48 % 

(1,77)* 

0,55 % 

(1,43) 

0,70 % 

(1,49) 

Table 5 – Full sample CAAR results. T-statistics in parentheses, asterisk indicates significant value. [* 

90%, ** 95%, ***99%, judged by student’s t-test] 

The event day abnormal return is significant for both subsamples and the total, proving that 

announcements affect the stock price of involved firms and that the initial reaction is on 

average positive. A graphical representation of the results is included in figure 5 below. 

In the post-event window, there are indications of an upward drift for both positive and 

negative events. For negative events, the drift seems to continue for the whole event window, 

while the apparent drift for positive events ceases after the 5-day period. There are three 

variables which are significantly positive at the 90% level in the post-event window. These 

are the 10-day post-event period for negative events and the 10- and 5-day post-event periods 

for the total sample. No variables are significant at the 95% level.  

Both methods show signs of a weak but positive post-announcement average abnormal return 

for both subsamples, which could perhaps explain why the 10-day post-event period had a 

significant intercept in the OLS method. It also reveals that the OLS method might not be 

appropriate in this case. It is not adept in detecting dependence in the variables if there is 

continuation after positive events and reversals after negative events because the 

underreaction and overreaction will be offsetting (See discussion in section 4.5). 
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                 Figure 6 – Graphical representation of the CAAR for the interval (-5,30) for the full sample. 

 

Although the general interpretation is that the market reacts efficiently to the news, there are 

some similarities between the results here and the previous studies on over- and 

underreaction. The positive events are associated with lower t-statistics than the negative 

events, which is similar to the results of the studies presented in section 3.3.4 on over- and 

underreaction. Also, the indication that post-announcement performance might be positive 

between both subsamples is consistent with the UIH, and alternatively ambiguity aversion. It 

is also consistent with the hypothesis that post-announcement performance may be positive 

due to the conservative nature of drilling announcements. Because there are some power 

issues I cannot confidently refute this claim, but the market seems be largely efficient.  

6.2 SCREENED SAMPLE 

The problem with the results presented above is that there are many events with low 

information value. Although the average effect is interesting, these observations will 

introduce a relatively large amount of noise compared to the information gained with regard 

to leakage, continuation and reversals. We would not expect the market to over- or underreact 

to news that has little or no effect on the value of the firm, nor would we expect insiders to 

trade on this piece of news. This sample thus only includes observations where the firm itself 

announces the news of the discovery, a requirement which proxies for information value. The 

reduction in the sample size is fairly large, from 461 to 141, which increases the variance 

estimate and consequently decreases the power of the test. The average firm size is about half 

as large as for the full sample.  
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6.2.1 OLS Results 

Table 6 presents the regression output for the OLS method for this sample. All of the 

coefficient and intercepts are of equal sign as in the full sample regression, but the 

significance is generally lower. 

Coefficient pre_5 pre_2 post_2 post_5 post_10 post_20 post_30 

Event-day AR (  ) -0.0487 -0.0188 0.137 0.0764 -0.0183 0.0694 -0.0232 

 (-0.55) (-0.43) (1.57) (0.95) (-0.18) (0.53) (-0.07) 

        

Intercept (  ) 0.00310 -0.000780 0.000860 0.00538 0.00800 0.00578 0.0140 

 (0.88) (-0.34) (0.37) (1.63) (1.94)* (1.01) (1.48) 

        

N 141 141 141 141 141 141 141 

R-sq 
0.003 0.001 0.041 0.007 0.000 0.002 0.000 

Interval (t1,t2) (-5,-1) (-2,-1) (1,2) (1,5) (1,10) (1,20) (1,30) 

Regression Equation     (     )        (       )     

Table 6 – Screened sample regression output. T-statistics in parentheses.  

One notable discrepancy is that the 2-day post-event period has a higher coefficient; 0.137 for 

this sample versus 0.092 for the full sample. This could be due to the low-information events, 

which are still prevalent in this sample, drowning out a short-term underreaction. However, 

there is very little evidence overall to suggest that the market overreacts. In fact, two of the 

post-event variables have negative coefficients while three are positive.  

6.2.2 CAAR Results 

Table 7 and Figure 7 depict the results from the CAAR method. The trend is largely the same; 

there is a positive drift for both types of events, but in this sample there are no significant 

variables. 

Subsample N Pre_5 Pre_2 Event_day Post_2 Post_5 Post_10 Post_20 Post_30 

Positive 77 -0.01% -0.19 % 2.83 % 0.19 % 0.59 % 0.19 % 0.24 % 0.64 % 

  (-0.01) (-0.47) (9.85) (0.48) (0.93) (0.21) (0.19) (0.41) 

Negative 64 0.60 % 0.02 % -1.60 % 0.20 % 0.61 % 1.50 % 1.11 % 2.27 % 

  (0.97) (0.05) (-5.80) (0.52) (0.98) (1.72) (0.90) (1.50) 

Total 141 0.27 % -0.09 % 0.82 % 0.20 % 0.60 % 0.79 % 0.63 % 1.38 % 

  (0.60) (-0.33) (4.07) (0.70) (1.34) (1.24) (0.71) (1.25) 

Table 7 – Screened sample CAARs and t-statistics 

The cumulative average abnormal return estimates are higher, and especially for the negative 

events. By comparison, the full sample had a total 30-day post-event drift of 1.04% for that 
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subsample, and for this sample it is 2.27% for the negative events. Like Pritamani and Singal 

(2001) conclude, screening on announcements seems to increase the magnitude. This 

illustrates the increase in information value which is dictated jointly by the discovery size, the 

stake in the license as well as the size of the firm. The difference between positive and 

negative events also seems clearer.  

The interpretation, given the low significance levels, is clearly that the market efficiently 

reacts to the information. Unfortunately, the sample sizes for the subsamples are quite small, 

so the results should not be weighted too heavily and there is low power in detecting the 

hypothesized effects, especially for this sample.  

 
 Figure 7 – Screened sample CAAR for the interval (-5,30) 
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7. CONCLUSION 

This paper examines stock price behavior around announcements of oil and gas discoveries on 

the Norwegian continental shelf and finds little evidence of information leakage and market 

inefficiency. 

The impetus for the over- or underreaction question was threefold. First, the amount of news 

coverage and potentially large surges and drops create an atmosphere which presumably 

would invite irrational behavior and irrational investors to partake in investing. Second was 

the evidence of under- and overreaction to other events, which has not been investigated 

previously for petroleum exploration drilling. Third was the fact that all announcements are 

required to be conservative, which possibly could induce a positive drift when the market 

gradually learns the true implications for the value of the company.  

The results are generally consistent between the two methodologies and the two samples used. 

They are also mainly insignificant, suggesting that the market efficiently interprets the 

announcements and quickly incorporates their implications for value into the stock price. The 

argument for efficiency is even stronger when considering that any transaction and 

implementation costs would make trading strategies less profitable. However, there are some 

indications that post-announcement performance is associated with positive abnormal returns, 

for both negative and positive events. For the full sample CAAR method, the drift is 

significantly positive in the aggregate at the 90% level for the five and ten-day period. The 

average CARs were larger for the screened sample, albeit not significant, and a larger sample 

size may support the claim. The larger sample would also permit imposing a return threshold 

to exclude the low-information events which bias the pre- and post-announcement effects 

downward. This would be an interesting topic for further research, and data should be 

plentiful as there is no reason to constrain the analysis to the NCS when only the post-

announcement period is examined. 

The impetus for the research question regarding information leakage was partly newspaper 

articles of cases of insider trading as well as the high potential for information leakage due to 

many involved parties and potentially price-sensitive information.  

No significant evidence is found, indicating that information leakage does not seem to be 

prevalent for this type of announcement. In fact, the output variables from the analysis are of 
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opposite sign than what would be expected in the presence of information leakage, which 

would predict positive correlation. This should be interpreted as good news for regulatory 

authorities.  
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8. Appendix 

8.1.1 Description of firm characteristics 

Data is collected from DataStream using the AFO excel add-in and a static request for date of 

the announcement. The calculations of the four variables and the DataStream mnemonics used 

are described in table 8 below.  

Variable Data types and calculation Description 

Market Value X(P)~U$ * NOSH The P mnemonic is the closing price 

adjusted for subsequent capital actions. 

NOSH is the number of shares. Price is 

converted to US dollars. 

Capex / 

Assets 

DWCX / DWTA The last reported values in annual or 

quarterly financial statements of capital 

expenditure (DWCX) and total assets 

(DWTA).   

Debt-to-

equity ratio 

WC03351 / WC03995 WC03351 is the book value of total 

liabilities. WC03995 is the book value of 

total shareholder equity.  

Return on 

Assets (ROA) 

DWED / DWTA The last reported values in annual or 

quarterly financial statements of EBITDA 

(DWED) and total assets (DWTA).   

Table 8 – Description and calculation of firm characteristics variables 
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8.1.2 Number of observations per company (GUO) 
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