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Abstract 

Index Bonds are a particular form of a structured investment product that consists of a bond 

element and a return element. The bond element is based on the guaranteed amount repaid to 

the investor at maturity. The return element is typically a bundle of options on an index or 

financial asset, scaled by a participation factor. Nordea Kraftobligasjon was the first 

Norwegian index bond with electricity forward contracts as underlying. 

This thesis demonstrates the analysis that an investor should perform to be able to make an 

independent and prudent decision on whether or not to invest in Nordea Kraftobligasjon XV. 

The results indicate that an investor could pay as much as 3,5% to 4,5% in commission fee 

in addition to up to 3% in subscription fee. The expected return on the investment is 

estimated at approx. 3,5% p.a., compared with the risk-free rate of 4,5% p.a. 

The thesis illustrates what methodological and practical challenges an investor can meet 

analysing an index bond on electricity contracts.  
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1. Introduction 

1.1 Background 

The subject of this thesis, Nordea Kraftobligasjon, came to my attention almost five years 

ago, in the fall of 2003. At the time, this product was truly innovative, as only few other 

financial institutions were offering structured products, even fewer electricity-related 

instruments. Since that time the market for structured products has gone through its top and 

is now somewhat resembling a decline. The products’ historical development is presented in 

the figure below: 

Figure 1: Historical development of structured financial products 
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Source: SSB (table 43 - Banks. Deposits. Specified on different kinds of deposits; table 201 - Banks. Balance sheet 

statistics with specifications) 

The products were first introduced in Norway in 1992 and went under different names: index 

bonds, bank deposits with stock return etc. They proved to be very popular with the private 

investors. However, the products also met wide criticism from both academics and 

consumer-protection organisations. Dine Penger magazine was among others active in the 

debate, several research papers and reports were published. Customer complaints and court 

cases came up.   

In September 2006 a Directive from The Financial Supervisory Authority of Norway 

(Kredittilsynet) has passed regulating the offering of the structured products. Earlier in 2008, 

Kredittilsynet issued a new and more stringent regulation in the wake of its review report, 



 8 

and the sale of the index bonds fell. New and simpler products, warrants, have entered the 

market. 

Today, in summer 2008, arguing for unnecessary complexity of index bonds may seem as a 

“late-to-the-battle” appearance. However, from the analytical point of view index bonds are 

as intriguing now as they were in the fall of 2003. 

1.2 Objectives 

The main goal of this thesis is to show what sort of analysis a non-professional investor 

should and can perform to be able to make an independent and prudent decision on whether 

or not to invest in an issue of the Nordea Kraftobligasjon Index Bond on the terms offered. 

In order to reach this goal, a twofold objective for this thesis has been set. 

The normative objective will be to make a quantitative judgment of the value and the 

expected return and risk associated with the bond. In doing so an investor will have to: 

1. Understand the product and its fee structure and perform the component analysis. 

2. Make value estimates for each of the bond components and the bond as a whole and 

perform reasonability assessment, if possible. 

3. Calculate the uncertainty of the estimates above, perform sensitivity analysis and 

compare it with the relevant benchmarks, e.g. estimate provided by the issuer or 

comparable warrant pricing. 

4. Assess the expected return on the investment, quantify the return distribution.   

The quantitative analysis listed above will be performed on one of the Nordea 

Kraftobligasjon issues on its respective settlement date1. The normative objective is to 

conclude on value and expected return of the issue and compare the results with Nordea’s 

internal estimates. It is expected that the results will be highly dependent on ones 

assumptions about the underlying price process and its volatility. 

                                                 

1 Investment decision is made no later than by the end of the subscription period. However, the settlement date is normally 
so close to the last subscription date (four trading days for the last issue), that for simplicity all analyses are performed on 
the settlement date. 
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Equally important is to illustrate the non-professional investor’s calculation process, required 

body of knowledge, methodological and practical challenges met. This defines a descriptive 

objective for meeting the goal of the thesis. 

What constitutes an independent and prudent investment decision process will vary from 

investor to investor. While one will be satisfied with unaudited estimates provided by the 

issuer or at most use third-party assumptions in a simple closed-form model, the other will 

not invest until he/she understands and independently estimates the product’s value and 

expected return and risk. The descriptive objective is to identify the methodological and 

practical challenges that a non-professional investor might meet making a decision on 

Nordea Kraftobligasjon Index Bond.    

1.3 Scope of Work and Delimitations 

Meeting the descriptive objective of the thesis requires a rather detailed description of the 

steps and choices taken in order to arrive at the quantitative results, as well as 

methodological reasoning behind those choices. The scope of this thesis does not leave the 

opportunity to analyse more than one issue of the index bond. Therefore general conclusions 

about pricing and return levels of all Nordea Kraftobligasjon Index Bonds or other structured 

products are out of scope. For broader analyses covering several products and issuers, I refer 

to Koekerbakker and Zakamouline (2007), Bøe (2007) and Kreditttilsynet (2008). 

Investments in structured products, including the NKIB, are often accompanied by debt 

financing. According to Kredittilsynet approx. three quarters of the amount invested is 

financed by loan. The potential effects of such leveraging on the expected equity returns for 

investors are outside the scope of this analysis. While enhancing the upside potential for an 

investor, the leveraging also “converts” investor’s alternative cost of capital into fixed 

interest expenses, increasing total possible losses beyond the difference between the face 

value and the guaranteed amount. Bøe (2007) shows that expected return with debt financing 

is always lower than the unleveraged return. Kredittilsynet (2008) confirmed this relationship 

for historical returns in structured products. 

Only solutions that are methodologically acceptable, but easy to implement, do not require 

expensive parameter estimation and modelling, and are customary used by the investors, e.g. 

the Black 76 model, will be used in the calculations. It does not, however, mean that the 
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chosen model gives the best theoretically available description of the underlying price 

process (e.g. stochastic volatility) or takes into account all characteristic of the product (e.g. 

calculation period averaging). 

Only publically available information has been used in the thesis. This particular concerns 

OTC quotes for longer-maturity options and estimation models for implicit volatility that 

could probably be obtained from electricity brokers.  

The descriptive objective of this thesis is to arrive at a list of challenges that a non-

professional investor might meet when evaluating an electricity-linked index bond. It does 

not purport to conclude on whether or not Nordea Kraftobligasjon Index Bond is suited for a 

retail investor or whether the issuer meets the information requirements in its offer 

document. The later is a legal or regulatory question which this thesis does not concern with. 

The term “non-professional investor” is used here is a broader sense, and does not necessary 

coincide fully with the same term used in § 10-2 of the Regulation to the Norwegian Security 

Trading Act (“verdipapirforskriften”). 

1.4 Methodology and Structure 

The methodology chosen to achieve the normative objective stated above is to describe the 

steps taken to arrive at the quantitative value and return estimates. At the very end a brief 

summary of the methodological and practical challenges met in route will serve as an answer 

to the descriptive part of the thesis. 

In the next section a short introduction to the structured products in Norway will be given. 

The structure of the Nordea Kraftobligasjon Index Bonds is described, and my first 

qualitative observations given, identifying early on some bond features that may require 

special attention. Upon choosing one of issues of the NKIB, I perform a component analysis 

of this particular issue, and finally conclude on the value of one of the components, namely 

the Certain Element. 

General theoretical basis for valuing the other bond component, the Return element, is 

presented in section three. The first part of this section is built on a top-down approach and 

briefly covers the general theory of price movements and an option pricing framework, both 

in their general forms and when applied to underlying forward contracts or underlying that 



 11

exhibit some form of implicit dividend yield. The second part is bottom-up built, and treats 

the NKIB characteristics of multiple underlying, averaging over several observations and 

foreign currency exposure, applying the general theory relayed above. The section finishes 

with a choice made for calculation methods that shall be applied to valuation of the Return 

element and total expected return analysis. 

The issue of volatility is treated in section four. Section five revisits the fundamental price 

process assumption made in the previous sections, and questions whether it is actually 

applicable for electricity forwards as underlying. This section concludes on a simplest 

closed-form solution that can prudently be used for valuing the Return element. 

Section six is dedicated to the numerical techniques, particularly Monte Carlo simulation 

applied for valuation and return analysis. The Monte Carlo approach is conceptually simple, 

and given description of the underlying process one could perform simple simulation 

without knowing much about the theoretical basis of the procedure. 

Section seven contains the estimated input to and actual results of the value and expected 

return calculations, assesses them for reasonability, quantifies estimation uncertainty and 

compares with relevant benchmarks, e.g. internal estimates provided by Nordea or 

comparable warrant pricing. 

Final section closes this thesis with a conclusion on the value of the chosen issue, the 

expected return and risk profile. Here I also offer a summary of the challenges that in my 

view a retail investor would meet when analysing one of the NKIB issues or similar 

products. Further work on the topic is suggested. 
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2. Nordea Kraftobligasjon Index Bonds 

To begin with, I would like to emphasize that my understanding of Nordea Kraftobligasjon 

Index Bond is based solely on the information made publicly available on the Nordea’s web 

site2, and that a prudent investor would always discuss an offered product directly with the 

issuer before performing his/her independent analysis and drawing an investment decision. 

In fact, in light of the current regulation changes3, a non-professional retail investor would 

probably not be offered this product at all without his/her investment objectives and 

knowledge being assessed and the product explained. 

2.1 Description of the Nordea Kraftobligasjon Index Bond 

Nordea Kraftobligasjon Index Bond investment product was first offered to the market in 

spring 2001. The electricity-linked return element was designed by Tafjord Kraft utility 

company. As far as I know, it was the first product offering Norwegian retail investors direct 

exposure to electricity markets. Some of the electricity-linked index bonds and warrants 

offered to the Norwegian market are presented in the table below: 

Table 1: Selection of electricity-linked structured investment products 

Issuer Index Bonds Warrants 

Nordea Kraftobligasjon II 2001-2004 to 

Kraftobligasjon XV 2008-2011, 

Kraft Privat I to III, Tysk Kraft, Trippel 

Kraft 2007-09 

Kraft XV Gearing 2008-2011 

DnB NOR Kraftobligasjon 2007-2009 Warrant Kraft  & Kraft II 2007-2009, 

2007-2010, 2007-2011, 2008-2011   

Orkla Finans Kraft, Kraft (BMK), Kraft II, 

Kraft II (BMK), Kraft III, Kraft IV  

 

 

                                                 

2 http://www.nordea.no/Privat/Sparing%2bog%2binvestering/Verdipapirer/Kurser%2bog%2bprospekter/612402.html  

3 Ref. Directive 4/2008 of 12.02.2008 from The Financial Supervisory Authority of Norway (Kredittilsynet) 

http://www.nordea.no/Privat/Sparing%2bog%2binvestering/Verdipapirer/Kurser%2bog%2bprospekter/612402.html
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The NKIB is Nordea’s “general financing” credit instrument with a tenor of between 2,5 and 

3,5 years. The bond is structured as a bullet loan, with no amortization of the principal nor 

any coupon payments during its life. As any index bond, also the NKIB has a bond part built 

into it and a derivative part. The derivative part is usually an option on some indices or 

single contracts in the equity, foreign exchange, fixed income or commodities’ market. The 

NKIB’s option is written on a bundle of forward contracts traded on the Nord Pool Power 

Exchange. At settlement the NKIB consists of the following main elements: 

1. Certain element (“CE”4) in a form of Guaranteed amount (“garantert investering” or 

“GA”) at maturity T, where historically 95% to 100% of face value (excluding any 

premium) were guaranteed by the bank. The proportion guaranteed may be called a 

Guarantee Factor (“GF”). 

2. Return element (“RE”) in the form of Additional amount (“tilleggsbeløp” or “AA”) at 

maturity T, which is based solely on the development of prices for a bundle (two to 

four) of yearly, base-load forward contracts traded on Nord Pool Power Exchange5. 

The periods taken into calculations range from the issue date until almost at 

expiration of each contract (mid-December). Each contract’s return is usually equally 

weighted in the resulting average. By design, the Return element cannot be negative, 

representing in effect a European Call Option on the average of these contracts 

written by Nordea. To arrive at the Additional Amount, any positive appreciation of 

the average is finally multiplied by a Return Factor (“RF”), since 2005 varying 

between 0,95 and 1,25, which depends on Nordea’s subsequent hedging cost. As the 

underlying forward contracts are quoted in euro currency starting from FWYR-06 

while the loan is in Norwegian kronas, the investor may or may not be exposed to the 

currency risk in addition to the market risk. An explicit “currency cross”-adjustment 

introduces currency exposure while its absence effectively hedges it. Starting from 

NKIB-IV, the currency-cross adjustment has been taken out of the return formula. 

3.  Commission fee (“tilretteleggerprovisjon” or “CF”) retained by the bank, per 

definition representing the difference between the face value of the loan (including 

                                                 

4 “Certain element” (“CE”) is not to be confused with Certainty Equivalent for which the “CE” abbreviation is often used.  

5 Only NKIB-X’s Return elements were based on forward contracts quoted at the European Energy Exchange (EEX) 
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any premium as the case may be) and the total market value of the Certain element 

and the Return element; and 

4. Subscription fee (“tegningsomkostninger” or “SF”) paid to and retained by the bank, 

between 3,0% on the first NOK 0,5 mill for unaffiliated small investors and 0,35% 

on amounts above NOK 5 mill for the bank’s Private Banking clients and employees. 

The bond may be offered at par (face) value (as the most NKIB issues were), or at a 

premium (as was the case for the NKIB-XIII in February 2007). In this case, percent-wise 

values of all elements should be re-calculated to take the premium into account. For 

simplicity, I will use NOK 100 as a practical expedient expression for the face value of the 

bond. The lowest investment amount for the NKIB-XV is NOK 10.000, but all the valuation 

results for NOK 100 can easily be scaled up to whatever investment amount is relevant for 

the investor. 

A summary of characteristics and pricing information given in the offer documents for the 

NKIB-II to NKIB-XV issues is presented in Appendix A. 

2.2 Initial Observations 

Exposure to Forward Prices As Opposed to Electricity Spot Prices 

The AA of the NKIB is based on the return on the forward contracts, not on the development 

of the spot prices. This fact is clearly stated in the offer documents. However, since many of 

the arguments in the offer brochure make reference to the expected increase in electricity 

prices (high regional demand growth, CO2-costs and integration with Continental Europe’s 

electricity markets), I believe it is important to make this critical distinction. The electricity 

traded on the spot market is, for all material purposes, a non-storable commodity exhibiting 

to some degree predictable cycle and trend behaviour. On the other hand, forward contracts 

are investment assets with cost of carry equal to zero, which if efficiently priced should fully 

reflect the market expectations for the future spot prices (adjusted for cost of risk). To test 

this notion I have plotted the historical development in already elapsed forward contracts 

(FWYR-01 to FWYR-08) against spot price development and realised spot annual averages, 
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as presented in Appendix B6. The diagram shows that the forward prices have followed the 

upward trend found in the spot prices since 2001 (with exception of the second half of 2006). 

It seems that investments in these forward contracts (and options based on them) should have 

yielded positive, possibly abnormal returns. However, for contract bundles that have already 

elapsed (until NKIB-IX) and where I have all start and stop quotes available (see Appendix 

A), some issues such as NKIB-IV and -IX have been highly profitable for investors, while 

others ended with a zero AA (e.g. NKIB-VI running briefly in 2003-2004). Interestingly, 

since 2003 the first and the shortest forward contracts within the bundles have almost never 

contributed with any material positive returns to the average. Even taking into consideration 

the apparent historical upward trend in the forward prices coinciding with rising spot prices 

prior to 2006, there is still no theoretical basis to claim that an investment in the electricity 

forwards would guarantee any abnormal returns even if the spot prices are certainly expected 

to rise. This is supported by the theory presented in section three. 

Adverse Historical Trend in the Return Element Structure 

The Return element is, in essence, an option on the average of two to four forward contracts. 

The structure elements that influence this option’s value will also affect Nordea’s total 

expected funding cost. Apart from the market-given interest rates and the strike value (set 

equal to current forward price), the nature, trend and volatility of the underlying forward 

price process, the lives of the options and the Return Factor will all be significant. In this 

light it is interesting to note that 

• The tenor of the bonds and the weighted average life of the options have increased 

since 2001 (from NKIB-VIII: approx. 3 years and 1,7-1,9 years, respectively). 

• The bank has chosen yearly forward contracts, the longest available. 

• The number of contracts in the bundle is now almost never less than three. 

• Averaging over five days was introduced starting from NKIB-XII7. 

                                                 

6 In this thesis historical time series for daily closing spot and forward prices quoted at Nord Pool for the period 01.01.1999 
through 29.05.2006 have been used. 

7 May be the five-days averaging was not the banks initiative, but that the options it hedges by on the OTC are so defined. 
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• When Nord Pool went over from quoting in NOK to EUR (from FWYR-06 

onwards), the bank chose not to adjust for the development in the exchange rate in its 

Return element, effectively hedging the currency exposure. Only the NKIB-XIII had 

the “currency cross”-adjustment in its formula. 

• Tthe guaranteed amount set at 100% for the first issues, has been reduced to 90%-

98% since NKIB-V. Again, the NKIB-XIII is an exception. 

Exclusion of “Market Disruptions” from the Return Volatility 

The spot prices’ behaviour clearly exhibits jumps and spikes. Yearly forward contracts can 

be expected to be less “jumpy”, still some abnormal short-term movements in the forward 

prices cannot be ruled out, particularly on days when the Nord Pool financial market does 

not function properly or when the contracts approach their expiry in December. I have 

plotted historical weekly returns on FWYR-01 to ENOYR-08 forward contracts presented in 

Appendix C. I observe material outliers (several above +/- 6% or +/-40% p.a.), and anecdotal 

evidence suggest that the traders use models with jump diffusion when forecasting future 

volatility, Deyna and Hulström (2007). These possible “fat tails” in the return distribution 

can prove to be very valuable for the value of the options built into the Return element. 

However, by contract Nordea is protected from “market disruptions” 

(“markedsforstyrrelser”) that should befall on the electricity or currency markets on start or 

stop dates. Until NKIB-XIII the brief definition of what constitutes “market disruption” was 

taken into the offer document, from NKIB-XIV a reference is made to appropriate ISDA-

regulation8. 

Use of Traded Options Or Warrants To Price the Return Element 

There are Nord Pool-traded options that are written on the same yearly base-load forward 

contracts that underlie the Return element in the NKIB. On the start dates Nordea hedges its 

exposure on its written options by buying necessary amount of electricity options on the 

Nord Pool, and thus setting its final Return Factor as a proportion of the amount “available” 

for hedging to the market hedging cost. I believe that the main challenge in understanding 

and valuing the NKIB is to price the options built into the Return element. Since there exist 

                                                 

8 2005 SIDA Commodity Definitions published by the International Swaps and Derivatives Association (www.isda.org). 
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traded options on the same underlying assets and Nordea is actually using them, could it be 

that the easiest way to price the Return element is to look up the Nord Pool option prices? It 

depends on availability of traded options for all underlying contracts, the comparability of 

dates, of credit margin and of course on liquidity and efficiency of the option market. I also 

observe that almost all NKIB issues start on Fridays. 

I note that in September 2007 DnB NOR issued a Warrant Kraft 2007/2010. A warrant is in 

essence the Return element without a bond attached. DnB NOR Warrant Kraft 2007/2010 is 

built on the same forward contracts as the NKIB-XV, with the same participation factor of 

1,0. It was settled on 12.10.2007 (three months prior to the KNIB-XV) and is to expire on 

23.12.2010 (again 3 months before the NKIB-XV expires). Although the warrant is not 

actively traded, if quantitative analysis is to be done on the NKIV-XV, the value estimated 

and information provided by DnB NOR for Warrant Kraft 2007/2011 may be indicative. 

2.3 Choice of Issue for Further Quantitative Analysis 

Based on the review of the offering documents for NKIB-II to NKIB-XV, as summarised in 

Appendix A, it is evident that the main structure of the NKIB has not materially changed 

since the spring 2001. Thus the general theory, the methods and the market data available for 

valuing the bond will probably be the same whatever issue one chooses to analyse. At the 

same time, some of the key elements of the bond structure have been altered during the 

course of the years, so that the practical implementation will be somewhat different. 

For purposes of this thesis the last issue offered in February 2008, the NKIB-XV, is 

analysed. The offer documents were dated January 11, 2008, the subscription period lasted 

from January 14 to February 11, and the settlement date was set on February 15 this year. 

Some of the reasons for the choice are the following: 

• Although one of the oldest electricity markets in the world, the Nord Pool is still 

comparatively young, with historical data available for a not very long period. The 

underlying structure of the market, the market drivers, as well as products’ definition 

and liquidity have been changing constantly: e.g. Denmark joined only in 2000, 

contracts have been redefined several times (lately in September 2003), the Nord 

Pool went over to quoting in EUR in 2003, new cables to the neighbouring electricity 

markets were commissioned (i.e. the NorNed link), the fuel prices have surged, etc. 
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All this may and should change the price dynamics over the years; therefore it would 

be preferable to work with market data which is as “fresh” as possible. 

• Taking into account the recent changes in the regulation for structured products, the 

NKIB offer documents provide more relevant information. In addition, it can be 

interesting to compare the results with DnB NOR’s valuation of their Warrant Kraft 

2007/2010. 

• NKIB-XIII was extensively analysed in Bjerksund (2007) and Bjerksund (2008). 

Although this thesis draws heavily on these two works, for numerical calculations it 

is only proper to choose another, preferably later issue. 

2.4 Component Analysis of the NKIB-XV 

For simplicity, it can be thought that the sum of the cash flows received by the bank at the 

settlement time t0 should be equal to the total present value of the obligations incurred and 

the total profit earned. It can be represented as: 

( ) ( )SFCFRECESFPFV +++=++ 000  (2.1) 

where FV – the face value of the loan, P – any premium, SF – the Subscription fee, CE0 – 

value of the Certain element at t0, RE0 – value of the Return element at t0, and CF0 is the 

implicit value of the Commission fee at t0. The bank earns the SF which is an explicit fee 

plus the CF0 which is sometime called a “hidden fee”. The value of the product for the 

investor at t0 is of course CE0 + RE0. As mentioned above, any effects of leveraging are out 

of scope of this thesis. 

Since the NKIB-XV was offered at par, there is no need for adjusting for premium P. The 

face value FV and the Subscription fee SF (expressed as a percentage of the FV) are known 

with certainty at t0. 
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Assuming that the Value Additivity Principal (“VAP”) holds9. It is therefore possible to 

calculate the value of the bond for the investor as a sum of its components, the CE0 and the 

RE0. 

The valuation of the CE, which for a bullet loan is just the present value of the Guaranteed 

amount GA at maturity T, should not cause any major misunderstandings (more on this in the 

next subsection). 

[ ] [ FVGFVGAVCE T ⋅ ]== 000  (2.2) 

Here V0[.] is the present value of a future cash flow, FV – the face value of the bond and the 

GF – the Guarantee Factor (0,98 for the NKIB-XV). 

The RE is contractually structured as follows: 
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where AAT is the Additional amount paid at maturity T, N – number of forward power 

contracts in the bundle (three for the NKIB-XV),  – quoted price for forward power 

contract i at start date t

i
tF 0

0, i
ti

F~  – arithmetic average of five consecutive quoted prices for 

forward power contract i at respective stop dates7 t1 to t3, RF – Return Factor (sometime also 

called “participation factor”), wi – the contracts’ corresponding weights, ci – value of a call 

option on the underlying contract Fi with a remaining life of t1 to t3, and e-r(T-t) takes into 

account delayed payment of options proceeds until bond maturity T. The options used in 

structured products can be very exotic, but in the NKIB’s case this is a plain European call 

on an average. To hedge the exposure the bank has to buy wi*FV/Fi
t0 options on each 

contract. 

                                                 

9 If the VAP does not hold, there will be opportunities for instant arbitrage profits by taking contrary positions on the whole 
and on the parts. 
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Table 2: The time progress of the underlying contracts 

Contract (i) Start date 

(15.02.08) 

Stop date 

(08.12.0810) 

Stop date 

(08.12.097) 

Stop date 

(08.12.107) 

Maturity 

(15.02.11) 

 time t0 = 0 t1 = 0,817 t2 = 1,810 t3 = 2,818 T = 3,008 

Exchange rate 
0t

X  
1

~
tX  

2

~
tX  

3

~
tX   

 Interest rate     
Tr  

1 ENOYR-09 1
0t

F  ( )01
1
1

~ σtF     

2 ENOYR-10 2
0t

F   ( )02
2
2

~ σtF    

3 ENOYR-11 3
0t

F    ( )03
3
3

~ σtF   

 

The “hat” over the forward price quotes for t1 to t3 denotes that these variables are uncertain 

or stochastic. Nor Fi
t0 is actually known at the latest investment decision date (11.02.2008), 

however for simplicity I assume that Fi
t0 is known. 

The Return Factor indicated in the offer document dated 11.01.2008 was 1,00. The final RF 

was to be set on the start date 15.02.2008 at 1,1011. However, at the point of time for 

investment decision, the best RF estimate available for the investor was still 1,00. 

2.5 Pricing of the Certain Element 

The CE is a zero-coupon bond with known date and a payout amount. However, since the 

GA represents the major part of the payout and the maturity T is the longest life of all NKIB 

elements, the estimated discount rate will materially influence the total value of the bond. 

[ ] FVGFeFVGFVCE TrT ⋅⋅=⋅= −
00  (2.4) 

                                                 

10 This is the median (third) date of the five-days period which the closing average is based on. 

11 To my knowledge, such an increase in the RF from the indicated to the final has happen only once before, in the NKIB-
XIII. 
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where r is zero-coupon continuously compounded interest rate for NOK-denominated debt 

with T years to maturity. Counting actual trading days, the time to maturity from 15.02.2008 

until 15.02.2011 is T = 3,008 years. 

Directly Estimated Interest Rate 

Nordea’s appropriate market borrowing rate with the currency, the duration and the seniority 

corresponding to the CE would be estimated as follows: 

• Use risk-free market rate with corresponding currency and duration (e.g. 3-years 

Norwegian government bonds) and add estimated appropriate credit margin; or 

• Use commonly-used interest rate base (e.g. 3 month NIBOR) and add credit margin 

known to be applied on this base for Nordea’s borrowing with corresponding 

duration and seniority; and finally for the both above 

• Convert the resulting rate into a continuously compounded rate. 

Hull (2000) shows that one can convert to continuous compounding as: 

⎟
⎠
⎞

⎜
⎝
⎛ +⋅=

m
Rmr 1ln  (2.5) 

where R is a rate compounded m times a year and r - continuously compounded. 

For retail investor it may pose some challenges to construct and smooth the zero-coupon 

yield curve. Further one has to estimate the margin based on Nordea’s rating. In the offering 

documents Nordea Bank Finland Abp (which is the formal counterpart in the transaction) 

informs that it enjoys “AA-“ rating at the S&P and “Aa3” at the Moody’s. The Index Bond 

has ordinary priority and carries no pledge. 

In its offer document, Nordea informs that it borrows at commensurable terms at 3 month 

NIBOR minus 3 p.b. On 15.02.2008 the effective 3M NIBOR was 6,23%, so Nordea’s 

estimated rate is 6,20%12 (or 5,99% continuously). Compared with 3-year government rate 

of 4,49%, it represents a margin of 170 b.p. which is historically high. The market was 

                                                 

12 Nordea’s borrowing rate information is dated 10.01.2008, I choose to apply the same margin on the settlement date. 
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clearly in backwardation at this time, in addition the NIBOR margin has increased 

significantly since summer 2007 from its historical level of 20-40 b.p. to the range between 

60 b.p. and 160 b.p.  

Interest Rate Implied in Nordea’s Own Valuation 

In its offer document for the NKIB-XV, Nordea also offers its own valuation of the CE. 

According to the bank, on 10.01.2008 (T’ = 3,099 years) CE0 on was equal to 83,75%. Based 

on the equation (2.5): 

%07,5
099,3

75,83
10098,0lnln

0 =
⎟
⎠

⎞
⎜
⎝

⎛ ⋅

=
′

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ⋅

=
T
CE

FVGF

r    or   R = 5,20%13 (2.6) 

Since the main focus of this thesis is analysis of the derivative component of the NKIB, I 

find it practical to accept this CE valuation as fair, and use the rate r = 5,07% implied therein 

in the further analysis. This implied rate is much lower than the rate Nordea itself indicated 

as 3M NIBOR – 3 p.b. However, it represents a 70 b.p. margin on the 3-year government 

bond, which in other times would not be unreasonable. 

                                                 

13 The result, 5,20%, is supported by my direct calculation using Excel formula “XIRR”. 
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3. Option Pricing Theory and Its Application 

The following two subsections concisely describing the general theory of price process and 

derivative pricing are not strictly necessary for an investor to be able to use one of the 

closed-form option pricing formulas. Nevertheless, I see it as important for an investor to 

understand the price process assumptions behind a formula in order to judge whether the 

formula fits the observed electricity forward price behaviour. In addition, the understanding 

of the underlying price process is critical for investor’s ability to perform a numerical 

procedure, e.g. Monte Carlo simulation. 

3.1 General Theory of Price Movement and Its Application 

Prices for financial and consumption assets (including commodities) move in a non-

deterministic (unpredictable, uncertain) manner, and are said therefore to follow one or 

another stochastic process. The application of the stochastic processes within the financial 

markets was first done for the financial assets like equities, fixed income instruments and 

currencies. 

A pure stochastic process is the one where each step is completely independent of all the 

previous ones. However, the process is still dependent on its pervious state. If a process is 

only dependent of its last state, it is called the Markov stochastic process. The Markov 

property is consistent with the weak-form hypothesis of the market efficiency (the Weak 

EMH”), see Bodie et al (1996). Numerous empirical studies of, among others, Kendall 

(1953), Roberts (1959), Fama (1965) and Fama (1970), Sharp (1966), McDonald (1974), 

Conrad and Kaul (1988) and Lo and McKinlay (1998) indeed showed that the equity market 

exhibits at least the weak-form of the EMH. That the Markov process can therefore be used 

to describe the movement of stock does not automatically mean that it is the best 

representation for all commodities, including spot electricity prices. 
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A Wiener process is a form of the Markov process, with no drift and an annual variance 

(measure of volatility14) equal to one. This is a pure noise process or a Brownian motion. 

According to Hull (2000) this process can be described as 

dtdz ⋅= ε  (3.1) 

where dz is a Wiener process, ε is a normally distributed value with a mean equal to zero and 

a variance of one, and dt is a small time shift. The Wiener process’s noise is normally 

distributed and every dz is independent of all pervious movements (no autocorrelation). 

The Wiener process has per definition no drift term. Such a process would not describe 

movements of investment assets’ prices well since the expected return would be zero, and 

such an asset would be unattractive for investors. A generalized Wiener process, or an 

Arithmetic Brownian Motion (“ABM”), does not have restrictions on drift or volatility: 

dtdtdzdtdS σεμσμ +=+=  (3.2) 

where dS is a ABM process for price S, μ is the instantaneous drift term of the process, σ is 

the magnitude of the volatility, and dz is the Wiener noise process described above. The drift 

and the volatility can be constant or time-varying, deterministic or stochastic. In its simplest 

form the ABM process assumes both to be constant deterministic. While the Wiener process 

is expected to wander around its starting price level S0, the ABM will “swing” around its 

drift term. The drift represents return to investor, so it can be thought of consisting of a risk-

free rate of return and a risk premium:  μ = r + λ. 

However, with a strong negative drift or high volatility, the ABM can result in negative 

prices. This is not compatible with the notion of prices for investment assets. A Geometric 

Brownian Motion (“GBM”) introduces the price S as a scaling measure for the drift and the 

volatility, meaning that the noise generated by the process is proportional to the price: 

dtSSdtSdzSdtdS εσμσμ +=+=  (3.3) 

From (3.3) one arrives at the instantaneous return on the movement over the time period dt: 

                                                 

14 By “volatility” here is meant a standardized measure of the standard deviation. 
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dtdtdzdt
S

dS σεμσμ +=+=  (3.4) 

The Itô’s process is the same as a Wiener process, only with the drift and the volatility (the 

standard deviation) not deterministic, but expressed by functions of time and price f(S,t).  

( ) ( ) ( ) ( ) dtStSSdttSSdztSSdttSdS εσμσμ ,,,, +=+=  (3.5) 

Itô (1951) proposed a lemma that allows us to price derivatives which values are based on 

the stochastic variables underlying those derivatives and time. The Itô’s lemma converts the 

assumed stochastic process of the underlying into a new stochastic process for the derivative. 

The Itô’s method simplifies the resulting derivative expression by applying the the first two 

Taylor expansions for the underlying and the first expansion for the time. If one assumes a 

derivative function G of the underlying x and the time t, G(x,t), than a change in this function 

can be expressed as: 
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If the underlying process is expressed by the Itô process (3.5), than the derivative process 

takes a form of (3.7): 
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Forward contract is an investment asset, an agreement to buy or sell an asset at a certain 

future time for a certain price (Hull 2000). It can be shown that for an asset providing no 

income or dividend yield until the maturity, the spot and the forward prices at time 0 are 

linked thus: 

rT
T eSF 0,0 =    and    (3.8) rT

T eFS −= ,00

where F0,T and S0 are the forward and spot prices at time 0, respectively, r – appropriate 

continuous interest rate and T – maturity point of time. For an asset with a constant dividend 

yield q (or a convenience yield δ), the expression (3.15) takes form: 
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( )Tqr
T eSF −= 0,0    and   ( )Tqr

T eFS −−= ,00  (3.9) 

The term (r – q) is called “cost of carry” and q – “rate of return shortfall”. The term q can be 

dividend yield, but it can also incorporate convenience yield or interest rate differential. 

If we now assume S to follow the Itô’s process (3.5) with a trend μ and volatility σ, it can be 

proved that (3.7) for a forward contract F on S becomes: 

 ( ) ( )[ ] ( ) ( ) FdzFdtrSdzedtrSeSedFdG tTrtTrtTr σμσμ +−=+−== −−−  (3.10) 

This means that also the forward prices follow the GBM with the same volatility, but with a 

drift (μ – r) reduced by the interest rate, compared with the underlying process. 

If we now define G = ln(F), dG representing the logarithmic return, and if F follows the Itô’s 

process (3.5) with a trend (μ – r) and volatility σ, it can be shown that (3.7) now becomes: 

( ) dzdtdzdtrFddG σσλσσμ +⎟⎟
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 (3.11) 

It appears that ln(F) follows the ABM or the generalized Wiener process with a constant 

drift rate of (λ – σ2/2). From (3.11) we see that the change in ln(F) and the logarithm of 

return between two points of time t and T will be normally distributed at φ(λ,σ): 
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This is confirmed by a number of empirical studies for stock price returns. If this is the case, 

the GBM forward price process is lognormally distributed. 

The forward price return movement follows the ABM as shown (3.5). According to Back 

(2005), the equations (3.5) and (3.11) are equivalent. If we solve (3.11) for F, we can express 

the price following the GBM at any future point of time T as (3.13) in continuous and 

discrete forms: 
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The equation above can be used to model forward price movements in a Monte Carlo 

simulation. 

3.2 Pricing of European Call Options Under Risk Neutrality 

Let’s assume one has an underlying price process S that follows the GBM as described in 

(3.3) and a derivative G of this price that follows its own process presented in (3.7). One can 

then construct a risk-free portfolio consisting of a short position in one unit of the derivative 

and a long position in units on the underlying. The positions are funded at the risk-

free rate. The value of the portfolio and the change in such a portfolio are shown in 

SG ∂∂ /

(3.14) 

and (3.15), respectively. The value of and the change in such a portfolio will than be: 
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Substituting (3.3) and (3.7) into (3.15), it can be shown that the change will be: 
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Since the portfolio Π is instantaneously15 risk-free, it may only earn the risk-free rate r:   
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15 The portfolio Π is not permanently riskless though, but only for a infinitely short period of time dt. As S and t changes, so 
changes dG/dS. To keep such a portfolio riskless it is therefore necessary to continuously adjust the underlying-to-
derivative proportion. 
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The equation (3.18) is the Black-Scholes-Merton (“BSM”) differential equation. It can be 

solved for various derivatives according to their respective boundary conditions. The 

assumptions used to arrive at this equation are: 

• The underlying S asset follows the BSM with constant trend μ and volatility σ; 

• The short selling of the underlying or debt financing is permitted; 

• There are no transaction costs and taxes; 

• All securities are perfectly divisible, and the trading is continuous; 

• The risk-free rate is constant deterministic and the same for all maturities; 

• There are no riskless arbitrage opportunities; and 

• The underlying is paying no income or dividends during the life of the derivative, 

and offers no convenience yield. 

As shown in (2.3), in order to price the RE of the NKIB-XV, one has to arrive at a solution 

to value the at-the-money European call options on forwards built into it. A call option is a 

right, but not an obligation as the forward is, to buy the underlying asset by or on a certain 

date (called “expiration date” or “maturity”) for a certain amount (called “exercise price” or 

“strike”. For the NKIB-XV the underlying are yearly base-load forward contracts traded at 

the Nord Pool. The term “European” indicates that the holder can exercise his/her right only 

at maturity itself, while “at-the-money” means that the strike is set equal to the price of the 

forward at the settlement date. 

In its general form, a call option c as a derivative can be valued using the BSM differential 

equation, as presented in (3.19), with boundary condition as in (3.20): 
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)0;max( XSc T −=  (3.20) 

One important feature of the BSM is that it does not include the drift term μ, the expected 

return on the underlying, which would be dependent of the risk preferences. Therefore the 



 29

BSM should to hold for all sets of risk preferences, and we can simplify the analysis a lot by 

assuming that all investors are risk neutral. However, the closed-form solutions based on this 

assumption do hold not only in the risk-neutral world, but also in the risk-averse one.  

For a European call option on an underlying spot price process which meets the conditions 

set for the BSM solution (3.18), Black and Scholes (1973) offered their famous closed-form 

solution (the B-S formula): 
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where c0,T is the value of the option at time 0, and N(x) is the cumulative probability 

distribution function for a variable  that is normally distributed with a mean of zero and a 

standard deviation of one. 

Equation (3.13) showed how a forward price process that follows the GBM can be modelled 

from starting point of time 0 to the maturity T. However, we see that the expressions contain 

the trend λ, the risk premium which of course depends on the risk preferences. Øksendal 

(2003) refers to the Girsanov's Theorem for solution. Simply put, the Theorem says that by 

changing between equivalent probability measures, we can change the drift of an Itô process 

into anything we like, but we cannot change to volatility. So we can go from the original 

process in (3.3) over to a new process below, introducing the new Wiener process zd~ with 

new risk-neutral probabilities Q instead of the original real-world probabilities P, but 

keeping the volatility16: 

( ) ( ) dtSSdtrSdzSdtrdS εσδσδ +−=+−=  (3.22) 

For a forward process the expression (3.13) then becomes as shown below, including a 

dividend yield term. One can now use the expression (3.23) in a risk-neutral simulation. 
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16 Here a convenience yield is introduced as well. 
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3.3 Option Pricing Solutions for Certain Situations 

When the Underlying Pays Dividends or Carries Convenience Yield 

If the underlying asset pays constant continuous proportional dividend q (investment asset) 

or carries convenience yield δ (consumption assets such as electricity), or exhibits some 

other form of return shortfall (e.g. unhedged currency exposure), the last of the standard 

BSM assumptions has to be relaxed. Generating δ as dividend or convenience yield, the 

underlying has to grow with only μ = r – δ. Such process can be presented as follows: 

( ) SdzSdtrdS σδ +−=  (3.24) 

The change in the hedged portfolio we constructed to arrive at the BMS in (3.16) now has to 

be adjusted for the dividend/yield that the holder earns on the position in dG/dS underlying. 

The BSM expression (3.18) can then be re-written as follows:  
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Here G is the derivative, e.g. an option c. The expression (3.26) still does not have any 

variable affected by the risk preferences. Therefore, under risk-neutrality assumption one 

still may argue that the total return has to be equal the risk-free rate r. 

Merton (1973) showed that for European call options on dividend-paying assets the B-S 

formula (3.21) can be modified into the following: 
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When the Underlying Is a Forward Contract 

If the underlying investment asset is a forward contract F on another asset S with a delivery 

price K at maturity T, such contract can be priced under the risk neutrality as follows: 

( ) rT
T eSSE 0

ˆ =   (3.28) 

( ) ( ) rTrTrTrTrTrT
T

rT
T KeSKeeeSKeeSEeKSEF −−−−−− −=−=−=−= 00

ˆˆ   (3.29) 

For the underlying forward the BSM equation (3.18) takes the form of (3.30). Term G in the 

equation represents the derivative function, e.g. a call option c = max (ST – X, 0).  
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If we compare the equation above with that in (3.26), we see that the forward prices 

development can be equated with the development of a stock paying a dividend of δ = r. 

Therefore the expected growth of the forward prices in a risk-neutral world is r – δ = 0 and 

no drift term should be included in this differential equation. This applies to both 

deterministic and stochastic interest rates. Thus: 

( )TFEF ~ˆ
0 =   (3.31) 

As mentioned in subsection 2.2 there is uncertainty about whether an expected growth of the 

spot electricity prices should automatically apply to forwards. The expression (3.31) now 

supports this theoretically. 

Black (1976) proposed a closed-form solution for European call options on forwards, which 

is a version of the B-S formula. This solution is popularly called “Black 76”, and its 

assumptions are the same as for the BSM differential equation listed above. 
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Here F0,M is the forward price at time 0 with delivery at time M, X – the option’s strike, T – 

time to the option’s maturity (T < M), and σ – cumulative volatility of the forward. In its 

strict interpretation, Black’s forward price F0,M should be derived from the spot price S0 as 

 (where w is a cost of storage and δ – convenience yield). In practice, it 

can be replaced by the market forward price in effect making the convenience yield a general 

function of time. 

( ) ( ) ))((, tTwretSTtF −−+= δ

The risk-neutral forward price process is described in expression (3.23). It can be shown that 

the volatilities of the forward prices are constant and equal to the spot volatility: 

( ) σσ =TtF ,  (3.33) 

3.4 Conceptual Challenges in Pricing the Return Element 

In the previous two subsections the general theory of price movement and derivative pricing 

was recapped, including special cases for underlying being a forward or paying a dividend 

yield. This subsection will be devoted to more stringent quantitative analyses of the NKIB 

issues related to averaging and currency exposure that was briefly noted in subsection 2.3. 

From the equations (3.27) and (3.32) it is easy to see that the value of an option is directly 

linked to (a) any dividend yield that may “bleed” the total return from holding the 

underlying, and (b) the volatility of the underlying. Anything that increases the yield and/or 

reduces the volatility will be to the investor’s disadvantage. 

Quotation of Forward Contracts in Foreign Currency 

All the general option pricing theory presented in the pervious subsections was built for 

single-currency situations. We saw that for the derivatives on forward contracts no drift term 

and no cost of carry (r – δ) should be included in the single-currency differential equation. 

However, from the component analysis it was clear that while the borrowing and payout on 

the NKIB-XV happens in NOK, the underlying forward contracts are quoted in EUR.  

If an index bond’s RE is built on an underlying quoted in a foreign currency, the treatment of 

the “currency issue” in the bond structure can be threefold. Let us denote currency rates 

(NOK/EUR) as Xt0 and Xti in times t0 and ti (the last one is uncertain at the settlement date): 
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In the case (A) the issuer offers full adjustment for the changes in the exchange rates from t0 

to ti, meaning that the Return component is fully exposed to the expected currency 

appreciation/depreciation. In the case (C), as in the NKIB-XV or in DnB NOR’s Kraft 

warrants, no adjustment of any kind happens, meaning that the return is effectively hedged at 

the settlement (the issuer has in fact hedge its currency exposure). The case (B) is a mixture 

which was built into the NKIB-XIII. 

Bjerksund, Carlsen and Stensland (1999) offer quantitative explanation for a situation such 

as in cases (A) and (C). The only difference is that they analyse options on foreign indices, 

while here we have options on “foreign” forwards. This fact is very important for answering 

whether one should include interest rate differential as implied dividend yield for forward 

price process.  

The starting point is substitution of the B-S formula into the RE of an index bond with one 

option maturing at T on one underlying foreign index q* paying a dividend yield δ*:  
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For the case (A) with full exchange rate adjustment, Bjerksund, Carlsen and Stensland 

(1999) show that the implied dividend yield and the volatility will be: 
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For the case (C) with no exchange rate adjustment, it can by analogy be shown that the yield 

and the volatility take a form: 
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It is now evident that by not adjusting for the currency changes, the bank both increases the 

implied dividend yield, while not introducing “new” volatility element. Norway usually has 

a positive rate difference with the Euro-area17, therefore the underlying quoted in EUR will 

probably not be to the Norwegian investor’s advantage. 

How it affects the valuation of the RE in the NKIB-XV where the underlying are foreign 

currency-quoted forwards? Assuming no correlation between the forward electricity prices 

and the exchange rates (CovF,X = 0), the Cost of Carry goes from (r – δ)18 which was zero in 

the standard Black 76 to (r – δ* – (r – r*)) for “foreign” forwards where there is no 

adjustment for currency appreciation in the calculation of the AA. Since δ* = r* for forwards, 

the “new” Cost of Carry is again zero. 

Bjerksund (2008) showed that for the NKIB-XIII which did have exchange rate adjustment 

mechanism similar to the case (B) as presented in (3.40), the value of an option may be 

calculated by (3.44) below. Here we assume Fi price dynamics as in (3.41) and Fi return as 

in (3.42) – see also (3.23) above – and X exchange rate dynamics as in and (3.43), Fi and X 

independent of each other: 
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17 On 15.02.2008 the interest difference on 3-years government bond’s yield was:  rNOK – rEUR = 4,49% - 3,22% = 1,27%. 

18 Here the storage cost term w is of course zero for the forwards. 

19 Forward price risk premium λ = (μ – r) equal to zero under the risk-neutral Q. 
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We see that the expected appreciation term e(r-r*)t comes from the currency cross adjustment 

included in the NKIB-XIII. Since the NKIB-XV does not have such an adjustment, the 

reasoning above about zero Cost of Carry seems to be justified. The conclusion is confirmed 

by DnB NOR in their offer document for Warrant Kraft 2007/2010.  

Thus we can substitute Black 76 as in (3.32) into the NKIB-XV Return element expression 

as in (2.3), keeping in mind that the strikes Xi are equal to the forward prices Fi
0,M at time 0. 
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where e-r(T-t) takes into account the delays of the option proceeds until the bond’s maturity T. 

Averaging Over Three Forward Contracts 

The AA is calculated based on the equally weighted arithmetic average of the positive returns 

on three forwards contracts, ENOYR-09, ENOYR-10 and ENOYR-11, as shown in (2.3). 

The options’ lives are, respectively, 0,8 years, 1,8 years and 2,8 years. The forward contracts 

expire some 2-3 weeks after the respective options on them expire. 

What does such diversification mean for the value of the RE? Since this is an average of 

options, and not an option on an average, based on the Value Additivity Principal, the 
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investor receives the full 1/3 value of each call option in the portfolio, with unchanged 

volatilities of each option. 

As Bjerksund (2007) showed, it would be much more unfortunate for an investor if the AA 

would be based on one basket option, as illustrated below: 
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To explain this, let’s assume that an option is written on the return on a basket index I, which 

is an average of returns on the forwards F1, F2 and F3. The total return is then:  
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The volatility varI or σ2
I of the index I can then be estimated as: 
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Clearly, as long as some correlation coefficients ρij are different from 1,0, the resulting index 

volatility will be reduced. One can still value such basket options using Black 76, but then 

one has to use the implicit volatility above. For the adjustment of the dividend yield, see 

Bjerksund, Carlsen and Stensland (1999). 

Average Return on Three Forward Contracts 

Another issue that may impact the average return is that the underlying forward contracts are 

highly correlated while they run in parallel, with coefficients between 0,8 and 0,9. It is 

observable from the historical development, as presented in Appendix B. I have also 

calculated correlation coefficients for elapsed forward contracts, the results are shown in the 

table below: 
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Table 3: Historical correlation between forward contracts 

 YR-03 YR-04 YR-05 YR-06 YR-07 YR-08 YR-09 YR-10

FWYR-02 0,975 0,922       

FWYR-03  0,809 0,457      

FWYR-04   0,802 0,718     

FWYR-05    0,751 0,727    

ENOYR-06     0,933 0,862   

ENOYR-07      0,871 0,814  

ENOYR-08       0,929 0,798 

 

A closed-form solution such as Black 76 applied to each of the three options in the Return 

element, will not be able to take this correlation into account. However, Bjerksund (2008) 

showed how it can be implemented with Monte Carlo simulation, applying the same Wiener 

process dz for all contracts, but with their respective spot volatilities, while they run in 

parallel. This approach is implemented in the Monte Carlo simulation used in this thesis. 

Averaging Over Five Trading Days 

Another challenge which is relevant for valuing the NKIB-XV is that the closing values, Fi
t, 

are based on an average over five trading days prior and on 10.12. of each year. Such options 

are called “Asian” or options with an “Asian” tail. Since returns in those five days are not 

perfectly correlated, the resulting volatility of the average will be less (probably much less) 

that the average volatility of these five days. However, since the five observations have only 

one trading day between them, and not one or several months as many other structured 

products, the volatility-reducing effect is not as strong as for other Asian options. 

Let’s assume again that an option is written on a forward F, but that the closing value index 

IT is actually an average of M observations of F over the period of time from T1 to T2, see 

(3.47). The time between observations, if evenly spaced, is Δt = (T2 – T1)/M (note that the 

first observation is not T1, but T1 + Δt). The total return on such Asian option is shown in 

(3.51). 
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Kemna and Vorst (1990) showed that we can adjust volatility σ2
I of the index I according to 

the expression below to be able to value the option with the Black 76 formula. In this 

equation the volatility of a geometric average is used, however, it is a good approximation 

for the volatility of an arithmetic one. 
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If one puts T1 = 0, T2 = T, and Δt = 1/3T into the equation (3.49), the result, σ2
IT = 14/27σ2T, 

corresponds to the results presented in Bjerksund (2007). In general, if we assume T2 = T 

(final day of the calculation period), n – number of consecutive days in the Asian tail so that 

T1 = T – n/251, and Δt = 1/251, the volatility adjustment can be calculated as:   
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In the case of the NKIB-XV, with n = 5, T2 – between 0,8 and 2,8 years and underlying 

cumulative volatilities σ between 19% and 27%, the volatility reductions are approx. 0,04% 

to 0,18%. The details are shown in the following table: 

Table 4: Estimated volatility adjustments for the averaging effect 

Remaining life T2 Underlying volatility σ Index volatility σI

(years) (% p.a.) (% p.a.) 

0,821 26,6% 26,4% 

1,817 21,6% 21,5% 

2,810 19,0% 19,0% 

 

3.5 Alternatives for Valuing the Return Element 

There are in principle two ways to value European call options ci in the RE-equation (2.3): 

(a) an indirect approach – i.e. to use reliable external valuations of similar options (or the 
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Return element as a whole), and/or (b) a direct approach – i.e. independently chose and 

model valuation solution(s), make necessary assumptions, and calculate the results. 

Indirect Valuation – Use of Quotes for Traded Options 

Since Nordea actually buys options with matching underlying and maturities on the 

settlement date to hedge its market exposure on the NKIB20, the most effective and reliable 

way to value the RE would be to use the market quotes for these options. Options on Nord 

Pool electricity forwards are traded on Nord Pool and in the OTC market. 

Before using any market quotes, one should confirm whether these quotes come from a 

sufficiently efficient and liquid market. According to Prof. Bjerksund, Put-Call Parity and 

Concavity-in-Strikes tests on the option quotes did not indicate that the options quoted at 

Nord Pool are obviously mispriced. 

Options on the nearest two yearly contracts were quoted at Nord Pool on 15.02.2008: 

ENOCkkYR-09 and ENOCkkYR-10 (where kk is the strike). To be able to value the entire 

RE a retail investor will have to obtain “sharp” quotes for the last contract, ENOYR-11, from 

the OTC electricity brokers. One would still have to adjust for five-days averaging effect, 

covariation of the contracts, somewhat different maturities, EUR interest rate and different 

credit risk. 

Due to the scope constrain, no option quote for ENOYR-11 contract has been obtained. 

Therefore, the indirect approach cannot be used. However, the available market quotes for 

ENOYR-09 and ENOYR-10 will be used in reasonability analysis of the results from the 

direct approach. They will also be used to estimate implied cumulated volatilities on the first 

two contracts. 

Direct Valuation – Application of Close-form Solutions 

For valuation of European call options on forwards, the Black 76 solution adjusted for 

delayed payment has been presented in equation (3.45). This solution is appropriate if the 

assumptions behind the BSM-equation as met, particularly the assumption about the GBM-

type underlying process. 

                                                 

20 That is how the final Return Factor is set. 
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There is a simpler form of the B-S formula for at-the-money options called “The 0,4-rule”: 

ii
rt

i tec i σ⋅⋅= − 4,0   (3.54) 

The derivation of the formula is outside the scope of this analysis. An investor could use this 

formula to make a quick “back-of-the-envelope” estimate for the RE, however one does not 

need it with Microsoft Excel spreadsheet available. The results calculated by the 0,4-rule are 

used as a calculation error control to a more complex Black 76 calculation. 

In the next section closed-form solutions for other underlying price processes are presented. 

As a rule, they are more complicated to model and require several input parameters that have 

to be estimated form the historical data. 

Direct Valuation – Application of Numerical Techniques 

Valuation procedures by numerical techniques are more transparent in that the techniques 

primarily concern themselves with modelling underlying price process as realistic as 

possible. The application of the numerical techniques does not therefore depend on the 

particular underlying process, such as the GBM for the B-S closed-form solution. If the price 

at time t does not depend on the previous values (e.g. random walk GBM) and the derivative 

does not require several measurement points (e.g. plain-vanilla European option), one does 

not have to simulate a complete time series, but just the value at maturity. 

The numerical techniques are more flexible than the analytical closed-form solutions in that 

they can accommodate exotic structures with complicated underlying processes with several 

stochastic factors, several correlated underlying, Asian tails etc. For such exotic derivatives 

only analytical approximation may exist, if any. 

Numerical techniques consist mainly of Tree Building Procedures and Monte Carlo (or 

Quasi-Monte Carlo) simulations. Their comparative description and application for the RE 

analysis are presented in section five. 

If the GBM assumption for forward price process is acceptable and the five-days averaging 

and correlation issue in the NKIB-XV are not expected to materially disturb the results, then 

the options in the RE can be easily valued by Black 76 solution. In this situation Monte 

Carlo will not be absolutely necessary for an investor. However, the Monte Carlo simulation 

is the only option to perform the expected return analysis.    
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3.6 Alternatives for Expected Return Analysis 

The forward price GBM process in its general form with a drift term λ = μ – r is presented in 

equation (3.13). For a risk-neutral valuation, we have substituted the drift of the underlying 

spot process with the risk-free rate, leaving its risk premium and the drift of the forward 

price equal to zero. 

The expected return calculation is based on the real-world probabilities P, and not on the 

risk-neutral probabilities Q. Therefore we have to abandon the risk-neutral world of 

derivative valuation and the risk premium has to be re-introduced and estimated. 

The only alternative to perform such expected return calculation is a numerical procedure 

simulating the development of the forward with implied risk premium. 
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4. Seasonality, Volatility and Covariation 

4.1 Seasonality  

Seasonal patterns in their broader meaning (intra-year, intra-week, intra-day predictability) 

are one of the particular characteristics of the electricity spot prices. However, the 

seasonality should not be a major concern for forward price process. Hjalmarsson (2003) 

argues that the forward prices do not exhibit strong seasonality, the reason being that they 

specify the average price for electricity for a fixed future period of time. In this analysis I 

therefore treats the underlying forward process as if it has no material seasonal component. 

4.2 Volatility 

Volatility Definition and Models 

The concept of volatility of the underlying process, both volatility structure and volatility 

level, is paramount to all option pricing. It is even more so for pricing electricity-related 

options, as in the NKIB-XV, where volatility estimation is fairly complex. 

According to Hull (2000), volatility of a price process can be defined as the annualised 

standard deviation of the return on the underlying, expressed using continuous 

compounding. In expression (3.12) it is shown the volatility is also the standard deviation of 

the natural logarithm of the return at the end of the year. 

If the volatility of a GBM process Fi over a time interval of T is assumed to be non-

autoregressive, it is empirically calculated from n – 1 observations as follows21: 
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21 Volatility is calculated a bit different for Value-At-Risk (VAR) purposes. 
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This way of calculating return as a natural logarithm of the last price divided by the previous 

price was used by Koekebakker and Ollmar (2001). Another alternative is to divide the price 

change by the previous price. 

Engle (1982) suggested a way to weigh returns observations differently within the sample, 

giving more recent observations more weight or introducing and giving weight to a known 

long-run average volatility V. This is known as an Autoregressive Conditional 

Heteroscedasticity model or ARCH(n)22:  
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where αi – weights given to single observations, and γ – the weight given to the long-run 

average volatility V (ω = γ * V). The weights have to sum up to one: . 1
1

=+∑
=

n

i
iαγ

A particular case of the weighting approach is the Exponentially Weighted Moving Average 

(EWMA) model , where weights αi decrease exponentially as one moves back through time: 

αi+1 = λ αi (λ is a constant between zero and one). The parameter λ governs how responsive 

the current estimate to the most recent observation. With high λ the volatility estimate 

responses slow to new information. 

( ) 2
1

2
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2 1 −− +−= nnn u λσλσ   (4.6) 

The EWMA approach was used by J.P. Morgan to update daily volatilities in their 

RiskMetrics database. 

                                                 

22 The ARCH(n) model was first proposed for inflation and later extended to other areas. 
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Bollerslev (1986) proposed another model with generalised autoregressive conditional 

heteroscedasticity or GARCH(1,1). The GARCH introduces a long-run average variance V 

into the EWMA-framework: 

2
1

2
1

2
1

2
1

2
−−−− ++=++⋅= nnnnn uuV βσαϖβσαγσ  23 (4.7) 

Thus the EWMA is a particular case of the GARCH(1,1), where γ = 0, α = 1 – λ and β = λ. 

The connotation “(1,1)” means that the most recent observations of ui and σi is used, a more 

general form is a GARCH(p,q). 

Deterministic Volatilities 

Price and return processes are either homoskedastic, meaning having a constant volatility, or 

heteroskedastic, where volatility changes deterministically or stochastically. For a contract 

with an expiry date, the deterministic future volatility can be assumed to have a predictable 

term structure. 

The volatility term structure is the relationship between the future volatility of the underlying 

and their time to maturity. In Appendix C the historical weekly returns on elapsed forward 

contracts are plotted along the time axis – it is clear that they start to “fan out” as contracts 

approach maturity. I Appendix F 26-weeks rolling average volatility is shown: again, one 

can see that volatility level picks up sharply as contracts pass half way through their lives. 

The same picture is seen in Appendix G, where 60-days rolling average volatility is plotted 

against time to maturity. Finally, in Appendix H, the historical cumulative volatility to 

maturity is presented – the same volatility term structure phenomenon is observed. From 

these observations it is clear that the forward contracts exhibit a term structure. The time-

varying volatility assumption is supported by other researchers, e.g. Koekebakker and 

Ollmar (2001). Since simple closed-form option pricing solutions such as Black 76 assume 

deterministic constant volatility, one way to incorporate the term structure is to use 

cumulative volatility until maturity for each option. The cumulative volatility represents all 

volatilities within the interval it “coves” or “accumulates over”, given there is no 

autoregressiveness, as in Pilipović (1998): 

                                                 

23 Again, the weights have to sum up to one: γ + α + β = 1. 
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There have been proposed several analytical models for the volatility term structure. For a 

process that mean-reverts in price or return, a volatility approaching zero as maturity 

increases was used for Nord Pool forwards by inter alia Lucia and Schwartz (2000) and 

Clwelow and Strickland (2000): 

( ) ( tTeTt −−= κσσ , )  (4.9) 

where k is the mean-reversion factor and σ is constant. As maturity T increases, so the 

volatility approaches zero. 

Another deterministic volatility model was proposed by Bjerksund et al. (2000). In order to 

keep the long-term at a realistic level, they proposed an empirical, data-fitted model: 

( ) ( ) c
btT

aTt +
+−

=,σ  (4.10) 

where a, b and c are constants, and as T increases, the volatility converges to c. 

Skogen and Bjørdal (2002) tested both volatility models above and found that the empirical 

model produced the best results. 

Koekebakker and Ollmar (2001) and (2005) proposed using multiple volatility fractions for 

their multi-factor GBM forward price model. 

In this analysis the models (both the closed-form Black 76 and the Monte Carlo simulation) 

are built under the assumption of a homoskedastic underlying process. This means that there 

is no time-dependent formula for calculation volatilities used in the calculations. The 

observed term structure is attempted incorporated through using accumulated-until-maturity 

rather than instantaneous volatility measures.  
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Stochastic Volatilities 

In order to accommodate the observed fat-tail and spike behaviour of the electricity spot and, 

to a less degree, forward prices, there have been proposed several models with stochastic  or 

stochastic and autoregressive volatility. 

One type is exemplified by a model proposed by Derman and Kani (1994) and Dupire 

(1994): 

( )dzStSdtdS ,σμ +=  (4.11) 

where σ(t,S) is a general non-linear function of the spot price. One simple example of such 

function would be σ(t,S) = β1Sβ2, where β1 > 1 and β2 > 1 are constants. This is also known as 

the Constant Elasticity of Variance Model or CEVM, see Cox and Ross (1976). 

Another type of model was proposed by Hull and White (1988), subsequently extended by 

e.g. Heston (1993), Bates (1996) and Scott (1997). Here, a GBM process for the volatility is 

introduced (correlated or independent of the price GBM process). The volatility variance V = 

σ2 mean-reverts toward  V  at a rate a and has a random driver dw: 

SdzSdtdS σμ +=  (4.12) 

( ) dwVdtVVadVV ξσ +−=→= ,2
 (4.13) 

If the variance is both stochastic and autoregressive, exhibiting mean-reversion as it often 

does, the GARCH(1,1) model described above will be able to incorporate this, while the 

EWMA model will not. Thus the GARCH(1,1) is more theoretically appealing to use, unless 

the long-run term ω turns out to be negative making the GARCH model unstable. 

Practical Estimation of Volatility – Historical Volatility 

The purpose of any volatility estimation procedure is to predict as realistically as possible the 

behaviour and level of future volatility for a given period of time or for a given time to 

maturity. The estimation basis can be either (a) historical time series (historical volatility) or 

(b) market prices for derivative instruments such as options where volatility is one on the 

input parameters and where pricing formula is assumed to be known, e.g. Black 76 (implied 
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volatility). As long as one can trust that the model used to back out the implied volatility is 

“correct”, the implied volatility procedure is to be preferred. 

In this analysis homoskedastic historical volatility is estimated for the historical return time 

series in a manner described in equations (4.1) through (4.4). An often used rule of thumb is 

to set the measurement interval T equal to the time period over which the volatility will be 

applied. 

Should one assume more advanced volatility structures, i.e. a time-varying deterministic 

model (e.g. the Bjerksund et al. empirical model), or a stochastic volatility model with or 

without some form of autoregression (ARCH, EWMA or GARCH), several more parameters 

would have to be estimated form the historical series. The stability of these parameters may 

be uncertain. As mentioned, in this thesis no such volatility models were applied. 

More sophisticated techniques for measuring historical volatility make use of intra-day high-

low as well as daily closing quotes. 

Practical Estimation of Volatility – Implied Volatility 

Another, market-based and therefore more preferable way to estimate expected volatilities is 

to back them out of e.g. the Black 76 model given market option quotes. Black 76, as any 

known algorithm, works well for quoting options in terms of “implied” volatility. The term 

“implied” here only means that if everybody knows the formula and there is no uncertainty 

about other input factors than volatility, then everybody can convert option premium in 

“EUR/MWh” into a measure of volatility in “% p.a.”. However, if Black 76 is in fact not 

used by the market to price the options, then the volatility level backed out of the formula 

will be different from the actual volatility implied in the market quotes. 

Due to the scope constraints, only standard Black 76 is used to estimate implied volatility. 

An interesting phenomena that illustrates the point made above is so-called “volatility smile” 

or “smirk”. When volatilities implied in the standard B-S (or Black 76) formulas are plotted 

against the strike value, one would expect no relationship for a log-normal underlying 

process. In fact the implied volatility increases as options goes “out-of-the-money”. I 

illustrate this in the graph below for Nord Pool options on ENOYR-09 and ENOYR-10 

quoted on 15.02.2008. 
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Figure 2: Volatility “smirk” for options on ENOYR-09 and -10 on 15.02.2008 
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Source: Nord Pool, analysis by Andreev (standard Black 76, EUR continuous risk-free rate 3,47% and 3,21%) 

As the options built into the RE of the NKIB-XV are per design at-the-money, closing 

market quotes for at-the-money options on the settlement date are used. 

4.3 Covariation 

Covariance is a measure of covariation between two stochastic processes. If volatility is 

calculated as in (4.1) through (4.4), then the correlation coefficient can be expressed as:  
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where u and v are two correlated return processes. As above, the GARCH approach can also 

be used for updating autocorrelative covariance estimate. 

In this thesis, there are two correlations that an investor has to make his/her judgement 

about: correlation between the three underlying forward contracts and the correlation 

between electricity forward prices and exchange rates. The last one is assumed to be zero. 

The covariation between log-returns on the forward contract is material, as shown in Table 2 

above. This correlation is treated in the simulation code.  
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5. Pricing with Close-form Solutions 

A closed-form solution is a solution to a differential equation that expresses the change in 

the option relative to all key variables, subject to hedging assumptions and end conditions. 

The previous sections identified one acceptable closed-form analytical solution, Black 76, 

for an underlying forward price process following the GBM. The supporting argument was 

that the forward will follow the GBM if its own underlying, the spot, follows it. The 

equation (3.12) showed that the log-returns on a GBM process will be normally distributed. 

This section concerns with whether normality assumption in fact holds for the forwards 

traded on Nord Pool, and what other closed-form solutions are available if it does not. 

5.1 Description on the Underlying Forward Contracts 

The forward contracts underlying the RE of the NKIB-XV as yearly base-load forward 

contracts traded at Nord Pool: ENOYR-09, ENOYR-10 and ENOYR-11. 

Nord Pool ASA financial market was established in 1993. Currently it is one of the leading 

and liquid power derivative exchanges in Europe24, counting more than 400 members from 

over 20 countries. In addition to facilitating and regulating trading, Nord Pool Clearing (the 

clearinghouse) is the contractual counterparty in all exchange traded contracts and the OTC 

volumes reported for clearing. Future contracts are quoted for daily and weekly base-load 

underlying, while forward contracts “cover” monthly, quarterly and yearly base-load blocks. 

Futures and forwards can be priced similarly if future interest rates are deterministic. 

However, detailed discussion of differences between forwards and futures is outside the 

scope of this analysis. 

Product definitions and horizons were last changed in 2003-2005. Historically forward 

contracts run for three years, but from ENOYR-11 lanched in 2006 there are contracts for up 

to five years to maturity. Contracts are sized in 1 MWs and since FWYR-06 are quoted in 

EUR. The reference price is the official Nordic underlying day-ahead spot price. The market 

is open 250-252 days a year, the 252-days convention is used in this thesis. 

                                                 

24 The other European electricity exchanges where futures and forwards are traded are European Power Exchange EEX, 
Amsterdam Power Exchange APX and Paris Power Exchange POWERNEXT.  
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There are European call options on the shortest two forward contracts quoted on Nord Pool. 

One option is on 1 MWh volume of the underlying. The strikes are set at a 1 EUR/MWh 

tick, with premium quoted at a 0,01 EUR/MWh. Options on yearly forwards expire on the 

third Thursday in December. 

Forward contracts’ settlement structure (with no mark-to-market) is in Figure 3 below:  

Figure 3: Nord Pool forward contract settlement structure 

 

Source: Nord Pool (2007) 

Prices and other relevant information for forwards and related options as quoted on the 

NKIB-XV settlement date 15.02.2008 are presented in the table below. 

Table 5: Market information on forward and option contracts on 15.02.2008 

Forward 

contract 

Expire Time to 

maturity 

Closing 

15.02.08

ATM option 

contracts 

Expire Closing 

15.02.08 

c/F 

rate 

ENOYR-09 23.12.08 218 days 53,10 ENOC53YR-09

ENOC54YR-09

18.12.08 

18.12.08 

5,09 

4,67 

9,6%

8,8% 

ENOYR-10 28.12.09 469 days 52,50 ENOC52YR-10

ENOC53YR-10

17.12.09 

17.12.09 

5,97 

5,61 

11,4%

10,7%

ENOYR-11 28.12.10 721 days 52,15     
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5.2 Distinctive Characteristics of Electricity Spot and 
Forward Prices 

Characteristics of the Electricity Markets 

The following is a list of characteristics where electricity markets may differ from the stock 

and other financial markets for which the GBM framework was originally developed: 

Lack of storability  Electricity as a consumption asset cannot be effectively 
stored25. This has implication on spot volatility/jump 
behaviour and spot-forward relationship, as traders cannot 
set up arbitrage portfolios using spot prices, see Eydeland 
and Geman (1999). Lesser relevance of storage cost and 
convenience yield. 

Limitations on 
transportability and 
delivery problems 

 Introduces spot price basis risk due to location and time of 
delivery. 

Seasonality and cycles  Strong seasonality and cycle factors built in both regional 
demand and, as in the case of Nord Pool, supply. Introduces 
predictable “seasonal” patterns for intrayear, intramonth, 
intraweek and intraday prices. 

Negative spot prices  Relatively rare, more relevant for systems dominated by 
base-load thermopower generators. Nord Pool’s System 
Price cannot be negative by design. 

Mean reversion 
(autocorrelation) 
 

 In the longer-term at least, electricity prices tend to gravitate 
toward the marginal cost of production. Demonstrated by 
Gibson and Schwartz (1990), Brennan (1991), Cortazar and 
Schwartz (1994), Schwartz (1997) and Ross (1995) 

Non-continuous process – 
price jumps and spikes 

 Due to supply shortages or demand shocks, spot prices show 
sudden, relatively large, unexpected and discontinuous 
changes that rapidly revert to their long-term (normal) level. 

Stochastic volatility  GBM-based models are homoskedastic, which is clearly not 
the case for spot and forward prices. Solved by introducing 
heteroskedastic models, with deterministically changing or 
stochastic volatility. For autoregressive stochastic volatility 
exhibiting clusters, ARCH models could be used. 

                                                 

25 Hydropower can be stored as water in reservoirs, something called “pump power” (“pumpekraft”) in Norway. See inter 
alia Gjolberg and Johnsen (2002). In addition, electricity can of course be stored in batteries on minor scale.    
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Volatility term structure  Rapid decay of volatility as time-to-maturity increases is 
very typical for electricity (and other energy) derivatives. 
Can be explained by inter alia the Samuelson’s hypothesis. 

Non-normal and non-
stable distributions of 
returns 

 Distribution of electricity price returns exhibits fat tails 
(leptokurtic distributions) and skews, ref. Clowlow and 
Strickland (2000). Abnormally high kurtosis leads to 
volatility “smiles”. Fat tails can be introduced by price 
jumps and stochastic volatility, as proposed by Knittel and 
Roberts (2001) as well as Eydeland and Geman (1998). 
Skews are more difficult to take into account.  

Dual nature of the spot 
and forward prices 

 Forward prices are based on financial contracts which are 
easily storable and transferable. The standard assumptions of 
the effective financial markets apply to forwards to a much 
larger extent than to spot prices. 

Forward contracts on flow 
delivery 

 Forwards are not on a point delivery, but on a flow delivery 
over a period T1 to T2. In addition, there are no point forward 
prices quoted as they are traded in blocks. 

Liquidity of emerging 
electricity markets 

 Organised electricity markets can still be described as 
emerging, with their microstructure still changing. The Nord 
Pool spot and forward markets are the oldest and sufficiently 
efficient and liquid. On the other hand, OTC forward market 
for longer maturities and option market can lack in liquidity. 

 

Empirical Evidence for Forward Prices 

The observations above indicate that the general option pricing solution for the GBM 

process drawn up the previous section may not fit the electricity forwards. At the same time, 

there are some arguments and anecdotal evidences to that while spot prices definitively 

cannot be described by a GBM, longer-term forwards probably may. In order to conclude on 

the suitability of Black 76, one needs to perform normality tests on the historical return data. 

One can either perform statistical normality tests or “graphical tests” comparing the actual 

distribution histogram with a normal probability curve or constructing a Q-Q Plot26. There 

have been proposed a number of normality tests: inter alia the Kolmogorov-Smirnov test, 

D'Agostino's K-squared test, the Jarque-Bera test, the Anderson-Darling test, the Cramér-

                                                 

26 A Quantile-to-Quantile (or Q-Q) test or plot compares actual probabilities of the variable with the expected probabilities 
if the variable was normally distributed. A diagonal line indicates normality while an “S”-shaped plot indicates the contrary. 
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von-Mises criterion, the Lilliefors test for normality, the Shapiro-Wilk test, the Pearson's chi-

square test, and the Shapiro-Francia test for normality. D'Agostino and Stephens (1986) 

recommend the Shapiro-Wilk test for moderate sample sizes and the Anderson-Darling test 

is recommended for sample sizes larger than 4000 observations. Conover (1999), Shapiro 

and Wilk (1965), Royston (1982) and Royston (1995) also agree that the Shapiro-Wilk test is 

the most reliable normality test for small to medium sized samples. Judge et al. (1988) and 

Gujarati (2003) recommend the Jarque-Bera test. Another indirect normality test is a test for 

autocorrelation. 

Deyna and Hulström (2007) assessed return distributions on spot prices and three yearly 

contracts, ENOYR-06, ENOYR-07 and ENOYR-08 for the period from 01.10.2003 until 

01.04.2007. They calculated skewness and excess kurtosis of the return distributions and 

applied the Jarque-Bera (1980) normality test: 
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22 osisExcessKurtSkewNTJB   (5.1) 

The null-hypothesis is that the forward prices are log-normally distributed. The null-

hypothesis is rejected is to be rejected if TJB-value is larger than the critical value of Χ2, 

which is on the 5%-level is equal to approx. 6. 

Deyna and Hulström (2007) found that although none of the forward contracts met the tests 

with their TJB statistics at between 890 and 3.054, the abnormality of forward returns are 

much smaller than that for the spot prices (TJB = 13.936) or for the shorter futures. 

Koekebakker and Ollmar (2001) also concluded that the models they used to describe the 

volatility of the forward prices both failed the normality tests. 

In this thesis both the Shapiro-Wilk test and the Jarque-Bera test have been performed on the 

log of returns for forward contracts from FWYR-01 though ENOYR-08. The results are 

presented in Appendix D and in the table below. 
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Table 6: Results of normality tests on historical returns on forward contracts 

Forward 

contract 

Observations 

N 

Skew Kurtosis Jarque-Bera 

TJB

Shapiro-Wilk 

WSW (pSW) 

FWYR-01 102 0,27 3,21 45 0,95 (0,0004) 

FWYR-02 146 0,39 2,96 57 0,93 (0,0000) 

FWYR-03 152 3,90 27,75 5.262 0,71 (0,0000) 

FWYR-04 154 0,30 2,50 42 0,95 (0,0001) 

FWYR-05 154 -0,41 1,47 18 0,98 (0,0114) 

ENOYR-06 154 -0,09  1,25 10 0,98 (0,0256) 

ENOYR-07 155 -3,23 22,90 3.656 0,78 (0,0000) 

ENOYR-08 154 -1,70 11,24 885 0,88 (0,0000) 

 

These tests confirm that none of the historical forward contracts were log-normally 

distributed over their entire lives. However, compared with the spot, some of the contracts 

were very close to the stringent criteria (TJB < 6 and WSW  1,0 / pSW < 0,05).  

5.3 Can the GBM Be Acceptable for Forward Prices? 

In contrast to the spot prices, forward prices are based on financial contracts which are easily 

storable and transferable. Therefore, the standard assumptions of the effective financial 

markets may apply to forwards to a much larger extent than to spot prices. 

The long-run contracts such as yearly forwards with several years to maturity show 

materially lower volatility and a less jumpy behaviour than the spot prices. There can be 

several reasons for that. Firstly, long-term equilibrium prices that forward relate to, is 

unaffected by temporary shortages that cause spot jumps. Secondly, lower liquidity of the 

longer maturities would, ceteris paribus, reduce volatility, see Lo and MacKinley (1999). 

Although several empirical studies have been carried out on the spot prices27, there has been 

relatively few academic works empirically examining electricity forward prices. There are 

several recent works authored by Koekebakker, Ollmar and/or Benth on the electricity term 
                                                 

27 E.g. Knittel and Roberts (2001) for traditional linear models and models with jumps and time variation, Johnson and Barx 
(1999) for models with jumps. 
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structure modelling, including the recent “Stochastic Modelling of Electricity and Related 

Markets” by Benth, Benth and Koekebakker (2008). According to Koekebakker (2006), a 

multi-factor GBM model could be a good alternative for forward price modelling. However, 

a detailed and complete overview over current status of the body of knowledge on the topic 

of forward price dynamics is outside the scope of this thesis. 

Koekebakker and Ollmar (2001) performed Principal Component Analysis (PCA) on the 

smoothed forward prices from 1995 to 2001. They found that there were two factors 

influencing volatility and explaining approx. 75% of the total variation. The first factor was 

shifting all forward prices in the same direction, the second caused short- and long-term 

forward prices to move in the opposite directions. “The main sources of uncertainty affecting 

the movements in the long end of the curve, have virtually no influence on variation in the 

short end of the curve.” wrote Koekebakker and Ollmar. 

Hjalmarsson (2003) looked at whether the B-S formula works for the electricity markets, and 

compared it with a nonparametric approach. He concluded that while more accurate option 

prices can be obtained from the process based the nonparametric estimate, “given the shape 

of the nonparametric estimates, it is difficult to think of any parametric model that would 

give a better approximation than the linear geometric Brownian motion… Therefore, from 

the practical viewpoint, the Black-Scholes option prices might be the best achievable.” 

Several experts believe that traditional models like GBM (or multi-factor GBM) and pure 

mean-reversion can be appropriate for modelling forward prices. According to Deyna and 

Hulström (2007), large Scandinavian electricity traders use standard version of Black 76 to 

quote options. However, Black 76 is not used for forecasting purposes, and the traders utilise 

jump-diffusion models. 

Based on the arguments above and in order to stay within the scope of the analysis, it is 

chosen to retain the GBM assumption for the forward prices made and elaborated upon in 

the previous sections. Therefore standard Black 76 model is used as the only closed-form 

analytical solution for pricing the options built into the NKIB-XV’s Return element. 
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6. Pricing and Return Analysis with Numerical 
Techniques 

This section looks closer at the simulation numerical procedures. Although the technical side 

of the Monte Carlo simulation is not the primarily focus of this thesis, to be able to 

independently model and value the RE of the NKIB-XV by way of simulation, any investor 

has to acquire basic understanding and technical skills of the subject. 

6.1 Brief Comparative Analysis of Numerical Techniques 

A closed-form solution is relatively easy to model and use, and provides the implementation 

flexibility. However, the complicated the underlying process and the more sophisticated the 

structure of the option, the more difficult, if not impossible, it becomes to arrive at a closed-

form solution. Sometimes there exist sufficiently good approximations, sometime there are 

none. 

An alternative to closed-form solution is simply to forecast the underlying prices process and 

make option pay-out calculation at maturity, and finally discount it to the present. In case of 

a stochastic underlying price process, such simulation has to be run sufficiently many times, 

and the average taken. This alternative is called numerical techniques. 

There are three main types of numerical techniques: 

• Binominal or trinominal tree building28. 

• Monte Carlo or Quasi-Monte Carlo simulation. 

• Other methods (Finite Difference methods, implicit or explicit, numerical integration, 

finite element methods, etc.). 

The numerical methods are more flexible than the analytical solutions in that they can 

accommodate multiple assets, complex price processes (e.g. multiple stochastic factors, 

                                                 

28 The binominal method was first introduced by Cox, Ross and Rubinstein (1979) and Rendleman and Bartter (1979). The 
method was first applied for the GBM process, but later was extended to multidimensional trees and implied trees with 
changing volatilities/probabilities. 



 57

stochastic volatility, jumps and spikes, mean-reversion) and advanced pay-out structures 

(e.g. average rate, barrier, lookback).  

The Monte Carlo simulation technique is best suitable for path-dependant derivatives, e.g. 

Asian options or options with Asian tails. The simulation can also handle a multifactor 

approach and a discrete volatility term structure. One drawback of this approach is that it 

captures the probability through the sheer number of simulations which for several 

underlying and timepoints may require massive calculation capacity. Since computing power 

has became cheaper and more readily available in the recent years, this drawback is not as 

critical as it was before. Also, the simulation cannot be used for valuing American options.     

The Trees and the Finite Difference methods are the best alternative for American options 

with earlier exercise (optional or triggered) and for convertible features. According to 

Pilipović (1998) they can also handle multifactor approach up to two factors. 

It is then clear that in order to take into account the Asian tail in the NKIB options, one 

should use the Monte Carlo technique. In addition, it is required for expected return analysis. 

6.2 Introduction to Monte Carlo Technique 

The Monte Carlo (“MC”) procedures have been used since 1930th for calculations in 

Physics, Mathematics and Chemistry. Boyle applied the MC to valuing options first in 1977, 

he also introduced the Variance Reduction Procedures. 

The pricing process is fairly simple: having a price process model. e.g as in (3.41), with a 

stochastic variable(s) built into it, for each simulation one generates this stochastic variable 

for each time step (or for the whole time period, if possible) determines the resulting price 

and calculates the payout from the derivative (e.g. an option). Such simulation is then 

repeated sufficient amount of times to make the averaging result statistically significant. The 

result is the expected value under risk-neutral probabilities, so it is then discounted back to 

the valuation point of time by the risk-free (or credit risk-adjusted) interest rate with 

appropriate maturity. One can also estimate the statistical error and the distribution of the 

payout. The error is normally distributed with the mean of zero and the variance of σ2/N, 

where σ is the standard deviation of one simulation and N – number of runs. The error will 
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therefore diminish with increasing number of simulation, but very slowly, with a rate of 

1/ N . 

For pricing European options without Asian elements, not path-dependent (almost what we 

have in the KNIB-XV if one disregards the five-days averaging), and assuming that the 

underlying follows the GBM, it is not necessary to simulate the whole path, but only the 

final price at maturity which the payout is based upon. 

However, the strongest argument in favour of the MC procedure, even above the tree-

building methods, is its ability to efficiently price the path-dependent, multi-underlying 

derivatives. Jäckel (2002) explains that the MC procedure is equivalent to calculating a 

multidimentional integral with d = i * k dimensions, where i is a number of underlying and k 

– amount of time steps. Estimation error in an MC run is independent of the number of 

dimensions, while the error in the tree-procedures increases as the number of dimensions 

rises. This makes the MC the preferred choice for calculation of multidimensional 

derivatives. 

Solutions for drawing normally-distributed variables, as described in the following 

subsection, constitute a necessary part of any Monte Carlo simulation, including that which 

is performed in this analysis. The following subsection discusses Monte Carlo simulations 

for correlated assets. Although not implemented in this thesis through the Cholesky 

decomposition, it is an alternative that can be utilised given more time to estimate variance-

covariance matrix and model the solution. The last two subsections dwell on effectiveness 

and efficiency improvements and Quasi-Monte Carlo sequences. For purposes of this 

analysis, these are not-necessary elements. However, they are presented here for the sake of 

completeness. 

6.3 Drawing Normally-Distributed Variables 

The most important calculation part of the MC procedure is to draw series of independent 

normally distributed εi (or ξi). It is usually done by first drawing a random uniformly-

distributed number between 0 and 1, and then transforming it to a normally-distributed 

variable. 
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One alternative for the uniformly-distributed number xi = Uni(0,1) is to use “random number 

generator” built into Excel, RAND(), or the Rnd-function in the VBA. Such numbers are 

however not completely random, but “pseudo-random”. They “cluster”, and this means that 

it takes longer time for a MC model using such generator to converge on the true solution. 

Should one accept the use of a pseudo-random generator, a better alternative may be the 

Mersenne Twister developed by Matsumoto and Nishimura (1997). The authors claim that 

this is one of the fastest pseudo-random generators available, and that it uniform distribution 

is the best approximation. Bøe (2007) tested the Mersenne Twister against the standard VBA 

generator and found the differences to be small. There are of course other alternatives, 

offered as add-ins for Microsoft® Excel. Following Bøe (2007), the VBA/Excel generator as 

pseudo-random generator in the MC procedures has been chosen for this thesis. 

When it comes to converting the drawn uniform number xi into a normally-distributed 

variable εi, the default choice is again the standard Excel function NORMINV(rand(),mu, 

sigma), or the Application.NormSInv-function in VBA. This function works slowly. Other 

alternatives available are (a) the Central Limit Theorem (uses lots of points), (b) the Box-

Muller (1958) transformation (takes two points) and (c) Moro (1995) transformation from 

his article “The Full Monte” in the Risk magazine (requires one point).  

The Box-Muller method takes two uniform variables u and v, and converts them to two 

normally-distributed variables x and y: 

( ) ( )vux π2sinln2−=    and   ( ) ( )vuy π2cosln2−=  (6.1) 

The Moro’s code is presented in Appendix D. 

Bøe (2007) compared the standard VBA NormSInv-function with the Box-Muller and the 

Moro transformations, and found that although the Box-Muller code runs somewhat faster 

than the Moro’s, the both are vastly superior to the standard Excel alternative. Further, 

Jäckel (2002) pointed out that the Box-Muller method results in somewhat imprecise tails of 

the distribution. In his MC analyses Bøe (2007) chose therefore to use the Moro’s procedure, 

and here we follow his example. 
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6.4 The Monte Carlo Procedures for Correlated Underlying 

What if several underlying assets in a derivative are correlated, as a case may be for a basket 

option? This means that for each time step (or for the whole period) we have to simulate i 

correlated normal distributed variables. The explanation below is based on Koekebakker and 

Zakamouline (2006). For simplicity, i = 1, 2 and 3 is used. 

For notation, let us assume three assets that each follows the continuous GBM as in (6.2) 

with bilateral correlations as in (6.3). Here tk are points in time, μi is the expected total return 

on asset i, δi – dividend yield, and dzi – a Wiener process dtzd ii ⋅= ε~~  as in (2.1). The 

future prices can than be modelled according to (6.4), see also (3.13), with returns calculated 

as in (6.5). 
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As we cannot directly simulate three correlated normally distributed variables, we first 

simulate three independent ones, and than convert those by applying the Cholesky 

Decomposition of covariance martix. First step is to estimate assets’ correlations (and if 

necessary variance) from the historical logarithmic return data, filling the variance-

covariance matrix Σ. The matrix Σ is converted into an upper triangle matrix C so that CTC = 

Σ. Finally, we draw a vector of three independent variables ξi, and then arrive at three 

dependent variables εi by way of .  The variables ε∑
=

=
3

1

~
j

i
t

iji
t c ξε i are used in the MC 

simulations. This procedure is presented in (6.6) trough (6.8): 
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Σ=⋅CCT    or    (6.7) 
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The calculations in (6.7) can be demanding, solving for one argument at a time, however, 

there is a quite efficient Cholesky VBA code available. The solution (6.7) is only possible if 

the Σ matrix is a positive-semidefinite Hermitian matrix. It may not be the case when we 

have many underlying assets. In such case one can apply the Singular Value Decomposition 

(“SVD”) instead of the Cholesky factorisation. For details on the SVD, please see e.g. Dahl 

and Benth (2001). 
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The VBA code for the Cholesky decomposition is presented in Appendix D. 

6.5 Effectiveness and Efficiency Improvements 

For calculations covering many underlying and time points, the MC calculation may require 

excessive computation power. In addition, it is desirable to reduce the error of the final 

estimate. Several methods have been proposed to achieve these goals. For an extensive 

discussion on the subject, see Jäckel (2002). Here, two variance reduction solutions are 

briefly illustrated: the Antithetic Variable Technique and the Control Variate Technique. 

In the Antithetic Variable Technique, one simulation trial produces two normally-distributed 

values. The first one, ε1, is calculated in the usual way, see above, while the second one is 

equal the first with an opposite sign: ε2 = -ε1. The two resulting derivative estimates are then 

averaged, G* = (G1 + G2)/2 , and the final derivative estimate G is usually the average of all 

G* from all runs.  Quantitatively it can be expressed as 

( ) ( )GVarGGVarGVar <⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
=

2

21
*    when   ( ) 0, 21 <GGCov  (6.9) 

Since the condition in (6.9) often holds, the result arrived at by way of the Antithetic 

Variable Technique usually approaches the true value of the derivative faster (has lower 
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standard deviation) than if one would run corresponding number of single-variable 

simulations. Another advantage of the technique is that it requires only half of the random 

number generations. For derivatives where complete time series have to be simulated, the 

technique may represent both lower error and faster execution. 

Another variance reduction procedure is the Control Variate Technique. It can be readily 

illustrated on the challenge of valuing an arithmetic Asian option. Although there exist a 

number of closed-form approximations, e.g. Kemna and Vorst (1990), Turnbull and 

Wakeman (1991), Levy (1992), Curran (1992), Geman and Yor (1993), etc., there are no 

true closed-form solution for an arithmetic Asian option. However, Kemna and Vorst (1990), 

offered a formula for valuing a geometric Asian option, see the expression (3.62). The 

Control Variate Technique suggests calculating both arithmetic and geometric values for 

each trial (they will be strongly correlated), and then uses the difference between the 

estimated and the true values of the geometric Asian option to “correct” the arithmetic 

estimate. Let us denote option values thus: fA – true arithmetic (unknown), fG – true 

geometric (knowable), fA
* and fG

* - estimates simulated by each MC trial. Using fG
* as a 

control variate, we can estimate fA more effectively: 

( )**
GAGA ffff −+=  (6.10) 

The MC estimates are unbiased expectations, E(fG
*) = fG and E(fA

*) = fA, therefore the 

variance for fA estimate will be as in (6.11). And as long as fA
* and fG

* are strongly positively 

correlated, Cov(fA
*,fG

*) >>0, Var(fA) < Var(fA
*) should hold.  

( ) ( ) ( ) ( )**** ,2 GAGAA ffCovfVarfVarfVar −+=  (6.11) 

Bøe (2007) tested the Control Variate Technique on a spread option, and found its variance-

reducing effect very powerful. 

Other variance reduction procedures include the Importance Sampling, the Stratified 

Sampling (e.g. Curran (1994) and Moro (1995)), and the Moment Matching.   
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6.6 Quasi-Monte Carlo Sequences 

As mentioned above, one of the weakest points of the standard Monte Carlo procedure is its 

difficulty to draw truly uniformly-distributed numbers to convert those later to normally-

distributed ones for use in a Wiener process.   

We can instead choose to draw representative samples from known probability distributions 

using deterministic algorithms. Such methods are called quasi-random sequences or low-

discrepancy sequences (or Quasi-Monte Carlo, “QMC”). The Halton sequence is an example 

of such algorithm. The sequence is unlimited and operates in such a manner that each new 

number lies farthest possible from all the already drawn numbers, reducing “clamping”.  

While the conversion rate of the standard MC is 1/ N , the rate for a QMC sequence is 

potentially 1/N. 

Many exotic options will require simulations along several dimensions, e.g. number of 

underlying and number of Asian tail observations. The Halton sequence (its VBA code is 

shown in Appendix D) will then use different bases for each dimension, each base built on a 

prime number. For every trial, a number will be drawn from each base, for each dimension. 

These numbers can then be transformed into normally-distributed variables (by e.g. the Moro 

transformation), and used in the Monte Carlo simulation of derivative’s value. However, the 

Halton procedure distributes less and less uniform as the number of dimensions and 

therefore bases increase. According to Marco A.G. Dias, many practitioners limit therefore 

their application of the Halton procedure to 6 or 8 dimensions. 

The notion that the Halton sequence does not perform well in higher dimensions has been 

conformed by the studies of Paskov and Traub (1995) and Boyle, Broadie and Glasserman 

(1997). Other low-discrepancy sequences that perform better the Halton are inter alia the 

modified, “leaped” Halton sequence, the Sobol sequence and the Faure sequence. 

The QMC methods also run faster than the standard MC, and they may with advantage be 

combined with the variance reduction techniques. 
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7. Practical Implementation and Results 

Based on the theoretical fundaments and valuation solutions for the electricity forward price 

process and European call options on such forwards, as described in the previous sections, 

the closed-form and the simulation-based valuations of the Return element of the NKIB-XV 

have been performed. The simulation-based expected return analysis has also been done. 

7.1 Estimation of Volatility and Covariation 

The general definitions of volatility, its characteristics in the electricity market and 

estimation procedures are described above. Since the closed-form Black 76 model assumes 

deterministic constant volatilities, one has to take into account the existing volatility term 

structure by using cumulative volatilities. This is done by applying the cumulative 

volatilities corresponding to each option’s remaining life29: σ01 = σt0-t1 for the option c1 on 

ENOYR-09 (t1 – approx. 0,8 years or 43 weeks or 218 trading days), σ02 = σt0-t2 for the 

option c2 on ENOYR-10 (t2 – approx. 1,8 years or 94 weeks or 469 days)  and σ03 = σt0-t3 for 

the option c3 on ENOYR-11 (t3 – approx. 2,8 years or 147 weeks or 721 days). For the 

simulation-based analysis the subperiod volatilities (σ01 , σ12 and σ23) as explained in (4.8) 

were used. Although the three underlying contracts are different, and may have some year-

specific volatility drivers, a single volatility term structure for all three contracts has been 

used. The contacts’ historical volatilities up to the settlement date do not indicate that any of 

the contracts stand out and require separate treatment. 

Indirect Estimation Method – Publicly Available Information  

Before doing any calculations, one has to explore whether there are reliable and relevant 

future volatility estimates publicly available. For a professional investor or a player on the 

financial electricity market, both advanced in-house and/or third-party provided models and 

analytics will be available, for historical as well as for implied or forecasted volatility. One 

would expect electricity brokers to quote expected volatilities for their customers. This 

analysis relies on the volatility assumptions disclosed in the offering documents for the 

                                                 

29 For closed-form calculations, the period is measured until the mid-date of the five-days calculation periods, while for 
simulation purposes, periods until each calculation date are measured precisely. 
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NKIB or other structured products. In addition, the term structures published in the research 

papers have been gathered. 

The review of the offer documents from Nordea, DnB NOR and Orkla Finans for the 

electricity-linked index bonds and warrants yielded the results presented in the table below. 

One notes that Nordea only once has disclosed its volatility assumptions, for the NKIB-XIII 

in January 2007. 

Table 7: Volatility assumptions disclosed by Nordea, DnB NOR and Orkla 

Contract Nordea DnB NOR DnB NOR DnB NOR DnB NOR 

 Dec. 2006 Jul. 2007 Sept. 2007 Nov. 2007 Jan. 2008 

ENOYR-08 26,0%: 1,0yr     

ENOYR-09 22,5%: 2,0yr 24,9%: 1,5yr 24,6%: 1,3yr   

ENOYR-10 20,0%: 3,0yr 22,8%: 2,5yr 23,7%: 2,3yr   

ENOYR-11   22,8%: 3,3yr 26,8%: 3,1yr 22,4%: 3,0yr

ENOYR-12    27,0%: 4,1yr 23,9%: 4,0yr

 

For its Orkla Finans Kraft IV instrument, Orkla informs in December 2007 that annual 

volatilities of between 26% and 30% were used for internal simulations for yearly forwards 

2009 to 2012. 

Volatility term structures for the Nord Pool-traded forward were also obtained from, inter 

alia, Koekebakker and Ollmar (2001) for a 1995-2001 sample, in Skogen and Bjørdal (2002) 

for 2000 to 2001, as well as in Bjerksund, Rasmussen and Stensland (2000). This is certainly 

not a complete list of all published research that may contain forward volatility estimates. 

However, the numbers in these papers indicate a level between 10% and 20% one to two 

years to maturity (40 to 90 weeks). In 2002 Skogen and Bjørdal it is stated that options 

maturing four years into the future exhibit approx. 15% volatility. These numbers are 

materially lower than the ones the banks disclose. May be it is so because the recent 

contracts are more volatile than the ones used as references by the researchers in 2001-2002? 

Appendix F shows calculations of 26-week rolling annualised historical volatilities. The 

recent contracts do not seem to be more volatile that the older ones in the first two-thirds of 

their lives, with a half-year rolling of 10% to 15%. 
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When one refers to the historic volatilities, one runs the risk of using outdated data. Among 

others Koekebakker and Ollmar (2001) and Deyna and Hulström (2007) showed that the 

volatility term structure is not only uncertain at any given point of time, but is also 

constantly changing. Nevertheless, the levels estimated earlier by the issuers as well as by 

the researchers, are in my opinion informative. 

Direct Method – Historical Volatility Level and Structure 

In accordance with the methods described in the previous sections, the historical forward 

price volatilities were calculated along the time-to-maturity axis as (a) 60-days rolling 

average (for both expired and currently running contracts) as well as (b) cumulative until 

maturity (for expired contracts only). The resulting graphs are presented in the Appendices G 

and H. The cumulative-until-maturity numbers are presented in the table below: 

Table 8: Historical cumulative volatilities to maturity 

Contract 0,817 yrs 

to maturity 

1,810 yrs 

to maturity 

2,817 yrs 

to maturity30

 60-d roll cumul. 60-d roll cumul. 60-d roll cumul. 

FWYR-02 17,7% 22,1% 11,5% 17,1% n/a 15,8% 

FWYR-03 16,3% 41,5% 15,4% 31,0% n/a 25,7% 

FWYR-04 35,8% 30,6% 13,5% 25,6% n/a 22,3% 

FWYR-05 18,6% 17,5% 20,8% 16,3% n/a 15,7% 

ENOYR-06 17,2% 22,9% 9,8% 17,6% n/a 15,8% 

ENOYR-07 18,0% 33,1% 13,8% 26,8% n/a 22,4% 

ENOYR-08 21,9% 18,2% 12,4% 19,8% n/a 18,4% 

Median  22,1%  19,8%  18,4% 

Direct Method – Implied Volatility Level and Structure 

The standard Black 76 model was used to back out implied volatilities from the quotes for 

options ENOCkkYR-09 and ENOCkkYR-10 per 15.02.2008. The options are nominated in 

EUR and cleared at Nord Pool Clearing, so the EUR risk-free rates for corresponding 

                                                 

30 For contracts that run for a shorter period than 721 trading day, cumulative volatility for the longest period (from start). 
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maturities were taken as input. The assumptions and the results are presented in the table 

below. The implied volatility “smirk” is shown in figure 2 above. 

Table 9: Input and implied volatilities from option market prices 

  ENOYR-09 ENOYR-10 

  ATM(-) ATM(+) ATM(-) ATM(+) 

Forward price EUR/MWh 53,10 52,50 

Opt. fix. date  18.12.08 (0,857 yrs) 17.12.09 (1,849 yrs) 

Risk-free rate EUR, cont. 3,47% 3,21% 

Option strike EUR/MWh 53,00 54,00 52,00 53,00 

Option price EUR/MWh 5,09 4,67 5,97 5,61 

Implied vol.  26,6% 26,6% 21,5% 21,8% 

 

Interestingly, the implied volatility levels are very close to the ones used by Nordea in 

January 2007 for its NKIB-XIII options with 1,0 and 2,0 years to maturity, namely 26,0% 

and 22,5%, respectively. The implied volatility for the NKIB-XIII input was tested, and the 

volatility results were 24,8% and 22,6%, sufficiently close since the date of calculation of 

the Nordea’s volatilities are unknown (probably December 2006). 

Taking into account historical cumulative volatility levels, implied volatilities disclosed in 

Nordea and DnB NOR’s offer documents as well as volatilities implied in option prices on 

the settlement dates, and taking into account an adjustment necessary with regard to the five-

days averaging, as in (3.53), the following volatilities were used σ01 = σt0-t1 = 26,4% for the 

shortest contract, σ02 = σt0-t2 = 21,5% for 2010-contract and σ03 = σt0-t3 = 20,0% for the 

longest one in the base-case analysis. The sub-period volatilities are then σ12 = 16,4% and σ23 

= 17,0%. 

For sensitivity analysis option values are simulated with +/-20% changes to the base-case 

volatility levels, up to 31,7%, 25,8% and 24,0%, respectively. 
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7.2 Estimation of Other Parameters 

Remaining Option Lives 

Remaining option lives are estimated as follows: 

• For closed-form solution: from the settlement date 15.02.2008 until the mid-day of 

the respective calculation periods (08.12.2008, 08.12.2009 and 08.12.2010). 

• For MC simulation: from the settlement date 15.02.2008 until the first day of the 

respective calculation periods (04.12.2008, 04.12.2009 and 06.12.2010). Simulations 

are then made for each of the remaining four days at timestep Δt = 1/252.  

The 52-weeks and 252-trading days conventions were controlled against actual trading days 

from the calendar for the Nord Pool financial market, and used for conversion. Non-trading 

days in 2008, 2009 and 2010 were taken into account. 

Interest Rates 

Interest rates are assumed to be deterministic. There is no need to take into account the 

actual term structure (both NOK and EUR rates were in backwardation in the shorter end). 

The Nordea’s relevant borrowing NOK-nominated continuous rate is set to 5,07%, equal to 

the rate implied in Nordea’s valuation of the Certain element as explained in subsection 2.6. 

Dividend Yield and Cost of Carry 

As argued in section 3, there is no implicit dividend yield to be applied for the NKIB-XV 

options, neither in the Black 76 nor in the simulation procedure. For reference, on 

15.02.2008 the interest rate differential between NOK and EUR on three-years government 

bond was 4,39% – 3,22% = 1,17%, continuously compounded. 

Electricity Forward Market Risk Premium 

In order to perform the expected return analysis, one has to estimate the risk premium built 

into the forward prices. If one looks from the CAPM point of view, the risk premium on 

forwards as an individual asset will be proportional to the market risk premium (probably in 

the order of 4% to 5%) and beta coefficient, measuring the extent of correlation between the 

investor’s reference portfolio and the forwards, Bodie, Kane and Marcus (1996). One could 
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argue that forward prices are driven by long-term equilibrium expectation and short-

term/spot volatility. Both elements in the Scandinavian electricity system are driven by 

demand factors (economic activity, weather, etc.) and supply factors (generation and 

transportation capacity, fuel costs, precipitation and reservoir situation, electricity prices on 

the continent, etc.). In IntStream E2’s market driver analysis for 2009-forward prices in May 

2008, the factors were prioritized based on the last six months’s correlation: coal production 

(+0.62), oil prices (+0,35), precipitation (+0,28), reservoir balance (-0,19), System spot price 

(+0,10) and EEX price (-0,06). Although oil and coal do drive the nearest forward, and one 

would expect that in the longer run the general economic activity will influence the demand 

and therefore the prices, the correlation between the reference world stock market index and 

the forward prices on Nord Pool is probably low. The quantitative analysis of this relation is 

outside the scope of this Thesis. 

Another approach to gauging the risk premium is to analyse which players dominate the 

forward market and what risk preferences they might have. Bernseter (2003) points out that 

if risk-averse power producers dominate the market, they would push down forwards and 

one would observe a positive risk premium. If the demand side is the most risk-averse, the 

relation is reverse. In addition to these two groups with clear preferences, there are traders 

and speculators which behaviour may distort the risk premium balance. Both Bernseter 

(2003) and Ollmar (2004) conclude with a negative risk premium in the shorter run. 

Bernseter finds statistically significant negative risk premium of one- and two-years forward 

contracts. However, Bernseter says that there are indications of a small positive premium in 

the longer end of the market. On the other hand, in the offer documents for their Kraft 

warrants DnB NOR states that they use a risk premium estimate of 2,0%. Bøe (2007) 

adopted this estimate in his calculations. In this analysis the same 2,0% p.a. premium is 

assumed (1,98% continuously). If the risk premium is lower, and even negative for the first 

two of the three contracts, the expected return should be even lower. 

7.3 Valuation by Back 76 model 

Based on the expression (3.45), the Black 76 was built and base-case calculation of the RE 

was performed. The resulting value was NOK 9,82 on NOK 100 face value (no premium). 

The detailed results are presented in the summary table at the end of the section. In order to 
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control for computation error, a calculation based on the “0,4-rule” was made, resulting in 

NOK 9,89. 

Further, a reasonability analysis was performed comparing the calculated option values for 

the two first contracts with the market prices for option on the same contracts. Normalising 

for forward price and adjusting for credit margin and interest rate differential, the market 

values are NOK 9,38 and NOK 10,66. It compares well with the option values from the 

Black 76 calculations (before adjustment for delayed payment) of, respectively, NOK 9,11 

and NOK 10,49. Bøe (2007) valued DnB NOR’s Kraft 2007/09 index bond with options on 

2008, 2009 and 2010 forwards with approx. the same remaining lives as those in the NKIB-

XV. He arrived at approx. NOK 10,5 as his value estimate for the warrant, which is in the 

range of the results in this analysis. 

For comparison, Nordea estimated the value of the RE at between NOK 12,75 and NOK 

16,75, with their base-case estimate at NOK 14,00. 

A sensitivity analysis was performed to see how responsive the valuation results described 

above are to the volatility assumptions, and to see how much the volatilities have to be 

increased in order to arrive at the value range indicated by Nordea. The results are presented 

in the summary table below. Even with a +25% adjustment to volatilities, increasing them 

to, respectively, 33% for 0,8 years, 27% for 1,8 years and 25% for 2,8 years, the RE value 

lies at approx. NOK 12,30. In light of the volatilities Nordea and DnB NOR uses in their 

calculations, ref. Table 7 above, these +25%-volatilities are high. Nevertheless, one does not 

reach the value range of between NOK 12,75 and NOK 16,75 indicated by Nordea. 

Nordea made its estimates from a simulation. Another explanation for the value deviation 

between their RE estimate and the Black 76 results is that the average of Black 76 values 

does not take into account expected positive correlation between the returns on the single 

contracts, correlation coefficients being 0,80 and 0,95 as shown in Table 3. However, the 

MC simulation is modelled in a way that takes it into account, and still the value is lower.  

With the RE base-case value of NOK 9,82 and the CE value equal to NOK 85,86, the total 

base-case value of the index bond is approx. NOK 95,70, compared with NOK 103 in face 

value plus the subscription fee. The Nordea’s implied borrowing cost for three yeas maturity 

is 2,80% p.a. (discrete, without the subscription fee) or 1,69% p.a. (discrete, taking into 

account the subscription fee). 
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7.4 Valuation by Monte Carlo Simulation 

Based on the underlying forward price process as described in the risk-neutral form in 

equation (3.23), Monte Carlo procedure was coded in VBA and run with 1.000.000 

realisations. The simulation is built in accordance with Bjerksund (2008), where the same 

process drives all contracts while they run in parallel, making their correlation coefficients 

effectively equal to one. A sensitivity analysis with the same width (+/-20%) on volatilities 

was built into the calculations. The results are presented in the summary table 10 below. The 

code is shown in Appendix I. No variance reduction solutions or Quasi-MC solutions were 

used. Correlation of returns was not modelled directly into the code by way of the Cholesky 

decomposition, but indirectly, applying the same process for all contracts that run in parallel. 

The resulting expected values, volatilities and correlations of the returns were not computed 

in the code due to the scope constrain of the analysis. 

The base-case value of the Return element came at NOK 10,07, compared with NOK 9,82 

resulting from the Black 76 valuation. The difference is NOK 0,25 or approx. 2,5%. The 

results from the MC simulation support the Black 76-based value conclusion and 

observations offered in the previous subsection. 

The 95%-confidence interval for the procedure with 1.000.000 realisation is +/-NOK 0,014, 

meaning that the estimate is within the range of NOK 10,04 and NOK 10,10. 

It is interesting to note that not only does the MC procedure deliver a result which deviates 

from the closed-form solution, but its sensitivity analysis “spread” the estimates a little wider 

than the Black 76 does. This observation is attributed to the fact that the underlying 

processes of the average return are not completely the same in the two calculations. The MC 

calculation indirectly introduces correlations, as described in Bjerksund (2008). 

7.5 Expected Return Analysis 

An MC simulation with the same assumptions as above, but with a risk premium of 1,98% 

incorporated now into the drift term, was performed to arrive at the expected return for the 

whole investment. 
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The expected annual return (discrete basis) is estimated at 3,55% p.a. without consideration 

for the subscription fee, and 2,52% p.a. taking into account the fee. Nordea does not inform 

about their estimate of the expected return. 

The risk characteristics are as follows: probability of no positive return31 is 34,4% (44,2% 

with the fee), probability of return above the risk-free threshold of 4,5% is 31,4% (26,4%), 

probability of making attractive returns above 6% p.a. is 24,4% (20,4%). The distribution is 

presented in the figure below. 

Figure 4: Expected returns on the NKIB-XV 
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The result above compares well with the general level of expected return for the structured 

products in Norway, as presented in the recent report from Kredittilsynet (2008). 

Although one cannot directly compare total return on the whole investment of NOK 100 and 

the investment of the difference between the face value and the CE (NOK 14,4), it is 

informative to look at the expected return estimate that was made by DnB NOR for their 

Warrant Kraft 2007/2010 which was issued in October 2007 on the same three underlying 

forward contracts, with somewhat longer option lives, at NOK 15,50 premium. DnB NOR 

                                                 

31 The maximum loss on the investment can be -0,7% p.a. (or -1,6% p.a. with the fee), due to the Guaranteed Amount. 
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discloses that the average return is simulated at 1,56% p.a., although the bank adds “…that 

the calculations are done on purely theoretical basis, and that in reality the market 

movements often do not follow the theory. DnB NOR Markets believes in a much better 

market development than the theoretical expected return indicates…32”. 

7.6 Putting It All Together 

In this subsection results of the calculations described above are presented in a tabular form: 

Table 10: Bond valuation – summary of results 

 Vol1 Vol2 Vol3 Return element Total  value Comm. fee33

    Black76 MC Black76 MC Black76 MC 

High 33,0% 26,7% 25,0% 11,31 12,58 97,17 98,44 2,83 1,56 

 30,4% 24,7% 23,0% 10,72 11,56 96,57 97,42 3,43 2,58 

 29,0% 23,7% 22,0% 10,42 11,11 96,28 96,97 3,72 3,03 

 27,7% 22,6% 21,0% 10,12 10,58 95,98 96,44 4,02 3,56 

Base 26,4% 21,5% 20,0% 9,82 10,08 95,68 95,93 4,32 4,07 

 25,1% 20,4% 19,0% 9,53 9,56 95,38 95,42 4,62 4,58 

 23,8% 19,4% 18,0% 9,23 9,10 85,08 94,95 4,92 5,05 

 22,4% 18,3% 17,0% 8,93 8,58 94,78 94,43 5,22 5,57 

Low 21,1% 17,2% 16,0% 8,63 8,10 94,48 93,95 5,52 6,05 

DnB 24,6% 23,8% 22,8% 10,52  96,37  3,63  

 

                                                 

32 My translation. 

33 The Subscription fee is not included. 
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Table 11: Expected return analysis – summary of results 

 Ex. subscr.fee Incl. subscr.fee 

Expected return 3,55% p.a. 2,54% p.a. 

Return below 0% p = 33,4% p = 44,2% 

Return 0% to 3% p = 25,6% p = 21,9% 

Return 3% to 6% p = 15,7% p = 13,5% 

Return 6% to 9% p = 10,0% p = 8,6% 

Return 9% to 12% p = 6,3% p = 5,3% 

Return 12% to 15% p = 3,8% p = 3,1% 

Return 15% to 18% p = 2,2% p = 1,7% 

Return above 18% p = 2,1% p = 1,6% 

All return p = 100% p = 100% 

Return over rf = 4,5% p = 31,4% p = 26,4% 
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8. Conclusions and Final Comments 

8.1 Conclusion of the Value of and Expected Return 

The normative or quantitative objective set forth in this thesis was, based on one of the 

issues of Nordea Kraftobligasjon Index Bond, to perform component analysis of the product, 

estimate value of the components including uncertainty level, and finally assess the return an 

investor can expect to receive from the bond. Nordea Kraftobligasjon XV was chosen for 

analysis. 

The component analysis indicates that at the settlement date the index bond consists of: 

• Certain element (the present value of the Guaranteed Amount). 

• Return element (the average value of three European call options on electricity 

forward contracts expiring in 0,8 years, 1,8 years and 2,8 years, respectively, 

multiplied by the Return or Participation Factor of 1,0, with the pay-outs delayed 

until the maturity of the bond in 3,0 years). 

• Total of Premium (none for Kraftobligasjon XV), Subscription fee and Commission 

fee (also sometime called “hidden fee”). 

Based on two calculation methods, the Black 76 closed-form solution and the Monte Carlo 

simulation, and given volatility levels equal to implied volatility, one can conclude that the 

value of the Return element lies in a range of NOK 9,00 to NOK 12,00 on a face value of 

NOK 100. This is significantly lower than the range NOK 12,75 to NOK 16,75 indicated by 

the issuer in the offer document. 

The implicit borrowing rate is 2,8% p.a. or 1,7% p.a., depending on whether or not one takes 

into account the subscription fee. 

The critical uncertainties in the calculation are (a) the nature and parameters of the 

underlying forward price process, (b) treatment of the correlation between returns on the 

underlying contracts, and (c) the volatility term structure and level. Sensitivity analysis 

resulting in the value range mentioned above was done on the volatility levels. Price 
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processes other than the assumed GBM, e.g. mean-reverting forward prices with spikes, may 

lead to higher option values. 

The analysis indicates that the return profile on the product is not attractive: the expected 

return at approx. 3,6% p.a. (2,5% p.a. if the subscription fee is taken into account). While 

there is only approx. 25% chance to receive abnormally high return (over 6% p.a.), the 

probability of return under 3% p.a. is 60%. There is only approx. one in three chance 

(31,4%) that the product’s return will surpass the risk-free rate of 4,5% p.a. (three-year 

government bond yield).  

In its offer document, the issuer does not provide certain critical information such as its 

borrowing rate, implied market volatilities, expected return range and, where possible, 

market prices for similar options. Market prices for two of the three options were in fact 

available, while the third could probably be quoted on the OTC market. 

It is imprudent to generalise based only on the valuation of a single issue of only one 

structured product. However, the valuation and expected analysis conclusions in this thesis 

fit the broader trend documented in, inter alia, Koekebakker and Zakamouline (2007), Bøe 

(2007) and Kredittilsynet (2008). 

8.2 Methodological and Practical Challenges for a Non-
professional Investor 

The descriptive or qualitative objective of this thesis was, based on the example of 

calculations above, to identify methodological and practical challenges that a non-

professional, retail investor may meet attempting to make a prudent and independent 

investment decision. 

 Views on what constitutes a prudent investment process and how independent it should be 

will vary from investor to investor. As this thesis does not purport to normatively answer this 

question, the list of challenges below is by nature subjective. 

• A non-professional investor may find it difficult to identify and separate the 

components of a structured product. Although the structure of the Nordea 

Kraftobligasjon seems clear upon a closer review, understanding it requires use of 

such financial concepts as value additivity, present value, options and volatility, 
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guaranteed and expected return, etc. The fee structure with thee elements 

(subscription fee, commission fee and premium) seems unnecessary complicated. 

One could also question why the bond element and the option element should be 

bundled together if the purpose was to offer investors exposure to the power prices. 

The financing rationale of an index bond is even less clear if one takes into account 

that the issuer offers debt financing of its own bond. 

• Several structural elements of the Option part of the bond complicate the investment 

assessment further. The effects of such features as averaging of return on several 

underlying indices/contracts, averaging of close and sometimes start values over 

several days, quoting of indices/contracts in foreign currency and the currency 

treatment in pay-out calculation are all almost impossible for a non-professional 

investor to quantify. Simpler and more clear structures, with comparable derivatives 

traded on the market would be much easier for an investor to price. Even the 

currency issue with electricity forwards could probably be separated as a swap 

product. 

• The consequences of choice of underlying indices on shares paying dividends or on 

commodities offering convenience yield may be difficult for a retail investor to 

understand. Even more so could be to understand the fundamental differences in 

expected growth in forward prices and the underlying spot prices. At least in theory, 

forward prices are expected future spot prices adjusted for risk. A negative risk 

premium on forwards can be particularly challenging for an investor to relate to. 

• Any investor who invests in options will have to relate to the notion of volatility. The 

volatility is notoriously difficult to measure and forecast, particularly in the 

electricity markets. Access to market-derived measures of relevant volatility would 

help a retail investor. Without volatility estimates for all underlying for all maturities, 

one cannot independently price the return element of a index bond.  

• All arguments above are relevant for all underlying assets. However, as soon as the 

underlying are commodity and especially electricity contracts, the degree of 

complexity increases. If an investor had difficulties pricing options on stock indices, 

he would have real problems valuing options on electricity derivatives. Forward 
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contracts are “nicer” in this respect, but this is still probably the most advanced area 

of quantitative finance. 

• One key parameter, namely the Return factor, is unknown at the time of the 

investment decision. Any change in this parameter may alter the expected return 

characteristics materially. It is uncertain why the investor should bear the issuer’s 

hedging risks. 

• Practical challenges such as spreadsheet modelling of derivative can also hamper the 

process. 

Many of the concerns above can be alleviated if the issuer is to provide valuation, expected 

return, uncertainty and any other relevant supporting information (such as volatilities and 

option market quotes) together with the offer. A discussion between the issuer and the non-

professional investor about the topics mentioned above would also insure that the investor 

understands and agrees to the terms and implications. Recent regulatory development from 

Kredittilsynet34 appears to address the issues above. 

8.3 Suggested Further Work 

In this thesis the quantitative objective is met from a retail investor point of view, meaning 

that the conceptually simplest and least modelling- and estimation-demanding solutions are 

chosen. In addition, only publically available sources of information were used. Thus some 

interesting and promising angles and routes have remained unexplored. Suggestions for 

further work related to the topics discussed in this thesis are presented below: 

• The product structure and internal value estimates have not been discussed with 

Nordea. Such discussion could shed a new light. 

• It will be interesting to discuss the estimation procedures and models for implied 

forward volatility with professional players in the power derivative market. Anyhow, 

the OTC quotes for relevant options would simplify the valuation procedure 

significantly. 

                                                 

34 Directive 4/2008 of 12.02.2008 from The Financial Supervisory Authority of Norway (Kredittilsynet). 
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• It could be interesting to pursue further closed-form solutions for processes with 

mean reversion, spikes and stochastic volatility. 

• The correlation between the three underlying forward contracts was not explored in 

depth. One could model the estimated correlations explicitly into the Monte Carlo 

simulation, e.g. by way of the Cholesky decomposition. 

• Following Bjerksund, it could be interesting to calculate volatilities of each process, 

correlations and resulting volatility of the average return directly as a part of Monte 

Carlo simulation. Thereafter one could compare them to the analytical 

approximation. 

• One could complete the analysis presented in this thesis with expected return 

calculations which take into account debt financing. 
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Appendix A: 
Information Provided for NKIB-II to NKIB-XV 
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Appendix B: 
Historical Spot and Forward Prices, by Date 
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Appendix C: Weekly Returns on Forwards, by Date 
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 Appendix D: Shapiro-Wilk Normality Test 
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Appendix E: VBA Function Code Useful in MC 
Simulation 

VBA Code for the Cholesky Decomposition35

Public Function Cholesky(Mat As Range) 
’Function returns a square matrix L which is Cholsky decomposition of input 
’matrix. Input matrix must be square, symmetric, positive definite. 
 

Dim A, L() As Double, s As Double 
Dim n As Integer, M As Integer, i As Integer, j As Integer, k As Integer 
A = Mat 
n = Mat.Rows.Count 
M = Mat.Columns.Count 
If n <> M Then 

Cholesky = "?" 
Exit Function 

End If 
 

ReDim L(1 To n, 1 To n) 
For j = 1 To n 

s = 0 
For k = 1 To j - 1 

s = s + L(j, k) ^ 2 
Next k 
L(j, j) = A(j, j) - s 
If L(j, j) <= 0 Then Exit For 
L(j, j) = Sqr(L(j, j)) 

 
For i = j + 1 To n 

s = 0 
For k = 1 To j - 1 

s = s + L(i, k) * L(j, k) 
Next k 
L(i, j) = (A(i, j) - s) / L(j, j) 

Next i 
Next j 
Cholesky = L 

End Function 
 

                                                 

35 The code is provided by Anton Theunissen at http://www.sfu.ca/~rjones/bus864/notes/BUS_864_Computing_Notes.pdf . 

http://www.sfu.ca/%7Erjones/bus864/notes/BUS_864_Computing_Notes.pdf
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VBA Code for Moros Transformation36

Option Explicit 
Option Base 1 
'   Option Explicit means that all variables MUST BE declared 
'   Option Base 1 means that arrays start with 1 instead the default 0 
'   Option Base 1 is necessary for Moro_NormSInv function and others 
 
Function Moro_NormSInv(u As Double) As Double 
'Calculates the Normal Standard numbers given u, the associated uniform number (0, 1) 
'VBA version of the Moro's (1995) code in C 
‘Option Base 1 is necessary to be declared before this function for vector elements 
positioning to work 
 

Dim c1, c2, c3, c4, c5, c6, c7, c8, c9 
Dim X As Double 
Dim r As Double 
Dim a As Variant 
Dim b As Variant 
a = Array(2.50662823884, -18.61500062529, 41.39119773534, -25.44106049637) 
b = Array(-8.4735109309, 23.08336743743, -21.06224101826, 3.13082909833) 
c1 = 0.337475482272615 
c2 = 0.976169019091719 
c3 = 0.160797971491821 
c4 = 2.76438810333863E-02 
c5 = 3.8405729373609E-03 
c6 = 3.951896511919E-04 
c7 = 3.21767881768E-05 
c8 = 2.888167364E-07 
c9 = 3.960315187E-07 
X = u - 0.5 

 
If Abs(X) < 0.42 Then 

r = X ^ 2 
r = X * (((a(4) * r + a(3)) * r + a(2)) * r + a(1)) / ((((b(4) * r + b(3)) * r + 
b(2)) * r + b(1)) * r + 1) 

Else 
If X > 0 Then r = Log(-Log(1 - u)) 
If X <= 0 Then r = Log(-Log(u)) 
r = c1 + r * (c2 + r * (c3 + r * (c4 + r * (c5 + r * (c6 + r * (c7 + r * (c8 + 
r * c9))))))) 
If X <= 0 Then r = -r 

End If 
Moro_NormSInv = r 

End Function 

                                                 

36 The code is provided by Bøe (2007), published by Jackson and Staunton (2001). The same code published by Marco 
A.G. Dias at http://www.puc-rio.br/marco.ind/spreads_list.html (QMC_Black_Scholes.xls).  

http://www.puc-rio.br/marco.ind/spreads_list.html
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VBA Code for Halton Sequence37

Function HaltonBaseb(b As Long, N As Long) As Double 
'Returns the equivalent first Halton sequence number 
 

Dim h As Double, ib As Double 
Dim i As Long, n1 As Long, n2 As Long 
n1 = N 
h = 0 
ib = 1 / b 
Do While n1 > 0 

n2 = Int(n1 / b) 
i = n1 - n2 * b 
h = h + ib * i 
ib = ib / b 
n1 = n2 

Loop 
HaltonBaseb = h 

End Function 
 

 

                                                 

37 The code is provided by Marco A.G. Dias at http://www.puc-rio.br/marco.ind/quasi_mc.html . 

http://www.puc-rio.br/marco.ind/quasi_mc.html
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Appendix F: Rolling Volatility, by Date 
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Appendix G: Rolling Volatility, by Days to Maturity 
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Appendix H: Cumulative Volatility, by Days to 
Maturity 
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Appendix I: VBA Code for Simulation-based 
Analysis 

Option Explicit 
Option Base 1 
'   Option Explicit means that all variables MUST BE declared 
'   Option Base 1 means that arrays start with 1 instead the defaul 0 
'   Option Base 1 is necessary for Moro_NormSInv function and others 
 
Public Vol_01 As Double, Vol_02 As Double, Vol_03 As Double 
Public RiskPrem As Double 
Public Cavg As Double 
Public SD As Double 
Public FV As Double 
Public TotInvexSF As Double, TotInvincSF As Double 
Public GA As Double 
Public RetThres As Double 
Public Bound1 As Double, Bound2 As Double, Bound3 As Double, Bound4 As Double, 
Bound5 As Double, Bound6 As Double, Bound7 As Double 
Public Retavg As Double, Retoveravg As Double 
Public RetSFavg As Double, RetSFoveravg As Double 
Public Retrange1avg As Double, Retrange2avg As Double, Retrange3avg As Double, 
Retrange4avg As Double, Retrange5avg As Double, Retrange6avg As Double, Retrange7avg 
As Double, Retrange8avg As Double 
Public RetSFrange1avg As Double, RetSFrange2avg As Double, RetSFrange3avg As 
Double, RetSFrange4avg As Double, RetSFrange5avg As Double, RetSFrange6avg As 
Double, RetSFrange7avg As Double, RetSFrange8avg As Double 
 
 
Sub MCSimulator() 
On Error GoTo ErrorTrap 
 
' External arguments 
Dim Sens As String 
Dim RetAn As String 
Dim CalcTime As Date 
Dim FirstRow As Long 
Dim Rows As Long 
Dim FirstRowRet As Long 
Dim RowsRet As Long 
Dim Premium As Double, SF As Double 
Dim GF As Double 
 
'Internal variables 
Dim CalcStartTime As Date, CalcStopTime As Date 
Dim k As Long 
 
CalcStartTime = Now() 
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Worksheets("Calculations").Activate 
Application.StatusBar = "Calculating......... Please wait" 
 
'Passing input arguments 
FV = Range("FV") 
Premium = Range("Premium") 
SF = Range("SF") 
GF = Range("GF") 
RetThres = Range("RetThres") 
Bound1 = Range("Bound1") 
Bound2 = Range("Bound2") 
Bound3 = Range("Bound3") 
Bound4 = Range("Bound4") 
Bound5 = Range("Bound5") 
Bound6 = Range("Bound6") 
Bound7 = Range("Bound7") 
 
'Global preparatory calculations 
TotInvexSF = FV + FV * Premium 
TotInvincSF = TotInvexSF + FV * SF 
GA = FV * GF 
 
'Runing base-case simulation 
RiskPrem = 0 
Vol_01 = Range("Vol_01") 
Vol_02 = Range("Vol_02") 
Vol_03 = Range("Vol_03") 
 
    MonteCarloSimulation 
     
'Transfering base-case output arguments 
Range("Cavg").FormulaR1C1 = Cavg 
Range("SD").FormulaR1C1 = SD 
 
'Sensitivity analysis -> 
Sens = Range("Sens") 
Select Case Sens 
    Case "No" 
        GoTo ReturnAnalysis 
     
    Case "Yes" 
'Running sensitivities 
        RiskPrem = 0 
        FirstRow = Range("FirstRow") 
        Rows = Range("Rows") 
        For k = 1 To Rows 
            Vol_01 = Cells(FirstRow - 1 + k, 3).Value 
            Vol_02 = Cells(FirstRow - 1 + k, 4).Value 
            Vol_03 = Cells(FirstRow - 1 + k, 5).Value 
         



 96

                MonteCarloSimulation 
 
'Transfering sensitivities output arguments 
            Cells(FirstRow - 1 + k, 7).Value = Cavg 
            Cells(FirstRow - 1 + k, 14).Value = SD 
        Next k 
        Range("SensUpdateTime").FormulaR1C1 = Now() 
     
    Case Else 
        GoTo ErrorTrap 
End Select 
 
' Return analysis -> 
ReturnAnalysis: 
RetAn = Range("RetAn") 
Select Case RetAn 
    Case "No" 
        GoTo Final 
     
    Case "Yes" 
'Running return analysis 
        RiskPrem = Range("RiskPrem") 
        FirstRowRet = Range("FirstRowRet") 
        RowsRet = Range("RowsRet") 
        Vol_01 = Range("Vol_01") 
        Vol_02 = Range("Vol_02") 
        Vol_03 = Range("Vol_03") 
         
            MonteCarloSimulation 
 
'Transfering return analysis output arguments 
        Cells(FirstRowRet + 0, 7).Value = Retrange1avg 
        Cells(FirstRowRet + 1, 7).Value = Retrange2avg 
        Cells(FirstRowRet + 2, 7).Value = Retrange3avg 
        Cells(FirstRowRet + 3, 7).Value = Retrange4avg 
        Cells(FirstRowRet + 4, 7).Value = Retrange5avg 
        Cells(FirstRowRet + 5, 7).Value = Retrange6avg 
        Cells(FirstRowRet + 6, 7).Value = Retrange7avg 
        Cells(FirstRowRet + 7, 7).Value = Retrange8avg 
         
        Cells(FirstRowRet + 0, 8).Value = RetSFrange1avg 
        Cells(FirstRowRet + 1, 8).Value = RetSFrange2avg 
        Cells(FirstRowRet + 2, 8).Value = RetSFrange3avg 
        Cells(FirstRowRet + 3, 8).Value = RetSFrange4avg 
        Cells(FirstRowRet + 4, 8).Value = RetSFrange5avg 
        Cells(FirstRowRet + 5, 8).Value = RetSFrange6avg 
        Cells(FirstRowRet + 6, 8).Value = RetSFrange7avg 
        Cells(FirstRowRet + 7, 8).Value = RetSFrange8avg 
         
        Range("Retavg").FormulaR1C1 = Retavg 
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        Range("RetSFavg").FormulaR1C1 = RetSFavg 
         
        Range("Retoveravg").FormulaR1C1 = Retoveravg 
        Range("RetSFoveravg").FormulaR1C1 = RetSFoveravg 
 
        Range("RetAnUpdateTime").FormulaR1C1 = Now() 
 
    Case Else 
        GoTo ErrorTrap 
End Select 
 
Final: 
CalcStopTime = Now() 
CalcTime = CalcStopTime - CalcStartTime 
Range("CalcTime").FormulaR1C1 = CalcTime 
Range("UpdateTime").FormulaR1C1 = CalcStopTime 
 
Application.StatusBar = False 
MsgBox "The simulation has been successful!" 
 
Exit Sub 
 
ErrorTrap: 
    MsgBox "An error has accurred in the wrap! Please check the code." 
 
End Sub 
 
 
Sub MonteCarloSimulation() 
' Calculates ... 
On Error GoTo ErrorTrap 
 
' External arguments 
 
Dim RF As Double 
Dim w_1 As Double, w_2 As Double, w_3 As Double 
Dim t_1b As Double, t_2b As Double, t_3b As Double, T As Double 
Dim Tail_1 As Integer, Tail_2 As Integer, Tail_3 As Integer 
Dim Tailstep As Double 
Dim rT As Double 
Dim CoC_1 As Double, CoC_2 As Double, CoC_3 As Double 
Dim N As Double 
 
'Internal variables 
Dim Vol_12 As Double, Vol_23 As Double 
Dim t_1b2b As Double, t_2b3b As Double 
Dim i As Long, j As Long 
Dim F1t1 As Double, F2t1 As Double, F3t1 As Double, F2t2 As Double, F3t2 As Double, 
F3t3 As Double 
Dim F1 As Double, F2 As Double, F3 As Double 
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Dim Sum1 As Double, Sum2 As Double, Sum3 As Double 
Dim F1t1avg As Double, F2t2avg As Double, F3t3avg As Double 
Dim UN As Double, N01 As Double 
Dim R1 As Double, R2 As Double, R3, Ravg As Double 
Dim R1opt As Double, R2opt As Double, R3opt As Double, Ravgopt As Double 
Dim c As Double, Csum As Double 
Dim Sqdiv As Double, Sqdivsum As Double 
Dim Ret As Double, Retsum As Double 
Dim RetSF As Double, RetSFsum As Double 
Dim Retoversum As Double 
Dim RetSFoversum As Double 
Dim Retrange1sum As Double, Retrange2sum As Double, Retrange3sum As Double, 
Retrange4sum As Double, Retrange5sum As Double, Retrange6sum As Double, 
Retrange7sum As Double, Retrange8sum As Double 
Dim RetSFrange1sum As Double, RetSFrange2sum As Double, RetSFrange3sum As Double, 
RetSFrange4sum As Double, RetSFrange5sum As Double, RetSFrange6sum As Double, 
RetSFrange7sum As Double, RetSFrange8sum As Double 
Dim AA As Double, TAR As Double 
 
 
'Passing input arguments 
RF = Range("RF") 
w_1 = Range("w_1") 
w_2 = Range("w_2") 
w_3 = Range("w_3") 
t_1b = Range("t_1b") 
t_2b = Range("t_2b") 
t_3b = Range("t_3b") 
T = Range("T") 
Tail_1 = Range("Tail_1") 
Tail_2 = Range("Tail_2") 
Tail_3 = Range("Tail_3") 
Tailstep = Range("Tailstep") 
rT = Range("r_T") 
CoC_1 = Range("CoC_1") 
CoC_2 = Range("CoC_2") 
CoC_3 = Range("CoC_3") 
N = Range("N") 
Cavg = Range("Cavg") 
 
'Local preparatory calculations 
Vol_12 = Sqr((Vol_02 ^ 2 * t_2b - Vol_01 ^ 2 * t_1b) / (t_2b - t_1b)) 
Vol_23 = Sqr((Vol_03 ^ 2 * t_3b - Vol_02 ^ 2 * t_2b) / (t_3b - t_2b)) 
t_1b2b = t_2b - t_1b 
t_2b3b = t_3b - t_2b 
Csum = 0 
Sqdivsum = 0 
Retsum = 0 
RetSFsum = 0 
Retoversum = 0 
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RetSFoversum = 0 
Retrange1sum = 0 
Retrange2sum = 0 
Retrange3sum = 0 
Retrange4sum = 0 
Retrange5sum = 0 
Retrange6sum = 0 
Retrange7sum = 0 
Retrange8sum = 0 
RetSFrange1sum = 0 
RetSFrange2sum = 0 
RetSFrange3sum = 0 
RetSFrange4sum = 0 
RetSFrange5sum = 0 
RetSFrange6sum = 0 
RetSFrange7sum = 0 
RetSFrange8sum = 0 
 
For i = 1 To N 
'Preparatory calculations for each realisation 
    F1t1 = 0 
    F2t1 = 0 
    F3t1 = 0 
    F2t2 = 0 
    F3t2 = 0 
    F3t3 = 0 
    F1 = 0 
    F2 = 0 
    F3 = 0 
    Sum1 = 0 
    Sum2 = 0 
    Sum3 = 0 
    F1t1avg = 0 
    F2t2avg = 0 
    F3t3avg = 0 
 
'Calculations at t_1 
    UN = Rnd 
    N01 = Moro_NormSInv(UN) 
    F1t1 = FV * Exp((CoC_1 + RiskPrem - 0.5 * Vol_01 ^ 2) * t_1b + Vol_01 * Sqr(t_1b) * 
N01) 
    Sum1 = F1t1 
    F2t1 = FV * Exp((CoC_2 + RiskPrem - 0.5 * Vol_12 ^ 2) * t_1b + Vol_12 * Sqr(t_1b) * 
N01) 
    F3t1 = FV * Exp((CoC_3 + RiskPrem - 0.5 * Vol_23 ^ 2) * t_1b + Vol_23 * Sqr(t_1b) * 
N01) 
 
    For j = 1 To Tail_1 - 1 
            UN = Rnd 
            N01 = Moro_NormSInv(UN) 
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            F1 = F1t1 * Exp((CoC_1 + RiskPrem - 0.5 * Vol_01 ^ 2) * Tailstep + Vol_01 * 
Sqr(Tailstep) * N01) 
            Sum1 = Sum1 + F1 
    Next j 
    F1t1avg = Sum1 / Tail_1 
 
'Calculations at t_2 
    UN = Rnd 
    N01 = Moro_NormSInv(UN) 
    F2t2 = F2t1 * Exp((CoC_2 + RiskPrem - 0.5 * Vol_01 ^ 2) * t_1b2b + Vol_01 * 
Sqr(t_1b2b) * N01) 
    Sum2 = F2t2 
    F3t2 = F3t1 * Exp((CoC_3 + RiskPrem - 0.5 * Vol_12 ^ 2) * t_1b2b + Vol_12 * 
Sqr(t_1b2b) * N01) 
 
    For j = 1 To Tail_2 - 1 
            UN = Rnd 
            N01 = Moro_NormSInv(UN) 
            F2 = F2t2 * Exp((CoC_2 + RiskPrem - 0.5 * Vol_01 ^ 2) * Tailstep + Vol_01 * 
Sqr(Tailstep) * N01) 
            Sum2 = Sum2 + F2 
    Next j 
    F2t2avg = Sum2 / Tail_2 
 
'Calculations at t_3 
    UN = Rnd 
    N01 = Moro_NormSInv(UN) 
    F3t3 = F3t2 * Exp((CoC_3 + RiskPrem - 0.5 * Vol_01 ^ 2) * t_2b3b + Vol_01 * 
Sqr(t_2b3b) * N01) 
    Sum3 = F3t3 
 
    For j = 1 To Tail_3 - 1 
            UN = Rnd 
            N01 = Moro_NormSInv(UN) 
            F3 = F3t3 * Exp((CoC_3 + RiskPrem - 0.5 * Vol_01 ^ 2) * Tailstep + Vol_01 * 
Sqr(Tailstep) * N01) 
            Sum3 = Sum3 + F3 
    Next j 
    F3t3avg = Sum3 / Tail_3 
 
'Calculations of returns and Additional Amounts 
    R1 = F1t1avg / FV - 1 
    R2 = F2t2avg / FV - 1 
    R3 = F3t3avg / FV - 1 
    Ravg = R1 * w_1 + R2 * w_2 + R3 * w_3 
    If R1 > 0 Then R1opt = R1 Else R1opt = 0 
    If R2 > 0 Then R2opt = R2 Else R2opt = 0 
    If R3 > 0 Then R3opt = R3 Else R3opt = 0 
    Ravgopt = R1opt * w_1 + R2opt * w_2 + R3opt * w_3 
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    c = FV * Exp(-rT * T) * Ravgopt * RF 
    Csum = Csum + c 
    Sqdiv = (c - Cavg) ^ 2 
    Sqdivsum = Sqdivsum + Sqdiv 
     
    AA = FV * Ravgopt * RF 
    TAR = GA + AA 
    Ret = Log(TAR / TotInvexSF) / T 
    Ret = Exp(Ret) - 1 
    RetSF = Log(TAR / TotInvincSF) / T 
    RetSF = Exp(RetSF) - 1 
     
    Retsum = Retsum + Ret 
    RetSFsum = RetSFsum + RetSF 
     
    If Ret > RetThres Then 
        Retoversum = Retoversum + 1 
        Else 
    End If 
 
    If RetSF > RetThres Then 
        RetSFoversum = RetSFoversum + 1 
        Else 
    End If 
 
    Select Case Ret 
        Case -1000000 To Bound1 
            Retrange1sum = Retrange1sum + 1 
        Case Bound1 To Bound2 
            Retrange2sum = Retrange2sum + 1 
        Case Bound2 To Bound3 
            Retrange3sum = Retrange3sum + 1 
        Case Bound3 To Bound4 
            Retrange4sum = Retrange4sum + 1 
        Case Bound4 To Bound5 
            Retrange5sum = Retrange5sum + 1 
        Case Bound5 To Bound6 
            Retrange6sum = Retrange6sum + 1 
        Case Bound6 To Bound7 
            Retrange7sum = Retrange7sum + 1 
        Case Else 
            Retrange8sum = Retrange8sum + 1 
    End Select 
 
    Select Case RetSF 
        Case -1000000 To Bound1 
            RetSFrange1sum = RetSFrange1sum + 1 
        Case Bound1 To Bound2 
            RetSFrange2sum = RetSFrange2sum + 1 
        Case Bound2 To Bound3 
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            RetSFrange3sum = RetSFrange3sum + 1 
        Case Bound3 To Bound4 
            RetSFrange4sum = RetSFrange4sum + 1 
        Case Bound4 To Bound5 
            RetSFrange5sum = RetSFrange5sum + 1 
        Case Bound5 To Bound6 
            RetSFrange6sum = RetSFrange6sum + 1 
        Case Bound6 To Bound7 
            RetSFrange7sum = RetSFrange7sum + 1 
        Case Else 
            RetSFrange8sum = RetSFrange8sum + 1 
    End Select 
 
Next i 
 
Cavg = Csum / N 
SD = Sqr(Sqdivsum / (N - 1)) 
 
Retavg = Retsum / N 
RetSFavg = RetSFsum / N 
Retoveravg = Retoversum / N 
RetSFoveravg = RetSFoversum / N 
 
Retrange1avg = Retrange1sum / N 
Retrange2avg = Retrange2sum / N 
Retrange3avg = Retrange3sum / N 
Retrange4avg = Retrange4sum / N 
Retrange5avg = Retrange5sum / N 
Retrange6avg = Retrange6sum / N 
Retrange7avg = Retrange7sum / N 
Retrange8avg = Retrange8sum / N 
 
RetSFrange1avg = RetSFrange1sum / N 
RetSFrange2avg = RetSFrange2sum / N 
RetSFrange3avg = RetSFrange3sum / N 
RetSFrange4avg = RetSFrange4sum / N 
RetSFrange5avg = RetSFrange5sum / N 
RetSFrange6avg = RetSFrange6sum / N 
RetSFrange7avg = RetSFrange7sum / N 
RetSFrange8avg = RetSFrange8sum / N 
 
Exit Sub 
 
ErrorTrap: 
    MsgBox "An error has accurred in the core! Please check the code." 
 
End Sub 
 
 
Function Moro_NormSInv(u As Double) As Double 
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'   Calculates the Normal Standard numbers given u, the associated uniform number (0, 1) 
'   VBA version of the Moro's (1995) code in C 
'   Option Base 1 is necessary to be declared before this function for vector elements 
positioning to work 
    Dim c1, c2, c3, c4, c5, c6, c7, c8, c9 
    Dim X As Double 
    Dim r As Double 
    Dim a As Variant 
    Dim b As Variant 
    a = Array(2.50662823884, -18.61500062529, 41.39119773534, -25.44106049637) 
    b = Array(-8.4735109309, 23.08336743743, -21.06224101826, 3.13082909833) 
    c1 = 0.337475482272615 
    c2 = 0.976169019091719 
    c3 = 0.160797971491821 
    c4 = 2.76438810333863E-02 
    c5 = 3.8405729373609E-03 
    c6 = 3.951896511919E-04 
    c7 = 3.21767881768E-05 
    c8 = 2.888167364E-07 
    c9 = 3.960315187E-07 
    X = u - 0.5 
    If u = 0 Then 
        u = 0.000000000001 
    Else 
    End If 
     
    If Abs(X) < 0.42 Then 
        r = X ^ 2 
        r = X * (((a(4) * r + a(3)) * r + a(2)) * r + a(1)) / ((((b(4) * r + b(3)) * r + b(2)) * r + 
b(1)) * r + 1) 
    Else 
        If X > 0 Then r = Log(-Log(1 - u)) 
        If X <= 0 Then r = Log(-Log(u)) 
        r = c1 + r * (c2 + r * (c3 + r * (c4 + r * (c5 + r * (c6 + r * (c7 + r * (c8 + r * c9))))))) 
        If X <= 0 Then r = -r 
    End If 
    Moro_NormSInv = r 
End Function 
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