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1. Introduction

Venture capital funds often invest in a portfolio of young firms engaged in similar projects,

and subsequently VC funds grant further financing to only a very few of them deemed to have

the highest potential. In internal capital markets, divisions submit competing budget requests to

headquarters, who then engage in picking winners. Firms often organize innovation contests, where

independent teams of engineers and scientists submit their solutions to technical problems. Then

the firm chooses the best solution and the winning team receives a prize. All these situations are

examples where the investor has to provide incentives for innovators to work hard and to relay

their knowledge truthfully. In this paper we study how competition between innovators changes

the compensation offered to them and the timing of investments. Our main results show that due to

competition, innovators’ compensation becomes less sensitive to the revenues and that investments

occur earlier.

The scenario we have in mind is where innovators – entrepreneurial firms, corporate divisions,

teams of engineers and scientists – have to exert costly effort in order to come up with an investment

proposal. While working on the project, innovators also learn privately how expensive it is to invest.

The investor – a VC fund, corporate headquarters, R&D management – offers contracts that solve

these moral hazard and adverse selection problems.

We employ a real options framework where investments are irreversible and the investor has

to decide when to invest. An innovator has an incentive to inflate the costs if he thinks he will

be awarded the contract: by declaring a high cost for the project the innovator can capture a

difference between the declared and the true cost for himself. The investor can use two tools to

solve this problem: provide higher compensation if the declared investment cost is low and delay

the investment if the declared cost is high. By delaying the expensive investment the investor lowers

the present value of the innovator’s compensation, thus reducing the innovator’s incentive to lie

about the true cost of investing.

We formulate a principal-multiple agents model, in which the principal – the investor – can

choose the number of agents – innovators – she can offer the contract to. The single agent case

has been previously analyzed by Grenadier and Wang (2005). We add a feature from auction

theory where agents compete to obtain an incentive contract, as described in Klemperer (1999)

and Laffont and Tirole (1987). A key insight in our model is that when innovators have to compete
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for a contract, their incentive to inflate costs is diminished. Each innovator would like to declare

that the investment is expensive even if it is not the case and thus capture extra compensation

for himself. This incentive to inflate the cost of investment is reduced by the presence of many

innovators competing for the contract: by falsely declaring a high cost, an innovator would end up

losing the contract to another agent that truthfully revealed his low cost.

Competition for contracts and the resulting erosion of informational rents has two implications:

Firstly, the investment would not be delayed as much as it would have to be in the one agent case.

As informational rents are decreasing in the number of innovators participating in the competition,

it follows that investment delays are also decreasing in the number of innovators. Secondly, the

winning innovator’s compensation becomes less sensitive to the cash flows from the investment.

To induce the innovator not to inflate the cost the investor has to promise compensation that is

increasing in the cash flows. The need for this also diminishes with competition.

We then proceed to show that when the investor can choose the number of innovators she will

contract with, there are no investment delays, i.e., first best investment policy is always achieved.

Thus the informational rents have been completely eroded by competition. The agency problems

are reduced to a pure moral hazard problem where the investor only needs to worry about providing

incentives for the innovators to put in the high effort. As a consequence, the winning innovator’s

compensation becomes completely insensitive to the cash flows. No extra compensation is needed

even for very valuable investments. The reason is that in a competition the winner receives the

effort costs of all the participating innovators. Then winning the competition becomes so valuable

that the expected value of inflating the investment cost is not enough to compensate for potentially

losing the competition because of it.

We show that the optimal number of innovators is decreasing in effort costs. With very high

effort costs, a single innovator is enough to achieve first best investment policy. Also, the harder

the task, the more innovators should be invited to participate in the competition. The reason is

that with an easy task (high ex-ante probability of a having a low cost investment), it is more

likely that several innovators come up with low cost projects. Thus it is not worth the risk for any

innovator to inflate the costs and likely lose the contract because of that. As a result, the investor

can save some money by inviting fewer participants.
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Interestingly, we also show that the optimal number of innovators is decreasing in the volatility

of the project. When volatility increases, the value of the investment option increases for both the

low cost and high cost projects. However, the difference in value between these projects decreases.

As a result the innovators would have less of an incentive to inflate the costs, leading to shorter

investment delays. To accommodate this, the investor has an incentive to decrease the number of

agents. Consequently, the outcome remains as a pure moral hazard problem.

We organize the rest of the paper as follows. Section 2 gives a literature review, whereas Section

3 outlines the model. Section 4 derives the investment triggers and expected compensations for

innovators, and in Section 5 we implement the optimal sharing rule between the investor and the

innovator awarded the contract. Section 6 optimizes the investor’s value with respect to the number

of innovators invited to participate. Section 7 discusses the comparative statics results, and Section

8 concludes.

2. Literature review

Our paper builds on the work by Laffont and Tirole (1987). In the static model of Laffont and

Tirole firms know their types in the contracting stage, whereas in our dynamic model contracting

occurs under symmetric information. The key difference, however, is that in Laffont and Tirole

the agents do not have to provide costly effort to come up with a project. Thus in their model the

optimal number of competing agents is always infinity. In our model with costly effort informational

rents are completely dissipated with a finite number of agents. As a consequence, we are able to

derive novel results showing that the optimal number of agents changes depending of the difficulty

of the task or the volatility of the cash flow from the new project. In addition, in our dynamic

model we are able to show that first-best investment timing is always achieved when the principal

gets to choose the number of agents.

This paper is related to the part of VC literature that deals with VC’s portfolios and their optimal

sizes. In our model the offer to participate and work on a project proposal can be thought of as

a start-up investment. Then the subsequent competition and investment is like staged investment

in VC financing: portfolio firms compete against each other and only the best one gets further

financing. Kanniainen and Keuschnigg (2003, 2004) were the first ones to introduce the concept

of optimal portfolio size in VC financing. The VC would like to have a large portfolio, but having
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to advice too many companies would dilute the value of costly advice that the VC gives to its

portfolio companies. The size of the portfolio increases in the profitability of portfolio companies,

but declines in the size of initial investment and the effort cost of the entrepreneur1.

Inderst, Mueller, and Münnich (2007) explore the incentive benefits of constrained VC financing.

In their model with fixed portfolio size Inderst et al. (2007) let the VC limit the amount of financing

that is available for its firms. The creation of shallow pockets forces the portfolio firms to work

hard and compete against each other in order to receive scarce financing. The trade-off is that good

firms might not get financing at all2. Our paper provides a complimentary rationale for the shallow

pockets argument: competition for scarce resources eliminates the informational rents portfolio

firms enjoy.

To the extent that experienced VC firms invest in larger portfolios, Bengtsson and Sensoy (2011)

provide evidence on entrepreneurial compensation that is consistent with our model. According

to Bengtsson and Sensoy, experienced VCs are willing to settle for less downside protection in

their financial contracts. We derive a similar results: when cash flows are low, investor’s share is

decreasing in number of competitors.

Our model is also connected to the literature on how firms allocate resources internally. Baiman,

Rajan, and Saouma (2007) model the firm’s internal resource allocation as an auction. Like in our

model, the agents in Baiman et al. (2007) – divisional managers – have to exert costly effort to

come up with a project. Then the divisional managers learn privately their costs of completing

the projects. Baiman et al. (2007) don’t consider the possibility that the firm could offer different

contracts to divisional managers based on their realized costs, like we do. In contrast, Baiman et al.

(2007) only allow for fixed completion bonuses. The firm has an incentive to choose a bonus that

is too low to achieve optimal investments. Thus in Baiman et al. (2007) there are too few project

completions, that would correspond to investment delays in our model.

In a related paper, Chen (2007) shows that auctioning off supply contracts can lead to optimal

allocations. The firm commits to an auction where it specifies a price for each quantity that it is

1Bernile, Cumming, and Lyandres (2007) extend the approach of Kanniainen and Keuschnigg by endogenizing the
sharing rule between the entrepreneur and the VC.
2In contrast, Fulghieri and Sevilir (2009) provide a model where small VC portfolios enhance the incentives of
entrepreneurs to exert effort ex-ante. Large and focused portfolios improve the ex-post resource allocation. Large
portfolios are optimal when firms are risky and their technologies are related, but small portfolios dominate when
firms have high expected returns.
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willing to buy. Privately informed suppliers submit bids for these contracts and the highest bid

wins the contract. Chen shows that suppliers have an incentive to reveal their private information,

just like in our model. In contrast to our model, there is no moral hazard and thus suppliers don’t

have to be compensated for their costly efforts.

In addition our paper is related to the literature on innovation contests. In an innovation contest

the firm has an R&D problem and organizes a contest for outside agents to solve the technical

problem. The agents submit their solutions and the agent that comes up with the best solution

wins the pre-specified prize. Innovation contests may lead to underprovision of costly effort, but the

upside is that the firms may receive an outstanding solution to its technical problem. The problem of

a lower equilibrium effort can be mitigated by switching from fixed prize to performance contingent

prize, as pointed out by Terwiesh and Xu (2008). Empirically, Boudreau, Lacetera, and Lakhani

(2011) show that for less uncertain problems, the effort reducing effect of contests dominates, but

for more uncertain problems the increased likelihood of an extreme solution makes organizing a

contest worthwhile.

Bouvard (2010) too studies agency problems where the investment is a real option. He assumes

that an entrepreneur also possesses private information about the quality of her project. In his

signaling model, high quality projects are delayed, as opposed to our screening model, where lower

quality projects may be delayed. Bouvard doesn’t consider moral hazard issues nor the effects

of competition. Morellec and Schürhoff (2011) and Bustamante (2012) also develop real options

models with signaling where firms have an incentive to speed up investments in order to convey

positive information and thus gain access to financing with more lucrative terms. Grenadier and

Malenko (2011) provide a more general real options model with signaling where firms have either

an incentive to speed up investments or delay them. Firms will speed up investments if they benefit

from highly valued projects, whereas they delay investments if they benefit from low valuations.

We are not the first ones to consider auctions in a real options framework. Board (2007) develops

a model where a seller auctions off an asset – land, oil fields – among multiple agents and the winning

agent chooses when to develop the asset. The agents have private information about the revenues

that the asset can bring in. The revenue maximizing auction combines an up-front bid and a

contingent fee paid when the agent starts using the asset. The contingent fee leads to delay of
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usage of the asset. The model of Board doesn’t consider a moral hazard problem and also the

number of agents participating in the auction is fixed.

While we consider the effects of competition in a model where a firm needs an agent to manage an

investment, competition in product markets also has an effect on option exercise. Grenadier (2002)

employs a standard real options model of investment, except that several firms hold these options

and the value of these options depend on whether other firms exercise their options. Grenadier

shows that competition erodes the value of waiting and firms invest at close to zero net present value

threshold. However, Novy-Marx (2007) demonstrates that when firms’ production technologies

differ firms have an incentive to delay investments, even in the case that competition has eroded

all the oligopoly profits.

Effects of competition on investment timing is also discussed in Lambrecht and Perraudin (2003).

They assume that each competitor knows his own investment cost, but not the competitors’ cost

levels. A similarity to our model is that only the winner of the game can realize his investment

project: the competitors lose the option to invest when the first investor has realized his investment

project and thus captured the whole market. The focus in Lambrecht and Perraudin (2003) is

different from ours as they discuss the trade-off between postponing the investment to maximize the

option value and invest early to preempt competitors’ from investing first. However, in both models

competition reduces each competitor’s option value: in our model competition reduces informational

rents, and in Lambrecht and Perraud’s model it reduces monopoly rents of an investment option.

3. Setup of the model

The optimization problem of the investor is formulated in a principal-multiple agents framework,

in which agents obtain private information about the quality of their respective investment projects

after they have exerted unobservable efforts. In our exposition, the term ”innovators” refers to

agents, and the ”investor” is the principal. In this section we start with a description of the

innovators’ projects. We then go on to provide a benchmark of the investment problem: the value

of an innovation when there are no problems with respect to private information and moral hazard.

Finally, we present the full private information and hidden effort problem faced by the investor.

An investor seeks to invest in an innovative project and invites n innovators to come up with

project proposals. Initially we analyze the situation in which n is fixed, but in Section 6 we
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endogenize n. At the time of the invitation, the investor announces that she will invest in one of

the proposed projects, and offers a pre-specified contract to the innovator with the best proposal.

We assume that the investor is able to commit to the terms of the contract offered. All parties are

risk neutral. We also assume that innovators do not have any initial wealth and that they have

limited liability, implying that innovators’ compensation has to be non-negative.

The innovators’ projects are developed through two phases. In the first phase each innovator

has to provide effort to come up with a proposal. The higher the effort of an innovator, the higher

is the probability that he is able to develop a good project. The quality of the project is privately

revealed to the innovator after he has exerted effort.

In the second phase the winner of the contract is selected based on the submitted business

proposals. If the investor chooses to invest in project i at time t, the payoff from the project is

equal to Xt − Ki, where Xt is a stochastic variable that is observable to all parties, and Ki is

privately observed by innovator i. We interpret Xt as the time t value of future, uncertain cash

flows, that represents gross profits from a monopoly. Ki as the investment cost of innovator i’s

project. The stochastic variable, Xt, is driven by the process,

(1) dXt = μXtdt+ σXtdWt,

where μ is the expected change in Xt per period, σ is the volatility, or standard deviation, per unit

of time, and dWt is the increment of a standard Wiener process. Let X denote the asset value at

time 0, i.e., X ≡ X0, and assume there is no traded asset that is perfectly correlated with the cash

flows from the project.

As Xt changes stochastically over time, we maximize the project value by finding the optimal

time to invest in the project. This means that we allow for the possibility that it may be optimal to

postpone the investment. The investment options are assumed to be perpetual. We assume r > μ

to ensure that it will be optimal to invest at some future time (if the growth rate μ is larger than

the discount rate r it is always optimal to postpone the investment).

The investment cost for innovator i, Ki, can take one of two values, KG or KB, with KB−KG >

0. We interpret KG as draw of a high quality (or a ”good”) project, i.e. a project with a low

investment cost. Analogously, KB refers to a high investment cost, which means that it is a low
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quality (or a ”bad”) project. By exerting effort innovator i can influence the probability of the

level of the investment cost, Ki.

Initially, innovators can choose between two effort levels, high and low. We relax this assumption

in Appendix G, where we allow for multiple, but discreet effort levels. Let qH represent the

probability of KG when an innovator decides to exert high effort. If the innovator chooses to exert

low effort, the innovator’s probability of a good project is given by qL. An innovator’s cost of high

effort is ξH , whereas the cost of low effort is equal to ξL. We assume qH > qL and ξH > ξL. Effort

cannot be observed by the investor, and is therefore not contractible.

A summary of the timing stages of the model is presented in Figure 1.

Before we move on to discuss contract schemes, we present the first-best case, i.e. the case when

we have no agency costs. The first-best investment timing will serve as a benchmark for our mixed

hidden effort and private information problem.

3.1. First best investment decisions: no hidden effort or private information (the

benchmark case). Let V (X,Ki) denote the value of a project with innovator i’s investment

cost when there is no unobservable action and no asymmetric information. The investment project

is formulated as a real option: the project value is maximized by finding the optimal time to invest.

Let the function X∗(Ki) represent the value of future cash flows that triggers investment. This

means that it is optimal to invest immediately when X > X∗(Ki). If X < X∗(Ki) the project value

is maximized by postponing the investment until X reaches the trigger X∗(Ki). It is well known

(shown in Brennan and Schwartz (1985), McDonald and Siegel (1985), and Dixit and Pindyck

(1994), among others) that the project value then is given by the following proposition.

Proposition 3.1. The value of innovator i’s investment project when there are no agency problems:

(2) V (X,Ki) =

⎧⎨
⎩

(
X

X∗(Ki)

)β
(X∗(Ki)−Ki) for X < X∗(Ki)

X −Ki for X ≥ X∗(Ki),

where

(3) X∗(Ki) =
β

β − 1
Ki,
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and

(4) β =
1

2
− μ/σ2 +

√
(μ/σ2 − 1

2
)2 + 2r/σ2 > 1.

A proof of Proposition 3.1 is given in Appendix A. Eq. (2) shows that if immediate investment

is optimal, the value of the project is equal to X − Ki. The term
(

X
X∗(Ki)

)β
in Eq. (2) can be

interpreted as a discount factor as it gives the present value of receiving one unit of money at the

expected future time when X reaches X∗(Ki). For the rest of the presentation we assume that

X is below the investment trigger for all values of the investment cost, Ki. This simplifies the

presentation of the model without loss of generalization.

The value of the project in Proposition 3.1 is based on ex post information, i.e. given that the

parties observe the investment cost of project i, and under the assumption that innovator i knows

that his project will be financed by the investor. Initially, the investor and the innovators do not

know whether their projects are of high or low quality. In order to increase the probability that at

least one of the innovators’ projects is of high quality, the investor can invite multiple innovators

to submit business proposals. However, this comes at a cost as the investor has to compensate

the innovators for their effort costs of preparing proposals. In the first-best case, the investor’s

optimization problem with respect to how many innovators, n, to invite to the contest is a trade-off

between these two considerations. We will assume that it is optimal for the innovators to exert

high effort.3

In our model it is assumed that the investor has the bargaining power. Hence, in the first best

case the investor obtains the entire value of the project the investor selects, and the innovators are

compensated only for their effort costs. The investor optimally chooses to invest in one of the high

quality projects. Let pHn represent the probability that there is at least one innovator with a KG-

type project, i.e., pHn = 1− (1− qH)n. The investor’s ex ante value of the investment opportunity,

as well as the optimal number of innovators to invite to submit investment proposals, are stated in

the following proposition.

3The innovators are assumed to have to exert at least ”low effort” to submit a project proposal. Therefore, if low
effort were the optimal choice there would be no moral hazard problem to discuss, and the investor’s optimization
problem would be equal to a pure private information problem.
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Proposition 3.2. For a given n, the investor’s first best value of the contract is equal to

(5)

V P
FB(X,n) = pHn

(
X

X∗(KG)

)β (
X∗(KG)−KG

)
+ (1− pHn )

(
X

X∗(KB)

)β (
X∗(KB)−KB

) − nξH .

The optimal number of innovators in the first-best scenario can be expressed as

(6) n∗
FB =

ln

⎛
⎝ ξH

− ln(1−qH)

[(
X

X∗(KG)

)β
(X∗(KG)−KG)−

(
X

X∗(KB)

)β
(X∗(KB)−KB)

]
⎞
⎠

ln(1− qH)
.

The optimal number of innovators given by Eq. (6) is found by maximizing V P
FB with respect to

n, as shown in Appendix B. Eq. (6) illustrates that the optimal number of innovators is a trade-off

between the effort costs of the innovators, ξH , and the probability qH that an innovator has a high

quality project.

3.2. Setting with hidden effort and private information. The investor offers a contract to

n innovators. The contract is a function of the observable asset value, X, and the n innovators’

reports of their privately observed investment costs, K̂ = [K̂1, K̂2, ..., K̂n], where K̂i is innovator

i’s report of his privately observed cost Ki, i = 1, ..., n.

Using results of Laffont and Tirole (1987) we organize the competition as a ”winner-takes-all”

contract: The innovator who is awarded the contract shares the value of the project with the

investor, whereas the competitors receive nothing. The profit sharing between the investor and the

innovator who wins the contract takes place at the time of investment. If innovator i is awarded the

contract the reported project value at the investment time, X − K̂i, is shared between innovator i

and the investor. Let si(X, K̂) be the compensation of innovator i, and X − K̂i − si(X, K̂) be the

investor’s compensation. If innovator i’s report K̂i deviates from the true value Ki, innovator i’s

value from the contract is equal to si(X, K̂)+K̂i−Ki. The investment is made when X reaches the

trigger XI(K̂i) if the winner, innovator i, reports K̂i. In short, the winner is offered the contract

{XI(K̂i), si(X, K̂)}.
In our model we have only two possible values of each innovator i’s investment cost Ki, K

G
i

and KB
i . This means that the innovator awarded the contract can choose between two contract

schemes, depending on whether the innovator reports a good or a bad project. As all innovators

with investment cost KG have identical projects, and all innovators with investment cost KB have
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identical projects, we drop the subscript i for innovator i in the notation below. We impose the

condition that the investor has to offer the same menu of contracts for each agent. The two available

contracts are then denoted {XG, sG} and {XB , sB}, where XG ≡ XI(KG), sG ≡ si(X
I(KG), K̂),

XB ≡ XI(KB), sB ≡ si(X
I(KB), K̂).

The project that obtains financing is selected randomly from the pool of projects with the highest

value. Thus, at the stage when each innovator’s private information is revealed, each innovator’s

probability of being awarded the contract when there is n competitors is represented by Y G
n if the

innovator announces a good project, or Y B
n if the innovator reports a bad project. The probability

Y B
n is given by the probability that none of the other n− 1 innovators reports KG,

(7) Y B
n =

1

n
(1− qH)n−1.

For innovators of KG-type, the probability of winning is equal to,

(8) Y G
n =

n−1∑
j=0

1

j + 1

⎛
⎝ n− 1

j

⎞
⎠ qjH(1− qH)n−1−j .

To simplify notation we define each innovator’s expected compensation, SG = Y GsG and SB =

Y BsB.

As each innovator ex ante has identical projects, the investor’s portfolio of projects equals the

investor’s expected values from each project multiplied by the number of innovators competing for

the contract, n,

(9)

V P (X,n) = n

[
qH

(
X

XG

)β

(Y G
n

(
XG −KG)− SG

)
+ (1− qH)

(
X

XB

)β (
Y B
n (XB −KB)− SB

)]
.

For a fixed n the investor maximizes her value V P (X,n) by finding optimal investment strategies,

XG and XB , and compensation functions, SG and SB. This optimization problem is solved in

Section 4. In Section 6 we solve the investor’s problem of finding the optimal number of innovators

to offer the contract to.
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4. Optimal investment trigger and expected compensation of each innovator

To solve the optimization problem with respect to investment triggers and expected compensation

we follow the approach of Grenadier and Wang (2005). They have a similar real options set-up to

ours, except that in their paper there is only one agent who needs incentives to exert effort and

reveal private information. Laffont and Martimort (2002) (pp. 294-298) also present an agency

problem with one agent, in which moral hazard is followed by private information, but their model

is in discrete time. We introduce competition in the Grenadier and Wang type framework using

a similar approach to the private-value auctions described in Klemperer (1999) and Laffont and

Tirole (1987). Laffont and Tirole assume that each firm has private information about its future

cost at the contracting stage, whereas in our model there is no private information at that stage.

They formulate the principal’s maximization problem as a Vickrey auction, in which each bidder

simultaneously submits a bid, without seeing others’ bids. The contract is given to the bidder who

makes the best bid, and is priced according to the second-best bidder. In this auction truth telling

is a dominant strategy. Although we also apply a Vickrey auction in order to solve our agency

problem, it can be shown that the results do not depend on how the auction is organized (see

Klemperer (1999) section 4 and references therein).

In Eqs. (10)-(15) we formulate the main optimization problem of the investor with respect to

each innovator’s investment trigger and expected compensation. For a given n we maximize the

investor’s value with respect to each innovator’s project,

(10) max
XG,XB,SG,SB

qH

(
X

XG

)β (
Y G
n (XG −KG)− SG

)
+(1− qH)

(
X

XB

)β (
Y B
n (XB −KB)− SB

)
,

subject to ex ante incentive compatibility and participation constraints, and ex post incentive

compatibility and participation constraints in Eqs. (11)-(15) below:

• Prior to exerting effort the innovators do not know their respective investment costs. Each

innovator’s probability of developing a high quality project depends on his level of effort.

The ex ante incentive compatibility constraint (hidden effort/moral hazard) ensures that

each innovator chooses to exert high effort instead of low effort,

qH

(
X

XG

)β

SG + (1− qH)

(
X

XB

)β

SB − ξH ≥ qL

(
X

XG

)β

SG + (1− qL)

(
X

XB

)β

SB − ξL.
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The left-hand side of the equation represents an innovator’s value of the project if he exerts

high effort, whereas the right-hand side states the value of low effort. We rearrange the

expression as follows,

(11)

(
X

XG

)β

SG −
(

X

XB

)β

SB ≥ Δξ

Δq
,

where Δξ ≡ ξH − ξL and Δq ≡ qH − qL.

• The ex ante participation constraint makes sure that the innovators participate in the

competition, which means that the value of participating must be positive,

qH

(
X

XG

)β

SG + (1− qH)

(
X

XB

)β

SB − ξH ≥ 0.

We reorganize the ex ante participation constraint,

(12)

(
X

XG

)β

SG +
1− qH
qH

(
X

XB

)β

SB ≥ ξH
qH

.

• The ex post incentive constraints are necessary to ensure that the innovators report their

true investment costs. If an innovator has a good project, his value of truthfully reporting

a low investment cost must be higher than his value from reporting a high investment cost,

(13)

(
X

XG

)β

SG ≥
(

X

XB

)β (
SB + Y B

n ΔK
)
,

where ΔK ≡ KB −KG > 0. The left-hand side of Eq. (13) represents the compensation of

reporting a true investment cost. It must be at least as valuable as the compensation of lying,

given by the right-hand side of Eq. (13), and therefore we define the left-hand side term as

value of private information, or informational rents. Note that the investor has three tools

at her disposal in order to reduce the value of an innovator’s private information. She can

increase XB , thereby delaying the investment in the bad project. This reduces the KG-type

innovator’s value of private information, as he would have to wait longer to realize his gain

from a bad project. Secondly, she can increase the number of competitors. This reduces the

value of private information through a reduced probability of being awarded the contract.

Thus, the more competitors, the lower value of exploiting the private information. Thirdly,

the investor can also reduce the compensation of an innovator reporting a bad project, SB .
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The private information constraint of an innovator with a bad project is given by,

(14)

(
X

XB

)β

SB ≥
(

X

XG

)β (
SG − Y G

n ΔK
)
.

• The ex post participation constraint requires that expected compensation for both types is

positive,

(15) SG ≥ 0, SB ≥ 0.

Thus, contracts are bounded by limited liability.

The optimization problem in Eqs. (10)-(15) can be simplified. In Proposition 4.1 the simplifying

results are summarized (and correspond to Propositions 2-5 in Grenadier and Wang (2005)).

Proposition 4.1. (i) The expected compensation of an innovator with investment cost KG,

SG, is strictly larger than zero.

(ii) The expected compensation of the KB-type innovator, SB, is equal to zero.

(iii) The ex post incentive constraint of a KB-type in Eq. (14) never binds.

(iv) At least one of the constraints in Eqs. (11), (12), and (13) always binds.

Proof. See Appendix C.1-C.2. The intuition of (i) is that to ensure truthtelling the compensa-

tion of the good type, SG, must be strictly larger than the compensation of the bad type, SB . In

(ii) the expected compensation of an innovator with investment cost KB equals zero since there

is no reason to give an innovator with the highest investment cost any informational rents. With

regard to (iii) the ex post incentive compatibility constraint of the bad type does not bind as long

as SG ≤ (
X
XG

)β
Y G
n ΔK, which we know from Eq. (13) must be true if the KB-type innovator is to

accept SB = 0.

Proposition 4.1 leaves us with the following simplified optimization problem for the principal,

(16) max
SG,XG,XB

qH

(
X

XG

)β (
Y G
n (XG −KG)− SG

)
+ (1− qH)

(
X

XB

)β

Y B
n

(
XB −KB

)
,

subject to the private information constraint, the moral hazard constraint, and the participation

constraint for high effort,

(17)

(
X

XG

)β

SG ≥ max

{(
X

XB

)β

Y B
n ΔK,

Δξ

Δq
,
ξH
qH

}
.
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The constraint in Eq. (17) replaces the three constraints in Eqs. (11), (12), and (13), since we

know from Proposition 4.1 (iv) that at least one of the constraints always binds. If the first term

in the max-operator in Eq. (17) has the highest value of the three terms in the operator, the value

of an innovator’s compensation must be equal to his informational rents. If the second term is the

largest, the binding constraint is the investor’s cost of providing the innovators with incentives for

exerting high instead of low effort. The third term is the investor’s cost of guaranteeing that each

innovator has a positive value from participating in the contest.

Below we present the solution to the optimization problem in Eqs. (16)-(17). First, we show

that for type KG projects, it is always optimal to follow the first best investment strategy:

Proposition 4.2. If an innovator is of type KG the optimal investment trigger XG is equal to the

first best trigger X∗(KG).

Proof. See Appendix C.2. Without incentive constraints it is optimal to invest at the first-best

trigger and share the profit between the investor and the winner of the contract. Hence, for a high

quality project agency problems do not imply a dead-weight loss in the contract. Agency problems

only have an impact on how the value of the investment project is shared between the investor and

the winner of the contract.

The properties of the optimal investment strategies for theKB-type innovator depend on which of

the constraints in Eq. (17) apply. Similarly to the model of Grenadier and Wang (2005), we identify

three regions of possible combinations of the constraints: In the private information region only the

private information constraint binds, and in the hidden effort region either the ex ante incentive

constraint (the moral hazard constraint) or the ex ante participation constraint binds. In the joint

region the private information constraint and one of the effort constraints bind simultaneously. The

regions are in particular sensitive to effort costs, ξH , and number of competitors, n. The higher the

number of innovators the investor invites to compete for the contract, the more expensive it is for

the investor to give innovators incentives to provide effort. This diminishes the regions in which

the private information problem apply.

4.1. The private information region. LetXPI be the optimal investment trigger of an innovator

with a low quality project when only the private information constraint binds. The first-order

condition of Eq. (16) with respect to XB results in the following optimal investment trigger for
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the private information region,

(18) XPI =
β

β − 1

(
KB +

qH
1− qH

ΔK

)
.

The trigger XPI is strictly higher than the first-best trigger X∗(KB). This means that the invest-

ment is delayed compared to first-best investment timing. The result is equivalent to the result

in Grenadier and Wang (2005) that private information leads to under-investment. When private

information is the binding constraint, Eq. (17) requires that the expected compensation for each

KG-type investor is given by

(19)

(
X

X∗(KG)

)β

SG =

(
X

XPI

)β

Y B
n ΔK.

The expected compensation in Eq. (19) represents each innovators’s informational rents. The value

of private information can be decomposed into the value of lying ΔK – the value of receiving KB

and paying the lower true investment cost KG – adjusted by the discount factor,
(

X
XPI

)β
, and the

probability of winning the contract given that the innovator announces that he has a bad quality

project, Y B
n . Eq. (19) illustrates why it is optimal to to delay the investment compared to a first

best policy: A delayed investment reduces the value of the discount factor on the right-hand side

of Eq. (19), which again reduces informational rents.

4.2. The hidden effort region. When one of the effort constraints binds, and the private infor-

mation constraint does not, we let XHE denote optimal investment trigger. Again, we find the

optimal trigger by maximizing Eq. (16) with respect to XB , which gives

(20) XHE =
β

β − 1
KB.

In this scenario there is no investment delay compared to the first-best investment strategy as the

optimal investment trigger is equal to the first best trigger, i.e., XHE = X∗(KB). Let C(ξH , qH) ≡
max

{
Δξ
Δq ,

ξH
qH

}
. The constraint in Eq. (17) requires that in the hidden effort region the expected

compensation of an innovator with a good project is

(
X

X∗(KG)

)β

SG = C(ξH , qH).
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Hence, in the hidden effort region an innovator’s expected compensation is equal to the maximum

of

• the effort cost adjusted by the probability of being a high quality innovator, ξH/qH , and

• the extra compensation an innovator requires in order to choose high effort instead of low

effort divided by the increase in the probability of managing a high quality project from qL

to qH , Δξ/Δq ≡ (ξH − ξL)/(qH − qL).

4.3. The joint region. When both the private information constraint and one of the effort con-

straints in Eq. (17) bind simultaneously, the optimal investment trigger requires that the in-

vestor’s cost of private information and hidden effort must be equal to each other, i.e., we need(
X
XB

)β
Y B
n ΔK = C(ξH , qH). In other words, the informational rent

(
X
XJ

)β
Y B
n ΔK is equal to the

cost of providing an investor with incentives for high effort, C(ξH , qH). The optimal investment

trigger, denoted XJ , is then given by

(21) XJ =

(
Y B
n ΔK

C(ξH , qH)

) 1
β

X.

Since both constraints bind simultaneously, we derive from Eq. (17) that the expected compen-

sation of an innovator with a good project is equal to

(
X

X∗(KG)

)β

SG =

(
X

XJ

)β

Y B
n ΔK = C(ξH , qH).

4.4. Summary of findings with respect to investment timing and compensation. Our

findings with respect to regions, investment triggers and innovators’ values are summarized in

Proposition 4.3:

Proposition 4.3. The optimal investment trigger of a project with investment cost equal to KB,

is given by

(22) XB∗ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

β
β−1

(
KB + qH

1−qH
ΔK

)
for the private information region(

Y B
n ΔK

C(ξH ,qH)

) 1
β
X for the joint region

β
β−1K

B for hidden effort region
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The expected compensation for an innovator with low investment cost, KG, is given by

(23)

(
X

X∗(KG)

)β

SG∗ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
X

XPI

)β
Y B
n ΔK for the private information region(

X
XJ

)β
Y B
n ΔK = C(ξH , qH) for the joint region

C(ξH , qH) for the hidden effort region

The different regions can be identified through evaluation of Eq. (17), employing Eqs. (22) and

(23):

Private information region:max

{
Δξ

Δq
,
ξH
qH

}
≤

(
X

XPI

)β

Y B
n ΔK

(24)

Joint region:

(
X

XPI

)β

Y B
n ΔK ≤ max

{
Δξ

Δq
,
ξH
qH

}
≤

(
X

X∗(KB)

)β

Y B
n ΔK(25)

Hidden effort region:

(
X

X∗(KB)

)β

Y B
n ΔK ≤ max

{
Δξ

Δq
,
ξH
qH

}
≤

(
X

X∗(KG)

)β

Y G
n ΔK(26)

The expected compensation for each innovator in Eq. (23) is increasing and convex (recall that

β > 1) in the underlying asset value X when private information is the dominating agency problem.

When the moral hazard problem dominates, each innovator’s value is independent of the X.

In the joint region in Eq. (22) the investment policy XB∗ = XJ depends explicitly on the number

of innovators n: As n increases the trigger is pushed toward the first-best trigger for an innovator

with a KB-type project. To show this more explicitly, we rearrange the optimal investment trigger

for the joint region. Rearranging the expression of the optimal investment trigger, XJ = XJ(n),

in (21) leads to

(27) XJ (n) =
β

β − 1

(
KB + λ1

qH
1− qH

ΔK

)
,

where

(28) λ1 =
(
XJ(n)−X∗(KB)

) β − 1

β

1− qH
qH

1

ΔK
,

for 0 ≤ λ1 ≤ 1. For decreases in n or ξH , λ1 approaches 1 and this increases the optimal investment

trigger, XJ(n), until it reaches the investment trigger when private information is the only binding

constraint, XPI . Conversely, increases in n or ξH implies that λ1 approaches 0, and the investment
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trigger approaches first-best. Thus the investment inefficiency caused by private information is

mitigated by moral hazard, as in Grenadier and Wang (2005) and Laffont and Martimort (2002).

Our main contribution is to study the effects of competition, and we find that an increase in

competition is a first-order factor in overcoming investment inefficiencies due to informational

problems.4

Although Eq. (22) shows that only in the joint region the optimal investment trigger explicitly

depends on n, the optimal investment trigger approaches the first-best trigger X∗(KB) as the

number of n increases. The reason is that an increase in n reduces both the size of the private

information region and the joint region and increases the size of hidden effort region. Hence, we

conclude that increased competition speeds up innovation, as illustrated in Figure 2. Observe that

as the number of innovators increases from one to four the optimal investment trigger approaches

the first-best trigger5. We formalize the result in Proposition 4.4.

Proposition 4.4. The size of private information region and the joint region are decreasing in

n. This implies that as n increases the optimal investment trigger approaches the first-best policy

X∗(KB).

Proof. From the regions given by Eqs. (24)-(26) we observe that if the probability that a low

quality project is awarded the contract, Y B
n , decreases, the hidden effort region increases, whereas

the two other regions decreases. As Y B
n is decreasing in n, we attain the result in Proposition 4.4.

The result in Proposition 4.4 predicts that when sufficiently many innovators compete for VC

financing, or for winning a prize in an innovation contest, private information does not lead to

serious inefficiency problems.

Most of the extant literature on VC financial contracts focuses on agency problems and risk

sharing, and not on competition. Kaplan and Strömberg (2004) empirically study contracts in ven-

ture financing. They conclude that agency problems such as moral hazard and private information

are more important to contract design than risk sharing concerns. Bengtsson and Sensoy (2011)

draw similar conclusions for experienced VCs. In our paper we show the nature of agency problems

changes in presence of competition among entrepreneurs in capital markets. Our model predicts

4If we relax the assumption that each innovator only observes his own investment cost and instead allow innovators
to have information about each other’s investment costs, it would be easier to reduce the informational rents to zero,
see Crémer and McLean (1988).
5Parameter values of numerical illustrations are given in Table 1.
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that private information problems are reduced as competition for project financing is intensified,

whereas costs of moral hazard become more important.

5. The optimal sharing rule for fixed n

Recall that the compensation function SG represents the expected compensation of each innovator

with a high quality project, SG = Y GsG, where sG is the compensation of the innovator awarded

the contract. In Section 5.1 we evaluate the winner’s compensation sG and verify that this is indeed

an optimal contract for a given n. Moreover, in Section 5.2 we discuss properties of the sharing

rule between the innovator awarded the contract and the investor.

5.1. The compensation of the innovator awarded the contract. To maximize the investor’s

value the investor selects a winner from the pool of innovators with the lowest investment cost. As

the innovators in this pool are identical, the winner is picked randomly within the pool. Only the

winner of the contract obtains a compensation strictly larger than zero, sG. The other innovators’

compensations are equal to zero. Evaluation of the relationship SG = Y GsG and Eq. (23) leads to

the following expression of the optimal compensation of the innovator awarded the contract.

Proposition 5.1. The optimal compensation of the winner of the contract is given by

(29) sG∗ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
X∗(KG)
XPI

)β Y B
n

Y G
n
ΔK for the private information region(

X∗(KG)
XJ

)β
Y B
n

Y G
n
ΔK =

(
X∗(KG)

X

)β
C(ξH ,qH)

Y G
n

for the joint region(
X∗(KG)

X

)β C(ξH ,qH)
Y G
n

for the hidden effort region

In Appendix E we verify that Eq. (29) is an optimal compensation function. In the private

information region the winner’s compensation, sG∗, linearly depends on the fraction Y B
n /Y G

n , which

decreases in the number of innovators n. This means that sG∗ decreases in n. The intuition for the

result is that the more competitors there are, the less incentive there is for an innovator to misreport

his type. In the joint region and the hidden effort region the compensation function increases in n.

The explanation is that the investor has to compensate each innovator for his effort costs adjusted

for the probability of winning the contract. The effect of n on sG∗ is illustrated in Figure 3. The

curves represent the optimal compensation as a function of the cost of high effort, ξH , for the cases

in which the number of competitors, n, is given by one to four, respectively. When the compensation

is independent of ξH only the private information constraint is binding. The curves in Figure 3
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illustrate that the value of private information decreases in n. The compensation increases linearly

in ξH in the intervals where the hidden effort constraint binds. Note that the more competitors the

winner has, the steeper is his compensation as a function of ξH . The reason is that the principal

ex ante has to give incentives to all the innovators to exert costly effort. Thus, Figure 3 illustrates

the trade-off the investor faces when she is optimizing over the optimal number of innovators: An

increase in the number of competitors reduces the costs of private information, but increases the

costs of compensating innovators for hidden effort.

5.2. Properties of profit sharing between the investor and the innovator awarded the

contract. We measure the contract winner’s share of the project value as the compensation,(
X

X∗(KG)

)β
sG∗ relative to the value of a high quality investment option, V (X,KG). The value

for the innovator awarded the contract can be derived from Eqs. (23) and (29),

(30)

(
X

X∗(KG)

)β

sG∗ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
X

XPI

)β Y B
n

Y G
n
ΔK for the private information region(

X
XJ

)β Y B
n

Y G
n
XJΔK = C(ξH ,qH)

Y G
n

for the joint region

C(ξH ,qH)
Y G
n

for the hidden effort region

Note that we have formulated the option to invest in a project, V (X, ·), analogously to a financial

call option, in which the value of future stochastic cash flows is replaced by the spot value of a

financial asset, and the investment cost represents a contracted fixed strike price. It is well known

that the value of a call option is increasing and convex in the underlying asset value, in our model

denoted by X. Moreover, the value of the option increases as a function of volatility σ. Thus,

instead we focus on the effects of X and σ on profit sharing between the contract winner and the

investor.

We start by discussing effects of changes in the present value of future cash flows from the project.

Since both the first and second derivatives of Eqs. (2) and (30) in the private information region

and the joint region are positive for β > 1, the get the following result:

Proposition 5.2. The contract winner’s compensation, sG∗, is increasing and convex in X in the

private information region and the joint region. In the hidden effort region the contract winner’s

compensation is independent of X.
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Figure 4 illustrates the contract winner’s share relative to the total value of the investment

project,
(

X
X∗(KG)

)β
sG∗/V (X,KG) as a function of X. For low values of X the contract winner’s

share is high as the investment option is far ”out-of-the-money”, and thus the value of the in-

vestment option is low compared to the effort cost. This result is consistent with Bengtsson and

Sensoy (2011), who find that (experienced) investors require less downside protection. On the other

hand, the investor receives most of the upside potential of the project value: As X increases in the

hidden effort region, the contract winner’s share decreases as a function of X. The reason is that

the compensation for the contract winner is independent of X in the hidden effort region, whereas

the value of the investment project, V (X,KG), increases in X.

For XG ≤ X < XPI the contract winner’s share is increasing in X when n = 1, as shown in

Figure 4. This reflects the fact that the informational rents the investor has to pay to the innovator

in order to prevent him from lying increases more in X than the underlying investment project

V (X,KG) does in this interval: The value of the total project is linear in X as V (X,KG) = X−KG

and the contract winner’s value is convex in X for the private information region as shown in Eq.

(30). When X ≥ XPI the innovator’s maximum value of private information, ΔK Y B
n

Y G
n
, is reached.

Hence, in this interval the investor obtains the full upside potential of the investment project. This

explains the decreasing profit share in Figure 4 for X ≥ XPI .

Note also that, analogously to the values illustrated in Figure 3, the contract winner’s share

increases in n in the hidden effort region, and decreases in n in the private information region.

Moreover, the private information region is decreasing in n.

An increase in the volatility of future cash flows, σ, has ambiguous effects on the values for the

parties. On one hand, it enlarges the investment policy inefficiency through an increase in the

investment trigger XPI . On the other hand, we know that a higher volatility implies a higher

value of the investment option. Figure 5 illustrates the contract winner’s relative share of the

investment values as a function of σ. In the private information region for n = 1 the curve is

hump-shaped because of two opposing effects: For small values of σ the convexity in the value of

private information dominates, which increases the innovator’s share. For larger values of σ the

under-investment effect dominates: a higher volatility leads to an increase in the investment trigger

XPI , which reduces the value of private information. In the hidden effort region, the contract

winner’s value of the compensation is relatively insensitive to σ, whereas the value of investment
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option increases. As we know that the value of an investment option increases in σ, this result too

illustrates that the investor obtains almost all the upside value of the option. Also consistently with

the previous result in Figure 3, Figure 5 illustrates that in the hidden effort region, the contract

winner’s share increases in n.

As the effort cost does not bind in the private information region, the winner’s share is indepen-

dent of ξH here. Figure 6 shows that as ξH becomes higher, the hidden effort cost starts to bind,

the contract winner’s share increases. The increase is larger the higher the number of competitors

is. Moreover, as n increases the value of private information is reduced, and therefore both the

contract winner’s share and the private information region decreases in n.

6. Optimal number of innovators

So far we have optimized the investor’s value with respect to investment triggers and compen-

sation of the innovators. In this section, we let the investor optimize his value with respect to the

number of innovators invited to submit project proposals.

For optimal choices of the decision variables, XG,XB , SG, SB , the investor’s value in Eq. (9) is

maximized with respect to n as shown in the following optimization problem,

(31)

max
n

n

[
qH

(
X

X∗(KG)

)β (
Y G
n (X∗(KG)−KG)− SG∗) + (1− qH)

(
X

XB∗

)β

Y B
n (XB∗ −KB)

]
.

Recall that pHn = 1 − (1 − qH)n is the probability that the winner of the contract is KG-type.

Alternatively, we can formulate the probability as pHn = nqHY G
n , i.e. the probability that there is a

good innovator in the pool of innovators is equal to the number of innovators times each innovator’s

probability that he has a good project, and times each innovator’s probability of winning the

contract given that he has a good project. Moreover, we have that 1− pHn = n(1− qH)Y B
n . Thus,

we can rewrite the optimization problem in Eq. (31) as

(32) max
n

= pHn

(
X

X∗(KG)

)β (
X∗(KG)−KG − sG∗) + (1− pHn )

(
X

XB∗

)β (
XB∗ −KB

)
.

We analyze the optimization problem separately for each region.



INNOVATION, COMPETITION, AND INVESTMENT TIMING 25

In the private information region, evaluation of sG∗ in (32) using Eqs. (23) and (29) leads to the

following expression for the investor’s value,

(33)

V P
PI(n) = pHn

(
X

X∗(KG)

)β (
X∗(KG)−KG

)
+ (1− pHn )

(
X

XPI

)β (
XPI −KB − qH

1− qH
ΔK

)
.

Observe that the probability that the winner is type KG, pHn , increases in n. As the first term

in Eq. (33) is larger than the second term, the value V P
PI(n) increases in n for all n in the region.

Intuitively, as long as the hidden effort constraint does not bind, the investor’s value increases in

the number of competitors.

Evaluation of the investor’s value in the joint region leads to

(34)

V P
J (n) = pHn

(
X

X∗(KG)

)β (
X∗(KG)−KG

)
+ (1− pHn )

(
X

XJ(n)

)β (
XJ(n)−KB − qH

1− qH
ΔK

)
.

In this region a higher number of innovators, n, increases the probability of the winner being an

KG-type and pushes the optimal investment trigger of a winner of KB-type towards his first-best

trigger. Both factors lead to a higher value for the investor. On the other hand, a higher n implies

that the winner’s compensation must be higher to motivate all innovators to exert high effort,

which decreases the investor’s value. In sum,
∂V P

J (n)
∂n > 0 for all n in the region. A proof is given

in Appendix F.

Our results so far are summed up in Proposition 6.1.

Proposition 6.1. The investor chooses n so that first-best investment triggers are reached.

This means that when the investor can freely choose the optimal number of innovators, the

private information constraint will not be a binding constraint in the contract, and there is no

investment inefficiency. Consequently, the private information and joint regions cease to exist, and

only the hidden effort region remains relevant. Note also that the contract is renegotiation proof

with respect to investment policy, as a contracted first best investment policy implies that the

policy will be optimal after the investor has selected a contract winner. Thus when the investor is

allowed to choose optimal n, there is no need to assume that the investor has to commit fully to

the proposed contract.
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In our model we have assumed that each innovator can choose only between two effort levels.

In Appendix G we show that Proposition 6.1 is valid also for the case in which each innovator can

choose among multiple effort levels, where a higher effort level corresponds to a higher effort cost

and a higher probability of drawing a good project.

The optimal number of competitors is then found in the hidden effort region, where the value to

the investor, V P
HE , is equal to

(35)
V P
HE(n) = pHn

(
X

X∗(KG)

)β (
X∗(KG)−KG

)
+(1− pHn )

(
X

X∗(KB)

)β (
X∗(KB)−KB

) − nqH max
{

Δξ
Δq ,

ξH
qH

}
.

In this region private information is not a binding constraint, and the optimal n is found based

on the following trade-off: The probability that the winner of the contract is a KG-type agent

increases in n, which leads to a higher value for the investor. On the other hand, a larger n implies

a higher compensation for the winner, as the investor has to give all the innovators incentives to

exert high effort. This lowers the value to the investor.

Note that the trade-off is consistent with the empirical results in Boudreau et al. (2011). They

find that for less uncertain problems, the effort effect is the largest, implying that for these problems

fewer innovators are invited to compete for the prize of the contest. For more uncertain problems,

the dominating effect is to invite many innovators to compete for the prize to increase the probability

that one of the innovators come up with a good solution for the problem.

If ξH
qH

≥ Δξ
Δq in Eq. (35) the ex ante participation constraint binds, and not the ex ante incentive

constraint, and consequently the investor’s value is equal to her value in the first-best case in Eq.

(5). Intuitively, both in the first-best case and in the situation in which effort is unobservable

the investor needs to compensate the innovators for their costs of submitting business proposals.

The investor’s value is lower than in a first best situation only when the costs of providing each

innovator with incentives for high effort is larger than the participation costs.

We simplify the optimization problem with respect to n by allowing n to be continuous. The

following proposition gives a closed-form solution for the optimal number of innovators and is

derived by maximizing the investor’s value in Eq. (35) with respect to n.
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Proposition 6.2. For all n satisfied by the hidden effort region in equation (26), the optimal

number of innovators, n∗, is equal to

(36) n∗ =

ln

⎛
⎝ qHC(ξH ,qH)

− ln(1−qH )

[(
X

X∗(KG)

)β
(X∗(KG)−KG)−

(
X

X∗(KB)

)β
(X∗(KB)−KB)

]
⎞
⎠

ln(1− qH)
.

Eq. (36) is well defined for parameter values such that the fraction in the logarithmic expression

in the nominator gives values between 0 and 1. In Appendix H we discuss the optimality conditions

when we restrict n be discrete and show that Propositions 6.1 and 6.2 are still valid when we ensure

that there exist at least one value of n in the hidden effort region.

Figure 7 illustrates the investor’s project value as a function of the number of innovators, n.

The upper curve represents the project value in the first-best case of no agency problems, whereas

the lower curve is the value for the investor given a contract written under the assumption of full

commitment. In this numerical example, it is optimal to choose approximately five innovators

both in the first best case and when we have agency problems. In general, the optimal number of

innovators is higher in the first best case than in the case in which we have a binding moral hazard

constraint, as the effort cost per innovator is given by Δξ
Δq > ξH

qH
.

Initially, we assumed that it is optimal for the investor to provide the innovators with incentives

for exerting high effort. Thus, we need to verify numerically that high effort is the optimal choice,

i.e., we need to make sure that the following inequality holds:

(37)

V P
HE(n

∗) ≥ max
n

{
pLn

(
X

X∗(KG)

)β (
X∗(KG)−KG

)
+ (1− pLn)

(
X

X∗(KB)

)β (
X∗(KB)−KB

) − nξL

}
,

where pLn ≡ 1−(1−qL)
n. The right-hand side of Eq. (37) is the value of the investor’s contract if she

had given all the innovators incentives for low effort. We can verify this inequality in our numerical

example. Given the parameter values in Table 1 we find that n∗ = 4.8 and V P
HE(n

∗) = 66.24. If the

investor instead gives the innovators incentives for low effort the value of the investor’s project is a

little lower, 65.91. Hence, in this example the difference in value between high effort and low effort

is not large. However, the optimal number of innovators is much higher in the low effort case, 26.9.

The reason is that each innovator’s cost of exerting low effort, ξL = 0.25, is significantly smaller

than the cost of exerting high effort, ξH = 1.3. Moreover, the probability that an innovator draws
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a high quality project is also smaller given low effort, qL = 0.1, whereas qH = 0.45. Note that if

ξL = 0 there is no cost of inviting one more innovator to participate in the contest, and in that

case it is therefore optimal to let the number of competitors go to infinity.

7. Properties of the contract

The optimal number of innovators will of course vary depending on types of projects, markets

and industries. In this section we study the impact of profitability, volatility, and effort costs on

the optimal number of innovators, n∗. In addition we study the profit sharing characteristics of the

optimal contract. When we study sharing properties we implicitly assume that the winning project

is a high quality project with investment cost KG. The situation in which the contract winner has

a project of low quality is trivial when it comes to sharing properties, as the compensation of the

contract winner, sB∗, is equal to zero.

We start by discussing effects from changes in the value of future cash flows from the project,

X.

Proposition 7.1. An increase in X,

(i) leads to a higher n∗,

(ii) increases the value to the investor, V P
HE(n

∗),

(iii) increases the contract winner’s compensation,
(

X
X∗(KG)

)β
sG∗ = C(ξH ,qH)

Y G
n∗

,

(iv) reduces the contract winner’s profit share, C(ξH ,qH)

Y G
n∗

1
V (X,KG)

.

Proof: See Appendix I.1

The intuition for the result in Proposition 7.1 (i) is as follows. A higher value of X implies that

both a high quality and a low quality project increase in value. However, the increase is larger for

the high quality project than the low quality project, which means that the investor will have an

incentive to invite more innovators to compete for the contract, as this increases the probability

that a least of the projects will be of high quality.

Proposition 7.1 (i) and (ii) state that the value functions for both the investor and the innovator

increase in X, as is the case for the total value of the investment option. However, the innovator’s

value is relatively insensitive to increases in X since his value of the compensation increases only

through the denominator of his value function C(ξH , qH)/Y G
n∗ . As n∗ increases in X the probability
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that any good innovator wins the contract, Y G
n∗ , is reduced. This lower probability of winning

must be compensated by increasing the compensation. The result in Proposition 7.1 (iv) implies

that the investor’s value increases more than the value for the innovator in X. The reason is

that the innovators have no negotiation power in our model, and each innovator’s expected value

of participating in the contest therefore has an upper boundary equal to the cost of giving them

incentives to choose high effort. In other words, the investor obtains most of the upside value of

the investment option.

Proposition 7.2. An increase in the volatility σ,

(i) reduces the optimal number of innovators, n∗, and

(ii) increases the value to the investor, V P
HE(n

∗).

(iii) is independent of each good innovator’s value of participating in the contest, C(ξH , qH),

decreases the winning innovator’s compensation, C(ξH ,qH)

Y G
n∗

.

Proof: Appendix I.2. The result in Proposition 7.2 (i) is perhaps counterintuitive as we know

that the value of the investment option in equation (2) increases in volatility. Thus, one could be

led to believe that it is profitable to invite more innovators to compete for the contract, in order to

ensure that there is at least one good project in the pool of potential investment projects. However,

it turns out that it is actually optimal to decrease the number of innovators. The explanation is that

the increase in the value of an investment option is concave in σ. This means that the difference

between the value of a good project and the value of a bad project decreases in σ. Consequently,

n∗ is reduced for higher σ.

The value of the investor’s investment option, V P
HE(n

∗), is, as expected for the value of an

investment option, increasing in σ. More surprisingly, in the hidden effort region the innovator is

not compensated for higher volatility. On the contrary, Proposition 7.2 (iii) states that the contract

winner’s compensation decreases in σ. This result follows from in Proposition 7.2 (i): the number

of competitors is reduced because of higher volatility. As each innovator’s probability of winning

the contest is higher, the winner’s compensation is lower while still satisfying each innovator’s ex

ante participation and incentive constraints.

The size of a VC portfolio, or the number of innovators invited to compete for a contract, highly

depends on each innovator’s probability of drawing a high quality project, qH , and each innovator’s
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cost of exerting high effort, ξH . These two parameters correspond to the trade-off when it comes

to the choice of n in innovation contest models, as described in Terwiesh and Xu (2008) and

Boudreau et al. (2011): the trade-off between inviting many innovators to a contest as it increases

the probability that one project is good, and the cost of effort if too many innovators are invited.

Kanniainen and Keuschnigg (2003, 2004) and Bernile et al. (2007) show that the more entrepreneurs

there are in a VC portfolio, the poorer is the quality of the venture capitalist’s advice (effort) to

each entrepreneur.

Proposition 7.3. An increase in the probability of a high quality project, qH , leads to

(i) a reduction in n∗,

(ii) an increase in the investor’s value, V P
HE(n

∗),

(iii) a reduction in the contract winner’s compensation, C(ξH ,qH)

Y G
n∗

.

Proof: Appendix I.3. When the probability that each innovator draws a high quality project

increases, the probability that at least one of n innovators submits a business proposal for a high

quality project increases as well. Therefore the investor will have incentives to invite fewer inno-

vators to compete for the contract, as stated in Proposition 7.3 (i). Thus, the investor can save

costs by inviting fewer innovators, as is the result in Proposition 7.3 (ii). The interpretation of

Proposition 7.3 (iii) is that when qH increases, it is sufficient to pay the innovator awarded the

contract less.

A higher effort cost ξH increases the region in which hidden effort binds, as can be seen from

Eq. (17). Since ξH is a cost incurred by the innovators participating in the contest, the expected

value from participating must cover these costs, as formulated in (11) and (12). Thus, we expect

n∗ to decrease in ξH . Furthermore, we expect the investor’s value to decrease in ξH as the payment

to the contract winner would have to increase to cover his higher effort cost, and the contract

winner’s compensation to increase correspondingly. These conjunctures are indeed confirmed in

the following proposition, and proved in Appendix I.4.

Proposition 7.4. An increase in the cost of high effort, ξH , leads to

(i) a reduction in n∗,

(ii) a decrease in the investor’s value, V P
HE(n

∗),
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(iii) an increase in the winning innovator’s compensation, C(ξH ,qH)

Y G
n∗

.

Proposition 7.4 (ii) and (iii) tell us that ξH is important for profit sharing between the investor

and the innovator awarded the contract: the higher the cost of effort, the larger is the winning

innovator’s share of the value of the investment option.

8. Conclusion

We have presented an investment problem involving both moral hazard and private information

in a real options framework where one of the choice variables is when to invest. In our screening

model the investor designs the contract so that the innovators have an incentive to truthfully

reveal their information and provide high effort. In order to elicit information revelation expensive

investments are delayed when the investor contracts only with one innovator. Competition among

innovators alters this result dramatically: we show that when the investor can choose the number

of innovators freely, investment options are exercised so that first best investment trigger is always

achieved. Also as a result of competition among innovators, all the informational rents are dissipated

and the winner of the competition is only compensated for the effort costs. Thus the investor is

able to capture the upside potential of the investments. While we achieve these results in a simple

model where innovators have only two levels of effort and there are only two kinds of projects, the

effects of competition carry over to more complex models. Competition will erode the value to wait

and the exercise decision will be closer to the first best, even if it can’t be exactly achieved.

References

Baiman, S., P. F. M. Rajan, and R. Saouma (2007): “Resource Allocation Auctions within

Firms,” Journal of Accounting Research, 45, 915–946.

Bengtsson, O. and B. Sensoy (2011): “Investor Abilities and Financial Contracting: Evidence

from Venture Capital,” Journal of Financial Intermediation, 20, 477–502.

Bernile, G., D. Cumming, and E. Lyandres (2007): “The Size of Venture Capital and Private

Equity Fund Portfolios,” Journal of Corporate Finance, 13, 564–590.

Board, S. (2007): “Selling Option,” Journal of Economic Theory, 136, 324–340.

Boudreau, K., N. Lacetera, and K. Lakhani (2011): “Incentives and Problem Uncertainty

in Innovation Contests: An Empirical Analysis,” Management Science, 57, 843–868.



32 INNOVATION, COMPETITION, AND INVESTMENT TIMING

Bouvard, M. (2010): “Real Option Financing Under Asymmetric Information,” forthcoming in

Review of Financial Studies.

Brennan, M. and E. Schwartz (1985): “Evaluating Natural Resource Investments,” Journal

of Business, 58, 135–157.

Bustamante, C. (2012): “The Dynamics of Going Public,” Review of Finance, 16, 577–618.

Chen, F. (2007): “Auctioning Supply Contracts,” Management Science, 53, 1562–1576.
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Appendix A. Value of investment project in first best case

As shown by Dixit and Pindyck (1994), among many others, the ordinary differential equation

of the project value V (X, ·) can be formulated as

(38)
1

2
σ2X2VXX + μXVX − rV = 0,

where VX and VXX are the first and second derivatives of the value function V (X,Ki) with respect

to X. Boundary conditions of the value are

(39) V (X∗(Ki),Ki) = X∗(Ki)−Ki,

(40) VX(X∗(Ki),Ki) = 1,

(41) V (0,Ki) = 0.

The boundary condition in Eq. (39) tells us that at the investment trigger, X∗(Ki), the project

value must be equal to the payoff from the project when investment takes place. Eq. (40) is an

optimality condition, ensuring that the investment trigger X∗(Ki) is determined so as to maximize
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the value of the investment option. We assume that zero is an absorbing barrier for X, as reflected

by the boundary condition in Eq. (41). The solution of the differential equation in Eq. (38),

subject to the boundary conditions in Eqs. (39)-(41), is given in Proposition 3.1.

Appendix B. First best solution of n

First-order differentiation of Eq. (5) with respect to n leads to

(42)

dV (X)

dn
= − ln(1−qH)(1−qH)n

[(
X

X∗(KG)

)β (
X∗(KG)−KG

) − (
X

X∗(KB)

)β (
X∗(KB)−KB

)]−ξH .

We find the expression of n∗
FB in Eq. (6) by setting the first-order differentiation above equal to 0

and solve for n.

Appendix C. Deriving the optimal contract

C.1. Proof of Proposition 4.1 (i). The following inequalities show that the expected compen-

sation of innovators with good projects must be strictly positive:

(43)

(
X

XG

)β

SG ≥
(

X

XB

)β (
SB + Y B

n ΔK
) ≥

(
X

XB

)β

Y B
n ΔK > 0,

for X > 0. The first inequality in Eq. (43) follows from the ex post incentive constraint of an

innovator with a high quality project in Eq. (13). The second inequality follows from the limited

liability condition in Eq. (15).

C.2. Optimal investment triggers and expected compensation. We define a Lagrangian

function in order to solve the optimization problem in Eqs. (10)-(15),

(44)

L =
(

X
XG

)β (
Y G
n (XG −KG)− SG

)
+ 1−qH

qH

(
X
XB

)β (
Y B
n (XB −KB)− SB

)
+λ1

[(
X
XG

)β
SG − (

X
XB

)β (
SB + Y B

n ΔK
)]

+λ2

[(
X
XB

)β
SB − (

X
XG

)β (
SG − Y G

n ΔK
)]

+λ3

[(
X
XG

)β
SG − (

X
XB

)β
SB − Δξ

Δq

]
+λ4

[(
X
XG

)β
SG + 1−qH

qH

(
X
XB

)β
SB − ξH

qH

]
+λ5S

B.
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The first-order condition with respect to SG gives

(45) λ1 − λ2 + λ3 + λ4 = 1.

The first-order condition with respect to SB is equal to

(46)

(
X

XB

)β [
−λ1 + λ2 − λ3 − 1− qH

qH
(λ4 + 1)

]
+ λ5 = 0.

We use the relationship in Eq. (45) to simplify the condition in Eq. (46), which gives
(

X
XB

)β (
λ4

1
qH

+ 1
qH

)
+

λ5 = 0. We conjecture for now that SB = 0.

The first-order conditions with respect to the investment triggers XG and XB are found to be

equal to

(47) XG =
β

β − 1

(
KG − λ2ΔK

)
,

and

(48) XB =
β

β − 1

(
KB + λ1

qH
1− qH

ΔK

)
.

It can be shown that the ex post incentive compatibility constraint for innovators of type KB

never binds (to be verified later), i.e., that λ2 = 0 (which for the ex post incentive compatibility

constraint to hold means that we need to have SG ≤ Y G
n ΔK). Thus, the investment trigger for

good projects, XG, is equal to the first best trigger.

The investment trigger for bad projects will deviate from first best trigger. Note that with

λ2 = 0, the relationship in Eq. (45) will be equal to λ1 + λ3 + λ4 = 1. This means that at

least of the incentive compatibility constraints, private information or hidden effort, or the ex ante

participation constraint, will always bind.

C.3. Private information. If the ex ante incentive and participation constraints do not bind we

have λ1 = 1. The optimal investment trigger for the agent of type B will be equal to

XPI =
β

β − 1

(
KB +

qH
1− qH

ΔK

)
.

C.4. Hidden effort. When the private information constraint does not bind, i.e., when one of the

effort constraints binds, we have λ1 = 0. Thus, the investment trigger XB is in this region equal
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to the first-best investment trigger,

XHE = X∗(KB) =
β

β − 1
KB.

C.5. Both the private information and on of the hidden effort restrictions bind. The

combined first-order conditions of the Lagrangian function with respect to λ1 and max{λ3, λ4}
yield

XJ =

(
1

max{Δξ
Δq ,

ξH
qH

}Y
B
n ΔK

) 1
β

X.

Consistency with the expression of XB in Eq. (48) requires that

(49) λ1 =
(
XJ −X∗(KB)

) β − 1

β

1− qH
qH

1

ΔK
.

Appendix D. Parameter values for numerical illustrations

The parameter values used in the base case of the numerical illustrations are presented in Table

1.

Appendix E. Verifying that sG∗
and sB∗

are optimal compensations

Define the value of an innovator’s participation in the competition as V G and V B , depending

on whether the innovator has developed a high or a low quality project. Using this more general

function for the value of each innovator, the Lagrange formulation of the investor’s optimization

problem is given by

(50)

L̄ =
(

X
XG

)β
Y G
n (XG −KG)− V G + 1−qH

qH

((
X
XB

)β
Y B
n (XB −KB)− V B

)
+λ1

[
V G −

(
V B +

(
X
XB

)β
Y B
n ΔK

)]
+λ2

[
V B −

(
V G − (

X
XG

)β
Y G
n ΔK

)]
+λ3

[
V G − V B − Δξ

Δq

]
+λ4

[
V G + 1−qH

qH

(
V B − ξH

qH

)]
+λ5V

B.

Maximizing the Lagrange function with respect to XG, XB , V G, and V B leads to identical invest-

ment triggers in Eq. (22). This implies that V G = Y G
n sG, and we conclude that sG∗ in Eq. (29)

and sB∗ = 0 are optimal compensation functions.
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Appendix F. Effect on the value of the investor when n increases in the private

information and the joint regions

The probability that the investor will contract with a good innovator, pHn = 1 − (1 − qH)n,

increases in n, as

(51)
∂pHn
∂n

= −(1− qH)n ln(1− qH) ≥ 0.

In the private information region the effect on the investor’s value in Eq. (33) of a small increase

in n is given by

(52)

∂V P
PI(n)

∂n
=

∂pHn
∂n

[(
X

X∗(KG)

)β (
X∗(KG)−KG

) − (
X

XPI

)β (
XPI −KB − qH

1− qH
ΔK

)]
≥ 0.

In the joint region the investment trigger of a low quality project, XJ (n), depends on n. However,

note that the investor’s value function, V P
J (n), is monotonic in n, which means that it is sufficient

to check the derivatives of V P
J at the lower and upper boundaries of the region. At the lower

boundary of the joint region given by (25) we have XJ(n) = XPI , and Eq. (52) applies here, too.

At the upper boundary we find that XJ (n) = X∗(KB). The derivative is given by

(53)
∂V P

J (n)

∂n

∣∣∣∣
C=

(
X

X∗(KB)

)β
Y G
n ΔK

= ∂pHn
∂n

[(
X

X∗(KG)

)β (
X∗(KG)−KG

) − (
X

X∗(KB)

)β (
X∗(KB)−KB − qH

1−qH
ΔK

)]
≥ 0.

As V P
J (n) is monotonic in n the investor’s value increases for all possible n in the joint region.

Appendix G. Multiple effort levels

Assume now that each innovator can choose between m multiple effort levels e ∈ {1, 2, ...,m},
where effort level 1 is the lowest effort level, equal to L, and m is the highest possible effort level.

Each effort level e corresponds to an effort cost ξe and probability of drawing a good project qe.

We let an increase in effort imply an increase in effort cost and in the probability of a good project.

Multiple effort levels mean that the investor optimizes over effort levels in addition to the other

control variables. The ex ante constraints of the investor’s optimization problem, in Eqs. (11)-(12),
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are thus changed as follows:

qe′

(
X

XG

)β

SG + (1− qe′)

(
X

XB

)β

SB − ξe′ ≥ qe′′

(
X

XG

)β

SG + (1− qe′′)

(
X

XB

)β

SB − ξe′′ ,

where

e′′ = argmax
e �=e′

{
qe

(
X

XG

)β

SG + (1− qe)

(
X

XB

)β

SB − ξe

}
.

We rearrange the ex ante incentive compatibility constraint as follows,

(54)

(
X

XG

)β

SG −
(

X

XB

)β

SB ≥ Δ′ξ
Δ′q

,

where Δ′ξ ≡ ξe′ − ξe′′ and Δ′q ≡ qe′ − qe′′ . This constraint corresponds to Eq. (11) in the case of

only two effort levels.

The ex ante participation constraint equals,

qe′

(
X

XG

)β

SG + (1− qe′)

(
X

XB

)β

SB − ξe′ ≥ 0.

The reorganized ex ante participation constraint is given by,

(55)

(
X

XG

)β

SG +
1− qe′

qe′

(
X

XB

)β

SB ≥ ξe′

qe′
,

and is analogous to Eq. (12) in the case of two effort levels. The ex post constraints are identical

to Eqs. (13)-(15).

As the constraints in Eqs. (54)-(55) have the same structure as the ex ante constraints in two

effort levels case in Eqs. (11) and (12), the compact form constraint corresponding to Eq. (17) in

the two effort levels case, has the same structure too. The compact form constraint in the case of

multiple effort levels equals

(56)

(
X

XG

)β

SG ≥ max

{(
X

XB

)β

Y B
n ΔK,

Δ′ξ
Δ′q

,
ξe′

qe′

}
,

which is similar to the case of only two effort levels as we end up with three similar regions (the

private information region, the joint region, and the hidden effort region). This means that the

optimal investment triggers and compensation functions will be the same as for the two effort levels

case.



INNOVATION, COMPETITION, AND INVESTMENT TIMING 39

When we extend the model to allow for multiple effort levels the investor maximizes the value

function with respect to effort for each possible value of n, i.e., the investor maximizes a value

function similar to Eq. (31), with qH replaced by qe,

(57)

max
e

n

[
(qe

(
X

X∗(KG)

)β (
Y G
n (X∗(KG)−KG)− SG∗) + (1− qe)

(
X

XB∗

)β

Y B
n (XB∗ −KB)

]
.

Evaluation of the value function in Eq. (57) in the private information region leads to,

(58)

max
e

(1− (1− qe)
n)

(
X

X∗(G)

)β (
X∗(KG)−KG

)
+(1−qe)

n

(
X

XPI(qe)

)β (
XPI(qe)−KB − qe

1− qe
ΔK

)
,

where we use the notation XPI = XPI(qe) to emphasize that the optimal investment trigger in the

private information region depends on the level of effort, e. In this region the innovators’ cost of

effort is not a binding constraint in the investor’s optimization problem, and therefore the value

is increasing in effort e: it leads to a higher probability of each innovator drawing a good project,

qe. In other words, the value of an increase in effort level will be positive as long as one is in the

private information region. This means that for any n the investor will provide the innovators with

incentives to exert more effort until private information is not a binding constraint.

In the joint region and hidden effort region there is a trade-off in the optimal choice of effort

level: a higher effort increases the probability that an innovator’s innovation is of high quality, qe,

but also increases effort costs, ξe. Thus, the investor chooses an effort level such that first-best

investment is reached and we conclude that Proposition 6.1 is valid when we allow for multiple

effort levels too. The investor chooses n, and the corresponding optimal effort level, such that her

value is maximized.

Appendix H. Discrete n

In Section 6 we show that in both the private information region and the joint region the

investor’s value increases in n. To ensure that the optimal number of innovators are found in the

hidden effort region when n is discrete we require that there is at least one value of n in this region:

Assumption H.1. We assume that parameter values are given such that there exists at least one

value of n in the hidden effort region.
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We then find the optimal n by increasing the number of innovators in the hidden effort region

as long as the marginal value of inviting one more innovator to participate in the contest is higher

than the cost of inviting him, i.e. we increase n as long as

(59)

ΔpHn

{(
X

X∗(KG)

)β (
X∗(KG)−KG)

) − (
X

X∗(KB)

)β (
X∗(KB)−KB

)} − qHC(qH , ξH) ≥ 0,

where ΔpHn ≡ pHn − pHn−1 > 0. Since ΔpHn is positive and decreasing in n, and the last term is a

negative constant, we find an optimum in the hidden effort region.

Appendix I. Proofs of comparative statics analyzes in Section 7

I.1. Proof of Proposition 7.1: Properties of the optimal contract as a function of X.

The derivative of n∗ with respect to X is given by

(60)
dn∗

dX
= − β

ln(1− qH)X
> 0.

Evaluation of the first derivative of V P
HE(n

∗) with respect to X leads to the expression,

(61)
dV P

HE(n
∗)

dX
=

β

X

[(
X

X∗(KG)

)β (
X∗(KG)−K

) − qH
− ln(1− qH)

C(ξH , qH)

]
,

which is positive as C(ξH , qH) ≤
(

X
X∗(KG)

)β
ΔK by Eq. (26) and qH

− ln(1−qH) < 1 for 0 < qH < 1.

The second derivative V P
HE(n

∗) with respect to X is then given by

(62)

d2V P
HE(n

∗)
dX2

= β(β−1)Xβ−2

[(
1

X∗(KG)

)β (
X∗(KG)−K

) − (−1)X−2β
qH

− ln(1− qH)
C(ξH , qH)

]
≥ 0.

The contract winner’s value of the contract, C(ξH ,qH)

Y G
n∗

, increases in X as Y G
n∗ is negative in X,

(63)

dY G
n∗

dX =
∂Y G

n∗
∂n∗

dn∗
dX

= (1−qH )n
∗
ln(1−qH )n∗+1−(1−qH )n

∗

(n∗)2qH
β

ln(1−qH)X < 0,

as (1− qH)n ln(1− qH)n+ 1− (1− qH)n > 0 for all n ≥ 1 and 0 < qH < 1.
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The derivative of the contract winner’s value relative to value of a high quality investment project,

d

(
C(ξH ,qH )/Y G

n∗
V (X,KG)

)

dX ≤ 0, as

(64)
d

(
Y G
n∗V (X,KG)

)
dX

=
1

n∗qH
β

X

(
X

X∗(KG)

)β (
X∗(KG)−KG

) [
1− (1− qH)n

∗

n∗ ln(1− qH)
+ 1

]
≥ 0.

Eq. (64) is positive since −1 < 1−(1−qH )n

n ln(1−qH ) < 0 for n > 0 and 0 < qH < 1.

I.2. Proof of Proposition 7.2. Differentiation of n∗ with respect to β leads to

(65)
∂n∗

∂β
= A

[
(KG)1−β ln

(
X

X∗(KG)

)
− (KB)1−β ln

(
X

X∗(KG)

)]
,

where

A =

(
X β−1

β

)β

− ln(1− qH)

[(
X

X∗(KG)

)β
KG −

(
X

X∗(KB)

)β
KB

] > 0.

The first derivative in Eq. (65) is positive, as the exponential of the right-hand side of Eq. (65) is

larger than 1,

exp

{
A

[
(KG)1−β ln

(
X

X∗(KG)

)
− (KB)1−β ln

(
X

X∗(KG)

)]}
=

(
X

X∗(KG)

)A(KG)1−β

(
X

X∗(KB)

)A(KB)1−β
> 1,

which means that the right-hand side of equation (65) is positive. Hence we find that

(66)
dn∗

dσ
=

∂n∗

∂β

dβ

dσ
< 0,

since ∂n∗
∂β > 0 and dβ

dσ < 0.

The first derivative of V P
HE(n

∗) with respect to σ is given by

dV P
HE(n

∗)
dσ

=
dV P

HE

dβ

dβ

dσ
,

where

(67)
dV P

HE

dβ
=

[
∂V P

HE

∂pHn∗

∂pHn∗

∂n∗ +
∂V P

HE

∂n∗

]
dn∗

dβ
+

∂V P
HE

∂β
.
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Evaluation of Eq. (67) leads to

dV P
HE

dβ
=

(
X

X∗(KG)

)β
KG ln

(
X

X∗(KG)

)
β − 1

− qHC
dn∗

dβ
> 0.

As dβ
dσ < 0, we obtain

dV P
HE
dσ < 0.

I.3. Proof of Proposition 7.3. The first derivative of n∗ with respect to qH can be written as

(68)
dn∗

dqH
=

n∗ + 1−qh
qH

+ ln(1− qH)−1

ln(1− qH)(1 − qH)
< 0

since n∗ + 1−qh
qH

+ ln(1− qH)−1 > 0 for qH ∈ (0, 1) and n∗ ≥ 1 .

The total derivative of V P
HE(n

∗) with respect to qH is given by

dV P
HE(n∗)
dqH

=
∂V P

HE(n∗)
∂n∗ dn∗dqH

= −(1− qH)n−1
[
V (X,KG)− V (X,KB)

] (
1−qH
qH

+ ln(1− qH)−1
)

+n∗
{

ΔqL
Δq2H

, 0
}
− qHC dn∗

dqH
> 0,

since 1−qH
qH

+ ln(1− qH)−1 < 0.

The derivative of C(ξH , qH)/Y Gn∗ with respect to qH is equal to

d(C(ξH , qH)/Y G
n∗)

dqH
=

∂C
∂qH

Y G
n∗ − C(ξH , qH)

∂Y G
n∗

dqH

(Y G
n∗)2

< 0,

since ∂(Δξ)/(qH−qL)
∂qH

< 0, ∂(ξH )/qH
∂qH

< 0, and

dY G
n∗

dqH
= (1−qH )n

∗−1qHn∗−1+(1−qH )n
∗

n∗q2H

− (1−qH)n
∗
ln(1−qH )n∗+1−(1−qH )n

∗

(n∗)2qH

n∗ 1−qH
qH

+ln(1−qH)−1

ln(1−qH )(1−qH ) > 0.

I.4. Proof of Proposition 7.4. First-order differentiation of n∗ with respect to ξH equals

dn∗

dξH
=

1

C(ξH , qH) ln(1− qH)

dC(ξH , qH)

dξH
< 0.
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Value of observable asset X 150
Risk-adjusted drift μ 0.00
Volatility σ 0.15
Risk-free interest rate r 0.05

Privately observed investment cost if high quality project KG 75
Privately observed investment cost if low quality project KB 125
Probability of a high quality project if high effort qH 0.45
Probability of a high quality project if low effort qL 0.10
Cost of high effort ξH 1.30
Cost of low effort ξL 0.25

Resulting values:

First-best investment trigger of high quality project X∗(KG) 120
First-best investment trigger of low quality project X∗(KB) 200
Investment trigger of low quality project
when only private information constraint binds XPI 265.45

Table 1. Base case parameter values.

Figure 1. An overview of the stages of the model.
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XB*

H

Figure 2. The first-best trigger X∗(KB) corresponds to the optimal trigger when
we have no private information or hidden effort problems, and is given by the lower
horizontal line in the figure. The four other curves represent optimal investment
triggers under private information and hidden effort. The upper horizontal parts
of these curves correspond to regions where only the private information constraint
binds. In this case there is a large investment deviation from first-best trigger, which
results in inefficient investment triggers and contracts that are not renegotiation-
proof. In the region where the investment triggers decline towards the first-best
trigger, both the private information and the effort constraints bind. When only
one of the effort constraint binds, the optimal investment trigger equals the first-best
trigger. Note that as the investor increases the number of competing innovators,
the intervals of effort cost levels in which private information constraints bind are
reduced. Thus, as the number of competitors increase, the optimal investment policy
is pushed toward first-best investment.
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sG

H

Figure 3. In the region of ξH -values where the compensation sG is independent
of ξH , only the private information constraint binds. The graphs illustrate that as
n increases the informational rents decreases, but also that the region of ξH -values
where private information is a binding constraint decreases. In the region where
effort is a binding constraint, sG increases linearly in ξH , and also increases in n.
Note also that the hidden effort region increases in n, and that the compensation
increases more steeply in ξH for a higher value of n.
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XPI

HE region, n=1 PI region, n=1

HE region, n=2 PI region, n=2

HE region, n=5

Figure 4. The contract winner’s relative share as a function of the observable part
of the asset value, X.

X=X*(KG)

HE region, n=1PI region, n=1

PI region, n=2

HE region, n=5

HE region, n=2

Figure 5. The contract winner’s relative share as a function of volatility, σ.
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HE region, n=1PI region, n=1

HE region, n=2PI region, n=2

HE region, n=5

Figure 6. The contract winner’s relative share as a function of each agent’s cost
of high effort, ξH .

PI region Hidden effort

Figure 7. The upper curve represents the principal’s project value as a function
of the number of agents, n, in the first-best case. The lower curve gives optimal
project values given agency problems.


